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DNA N6-methyladenine (6mA) is a dominant DNA modification form and involved in many 

biological functions. The accurate genome-wide identification of 6mA sites may increase 

understanding of its biological functions. Experimental methods for 6mA detection in 

eukaryotes genome are laborious and expensive. Therefore, it is necessary to develop 

computational methods to identify 6mA sites on a genomic scale, especially for plant 

genomes. Based on this consideration, the study aims to develop a machine learning-

based method of predicting 6mA sites in the rice genome. We initially used mono-

nucleotide binary encoding to formulate positive and negative samples. Subsequently, 

the machine learning algorithm named Random Forest was utilized to perform the 

classification for identifying 6mA sites. Our proposed method could produce an area 

under the receiver operating characteristic curve of 0.964 with an overall accuracy of 

0.917, as indicated by the fivefold cross-validation test. Furthermore, an independent 

dataset was established to assess the generalization ability of our method. Finally, an 

area under the receiver operating characteristic curve of 0.981 was obtained, suggesting 

that the proposed method had good performance of predicting 6mA sites in the rice 

genome. For the convenience of retrieving 6mA sites, on the basis of the computational 

method, we built a freely accessible web server named iDNA6mA-Rice at http://lin-group.

cn/server/iDNA6mA-Rice.

Keywords: N6-methyladenine, mono-nucleotide binary encoding, random forest, cross-validation, web-server

INTRODUCTION

Methylated bases, such as N4-methylcytosine (4mC), N6-methyladenine (6mA), and 5-methylcytosine 
(5mC), exist in genomic DNA of diverse species (Cheng, 1995; Ratel et al., 2006). All these DNA 
methylation modifications play important roles in controlling many biological functions (Tang et al., 
2018b). As an epigenetic mechanism, DNA methylation refers to a process that methyl groups are 
transferred to DNA molecules and is essential in the normal development of organisms (Bergman 
and Cedar, 2013; Smith and Meissner, 2013; von Meyenn et al., 2016). Through DNA methylation, 
the activity of a DNA segment can be changed without changing its sequence. For example, gene 
transcription can be repressed when DNA methylation occurs at its promoter (Bird, 1992).

As shown in Figure 1, after a methyl group is transferred to the sixth position of adenine ring, 
under the catalysis action of methyltransferases, 6mA is formed. 6mA is a noncanonical DNA 
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modification form in different eukaryotes at low levels (Fu et al., 
2015; Greer et al., 2015; Zhang et al., 2015; Koziol et al., 2016; 
Liu et al., 2016; Mondo et al., 2017; Wang et al., 2017). 6mA in 
prokaryotes and eukaryotes shows similar characteristics (Heyn 
and Esteller, 2015). It has diverse functions, including guiding 
the discrimination of an original DNA strand from a newly 
synthesized DNA strand (Wion and Casadesus, 2006), regulating 
gene transcription (Cheng et al., 2016), repressing transposable 
elements, and reducing the stability of base pairings (Fang et al., 
2012). Surprisingly, the methylation protection is an inheritable 
state, although it may be changed by environmental factors 
(Wion and Casadesus, 2006). Therefore, it is worth underscoring 
the importance of 6mA throughout generations.

Recent studies revealed the genome-wide distributions of 6mA 
in Tetrahymena (Wang et al., 2017), Chlamydomonas reinhardtii 
(Fu et al., 2015), Drosophila melanogaster (Zhang et  al., 2015), 
Caenorhabditis elegans (Greer et al., 2015), vertebrates (e.g. frog 
and fish) (Koziol et al., 2016; Liu et al., 2016), mammals (e.g., 
human and Mus. musculus) (Wu et al., 2016; Yao et al., 2017; 
Xiao et al., 2018; Zou et al., 2018a), fungi (Mondo et al., 2017), 
and vascular plants (e.g. rice) (Zhou et al., 2018). Although these 
studies testified the presence of 6mA in eukaryotic genomes based 
on experimental means and indeed achieved encouraging results, 
the implication of 6mA in epigenetics is still obscure (Ratel et al., 
2006). In addition, in eukaryotes, the level of 6mA was so low that 
it could only be detected by advanced techniques. In rice, with 
two antibodies, based on SMRT and IP-seq, Zhou et al. (2018) 
found that AGG-rich sequences were the most significantly 
enriched for 6mA. Thus, the computational prediction of 6mA 
sites may be a good choice to reduce experimental costs and 
guide the experimental study on plant 6mA.

In fact, several computational methods have been applied 
in the identification of DNA methylation sites. Based on 
the data of experimentally confirmed 4mC sites, Chen et al. 
(2017) firstly developed a predictor called iDNA4mC to 
identify 4mC sites, in which DNA samples were formulated 
with nucleotide frequency and nucleotide chemical property. 

Then, based on the dataset (Chen et al., 2017), He et al. 
(2018a) established another tool named 4mCPred, and Wei 
et al. (2018b) built a new predictor (4mcPred-SVM) to predict 
4mC sites. Recently, a free tool called iDNA6mA-PseKNC was 
constructed for the computational prediction of 6mA sites 
(Feng et al., 2019). The tool could be used to identify 6mA 
sites in Mus. musculus genome. However, the tool could not 
provide valuable data contained in plant genomes due to the 
difference between mammal and plant genomes. Thus, it is 
necessary to develop a 6mA site predictor for plant genomes. 
Recently, a tool named i6mA-Pred was constructed to identify 
6mA site in rice (Chen  et al., 2019). The tool could realize 
the area under the receiver operating characteristic curve 
(auROC) of 0.886 in jackknife cross-validation. However, the 
database used was not large enough, and the accuracy should 
be further improved.

In view of the aforementioned descriptions, this study aims to 
develop a new method and establish an efficient tool to identify 
6mA sites in the rice genome. A flowchart is shown in Figure 2. 
We firstly collected the existing data in the rice genome, including 
experimentally confirmed non-6mA sequences and 6mA 
sequences and built a benchmark dataset based on the report 
by Zhou et al. (2018). Subsequently, three kinds of sequence 
encoding features were proposed to formulate samples as the 
input of the Random Forest algorithm (RF) to discriminate 6mA 
sequences from non-6mA sequences. Then, several experiments 
were performed to investigate the prediction capability of 
the proposed method. Finally, on the basis of the method, we 
established a predictor called iDNA6mA-Rice.

MATERIALS AND METHODS

Benchmark Dataset
A benchmark dataset is important in building a reliable 
prediction model. By combining immunoprecipitation with 
single-molecular real-time sequencing approach, 6mA sites 

FIGURE 1 | Illustration of N6-methyladenine (6mA) modifications in DNA. The conversion of adenine to 6mA is mediated by methyl-transferases.
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in the rice genome had been detected (Zhou et al., 2018) and 
deposited in Gene Expression Omnibus (GEO) database, 
which was created and is maintained by the National Center 
for Biotechnology Information (NCBI) (Long et al., 2019). 
Therefore, a total of 265,290 6mA sites containing sequences 
were obtained from GEO. All of these sequences in GEO 
are 41 nt long with the 6mA site at the center. To reduce 
homologous bias and avoid redundancy (Dao et al., 2018; 
Su et al., 2018; Tang et al., 2018a; Zou et al., 2018b; Feng et al., 
2019), sequences with the similarity above 80% were excluded 
by using the CD-HIT program (Li and Godzik, 2006). Finally, 
we obtained 154,000 6mA sites-contained sequences as 
positive samples.

Negative samples were collected from NCBI (https://www.
ncbi.nlm.nih.gov/genome/10) and according to the following 
three rules. Firstly, the 41-nt long sequences with adenine at the 
center were selected. Secondly, experimental results proved that 
the centered adenine was not methylated. Thirdly, Zhou et al. 
(2018) believed that 6mA most frequently occurred at GAGG, 
AGG, and AG motifs, so we statistically analyzed the ratios of 
GAGG, AGG, and AG motifs in positive samples and reported 
the result in Table 1. Based on the result in Table 1, we selected 
the negative samples with the same ratio of motifs so that the 

negative data were more objective. In this way, a large number of 
negative samples were obtained. In machine learning processes, 
imbalanced datasets lead to unreliable results. To balance 
positive and negative samples, 154,000 non-modified segments 
were randomly picked out as negative samples in model training. 
Finally, the benchmark dataset contained 154,000 positive 
samples and 154,000 negative samples. The benchmark dataset 
S is formulated as:

 S = S S+ −  (1)

where the S+ contains 154,000 positive samples; the S− contains 
154,000 negative samples;  is the symbol of “union” in the set 
theory. The benchmark dataset is available at http://lin-group.cn/
server/iDNA6mA-Rice.

FIGURE 2 | A flowchart used in this study.

TABLE 1 | Details of the three motifs in positive samples.

Motifs Numbers Proportions (%)

GAGG 26,300 17.08

AGG 24,264 15.76

AG 22,206 14.42
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Feature Descriptions
Feature extraction is a key step in establishing an excellent 
predictor (Song et al., 2012; Zuo et al., 2017; Stephenson et al., 
2018; Manavalan et al., 2018a; Wei et al., 2018a; Manavalan et al., 
2018b; Song et al., 2018b; Song et al., 2018c). The following three 
feature extraction techniques were adopted to formulate 6mA 
samples.

K-tuple Nucleotide Frequency Component
As a special form of PseKNC (Guo et al., 2014; Lin et al., 2014), 
the K-tuple nucleotide frequency component has been widely 
used in a variety of bioinformatics problems (Lin and Li, 2011; 
Yang et al., 2018b).

A DNA sequence D can be expressed as:

 
D = −R R R R R R Ri L L1 2 3 4 1  ,  (2)

where Ri represents the nucleotide [Adenine (A), Thymine 
(T), Cytosine (C), and Guanine (G)] at the ith position; L is 
the length of sequence D and equals to 41 in this study. The 
strategy of k-tuple composition is to convert each sample into a 
4k dimension vector expressed as:

 
DD  ==  f f f fk tuple k tuple

i
k tuple k tuple

k1 2 4

− − − −



 

TT

 (3)

where T represents the transposition of the vector and fi
k tuple−  

represents the frequency of the ith k-tuple composition in the 
DNA sequence sample. The feature has been applied in DNA 
element identification (Wei et al., 2018b). Here, we set k = 2, 3, 4.

Mono-Nucleotide Binary Encoding
The second feature technique is to transfer nucleotide into a 
binary code formulated as:

 

n

when n A

when n C
=

=

=

( , , , ),

( , , , ),

( , , , )

1 0 0 0

0 1 0 0

0 0 1 0 ,,

( , , , ),

when n G

when n T

=

=











 0 0 0 1

 (4)

Thus, an arbitrary DNA sequence with L nucleotides can be 
described as a vector of 4 × L features (Song et al., 2018a; Wei 
et al., 2018b).

Natural Vector
In the natural vector method proposed by Deng et al. (2011), 
sequences are represented as points in high-dimensional space 
based on statistical characteristics (Liu et al., 2018). With the 
sequence data, such as occurrence frequencies, the central 
moments, and average positions of nucleotides, the natural 
vector method is used to describe the distributions and numbers 
of nucleotides, cluster sequences, and predict their various 
attributes.

Based on Eq. (3), each nucleotide R can be defined as follows:

 Wk( ) : {A,C,G,T}, { , },⋅ → 0 1  (5)

where WR (Ri) = 1 if Di = R and WR (Di) = 0, otherwise

 n W DR i
n

R i= =∑ 1 ( ),  (6)

where nR represents the number of nucleotide R in the DNA 
sequence D:

 S i W DR i R i[ ][ ] ( ),= ⋅  (7)

where S[R][i] represents the distance from the first nucleotide to 
the ith nucleotide R.

 T SR i
n

R i
R= =∑ 1 [ ][ ],  (8)

where TR represents the total distance of each set of the four 
nucleotides.

 µR R RT n= / ,  (9)

where μR represents the mean position of the nucleotide R.
Finally, the second-order normalized central moments can be 

defined as:

 D
S

nn
R

i
n R R

R

R i

2 1

2

=
−

=∑
( )[ ][ ]

µ
 (10)

Then, the natural vector of sequence D is expressed as (Tian 
et al., 2018):

 n D n c D n D n DA A
A

c
C

G G
G

T T
T, , , , , , , , , , , .µ µ µ µ2 2 2 2( )  (11)

Random Forest Algorithm
The RF algorithm has been extensively applied in computational 
biology (Zhao et al., 2014; Zhang et al., 2016; Lv et al., 2019), 
since it is a flexible and practical machine learning method 
and can deal with many input variables without variable 
deletion and provide an internal unbiased estimate of the 
generalization error. According to the principle of RF, many 
trees are randomly generated with the recursive partitioning 
approach, and then, the results are aggregated according to 
voting rules. In this study, the number of trees is set to 100 
with the seed of 1. The details of RF had been described by 
Breiman (2001).

Performance Evaluation
Cross-validation test is a statistical analysis method for 
assessing a classifier. For the purpose of saving computation 
time, the fivefold cross-validation test was performed to assess 
the method proposed in this study. We used four metrics 
[Matthew’s correlation coefficient (MCC), sensitivity (Sn), 
overall accuracy (Acc), and specificity (Sp)] to measure the 
predictive capability of our model (Zuo et al., 2014; Zou et al., 
2016; Manavalan and Lee, 2017; Manavalan et al., 2017; Cao 
et al., 2017a; Cao et al., 2017b; Cheng et al., 2018a; Yang et al., 
2018a; Zhu et al., 2019).

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Detecting N6-Methyladenine Sites in RiceHao et al.

5 September 2019 | Volume 10 | Article 793Frontiers in Genetics | www.frontiersin.org

Sn
N

N
Sn

Sp
N

N
Sp

Acc
N N

N

= − ≤ ≤

= − ≤ ≤

= −
+

−
+

+

+
−

−

−
+

+
−

+

1 0 1

1 0 1

1
++

≤ ≤

=
− +

+
−

+

−

−
+

+

+
−

−

+
−

−
+

+

N
Acc

MCC

N

N

N

N

N N

N

N

0 1

1

1 1

( )

( )( −−
+

+
−

−

−
≤ ≤






















N

N

MCC

)

,

0 1

 (12)

where N+ and N− are, respectively, the numbers of 6mA 
sites and non-6mA sites in benchmark dataset; N−

+ indicates 
the number of the 6mA sites recognized as non-6mA sites; 
and N+

− indicates the number of the wrongly predicted non-
6mA sites. Sn and Sp represent the ability of a model to 
correctly identify 6mA sites and non-6mA sites, respectively. 
The value of Acc indicates the overall accuracy of our model 
distinguishing 6mA sites from non-6mA sites. MCC indicates 
the performance of our model based on real and predicted 
values. When N N−

+
+
−= = 0, meaning that none of the 6mA sites 

in the dataset S+ and none of the non-6mA sites in the dataset 
S− was mispredicted, we have MCC = 1; when N N−

+ += / 2 
and N N+

− −= / 2, we have MCC = 0, meaning no better than 
random prediction; when N N−

+ +=  and N N+
− −=  we have 

MCC  = -1, meaning total disagreement between prediction 
and observation.

In addition to the analysis based on the previously discussed 
indicators, the ROC curves (Metz, 1989; Chen et al., 2016; Dao 
et al., 2018; Feng et al., 2018; Lai et al., 2019; Tan et al., 2019) 
were plotted, and then, the area under the receiver operating 
characteristic curve (AUC) was calculated to objectively evaluate 
our proposed model.

RESULTS AND DISCUSSION

Sequence Analysis
To investigate the nucleotide distribution around the 21st 
site (6mA or non 6mA) in positive and negative samples, the 
pLogo (O’Shea et al., 2013) was plotted to analyze the statistical 
difference of nucleotide occurrence between two kinds of 
samples. The 6mA samples were dramatically different from non-
6mA samples in terms of nucleotide compositions (Figure 3). 
The nucleotide composition bias regions existed in the ranges 
from -8 to +10 sites and from +15 to +18 downstream of the 
6mA site. Unlike the distribution in the non-6mA samples, a 
consensus motif of AAAA was observed in the upstream of 
the 6mA site. These results suggested that it was feasible to 
construct a machine learning model for identifying 6mA sites 
with extracted sequence features.

Performance Evaluation on Different 
Features
The prediction performances of three features [K-tuple 
nucleotide frequency component (KNFC), mono-nucleotide 
binary encoding (MNBE), and natural vector (NV)] and their 
combinations were firstly explored with RF. Accordingly, we 
built four computational models and evaluated them through 
the fivefold cross-validation test. The prediction results are 
provided in Figure 4 and Table 2. It was found that MNBE 
could produce the best prediction performance among 
all features, indicating that it was the best descriptor  for 
6mA samples.

KNFC is a commonly used feature extractor technique 
and has been successfully applied in DNA regulatory element 
prediction. However, the results in Table 2 showed that 
the accuracy of KNFC was only 68.3%, which was far from 
satisfactory. For the 41-nt long 6mA samples, KNFC is a 
high-dimension vector (16 + 64 + 256), which is so large 
that many elements in feature vector are zero. Although 

FIGURE 3 | Nucleotide distribution preferences around 6mA and non-6mA sites. The upper half of the x-axis indicates the nucleotide distribution in 6mA site 

containing sequence, whereas the lower half of the x-axis indicates the nucleotide distribution in non-6mA site containing sequences.
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high-dimension features contain more information, more 
noise and redundant information are also included, thus 
decreasing the discrimination capability. Therefore, KNFC 
is not suitable for 6mA identification. In fact, the NV is the 
worst descriptor among all features in this study, since it 
can only obtain the overall accuracy of 54.3%, which almost 
equals the accuracy of random guess. The reason for the poor 
performance of NV in 6mA prediction is that NV contains too 
few features to capture enough sequence information of 6mA 
and non-6mA samples.

For the combinations of different features, if MNBE was 
included, the prediction performances are always good. 
However, they are still not higher than those obtained with 
MNBE alone. Thus, subsequent studies were based on MNBE.

Performance Evaluation of Different 
Algorithms
It is natural to ask whether other classification is better 
than RF in 6mA identification. Thus, we investigated the 

discriminant capabilities of three algorithms, namely, Naïve 
Bayes, Bayes Net, and Logistic Regression, with the benchmark 
dataset through fivefold cross-validation. All algorithms were 
implemented in WEKA (Frank et al., 2004). The ROC curves 
were plotted (Figure 5). It is obvious that RF is the best one for 
6mA prediction among four algorithms. Thus, the final model 
was built with RF.

Performance Evaluation Based 
on Different Data Ratios
In order to further assess the proposed method, the benchmark 
dataset was randomly divided into two parts according to five 
ratios (5:5, 6:4, 7:3, 8:2, and 9:1): training dataset and testing 
dataset. The former part was used to train the model, whereas 
the other part was used to test corresponding model. In this way, 
the training dataset and testing dataset are independent of each 
other. The predictive results are listed in Table 3. For each ratio 
between training and testing datasets, the model could always 

TABLE 2 | Predictive performances of KNFC, MNBE, and NV.

Methods Sn (%) Sp(%) Acc(%) MCC AUC

KNFC (k = 2, 3, 4) 70.3 66.3 68.3 0.366 0.744

MNBE 93.0 90.5 91.7 0.835 0.964

NV 58.1 50.6 54.3 0.087 0.566

KNFC-MNBE 91.8 90.1 90.9 0.819 0.958

KNFC-NV 70.4 66.5 68.4 0.369 0.747

MNBE-NV 92.8 90.3 91.6 0.832 0.963

KNFC-MNBE-NV 91.7 90.3 91.0 0.820 0.925

FIGURE 4 | Performance evaluation based on three features and their combinations.
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produce the AUC of >0.90, suggesting that our method was 
robust and reliable.

Performance Evaluation With 
an Independent Dataset
We designed the third experiment to investigate the 
performance of our proposed predictor. In the experiment, 
an independent test set was collected from NCBI Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) 
with the accession number GSE103145 (Zhou et al., 2018). All 
the sequences were 41 nt long with the 6mA site at the center. 
After removing redundant information with CD-HIT program 
according to the cutoff of 60%, a total of 880 positive samples 
were obtained (Chen et al., 2019). The negative samples were 
also obtained from the rice genome. In the report by Zhou 
et  al., 6mA most frequently occurs at GAGG motifs and 

seldom occurs in coding sequences (CDSs). Thus, negative 
samples were extracted from CDSs with GAGG motifs in the 
rice genome. In total, 880 negative samples with the sequence 
identity less than 60% were obtained. All negative samples were 
also 41 nt long with non-methylated adenosine at the center. 
The data were utilized as the benchmark dataset in i6mA-Pred 
(Chen et al., 2019). The details for the benchmark dataset are 
available at http://lin-group.cn/server/iDNA6mA-Rice.

We utilized these data to examine our proposed model 
(Table 4). In total, 95.8% 6mA sites and 93.3% non-6mA sites 
were correctly identified, suggesting that the method was a 
powerful tool for identifying 6mA sites in rice genome.

Comparison With Published Methods
Till now, i6mA-Pred (Chen et al., 2019) is the only 
computational-based predictor for 6mA site prediction in the 

FIGURE 5 | Performance evaluation of different algorithms.

TABLE 3 | Predictive performances of five ratios on the testing and training datasets.

Ratios 5:5 6:4 7:3 8:2 9:1

testing training testing training testing training testing training testing training

Sn (%) 91.4 91.8 92.0 91.9 92.2 92.4 92.4 92.5 92.7 92.7

Sp (%) 70.9 90.5 87.7 90.0 90.6 90.0 91.7 90.1 92.1 90.4

Acc (%) 81.1 91.1 89.9 90.9 91.4 91.2 92.1 91.3 92.2 91.8

MCC 0.636 0.822 0.798 0.819 0.828 0.824 0.841 0.827 0.853 0.835

AUC 0.904 0.969 0.953 0.963 0.963 0.963 0.967 0.963 0.969 0.964
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rice genome. To provide an objective and strict comparison, 
we investigated the performance of our method with the same 
data through jackknife cross-validation. The method could 
produce the auROC of 0.910 (Table 5), which was higher than 
that of i6mA-Pred. This comparison demonstrated that our 
method was powerful.

Subsequently, iDNA6mA-PseKNC (Feng et al., 2019) is a 
tool to identify 6mA sites in Mus. musculus genome, and it can 
identify 6mA sites in many other species with high success 
rates. Thus, it is necessary to compare our proposed method 
with it. We investigated the performance of our predictor and 
iDNA6mA-PseKNC based on the independent dataset used in 
this work. All compared results were recorded in Table 4. It is 
obvious that the model proposed in this paper is superior to 
iDNA6mA-PseKNC for identifying 6mA sites. 

Web Server
Databases and web servers (Wang et al., 2014; Liang et al., 2017; Yi 
et al., 2017; Zhang et al., 2017; Cui et al., 2018; Dao et al., 2018; Cheng 
et al., 2018b; He et al., 2018b; Hu et al., 2019; Cheng et al., 2019a; 
Cheng et al., 2019b) can provide scholars with more convenient 
services. Thus, the basis of the novel method, we built a web server 
named iRNA6mA-Rice to identify 6mA sites in the rice genome. 
The web server can be freely accessible at http://lin-group.cn/server/
iDNA6mA-Rice.

Users can open the homepage shown in Figure 6 to see a short 
introduction about iDNA6mA-Rice. One may firstly click the “Web-
server” button, then type or copy/paste DNA sequences in the input 
box, or upload the FASTA format file. Note that the length of each 
sequence should be greater than 41 nt. Subsequently, after clicking 
the “submit” button, the predicted results will appear on a new 
page. As described previously, the tool is simple and can provide a 
convenient way for users to identify putative 6mA sites in DNA of 
their interest. Moreover, in order to facilitate the processing of large-
scale data, the stand-alone package can be downloaded at http://lin-
group.cn/server/iDNA6mA-Rice/download.html.

CONCLUSIONS

This paper developed a computational method for the 
identification of 6mA sites in the rice genome. We designed 
several kinds of experiments to examine the performance of 
the proposed method, for example, the performance evaluation 
on different features, performance evaluation on different 
algorithms, performance evaluation based on different data 
ratios, performance evaluation with an independent dataset, and 

TABLE 4 | Comparison of different methods for predicting 6mA sites in 

independent dataset.

Method Sn (%) Sp (%) Acc (%) MCC auROC

Our method 95.8 93.3 94.6 0.891 0.981

iDNA6mA-PseKNC 76.6 94.3 85.5 0.721 –

TABLE 5 | Comparison of different methods for predicting 6mA sites in the rice 

genome with jackknife test.

Methods Sn (%) Sp (%) Acc (%) MCC auROC

This study 83.86 83.41 83.63 0.67 0.910

i6mA-Pred 82.95 83.30 83.13 0.66 0.886

FIGURE 6 | A semi-screenshot for the web server page of the iDNA6mA-Rice web server at http://lin-group.cn/server/iDNA6mA-Rice.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://lin-group.cn/server/iDNA6mA-Rice
http://lin-group.cn/server/iDNA6mA-Rice
http://lin-group.cn/server/iDNA6mA-Rice/download.html
http://lin-group.cn/server/iDNA6mA-Rice/download.html
http://lin-group.cn/server/iDNA6mA-Rice


Detecting N6-Methyladenine Sites in RiceHao et al.

9 September 2019 | Volume 10 | Article 793Frontiers in Genetics | www.frontiersin.org

comparison with published methods. All results demonstrated 
that our proposed method could accurately recognize 6mA sites 
in the rice genome. For the convenience of most wet-experimental 
scholars, we established a free web server to predict 6mA sites. We 
anticipate that the web server can promote the efficient discovery 
of novel potential 6mA sites in the rice genome and facilitate the 
exploration of their functional mechanisms in gene regulation.
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