
iDocChip: A Configurable Hardware Architecture
for Historical Document Image Processing

Multiresolution Morphology-based Text and Image Segmentation

Menbere Kina Tekleyohannes1 • Vladimir Rybalkin1 •

Muhammad Mohsin Ghaffar1 • Javier Alejandro Varela1 • Norbert Wehn1 •

Andreas Dengel2

Received: 28 October 2019 / Accepted: 7 December 2020 / Published online: 30 January 2021

� The Author(s) 2021

Abstract

In recent years, optical character recognition (OCR) systems have been used to

digitally preserve historical archives. To transcribe historical archives into a

machine-readable form, first, the documents are scanned, then an OCR is applied. In

order to digitize documents without the need to remove them from where they are

archived, it is valuable to have a portable device that combines scanning and OCR

capabilities. Nowadays, there exist many commercial and open-source document

digitization techniques, which are optimized for contemporary documents. How-

ever, they fail to give sufficient text recognition accuracy for transcribing historical

documents due to the severe quality degradation of such documents. On the con-

trary, the anyOCR system, which is designed to mainly digitize historical docu-

ments, provides high accuracy. However, this comes at a cost of high computational

complexity resulting in long runtime and high power consumption. To tackle these

challenges, we propose a low power energy-efficient accelerator with real-time

capabilities called iDocChip, which is a configurable hybrid hardware-software

programmable System-on-Chip (SoC) based on anyOCR for digitizing historical

documents. In this paper, we focus on one of the most crucial processing steps in the

anyOCR system: Text and Image Segmentation, which makes use of a multi-reso-

lution morphology-based algorithm. Moreover, an optimized FPGA-based hybrid

architecture of this anyOCR step along with its optimized software implementations

are presented. We demonstrate our results on multiple embedded and general-pur-

pose platforms with respect to runtime and power consumption. The resulting

hardware accelerator outperforms the existing anyOCR by 6.2 �, while achieving

207 � higher energy-efficiency and maintaining its high accuracy.

Extended author information available on the last page of the article

123

International Journal of Parallel Programming (2021) 49:253–284

https://doi.org/10.1007/s10766-020-00690-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-020-00690-y&domain=pdf
https://doi.org/10.1007/s10766-020-00690-y

Keywords Optical character recognition � Text and image segmentation � FPGA �
Hardware-software co-design � Zynq � Hardware architecture

1 Introduction

National Archives, libraries, and museums around the world contain numerous

collections of historical documents. Nowadays, due to the increasing demand to

electronically access and preserve these valuable resources, the research area to

digitize document contents into machine-readable text has been amplified.

Transcription of documents also leads to the development of further applications

such as text mining, document indexing, word spotting, text-to-speech conversion,

etc. To digitize the historical archives, the documents are first scanned then an OCR

is applied on each document image. Many libraries are equipped with special

devices that are specifically tailored for scanning historical documents. However,

these machines are usually large and stationary. Challenges arise when instant word

spotting, document indexing, etc are required. As a result, there is a high demand

for a portable hand-held OCR device that can transcribe historical documents in

real-time with high accuracy. The first requirement in the design of such a device is

selecting an algorithm that gives high accuracy for digitizing historical archives.

The portable device also needs to have low power consumption and high energy

efficiency. Moreover, in order to achieve real-time constraints, the design must

provide high performance and high-throughput, see Sect. 4.

Nowadays, there exist several commercial and open-source OCR engines, such

as ABBYY [1], Omnipage [2], OCRopus [3], Tesseract [4], etc., which are

optimized to transcribe contemporary documents like modern books, letters,

memos, and other documents. However, unlike contemporary documents, historical

archives are subject to quality degradation caused due to non-uniform shading,

bleed-through, complex irregular layouts, skewed/overlapping texts and even

physically damaged/missing portions of pages. As a result, the readily available

OCR engines fall short of giving acceptable accuracy for historical document

images. In order to overcome the quality degradation and achieve high text

recognition accuracy for historical archives, Bukhari et al. [5] introduced anyOCR.

This end-to-end OCR system is designed to digitize both contemporary and

historical documents. It mainly emphasizes transcribing historical archives with

high accuracy by including techniques that are able to overcome high-quality

degradations. The anyOCR system is an open-source software that consists of three

image pre-processing and layout analysis steps (Binarization, Text and Image

Segmentation, Text-line Extraction) and machine learning-based Text-line Recog-

nition. The overall pipeline is shown in Fig. 1.

Given a highly degraded historical Latin document images dataset [6], anyOCR

achieves a 75.92% accuracy while the commercially available and open-source

OCR systems ABBYY and Tesseract achieve only a 66.47% and 56.83% accuracy,

respectively. However, the higher accuracy of anyOCR comes at the cost of high

computational complexity. Each of the three preprocessing steps, in anyOCR,

123

254 International Journal of Parallel Programming (2021) 49:253–284

consists of several computer vision and image processing algorithms such as

morphological and other filtering operations, connected component analysis, feature

extractions, and many other mathematical operations. Moreover, the character

recognition step is based on a deep recurrent neural network. All these complex

image processing techniques result in high computational complexity causing long

runtime and high power consumption when the anyOCR system runs on conven-

tional computing platforms like CPUs.

In anyOCR, different operations require different precision. For example, for an

8-bit grayscale input image to the anyOCR pipeline, the internal operations may be

binary, 2-bit, 3-bit or other arbitrary precision computations. However, CPU and

GPU support only a limited number of data types, such as int8, int16, etc. On the

contrary, custom hardware platforms like FPGAs and ASICs support arbitrary

precision computations. Hence, the flexibility provided by these platforms allows

for the development of architectures that can benefit from operations on single bits

that cannot otherwise be handled efficiently on general-purpose computing

platforms. Since the traditional software-centric computing platforms fail to meet

our requirements, we target a custom hardware architecture, which can be

implemented on an FPGA or ASIC. Such systems provide customized hardware

acceleration for critical tasks, custom memory hierarchy, and other features that can

be exploited to increase the overall efficiency. However, ASICs are reasonable only

for high volume production due to high manufacturing costs and design efforts.

The anyOCR system is parameterizable for each new dataset. Hence, in order to

support a variety of document recognition applications with different configurations,

the OCR engine has to adapt to changes even after the production of the device,

which makes FPGAs compelling since they support reconfiguration. FPGAs also

enable the development of high-performance and high energy-efficient systems,

hence fulfilling all the requirements for designing the portable OCR device. In order

to provide further flexibility, in the past few years, FPGA vendors have introduced

an SoC which integrates the software programmability of a processor with the

hardware configurability of an FPGA. Therefore, we target the Zynq-7000 All

Programmable SoC, specifically the Xilinx Zynq-7000 XC7Z045 device, to design

the anyOCR-based document image processing system that we called the

Fig. 1 The anyOCR system processing pipeline, including Fig. 1a original gray-scale input image,

Fig. 1b after Binarization, Fig. 1c after Text and Image Segmentation, Fig. 1d after Text-line Extraction,

and Fig. 1e after Text-line Recognition steps

123

International Journal of Parallel Programming (2021) 49:253–284 255

iDocChip. Through efficient hardware-software partitioning, the capability of the

programmable fabric and the embedded CPU is exploited.

In this paper, we focus on the second step of anyOCR pipeline, Text and Image

Segmentation, which separates a document page into text and non-text components.

This step involves several filters and computer vision algorithms like connected

component labeling and feature extraction that require high external memory

bandwidth to transfer data between computational units and memory. The input

images and the operations performed in this pipeline stage have binary pixels.

However, there is still high bandwidth overhead due to the high resolution of the

images. For example, our dataset has image dimensions of 2166x3219 pixels with 300

dpi. To achieve high throughput, the data transfers between the computational units

on the FPGA fabric and the off-chip memory should be minimized. This implies that

intermediate results must be buffered on the on-chip memory. However, due to the

limited number of available memory units, storing all of the intermediate results is not

feasible, even for the largest available FPGA fabric. Hence, after analyzing the

different parallelization schemes and studying the trade-offs between different types

of memories on an FPGA, the best fitting hardware-software partitioning scheme is

chosen. Accordingly, the first hybrid hardware-software architecture of the multires-

olution morphology-based Text and Image Segmentation technique is developed [7]

that is part of iDocChip. In this paper, we present the optimized FPGA-based hybrid

architecture of this anyOCR step and its optimized software implementations.

The rest of the paper is organized as follows. In Sect. 2, related works are

discussed, followed by details of our previous works in Sect. 3. Then the constraints

of iDocChip and the novel contributions of this paper are stated in Sect. 4. After

a brief discussion of the text-image segmentation algorithm in Sect. 5, the hardware

architecture is detailed in Sect. 6. Then evaluation and results are presented in Sect.

7. Finally, Sect. 8 gives an outlook and concludes the paper.

2 Related Works

In this chapter, we review related works from 4 different perspectives. First, works

on cross-platform comparisons that make use of image processing algorithms are

presented. Second, an overview of end-to-end OCR pipelines is given. Finally,

different algorithms and hardware architectures for Text and image segmentation

are reviewed.

2.1 Cross-Platform Comparison

To design the portable OCR device, different computing platforms were considered.

The design space included embedded CPUs, embedded GPUs, FPGAs, and ASICs.

By targeting image processing algorithms, many publications have presented

comprehensive comparisons of different processing platforms [8–12].

Brugger et al. [8] has made a cross-platform analysis of morphological operations

implemented on low power platforms: a GPU (NVIDIA Tegra K1 SoC), CPU (Low-

Power Intel Core i7-4790T), and FPGA (Xilinx Zynq 7020), and compared their

123

256 International Journal of Parallel Programming (2021) 49:253–284

performance and energy efficiency. The authors observed that the filtering

algorithms implemented on the GPU are 5� slower than a similar implementation

on the CPU, while the FPGA offers high throughput, comparable to the CPUs.

Moreover, the authors showed that the FPGA implementation of the morphological

operations is 8-10� more energy-efficient compared to the CPU and GPU

implementations.

In a recent study, Qasaimeh et al. [9] conducted a benchmark of run-time

performance and energy-efficiency for different vision algorithms implemented on

three commonly used hardware accelerators for embedded vision applications:

ARM57 CPU, Jetson TX2 GPU, and ZCU102 FPGA. For optimal performance,

the authors used the vendor optimized vision libraries: OpenCV, VisionWorks, and

xfOpenCV, respectively. Their results show that while kernels that are simple and

easy-to-parallelize perform well on GPUs with 1.1-3.2� energy/frame reduction

compared to CPU and FPGA, for complete vision pipelines, FPGA outperforms the

others with energy/frame reduction of 1.2–22.3�. Moreover, authors also observed

that as the complexity of the vision pipeline grows, the FPGA performs increasingly

better than the CPU and GPU.

In [10], Page and Mohsenin have presented a pulse wave spectral Doppler

ultrasound imaging system implemented on a Virtex-5 FPGA and in 65nm CMOS

ASIC design for performance comparisons. The ASIC implementation consumes

27� less power and can run at a much higher clock frequency, 3� higher than the

FPGA implementation. The Virtex-5 design requires 1159 of 17, 280 slice resources

and consumes 1.089W of power when running at its maximum clock speed of

333MHz. The ASIC design has an area of 0:573mm2 and consumes 41mW of power

at a maximum clock speed of 1GHz. On the other hand, FPGAs provide an

economically suitable reconfigurable platform whereas the cost of producing the

ASIC design would only be feasible for large-scale production. The authors

concluded that the FPGA design had comparable efficiency and performance

compared to the ASIC implementation while having the advantage of being cost-

effective and reconfigurable.

Due to their software-hardware programmability, for our work in iDocChip, we

target the Zynq-7000 All Programmable SoC. These devices are equipped with

dual-core ARM CortexTM-A9 processors integrated with 28nm Artix-7 or Kintex-7

based programmable logic (PL). The processor cores, also known as processing

system (PS), allow customization, and therefore together with the PL, they provide a

flexible SoC on a single chip. These devices enable highly differentiated designs for

a wide range of embedded applications, including medical endoscopes, professional

cameras, machine vision, and many others [13–16]. In particular, the Xilinx Zynq-

7000 XC7Z045 SoC, which contains Kintex-7 based PL alongside the ARM cores,

is being used for diverse portable industrial applications [17–19].

2.2 Complete OCR Processing Pipeline

In the literature, there exist several works regarding modern contemporary and

historical document processing. Many of these works involve deep learning

123

International Journal of Parallel Programming (2021) 49:253–284 257

approaches that are usually preceded and followed by pre- and post-processing

[20–24]. Pre-processing is performed on the input image, and it enhances the image,

making it suitable for character classification. Various operations are involved in

this process, such as skew detection and correction, noise detection and removal,

binarization, thinning, and normalization. Then page segmentation is performed to

identify patterns of non-text regions, text lines, words, and characters from the

document. These segmented areas are then extracted using feature extraction. The

classifier module labels characters through supervised learning. Finally, post-

processing is performed to correct possible errors. Nowadays, the pre- and post-

processing steps are also being processed by using neural networks [25–27].

Although these methodologies are very promising, due to the large amount of

parameters, they are very challenging to translate into hardware-aware implemen-

tations without loss of accuracy.

2.3 Text and Image Segmentation Algorithms

Over the years, different techniques have been proposed targeting Text and Image

Segmentation. In literature, this task is also referred to as text-localization, text and

non-text separation, text detection and extraction, or suppression of non-text

components. A comprehensive survey of Text and Image Segmentation algorithms

is given in [28–30]. Methods used for this task are generally classified into four

groups: region-based, pixel-based, component-based, or multiresolution morphol-

ogy-based methods.

Region-based segmentation is the most widely reported method of classification,

where page segmentation is performed to extract homogeneous regions before

classifying the text and non-text zones. Oyedotun and Khashman [31] presented a

top-down approach, where segmentation goes from a coarse level to a finer level,

such that large homogeneous regions are first extracted, and then refinement is

performed at the subsequent levels. Authors segmented the document into regions

by shifting a mask over a grayscale input image. From each segmented region, first-

and second-order statistical features are extracted. The regions are then classified by

using feed-forward neural networks.

In a pixel-based Text and Image Segmentation approach, however, classification

techniques are applied on each pixel of a document to form a region. Hence this

type of segmentation is called bottom-up. In [32], Moll et al. have classified

individual pixels in order to avoid restrictiveness of region shapes. The authors then

investigated different classification techniques, including brute-force k-Nearest

Neighbors (kNN), fast approximate kNN using hashed k-d tress, classification and

regression trees, and locality-sensitive hashing.

However, region and pixel-based classification methods are often very sensitive

to initial region segmentation result. Therefore, they are susceptible to an erroneous

text and non-text region classification. In the case of a document with a text inside

graphics/images, these methods may result in regions containing pictures with

embedded text. Hence, such approaches may fail as they make the classification

decision for the entire region.

123

258 International Journal of Parallel Programming (2021) 49:253–284

The third classification method uses connected component analysis (CCA) to

separate text and image segments from the input document image. Bukhari et al.

[33] perform segmentation by finding and labeling connected components (CCs)

and then extracting a set of features from them. Finally, a multi-layer perceptron

(MLP) classifier is used to segment the components as either text or non-text. Here,

the authors have assumed that the context of the text component is always

structured However, this is not the case every time since a text may appear next to

an image that is out of context and random. Hence, misclassifications may occur.

Additional to the above classification approaches, a hybrid method exists which

combines both region and component-based approaches for Text and Image

Segmentation. In [34], Chowdhury et al. presented a method where texture analysis

is performed to separate halftones of a grayscale image. Then after binarization of

the resulting image, CCs are extracted. Pixel density information is computed from

the CCs, and it is used to classify the text characters. However, these methods are

computationally exhaustive and not very efficient.

The last method is a multiresolution morphology-based classification, which is

introduced by Bloomberg [35]. The author applies a series of morphological

operations to sub-sampled images in order to progressively remove text components

and preserve portions of halftone images. Then the text region is retrieved by

masking the halftone images. Although this method performs well for halftone mask

segmentation, it fails to accurately segment other non-text elements such as

drawings, maps, etc. Hence, Bukhari et al. [36] presented an improved multires-

olution morphology-based text and non-text segmentation algorithm by first

reconstructing the broken drawing lines and applying the hole-filling morphological

operation. As a result, the algorithm can accurately separate text and non-text

images, including halftones, drawings, logos, graphs, maps, etc.

2.4 Text and Image Segmentation Hardware Architectures

Many works, such as those presented above, concentrate more on the methods of

Text and Image Segmentation, and they lack insight in the performance of the

approach. Hence, many of the existing algorithms suffer from a flawed tradeoff

between accuracy and speed. There have only been few proposals for accelerating

this task on dedicated hardware. Kumar et al. [37] used a method based on a discrete

wavelet transform (DWT) to detect and extract text from a document image. The

authors designed the architecture and implemented the system on a Virtex-5 FPGA.

For a dataset of 33 images, the authors were able to achieve 96 seconds. However,

the energy efficiency or power consumption of the system is not openly

communicated.

Bai et al. [38] proposed a novel architecture of a convolutional neural network

called MSP-Net for text/non-text image classification. The MSP-Net consists of 4

main parts: image-level feature generation, multi-scale spatial partition, block-level

representation generation, and text/non-text block classification sub-network. The

system takes the whole image as an input and outputs block-level classification

results in an end-to-end manner. An NVIDIA GTX TitanX GPU was used for

training purposes.

123

International Journal of Parallel Programming (2021) 49:253–284 259

The research area for hardware acceleration of text and image segmentation has

not been well investigated, which makes quantitative comparison difficult.

However, in our previous work [7], we have presented, the first hardware

architecture for multiresolution morphology-based text and image segmentation

(see Sect. 3). Here, we extend our previous work through optimizations and further

contributions (see Sect. 4).

3 Our Previous Works

As shown in Fig. 1, the anyOCR pipeline includes layout analysis and character

recognition steps. In our previous works [7, 39–41], hardware accelerators of these

steps were introduced and implemented on Xilinx Zynq-7000 XC7Z045 SoC. The

performance and energy-efficiency of each one of these accelerators were compared

to the original Python-based anyOCR running on Intel� Core
TM

i7. The hardware

architectures of these algorithms serve as part of iDocChip. As mentioned above,

iDocChip [5] is the FPGA-based end-to-end OCR system based on anyOCR. Brief

explanations of these four hardware accelerators are given below.

3.1 Binarization

Thefirst pipeline stepof anyOCRconverts the inputgrayscale image intobinary. For this,

percentile-based binarization (PBB) is used. Thismethod is suitable to binarize document

images with non-uniform illuminations. The heterogeneous hardware-software archi-

tecture of this step is given in [39]. Here, the PBB algorithm is partitioned into hardware

and software parts for an efficient hardware-software co-design. With this implemen-

tation, both PL and PS of Zynq run concurrently and communicate through General

Purpose (GP) or High Performance (HP) interfaces. The PL uses 64-bit bi-directional HP

AXI ports to communicatewith the PS.Customdirectmemory access (DMA) controllers

are implemented to transfer data between PS and PL. Moreover, based on the

binarization architecture, a hybrid hardware-software FPGA-based accelerator was

presented. When running at 166MHz, this accelerator outperforms the original anyOCR

software implementation by a factor of 20 in terms of runtime performance while

achieving an energy-efficiency of 10 Images/J, which is much higher than what the low

power embedded processors (ARM Cortex-A9, ARM Cortex-A53) achieved.

3.2 Text and Image Segmentation

This pipeline step separates the text and non-text parts of a document image, using a

multiresolution morphology-based text and image segmentation method. The

corresponding hybrid hardware-software architecture was presented in [7], which

optimizes the original software algorithm of anyOCR in order to make it suitable for

efficient hardware parallelization with negligible loss of accuracy. To exploit the

hardware concurrency, time-critical operations with parallelization capability are

implemented in the hardware fabric, while those operations that are inherently

sequential are implemented in software, resulting in an efficient hardware-software

123

260 International Journal of Parallel Programming (2021) 49:253–284

partitioning of the text-image segmentation algorithm. Then, by using this

architecture, a hybrid FPGA-based accelerator was implemented on Zynq

XC7Z045 SoC. The system-level architecture is similar to Fig. 16. However, the

software part of the hybrid architecture is very inefficient due to the inherently

sequential union-find algorithm that is used for the

connected component labeling (CCL) part of the Text and Image Segmentation

chain. The presented accelerator in [7] has achieved nearly a 3� gain in

performance and more than 125� increase in energy-efficiency compared to the

original anyOCR implementation. In the current paper, this previous work is further

optimized, and better performance and energy-efficiency are achieved (see Sect. 7).

3.3 Text Line Extraction

The final preprocessing step extracts the text lines using a Gaussian smoothing-

based algorithm. This method contains four major processing blocks, mainly to

estimate text scale, separate columns, find text lines, and extract the lines from the

image. Since this step involves several filters that contribute to 85% of the runtime

of the text line extraction pipeline step, the original software algorithm of anyOCR

has been highly optimized in order to design an efficient hardware architecture, with

a negligible loss of accuracy. Then, this heterogeneous architecture is used to

implement a hybrid accelerator for the text line extraction step on a Zynq XC7Z045

SoC. The robust accelerator outperforms the original anyOCR software implemen-

tation by 135� in terms of runtime performance and over 1100� in energy

efficiency.

3.4 Text Line Recognition

The anyOCR system uses Bidirectional LSTM (BiLSTM) Neural Network with

Connectionist Temporal Classification (CTC) for the text-line recognition. In [41],

the first hardware architecture of the BiLSTM network with CTC was presented for

Fig. 2 Performance comparison of processing steps measured in terms of runtime in ms. Fig. 2a shows

the runtime of anyOCR pipeline steps when the system is running on Intel Core i7. Fig. 2b shows the

runtime of iDocChip pipeline steps implemented on Zynq 7045 at 166 MHz. The four pipeline steps are

denoted as Bin for Binarization, Tiseg for Text and Image Segmentation, Tlext for Text line Extraction,

and LSTM for LSTM-based Text line Recognition

123

International Journal of Parallel Programming (2021) 49:253–284 261

Fig. 3 Comparison of anyOCR and iDocChip processing pipelines in terms of Fig. 3a throughput (FPS),

Fig. 3b energy efficiency (FPS/Watt), Fig. 3c power consumption (Watts). Bin stands for Binarization,

Tiseg for Text and Image Segmentation, Tlext for Text line Extraction, and LSTM for LSTM-based Text

line Recognition

123

262 International Journal of Parallel Programming (2021) 49:253–284

OCR. The paper took into account two application scenarios on-line and off-line

OCR. In the first case, real-time processing is required where images appear one at a

time. Thus, the system has been optimized to process a single image. In the second

case, batch processing is performed where several images are processed in parallel

with separate instances of the accelerator. The text line recognition architecture is

then implemented on Xilinx Zynq XC7Z045 SoC. It achieves a 459� higher

throughput than state-of-the-art implementation [42], and it can process up to 6

images in parallel.

As shown in Fig. 2b, the Text and Image Segmentation step is the second most

time-consuming task, next to binarization contributing to 21% of the overall

processing time of iDocChip. The software pipeline of this step takes the second

least amount of time as shown in Fig. 2a. Compared to the anyOCR process, the

Text and Image Segmentation accelerator gives a significantly higher energy

efficiency and throughput values while consuming a smaller amount of power, see

Fig. 3.

4 Constraints and Novel Contributions

In order to design the portable hand-held OCR device that meets the thermal design

power (TDP) requirements, four main design constraints are set. These include

power (in watts), energy-efficiency (in frames per second ðFPSÞ per watt), perfor-
mance (in terms of runtime (execution time) in ms), and throughput (in FPS). For

our real-time document image processing system, the hardware design is expected

to process the complete OCR pipeline in 500ms for a single image. This timing

constraint enables instant word spotting and other OCR applications. As a result, a

minimum of 2FPS throughput is expected. Moreover, the power budget of the

device is limited to 2W. Hence, energy-efficiency is expected to be at least 1FPS/

W. Moreover, to make sure that portability is achieved, the design must fit within the

available resources of the portable Xilinx Zynq XC7Z045 SoC device. The

constraints are summarized in Table 1.

Compared to the original anyOCR, the already existing iDocChip implementa-

tions of the OCR pipelines, overall, have gained 309 in performance. More

significantly, it has achieved 467� energy efficiency. Although the system is able to

Table 1 Constraints and results from our previous work for the complete historical document analysis

pipeline

Performance Runtime

(ms)

Power

(W)

Throughput

(FPS)

Energy Efficiency (FPS/

W)

Original

anyOCR

16471.8 15.42 0.09 0.006

Constraints \500 \2 [2 [1

Existing

iDocChip

544.84 1.03 2.9 2.8

123

International Journal of Parallel Programming (2021) 49:253–284 263

fit into a portable device due to its compact design and low power consumption, it

fails by almost 9� to give the required performance. Since the Text and Image

Segmentation pipeline step is the second time-costly process, it is further optimized

to meet the design requirements.

Therefore, in this work, we focus on the hybrid hardware-software implemen-

tation of multiresolution morphology-based Text and Image Segmentation method.

To summarize, the novel contributions of this paper are:

• A faster software implementation of the Text and Image Segmentation of

anyOCR algorithm is presented.

• The first hybrid accelerator for Multiresolution Morphology-based Text and

Image Segmentation [7] is further optimized and is tested on the historical Latin

document images dataset [6].

• By optimizing the software part of the first hybrid accelerator [7], 40% of

runtime is reduced, and 46% of energy efficiency is increased. Hence, the

performance requirements of the hand-held device are met.

• The new optimized hardware accelerator outperforms the original anyOCR

software implementation (running on i7-4702MQ) in terms of runtime and

energy efficiency by 6� and 207�, respectively.

• The performance and energy efficiency of the Multiresolution Morphology-

based Text and Image Segmentation algorithm is compared across different

platforms, including low-power CPUs.

5 Text and Image Segmentation Algorithm

The Text and Image Segmentation algorithm is based on multiresolution morphol-

ogy, which involves basic and compound morphological operations. For high-

resolution images, these operations require large structuring elements that are

computationally intensive. Hence, multi-scale image representations are used for

efficient analysis of image contents as well as for speeding up the image processing

operations. The multi-scale transform is employed through threshold reduction.

The output image of the percentile-based binarization (PBB) algorithm [39],

which performs binarization of the anyOCR input image, is used as the input for the

Text and Image Segmentation pipeline. As shown in Fig. 4, this binary input image,

where the foreground and background pixels are represented by ’0’ and ’1’,

respectively, is inverted. After inversion, the image is processed by two threshold

reduction operations with thresholds equal to one. This operation subsamples the

input image, while preserving the density of low as well as high frequency

components within the document image. The subsample of the inverted image is

computed by replacing each 2x2 block of four pixels by a single pixel, depending on

the chosen threshold (T). The value of T can be between one and four. The resulting

pixel value of the threshold operation is ’1’ if the sum of the values of the four

pixels in the block is greater than or equal to T. Otherwise the resulting pixel

value is set to ’0’.

123

264 International Journal of Parallel Programming (2021) 49:253–284

The subsampled image is then processed with a hole-filling morphological

operation to fill hollow contours that are usually presented in drawings, maps, and

graphs. The resulting image of the hole-fill operation is further resized using two

threshold reduction operations with T equal to four and three. Next, a morphological

opening using a 5x5 structuring element is performed. These steps remove the text

components and preserve some portions of the halftone components. The resulting

image is referred to as the seed image. Following this, two expansion operations are

applied to resize the seed image to the subsampled image from the hole-filling step.

This algorithm uses a trivial expansion method in which each pixel value is copied

into a 2x2 pixel block of four pixels.

In the next process step, the halftone mask image is generated by comparing the

hole-fill result with the seed image. This requires connected component label-

ing (CCL) to be performed on the output image of the hole-fill operation. After

CCL, only those components that fully or partially overlap to the seed image are

selected. Next, morphological dilation with a structuring element of 3x3 is applied.

Fig. 4 The Text and Image Segmentation algorithm

123

International Journal of Parallel Programming (2021) 49:253–284 265

Finally, the halftone mask image is further expanded by two expansion operations to

obtain the dimensions of the original image. The resulting image contains the non-

text mask for the inverted input binary image. The mask for the text-part is obtained

by inverting the non-text mask image of the segmentation. The final outputs are

gathered by intersecting each of these text-part and image-part masks with the

inverted input binary image and complimenting the results.

6 Hardware Architecture

The first hybrid hardware-software architecture of multiresolution morphology-

based Text and Image Segmentation is presented in [7]. Efficient partitioning of the

algorithm into hardware and software is essential for an effective hardware-software

co-design. The time-critical operations with high parallelization capability are

implemented in the hardware fabric to exploit the hardware concurrency. While

inherently sequential operations are implemented in software. Figure 5 shows the

best (in terms of resources/performance) hardware-software partitioning we found

Fig. 5 Hardware/software partitioning of Text and Image Segmentation algorithm based on

multiresolution morphology

123

266 International Journal of Parallel Programming (2021) 49:253–284

for this hybrid architecture. The hardware architectures of each of the operations are

explained in detail below.

6.1 Inversion

The first operation of the Text and Image Segmentation algorithm is inversion. This

task, which inverts the input binary image, is processed in hardware. Hence, taking

into account an interface with a 64-bit data width, the CPU core sends a set of 64

pixels in each transaction into the hardware. Since the cost of logic blocks is

minimal, by instantiating 64 inverters (NOT logic gates), a set of 64 pixels are

processed in a single clock cycle. Therefore, the throughput of this step is 64

pixels per clock cycle (PPC).

6.2 Reduction with Threshold T = 1

Reduction operation computes on blocks of 2x2 pixels that spread over two rows of

an image. When the pixels are streamed into the fabric in a raster-scan manner, they

are required to be buffered on the on-chip memory in order to produce

output results. Although the required buffer size is rather small due to binary

pixels, this overhead is unnecessary. Moreover, with pixels streaming in a raster

Fig. 6 The modified memory access pattern with 2 threshold reduction operations of T=1

123

International Journal of Parallel Programming (2021) 49:253–284 267

scan manner, the first and second reduction operations with T=1 will generate

results after reading every second and fourth row of the binary input image,

respectively. This makes the datapath unbalanced from a workload point of view

and reduces the throughput. To alleviate this issue, different memory access and

store patterns are used. Hence, the binary input image (the output of PBB) is

stored in the offline memory in blocks instead of row by row. In each clock cycle,

taking into account the 64-bit wide interface, 64 pixels are transferred in a 2x2

block over 4 rows and 16 columns. The mapping is depicted in Fig. 6. Since the first

operation (inversion) computes on pixel level, its results are not affected by any

access patterns. As a result of the modified memory access pattern, the threshold

reduction operations deliver a regular throughput. This approach also eliminates

the requirement of on-chip intermediate buffers. Furthermore, the next processing

function, i.e., the hole-fill operation, receives pixels streaming in a raster-scan

manner. The throughputs of the first and second reduction operations with T=1 are

16 and 4 pixels per clock cycle, respectively. The dimension of the resulting image

is reduced to a quarter of the binary input image.

6.3 Hole-Filling

Hole-filling makes use of mathematical morphological operations: erosion and

dilation. Erosion removes pixels from the object boundaries of the given image,

while dilation adds pixels. The anyOCR system uses morphological reconstruction

by erosion to fill the holes within the image. This operation is an iterative process

where a large number of raster-scans are required. For example, for the dataset

images given in [6], these scans range from 198 to 827 for a 4-connected structuring

element (window). However, such a process with a large number of iterations is not

feasible to design in hardware. Hence, to overcome this issue, an alternative custom

algorithm is used, which achieves the same results as morphological reconstruction

by erosion in fewer iterations. Moreover, unlike this highly iterative process, the

alternative hole-fill algorithm achieves sufficient quality in each sequence-run.

Hence, the algorithm is able to exit even before the final iteration without largely

affecting the overall output image of the Text and Image Segmentation algorithm.

In an alternate hole-fill algorithm, each image sequence-run can be of two types:

4-direction sequence or 2-direction sequence, as shown in Fig. 7. To process a 4

sequence-run (Fig. 7a) for a given image of size H*W, the algorithm is computed by

scanning the image in 4 directions. First in direction 1: left to right, top to bottom

Fig. 7 The two types of image scan directions for an alternate hole-fill algorithm

123

268 International Journal of Parallel Programming (2021) 49:253–284

(raster-scan), then in direction 2: right to left, top to bottom, then in direction 3: left

to right, bottom to top and finally in direction 4: right to left, bottom to top (anti-

raster scan). However, for the 2-direction sequence-run (Fig. 7b), the algorithm is

only computed in two opposing directions (directions 1 and 4 or directions 2 and 3).

Due to the sequential nature of the algorithm, the sequence of directions impacts the

number of iterations and convergence of the result.

Similar to the morphological reconstruction approach, the alternative hole-fill

algorithm creates a mask image to start the hole-filling process. The mask has the

dimension of the input image. Its border pixels are set to zero, while all internal

pixels are set to one. The input image is used together with the initial mask to

compute the algorithm. Furthermore, similar to flood-fill, which determines the area

connected to a given node in a multi-dimensional array, the alternative hole-fill

algorithm makes connectivity-based processing. It supports 2-, 4- or 8-connective

computations. These computation windows are shown in Fig. 8.

The input image I of the alternative hole-fill algorithm is the output of the second

reduction step. The mask image M is created on the fly. If the pixel at the image

I(i,j) is 0, the algorithm reads the adjacent window values from the mask image. If

any of the pixels in the window are 0, then the current pixel of the mask, M(i,j), is

replaced by 0. In such a manner, the algorithm runs through the complete image.

After completely updating the mask image for the given direction run (sequence-

run), the algorithm then starts to process the follow-up direction, according to the

chosen image-scan sequence.

The alternative hole-fill algorithm offers a trade-off between latency of the

operation and quality of the result. This is possible through tunning the number of

iterations, alternating the image scan directions, or changing the shape of processing

window (2-/4-/8-connective window). With a number of iterations, the output of

the alternative hole-fill algorithm converges to the output of the original

reconstruction by erosion. However, to achieve the same result, the number of

Fig. 8 Computation windows for different directions using a 4/8 full connectivity (Fig. 8a–e) and a 2/4

cross connectivity (Fig. 8f–j). Fig. 8a–d show windows for 4-fully-connective computations for

processing in direction-1,2,3 and 4 respectively. Fig. 8e shows the window for an 8-fully-connective

computation. While, Fig. 8f–i show windows for 2-connective computations for processing in direction-

1,2,3 and 4 respectively. Figure 8j shows the window for 4-cross-connective computation, which can be

used in any direction

123

International Journal of Parallel Programming (2021) 49:253–284 269

iterations required for the alternative hole-fill algorithm is much less compared to

that of morphological reconstruction. This analysis is shown in Table 2.

For our Text and Image Segmentation algorithm in iDocChip, we chose the

alternate hole-fill algorithm to process in two directions, i.e., raster scan followed

by anti-raster scan, using a 4-cross-connected window. The hardware architecture of

this algorithm for the 2-direction sequence is shown in Fig. 9. As shown in Table 2,

the resource consumption of the implemented alternate hole-fill architecture for the

4-cross-connective algorithm is less than all other computation types, including the

original hole-fill algorithm (morphological reconstruction by erosion). Moreover,

Table 2 Comparison of morphological reconstruction and the proposed alternative hole-fill algorithm, in

terms of the required number of image scans (best / worst cases) and hardware resources, considering the

dataset images given in [6]

Num. iter. Speedup Hardware resources

Worst Best LUT FF BRAM DSP

Recon. by Eros.

4-conn. 827 198 1 2713 1811 36 1

8-conn. 699 182 1 2795 1925 36 1

Proposed, 4-dir.

4-conn. 21 5 39x 1092 876 41 3

8-conn. 22 4 31x–45x 1321 1043 41 4

Proposed, 2-dir.

4-conn. 65 5 12x–39x 956 765 41 3

8-conn. 49 4 14x–45x 1016 817 41 3

Num. iter. refers to the number of image scans the algorithms took to achieve the same result

Fig. 9 Hardware architecture of the alternative fill-hole algorithm. MU1 and MU2 are the memory units,

and PE1 and PE2 are the processing engines

123

270 International Journal of Parallel Programming (2021) 49:253–284

this alternative hole-fill algorithm gives an approximate output that results in a\1%

degradation of OCR recognition accuracy while requiring only two image-scans.

In this stream-based system, pixels are received from the second reduction stage

of the Text and Image Segmentation pipeline in a raster-scan manner with 4 pixels

per clock cycle. However, the alternative hole-fill algorithm is sequential in nature;

hence, the result of the previous pixel affects the results of the following pixels. To

exploit hardware parallelization, we propose two architectural optimizations. These

optimizations aim at maximizing the throughput and minimizing the overall image-

level initiation interval of the alternative hole-fill algorithm.

The first optimization allows us to process multiple pixels in parallel by defining

data paths with parameterizable width. Figure 10a presents the solution for two pixels

(p1,p2) processed in parallel, and it can be scaled to any number of pixels (in our

implementation to 4). Since the alternative hole-fill algorithm is sequential, the result

from the previous pixel (here p0) affects the result of p1, while the output of p1 is

required to compute p2, and so on. To alleviate this issue, Fig. 10a shows a pipelined

design based on the carry select adder where two parallel data paths compute the

output for the current pixel under different assumptions of the result of the previous

pixel. As shown in Fig. 10a, Datapath #0 assumes the result of the previous pixel to

be ’0’, and Datapath #1 assumes it to be ’1’. When the result of the previous pixel is

ready, the correct output is selected through the multiplexer. This way, we can

process a new set of pixels every consecutive clock cycle. To illustrate this, Fig. 10b

presents the temporal behavior of these two data paths for a width of 4 pixels.

(a)

p4_ p8_ p12_ …

p3_ p7_ p11_ …

p2_ p6_ p10_ …

p1_ p5_ p9_ …

p1' p5' p9' …

p2' p6' p10' …

p3' p7' p11' …

p4' p8' p12' …

p1'' p5'' p9'' …

p2'' p6'' p10'' …

p3'' p7'' p11'' …

p4'' p8'' p12'' …

 '0' p4 p8 p12 …

p3 p7 p11 …

p2 p6 p10 …

p1 p5 p9 …

0 1 2 3 4 5 6

d
a

ta
p

a
th

 #
1

prev_pixel= 0

prev_pixel= 1

In
p

u
t

O
u

tp
u

t
d

a
ta

p
a

th
 #

0

clock cycles

(b)

Fig. 10 Architectural optimizations for alternative hole-fill algorithm. Figure 10a shows data paths with

parameterizable width. Here, ðp1; p2Þ are input pixels read together, ðn1; n2) are the corresponding

neighbors, and ðp01; p
0
2Þ are the corresponding output (processed) pixels. ‘‘Select’’ is used to input ’1’ for

every set of pixels that start exactly at the boundary of the image. Fig. 10b shows the temporal behavior

of two 4-pixel-wide data paths

123

International Journal of Parallel Programming (2021) 49:253–284 271

The second optimization is possible when the number of image scans is more

than one. In this case, we can place enough ping-pong buffers for the working

images so that the input images can be processed one after another without delay.

Using these algorithmic optimizations, the hole-fill operand processes a new set

of pixels every clock cycle. Therefore, through this design, an output throughput of

4 pixels per clock cycle is achieved for the hole-fill algorithm. The resulting image

is stored internally for further processing.

6.4 Reduction with Threshold T = 4 and T = 3

As discussed in Sect. 6.2, the threshold reduction operation computes on adjacent

pixels: first column-wise and then row-wise. For the reduction with T=4, the input

pixels are streamed in a raster-scan manner. Hence, a line buffer is used to store

column-wise results before performing the row-wise operation. For threshold

reduction, the raster-scan processing scheme results in a lower output throughput.

The reduction operation with T=4 receives 4 pixels in each clock cycle from the

hole-fill algorithm and outputs 2 pixels per clock cycle for every even row of the

incoming image, see Fig. 11. Similarly, the reduction with T=3 takes these 2 pixels

in each clock cycle and outputs 1 pixel per clock cycle for every fourth row,

compared to the image coming from the hole-fill operation. As shown in Fig. 11, the

threshold reduction architecture with T=4 uses AND logic blocks. The comparison

units are modified accordingly for reduction with T=3.

6.5 Morphological Operations (Opening and Dilation)

In this stage, highly-parallelized atomic morphological operations (erosion and

dilation) are implemented based on [43]. In this Text and Image Segmentation

pipeline, opening and dilation use 8-connective windows with 5x5 and 3x3

structuring elements, respectively. Morphological operations have kernel-decom-

position property that allows erosion/dilation computations to be processed using

two consecutive 1-dimension windows, namely horizontal and vertical windows.

For example, a 5x5 opening operation is decomposed into a 1x5 window followed

Fig. 11 Architecture of the threshold reductions with T=4 in Fig. 11a and T=3 in Fig. 11b

123

272 International Journal of Parallel Programming (2021) 49:253–284

by a 5x1 window computations. Moreover, similar to the hole-fill algorithm, it

supports high-throughput computations for image streams with more than one

incoming pixel. Figure 12 shows the main comparison block of morphological

operation with a structuring element (window) size of 5, assuming the input

image streaming at 4 pixels per clock cycle. By processing the 4 compute windows

in parallel using different comparison blocks, the morphological operation archi-

tecture achieves 4 pixels per clock cycles.

However, for the implemented Text and Image Segmentation pipeline, reduction

with threshold T=3 stage only results in 1 pixel per clock cycle for every fourth row

of the hole-fill operation result. Consequently, the opening morphological process is

implemented with a similar throughput. For future computations, the throughput

must be balanced in order to obtain a regular output in every clock cycle. As a result

the output image of the opening morphological operation is stored internally using

on-chip buffers.

6.6 Expansion

This step expands the result of the morphological opening operation. This step

copies one pixel into a block of four pixels. Since it uses an already buffered input

image, the expansion operation achieves a regular 1 pixel per clock cycle (PPC).

6.7 Connected Component Labeling (CCL) and Seed Intersection

This step of the Text and Image Segmentation algorithm is the most critical in

separating the text-part of the document from the image-part. It involves two layers

of computation. Moreover, in this step, two images are used as input: IHF (the output

image from the hole-fill operation) and IEX (the expanded image after morphological

opening, i.e. seed image). First, the connected components that exist on IHF are

labeled. This process is called CCL, then the output of CCL is intersected to the

seed image IEx. Both CCL and seed intersection each involve two raster-scans.

Since the number of provisional labels is very high, building a hardware-only

solution for these operations requires extensive hardware resources. To overcome

this challenge, a hybrid hardware-software solution is presented that is based on the

Fig. 12 Computation of a morphological operation with a 5x5 structuring element. This computation

assumes an input image streaming at 4 pixels per clock cycle, which involves 4 compute windows. The

comparison block of window 1 (on the right-hand side) shows the tree-structure process of the

morphological operation

123

International Journal of Parallel Programming (2021) 49:253–284 273

connected component analysis architecture given in [44]. Moreover, in order to

achieve high throughput, both CCL and seed intersection are processed at the same

time. Hence, the overall CCL and seed intersection operation require only two raster

scans in total, while the software process of this step requires four image scans and a

unification step.

CCL uses a 4-connective window, as shown in blue in Fig. 13a. In the initial scan

of CCL, to find provisional labels of IHF , each foreground pixel (non-zero pixel) of

IHF is given a label using the priority scheme of the window, shown in Fig. 13b.

Label conflicts exist when several labels represent the same connected component.

Multiple representations of a component affect further processes and distort the

output image of the Text and Image Segmentation algorithm. Therefore, to resolve

this issue, any conflicting labels are recorded using an equivalence table. At the end

of the first scan, equivalent labels are relabeled through a unification process, where

similar labels point to the smallest label (root label) and the root label indexes ’0’.

Then in the second raster-scan, each pixel is given a final label by referencing its

Fig. 13 Computation window and priority scheme of connected component labeling. In Fig. 13a the blue

box presents the window of pixels considered to find a label for pixel A(1,1). In Fig. 13b L(0,0)–L(1,1)

present the labels for the pixels given in Fig. 13a, while p1––p4 show the priority scheme of the labels. If

pixel A(1,1) is not zero, its label L(1,1) takes the non-zero label of the adjacent neighbor with the highest

priority. Otherwise, if the label of all four adjacent neighbors is zero, then a new label is given to L(1,1)

Fig. 14 Connected component labeling and seed intersection for input image given in Fig. 1b. Figure 14a

shows the output of hole-fill (IHF) Fig. 14b shows the output of expansion (seed image/IEx) and Fig. 14c

shows the final result of CCL and seed intersection

123

274 International Journal of Parallel Programming (2021) 49:253–284

provisional label and the equivalence table. As an example, the CCL and seed

intersection of the input image to the Text and Image Segmentation given in Fig. 1b

is shown in Fig. 14. Here, CCL is computed for the output of hole-fill operation

(Fig. 14a). After labeling each foreground pixel of this image, the total number of

provisional labels is 2800. Then after applying unification, the final number of

labeled connected components becomes 567. For some images, the number of

provisional labels is even higher. For example, our dataset [6] has images with an

original resolution of 216693219. Due to the multi-resolution processes, however,

at this stage of the Text and Image Segmentation algorithm, the images are resized

to an 5049804 resolution. To compute CCL, the maximum number of connected

components that could theoretically exist for such an image with an 5049804

resolution is 108741. Each label requires a 17-bit. Since it is not feasible to store a

2D array of this size (1087419108741 of 17-bit values) within the hardware, the

equivalent labels are stored externally.

In addition to the provisional labels, the initial seed intersection is processed.

Here, the connected components that overlap with the seed image are computed by

intersecting IHF with IEx. If there is an overlap, the connected component label of

IHF at the overlapping pixel position is flagged using the unique flag U. Then

provisional labels together with the unique flag are streamed to the external memory

(DRAM) through the CPU, as shown in Fig. 15a. Unification of equivalent labels is

a sequential and iterative task. If processed in hardware, it has no gain in terms of

performance, and it is very costly of resources. Hence, equivalent labels are merged

through a software-based computation.

CCL CCL Software Optimizations

Unlike the original hybrid architecture [7], where the software process waits for

all the labels to be streamed from the hardware to start unification, in this work,

computation to merge equivalent labels begins as the first data arrives. Hence, the

unification process is partially overlapped with the data transfer. Moreover, in the

previous version of our hybrid accelerator, for unifying labels, a union-find

Fig. 15 CCL data transfer from FPGA fabric to DRAM and back. Fig. 15a shows the CCL out-stream

from the computational unit to the DRAM. For pixel Ax, the result of seed intersection (Ux), current pixel

label Lx, and all neighboring labels La to Ld are transferred to the DRAM through a CPU. Fig. 15b shows

the CCL in-stream from the DRAM to the computational units. After CPU processes unification, all

labels that are flagged unique (Lu) are streamed to the fabric

123

International Journal of Parallel Programming (2021) 49:253–284 275

algorithm was used where the FindRootLabel(x) function follows a chain of parent

labels from Label Lx up the tree until it reaches a root label. However, in this

modified version, a binary-tree based algorithm is used where the root labels are

found much faster. Then, all unique labels are separately stored. The CPU sends

these labels that are flagged unique to the FPGA fabric. These two optimization

schemes reduce the runtime of the overall Text and Image Segmentation algorithm

by 40% since the most time-consuming part of the hybrid hardware-software

implementation is the latency caused by the algorithms running in software.

In preparation for the second raster-scan of CCL and seed intersection operations,

images IHF and output of the morphological opening operation (IMO) are stored

internally using on-chip memory. However, the initially computed labeled mask,

which contains provisional labels, is not stored internally as it takes a significant

amount of resources. Buffering IMO instead of IEx saves storage space since the size

of IMO is one-fourth of IEx.

In the second raster-scan of CCL and seed intersection operations, first, the IMO

image is populated on the fly to give IEx. Then provisional labels are recomputed

using the buffered IHF in parallel to the intersection operation. The latter outputs

pixel ‘1’ for each pixel in IHF where its label L is an element of the unique labels

U. Otherwise, it outputs the corresponding seed pixel from IEx. The throughput of

this final CCL and seed intersection operation result is independent of previous

blocks since the inputs of this stage are all buffered and can be streamed all at once.

By studying the trade-off between resource utilization Vs. throughput, where

the higher the number of pixel streams per clock cycle results in the larger resource

consumption, we chose a four-pixel stream per clock cycle for this stage of the Text

and Image Segmentation algorithm. Hence, the final CCL and seed intersection

operation has an output throughput of 4 pixels per clock cycle.

6.8 Result Extraction

After the union of overlapping components, morphological dilation is performed to

dilate important image objects. The implementation is explained in Sect. 6.5.

This final block has an input/output throughput of 4 pixels per clock cycle. The

result is then grouped into 64 bits and sent to the CPU, which directly expands the

result into 4x4 blocks and stores it into DRAM. Then, the resulting non-text mask is

intersected with the input binary image. Finally, the output is inverted to give the

final image-part. Similarly, the text-part is extracted by first inverting the non-text

mask and applying intersection with binary image and inversion.

7 Experimental Setup and Results

For experimental purposes, we used the historical Latin document images dataset

[6] in order to compare the reference anyOCR system with our hardware and

optimized software implementations. The original anyOCR system is a Python-

based software, which uses a multi-dimensional image processing python library

[45] and runs on a multi-threaded Intel Core i7-4702MQ with Turbo Boost up to 3.2

123

276 International Journal of Parallel Programming (2021) 49:253–284

GHz for 1 active core and 2.9 GHz for 4 active cores. For further analysis, the

runtime and energy-efficiency of optimized software implementations are examined

on different platforms, see Table 3.

7.1 Hardware Setup

To evaluate the hybrid hardware-software architecture of the Text and Image

Segmentation algorithm, each hardware-based operation of the architecture is

designed using Xilinx Vivado High-Level Synthesis tool of version 2018.1. It

is implemented using the Vivado block design targeting the Zynq-7000 All

Programmable SoC, specifically Zynq 7045 that features the xc7z045ffg900-2

FPGA fabric and dual-core ARM Cortex-A9 processors. The ARM CPU runs

Linaro Ubuntu Linux version 16.1. The software-programmable parameters, such as

kernel values of filters, are transferred from the Programmable System (PS) through

a General Purpose (GP) port using an AXI-Lite interface. Moreover, a custom DMA

is implemented. This DMA is responsible for reads/writes of data from/to DRAM

using AXI memory-mapped non-coherent interface and converting each transaction

into AXI stream. This DMA transfers streams in bursts of 64 bits. Hence the

hardware cores are able to exploit datapath pipelining, where multiple operations

are overlapped during execution, which increase the throughput. The software part

of this hybrid architecture is implemented in C?? and runs on the ARM Cortex-A9

processor cores of the Zynq 7045 device at 800 MHz, while the FPGA fabric runs at

166 MHz. To evaluate the runtime and energy consumption of the proposed text and

image segmentation system, the hybrid hardware-software implementation is tested

on ZC-706 Evaluation Kit, which contains the target device. The system block

diagram of the Zynq implementation of the text and image segmentation pipeline is

shown in Fig. 16.

Table 3 Configurations of different platforms for software-based tests

Platform Num.

cores

Threads per

core

Total

threads

Freq. [GHz] Tested on

Python

base.

Python

opt.

C??

(ST)

C??

MT

i7

4702MQ

4 2 8 2.9 U U U U

Atom

C2758

8 1 8 2.4 U U U

Cortex

A53

4 1 4 1.5 U U U

Cortex

A9

2 1 2 0.8 U U U

123

International Journal of Parallel Programming (2021) 49:253–284 277

7.2 Software Optimizations

For a fair comparison of the hardware and software implementations, different

platform-dependent and algorithmic optimizations are applied on the reference

anyOCR chain. These optimasations accelerate the original Text and Image

Segmentation process. From the algorithmic side, particularly, the morphological

reconstruction algorithm used for hole-filling operation is replaced by the alternate

hole-fill algorithm. Hence, for the optimized Python implementation, the alter-

nate hole-fill algorithm is written and compiled as a c-library, which outperforms

the original implementation. Moreover, morphological operations are computed

using a Manhattan-distance based algorithm for higher performance. The unifica-

tion operation of CCL is also changed from a union-find based search to a binary-

tree based search algorithm.

In the multi-threaded C?? implementation, image-level coarse-grained paral-

lelization is applied using OpenMP API. In this method, all available threads

process separate images at each point in time. The coarse-grained approach

has appeared to be more efficient than the fine-grained parallelization applied on the

level of functions or loops because it does not require any inter-core or inter-thread

synchronization. Using dynamic scheduling in OpenMP, the threads start processing

the next image right when they finish with the current image. This avoids idling

threads. All software implementations are complied with gcc 7.4.0 and -O3

optimization flag.

7.3 Energy Consumption

The previously mentioned different computing platforms have different hardware

setups, peripherals, and accelerators. These contribute to the total power consump-

tion. For a fair comparison of energy among the different computing platforms, only

the consumed energy Ecomp is considered. Therefore, the average active power

Fig. 16 Zynq implementation of Text and Image Segmentation hardware architecture

123

278 International Journal of Parallel Programming (2021) 49:253–284

(Pact) is calculated by subtracting the idle power (Pidle) from the total power

consumption of the system (Ptot), processing all of the images in the dataset:

Pact ¼ ðPtot � PidleÞ ð1Þ

Ecomp ¼ Pact � Runtime ð2Þ

The idle power is the power consumption of the complete system in the idle state.

By removing this value, the influence of the power consumption of the unwanted

hardware resources is minimized. The Ecomp, however, includes energy consumed

for extra cooling caused by intense computations, which is unavoidable. Similarly

for the Zynq platform, Pidle is the power consumption of the complete board when

the CPU is idle and the FPGA is not configured. The power is measured physically

using a digital wall socket power meter Voltcraft VC-870.

7.4 Results and Discussion

Table 4 shows the runtime, power, energy, frames-per-second, and energy

efficiency comparisons of the software and hardware implementations of the Text

and Image Segmentation process on different platforms. Compared to the Python-

based baseline and optimized implementations on the Core i7, the optimized hybrid

hardware-software implementation of the Text and Image Segmentation provides a

speedup of 6.2 � and 4.5 �, respectively. Moreover, the optimized hardware

implementation also gives a speedup of 3.4 �, 2.4 �, and 1.7 � compared to the

multi-thread C?? implementation of the algorithm running on Cortex A9, Cortex

A53, and the original Zynq implementation [7], respectively. Most notably, this new

Zynq implementation achieves a higher energy efficiency, providing an improve-

ment of 207 � and 1.5 � compared to the baseline anyOCR system and the original

Zynq implementation [7], respectively. The graphical analysis of these results is

shown in Fig. 17.

As shown in Table 4, the C?? implementations in Core i7 and Atom C2758

have higher performance compared to the Zynq implementation. The performance

of the hybrid accelerator is affected by the software-part of the implementation.

When the Text and Image Segmentation algorithm is processed on Zynq, the

hardware-part takes only 15% of the total runtime of the system, while the rest 85%

of the runtime is spent in the CPU. Nevertheless, the power consumptions of the

Core i7 and Atom C2758 processors are much higher than the power required

by the Zynq implementation. As a result, Zynq achieves the highest energy

efficiency as compared to any of the software implementations, see Fig. 17.

From the accuracy point of view, the impact of Text and Image Segmentation on

the OCR accuracy is evaluated by computing Character Error Rate (CER) compared

to the ground truth while keeping all other pipeline stages similar to the original

anyOCR. As shown in Table 4, the accuracy of the hardware implementation is

comparable to the baseline anyOCR. Moreover, for the given dataset [39], the

accuracy of the implemented Text and Image Segmentation substantially

123

International Journal of Parallel Programming (2021) 49:253–284 279

outperforms the commercially available OCR engines ABBYY and Tesseract,

which have recognition accuracy of 66.47% and 56.83%, respectively.

As shown in Fig. 1, the anyOCR system has four distinct parts, binarization, Text

and Image Segmentation, text-line extraction, and text/character recognition. The

total resource consumption of the four OCR pipelines implemented on Xilinx Zynq

7045 is given in Table 5. The results show that almost half of the resources on the

portable FPGA-based SoC are free. Therefore, the unused resources can be utilized

to couple the four different blocks together in order to build a streaming end-to-end

OCR system. This suggests that the overall design is able to fit in the embedded

portable device (Xilinx Zynq 7045) without any issue, fulfilling the design

requirement of portability.

When revisiting the design specifications, the hardware implementation achieves

the goal for an energy-efficient portable device with a 1FPS/W and 2FPS, under the

constrained power of 2W. Moreover, unlike the previous Zynq implementation [7],

this optimized design achieves the 500ms runtime (performance) constraint by

Table 4 Comparison of the Text and Image Segmentation process among different platforms. Table 4

shows the results of the hardware implementation of the algorithm on the Zynq 7045 device and software

implementations of the algorithm on Intel Core i7 4702MQ, Intel Atom C2758, Cortex A53, and Cortex

A9

Platf. Implemen-

tation

Runtime,

[ms]

Power,

[W]

Energy,

[J]

FPS Ener. eff.,

[FPS/W]

EDP Acc.,

[%]

i7

4702

MQ

Pyt. Base. 418.98 14.01 5.87 2.4 0.17 2.5 76.3

Pyt. Opt. 308.24 17.27 5.32 3.2 0.19 1.6 75.71

C?? (ST) 34.06 12.42 0.42 29.4 2.4 0.014 75.68

C?? (MT*) 11.29 31.89 0.36 88.6 2.8 0.004

Atom

C2758

Pyt. Opt. 978.34 3.216 3.15 1 0.3 3.1 75.71

C?? (ST) 91.31 2.24 0.20 10.9 4.9 0.018 75.68

C?? (MT) 27.26 5.84 0.16 36.7 6.3 0.004

Cortex

A53

Pyt. Opt. 4504.91 0.57 2.57 0.22 0.4 11.6 75.71

C?? (ST) 481.62 0.32 0.15 2.08 6.5 0.072 75.68

C?? (MT) 166.33 0.59 0.09 6 10.2 0.015

Cortex

A9

Pyt. Opt. 5652.55 0.21 1.19 0.12 0.6 6.7 75.71

C?? (ST) 975.4 0.35 0.34 1 2.9 0.332 75.68

C?? (MT) 227.2 0.46 0.10 4.4 9.6 0.023

Zynq

7045

FPGA Orig. 112.94 0.37 0.04 8.9 24.1 0.004 75.70

FPGA Opt. 67.76 0.42 0.03 14.8 35.2 0.002

Results are shown for baseline and optimized Python, single-threaded (ST), and multi-threaded (MT)

C?? implementations running on Core i7-4702MQ, Intel Atom C2758, Cortex A53, and Cortex A9.

Here, runtime and energy (Ecomp) are given per image, and the energy efficiency shows frames-per-second

per watt (FPS/W). The OCR accuracy is given in Acc and the energy-delay product in EDP. For a fair

comparison, the results for Core i7-4702MQ, MT* shows the multi-threaded implementation with

simultaneous multi-threading (SMT) disabled

* Multi-threaded implementation with simultaneous multi-threading (SMT) disabled

123

280 International Journal of Parallel Programming (2021) 49:253–284

reducing the runtime by 40� compared to the previous implementation. Hence, this

work results iDocChip meeting all design constraints.

8 Conclusion

In this paper, an optimized heterogeneous hardware-software architecture for

multiresolution morphology-based Text and Image Segmentation is presented

together with various highly optimized software implementations. Based on the new

architecture, we implemented a hardware accelerator on Zynq 7045, which

outperforms the original software implementation running on i7-4702MQ by a

factor of 6.2 in terms of runtime and by a factor of 207 with respect to energy

efficiency with negligible accuracy degradation of less than 1%. For further

analysis, our hybrid hardware-software implementation for the Text and Image

Fig. 17 Comparison of Energy Efficiency Vs. Runtime on different platforms. Gains and losses are noted

by green and red arrows, respectively

Table 5 Resource utilization of the hardware implementation for binarization [39], text-image seg-

mentation (this work) , text line extraction [40], and character recognition [41], on the Zynq 7045 device

@ 166MHz

Pipeline LUT FF BRAM 36Kb DSP

Binarization 8358 (4%) 11039 (3%) 45 (9%) 1 (1%)

Text-image segmen. 51009 (23%) 46468 (10%) 85 (15%) 0 (0%)

Text-line extraction 17519 (8%) 29140 (7%) 35 (7%) 65 (8%)

Character recognition 32815 (15%) 14532 (3%) 83 (15%) 33 (4%)

Total 109701 (51%) 101179 (24%) 248 (46%) 99 (11%)

123

International Journal of Parallel Programming (2021) 49:253–284 281

Segmentation is compared with other platforms running the optimized software

implementation with respect to runtime power, energy efficiency, and others. Our

optimized hybrid accelerator achieves high energy efficiency and meets the

objectives of iDocChip: an energy-efficient portable OCR device.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.Funding Open Access funding enabled and organized by Projekt

DEAL.

References

1. ABBYY. https://www.abbyy.com/en-eu/. Accessed 24 Apr 2020

2. Omnipage. https://www.kofax.com/Products/omnipage?source=nuance. Accessed 24 Apr 2020

3. OCRopus. https://github.com/tmbarchive/ocropy. Accessed: 2020-04-24

4. Tesseract. https://github.com/tesseract-ocr. Accessed 24 Apr 2020

5. Bukhari, S. S., Kadi, A, Jouneh, M. A., Mir, F. M., Dengel, A: anyocr: An open-source ocr system for

historical archives. In: 2017 14th IAPR international conference on document analysis and recog-

nition (ICDAR), vol. 1 , pp. 305–310. IEEE, (2017)

6. Narrenschif. http://kallimachos.de/kallimachos/index.php/Narragonien. Accessed 24 Apr 2020

7. Tekleyohannes, M. K., Rybalkin, V., Bukhari, S. S., Ghaffar, M. M., Varela, J. A., Wehn, N. D.,

Andreas: idocchip - a configurable hardware architecture for historical document image processing:

multiresolution morphology-based text and image segmentation. In: The 6th international embedded

systems symposium (IESS), (2019)

8. Brugger, C., Dal’Aqua, L., Varela, J. A., De Schryver, C., Sadri, M., Wehn, N., Klein, M., Siegrist,

Michael: a quantitative cross-architecture study of morphological image processing on cpus, gpus,

and fpgas. In: 2015 IEEE symposium on computer applications and industrial electronics (ISCAIE),

pp. 201–206. IEEE, (2015)

9. Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., Jones, P. H.: Comparing energy effi-

ciency of cpu, gpu and fpga implementations for vision kernels. In: 2019 IEEE international con-

ference on embedded software and systems (ICESS), pp. 1–8. IEEE, (2019)

10. Page, A., Mohsenin, T.: An efficient and reconfigurable fpga and asic implementation of a spectral

doppler ultrasound imaging system. In: 2013 IEEE 24th international conference on application-

specific systems, architectures and processors, pp. 198–202. IEEE, (2013)

11. Jiang, S., He, D., Yang, C., Xu, C., Luo, G., Chen, Y., Liu, Y., Jiang, J.: Accelerating mobile

applications at the network edge with software-programmable fpgas. In: IEEE INFOCOM

2018-IEEE conference on computer communications, pp. 55–62. IEEE, (2018)

12. Bonamy, R., Bilavarn, S., Muller, F., Duhem, F., Heywood, S., Millet, P., Lemonnier, F.: Energy

efficient mapping on manycore with dynamic and partial reconfiguration: Application to a smart

camera. Int. J. Circuit Theory Appl 46(9), 1648–1662 (2018)

13. Xilinx, inc. zynq�-7000 All Programmable SoC. https://www.xilinx.com/products/silicon-devices/

soc/zynq-7000.html. Accessed 24 Apr 2020

14. Baidu’s apollo driverless platform. https://www.electronicdesign.com/markets/automotive/article/

21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform. Accessed 24 Apr 2020

15. Topic embedded systems. https://topic.nl/en/products. Accessed 24 Apr 2020

16. AXIOM beta: a professional digital cinema camera. https://apertus.org/axiom. Accessed 24 Apr 2020

17. Ishikawa, S., Takahashi, T., Watanabe, S., Narukage, N., Miyazaki, S., Orita, T., Takeda, S.,

Nomachi, M., Fujishiro, I., Hodoshima, F.: High-speed x-ray imaging spectroscopy system with zynq

123

282 International Journal of Parallel Programming (2021) 49:253–284

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.abbyy.com/en-eu/
https://www.kofax.com/Products/omnipage?source=nuance
https://github.com/tmbarchive/ocropy
https://github.com/tesseract-ocr
http://kallimachos.de/kallimachos/index.php/Narragonien
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.electronicdesign.com/markets/automotive/article/21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform
https://www.electronicdesign.com/markets/automotive/article/21119589/xilinx-soc-fpga-powers-baidus-apollo-driverless-platform
https://topic.nl/en/products
https://apertus.org/axiom

soc for solar observations. Nucl. Instrum. Methods in Phys. Res. Sect. A: Accel, Spectrometers,

Detectors and Associated Equipment 912, 191–194 (2018)

18. Mata-Carballeira, Ó., Gutiérrez-Zaballa, J., del Campo, I., Martı́nez, V.: An fpga-based neuro-fuzzy

sensor for personalized driving assistance. Sensors 19(18), 4011 (2019)

19. Guo, K., Sui, L., Qiu, J., Jincheng, Yu., Wang, J., Yao, S., Song Han, Yu., Wang, and Huazhong

Yang., : Angel-eye: A complete design flow for mapping cnn onto embedded fpga. IEEE Trans.

Computer-Aided Des. Integr. Circuits Syst. 37(1), 35–47 (2017)

20. Afroge, S., Ahmed, B., Mahmud, F.: Optical character recognition using back propagation neural

network. In: 2016 2nd international conference on electrical, computer and telecommunication

engineering (ICECTE), pp. 1–4. IEEE, (2016)

21. Wei, T. C., Sheikh UU, Ab Rahman, A.A.H.: Improved optical character recognition with deep

neural network. In: 2018 IEEE 14th international colloquium on signal processing and its applica-

tions (CSPA), pp. 245–249. IEEE, (2018)

22. Clausner, C., Hayes, J., Antonacopoulos, A., Pletschacher, S.: Creating a complete workflow for

digitising historical census documents: considerations and evaluation. In: Proceedings of the 4th

international workshop on historical document imaging and processing, pp. 83–88, (2017)

23. Das T. K., Tripathy, A. K., Mishra, A. K.: Optical character recognition using artificial neural

network. In: 2017 international conference on computer communication and informatics (ICCCI),

pp. 1–4. IEEE, (2017)

24. Awel, M. A., Abidi, A. I.: Review on optical character recognition. no. June, pp. 3666–3669, (2019)

25. Moysset, B., Kermorvant, C., Wolf, C., Louradour, Jérôme: Paragraph text segmentation into lines

with recurrent neural networks. In: 2015 13th international conference on document analysis and

recognition (ICDAR), pp. 456–460. IEEE, (2015)

26. Murdock, M., Reid, S., Hamilton, B., Reese, J.: Icdar 2015 competition on text line detection in

historical documents. In: 2015 13th international conference on document analysis and recognition

(ICDAR), pp. 1171–1175. IEEE, (2015)

27. Kundu, S., Paul, S., Bera, S. K., Abraham, A., Sarkar, R.: Text-line extraction from handwritten

document images using gan. Expert Syst Appl 140, 112916 (2020)

28. Bhowmik, S., Sarkar, R., Nasipuri, M., Doermann, D.: Text and non-text separation in offline

document images: a survey. Int. J. Doc. Anal. Recognit(IJDAR) 21(1–2), 1–20 (2018)

29. Eskenazi, S., Gomez-Krämer, P., Ogier, J.-M.: A comprehensive survey of mostly textual document

segmentation algorithms since 2008. Pattern Recognit. 64, 1–14 (2017)

30. Mukarambi, G., Gaikwadl, H., Dhandra, B. V.: Segmentation and text extraction from document

images: Survey. In: 2019 innovations in power and advanced computing technologies (i-PACT), vol.

1, pp. 1–5. IEEE, (2019)

31. Oyedotun, O.K., Khashman, A.: Document segmentation using textural features summarization and

feedforward neural network. Appl. Intel. 45(1), 198–212 (2016)

32. Moll, M. A., Baird, H. S.: Segmentation-based retrieval of document images from diverse collec-

tions. In: Document Recognition and Retrieval XV, volume 6815, p 68150L. International Society

for Optics and Photonics, (2008)

33. Bukhari, S. S.,Al Azawi, M. I. A., Shafait, F., Breuel, T.M.: Document image segmentation using

discriminative learning over connected components. In: Proceedings of the 9th IAPR International

Workshop on Document Analysis Systems, pages 183–190. ACM, (2010)

34. Chowdhury, S., Mandal, S., Das, A., Chanda, B.: Segmentation of text and graphics from document

images. In: Ninth international conference on document analysis and recognition (ICDAR 2007), vol.

2, pp. 619–623. IEEE, (2007)

35. Bloomberg, D. S.: Multiresolution morphological approach to document image analysis. In: Proc. of

the international conference on document analysis and recognition, Saint-Malo, France, (1991)

36. Bukhari, S. S., Shafait, F., Breuel, T. M.: Improved document image segmentation algorithm using

multiresolution morphology. In: Document recognition and retrieval XVIII, vol. 7874, p 78740D.

International society for optics and photonics, (2011)

37. Kumar, A., Rastogi, P., Srivastava, P.: Design and fpga implementation of dwt, image text extraction

technique. Procedia Comput. Sci. 57, 1015–1025 (2015)

38. Bai, X., Shi, B., Zhang, C., Cai, X., Qi, L.: Text/non-text image classification in the wild with

convolutional neural networks. Pattern Recognit. 66, 437–446 (2017)

39. Rybalkin, V., Bukhari, S. S., Ghaffar, M. M., Ghafoor, A., Wehn, N., Dengel, A.: idocchip: A

configurable hardware architecture for historical document image processing: Percentile based

123

International Journal of Parallel Programming (2021) 49:253–284 283

binarization. In: Proceedings of the ACM symposium on document engineering 2018, p. 24. ACM,

(2018)

40. Tekleyohannes, M. K., Rybalkin, V., Ghaffar, M.M., Wehn, N., Dengel, A.: idocchip-a configurable

hardware architecture for historical document image processing: Text line extraction. In: 2019

International conference on reconfigurable computing and FPGAs (ReConFig), pp. 1–8. IEEE,

(2019)

41. Rybalkin, V., Wehn, N., Yousefi, M. R., Stricker, D.: Hardware architecture of bidirectional long

short-term memory neural network for optical character recognition. In: Proceedings of the con-

ference on design, automation and test in Europe, pp. 1394–1399. European design and automation

association, (2017)

42. Chang, A. X. M., Martini, B., Culurciello, E.: Recurrent neural networks hardware implementation

on fpga. nov (2015)

43. Tekleyohannes, M. K., Weis, C., Wehn, N., Klein, M., Siegrist, M.: A reconfigurable accelerator for

morphological operations. In: 2018 IEEE international parallel and distributed processing symposium

workshops (IPDPSW), pp. 186–193. IEEE, (2018)

44. Tekleyohannes, M., Sadri, M., Weis, C., Wehn, N., Klein, M., Siegrist, M.: An advanced embedded

architecture for connected component analysis in industrial applications. In: Design, automation and

test in Europe conference and exhibition (DATE), 2017, pp. 734–735. IEEE, (2017)

45. Multi-dimensional image processing (scipy.ndimage). https://docs.scipy.org/doc/scipy-0.14.0/

reference/ndimage.html. Accessed 24 Apr 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Authors and Affiliations

Menbere Kina Tekleyohannes1 • Vladimir Rybalkin1 •

Muhammad Mohsin Ghaffar1 • Javier Alejandro Varela1 • Norbert Wehn1 •

Andreas Dengel2

& Menbere Kina Tekleyohannes

tekley@eit.uni-kl.de

Vladimir Rybalkin

rybalkin@eit.uni-kl.de

1 Technische Universitat Kaiserslautern, Kaiserslautern, Germany

2 German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany

123

284 International Journal of Parallel Programming (2021) 49:253–284

https://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html

	iDocChip: A Configurable Hardware Architecture for Historical Document Image Processing
	Multiresolution Morphology-based Text and Image Segmentation
	Abstract
	Introduction
	Related Works
	Cross-Platform Comparison
	Complete \hbox {OCR} Processing Pipeline
	Text and Image Segmentation Algorithms
	Text and Image Segmentation Hardware Architectures

	Our Previous Works
	Binarization
	Text and Image Segmentation
	Text Line Extraction
	Text Line Recognition

	Constraints and Novel Contributions
	Text and Image Segmentation Algorithm
	Hardware Architecture
	Inversion
	Reduction with Threshold T\eq 1
	Hole-Filling
	Reduction with Threshold T\eq 4 and T\eq 3
	Morphological Operations (Opening and Dilation)
	Expansion
	Connected Component Labeling (CCL) and Seed Intersection
	Result Extraction

	Experimental Setup and Results
	Hardware Setup
	Software Optimizations
	Energy Consumption
	Results and Discussion

	Conclusion
	Funding
	References

