
Genome analysis

iDoComp: a compression scheme for assembled

genomes

Idoia Ochoa*,†, Mikel Hernaez† and Tsachy Weissman

Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA

*To whom correspondence should be addressed.
†The authors wish it be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Alfonso Valencia

Received on June 11, 2014; revised on September 23, 2014; accepted on October 17, 2014

Abstract

Motivation: With the release of the latest next-generation sequencing (NGS) machine, the HiSeq X

by Illumina, the cost of sequencing a Human has dropped to a mere $4000. Thus we are approach-

ing a milestone in the sequencing history, known as the $1000 genome era, where the sequencing

of individuals is affordable, opening the doors to effective personalized medicine. Massive gener-

ation of genomic data, including assembled genomes, is expected in the following years. There is

crucial need for compression of genomes guaranteed of performing well simultaneously on differ-

ent species, from simple bacteria to humans, which will ease their transmission, dissemination and

analysis. Further, most of the new genomes to be compressed will correspond to individuals of

a species from which a reference already exists on the database. Thus, it is natural to propose

compression schemes that assume and exploit the availability of such references.

Results: We propose iDoComp, a compressor of assembled genomes presented in FASTA format

that compresses an individual genome using a reference genome for both the compression and the

decompression. In terms of compression efficiency, iDoComp outperforms previously proposed al-

gorithms in most of the studied cases, with comparable or better running time. For example, we ob-

serve compression gains of up to 60% in several cases, including H.sapiens data, when comparing

with the best compression performance among the previously proposed algorithms.

Availability: iDoComp is written in C and can be downloaded from: http://www.stanford.edu/

~iochoa/iDoComp.html (We also provide a full explanation on how to run the program and an ex-

ample with all the necessary files to run it.).

Contact: iochoa@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In 2000, US president Bill Clinton declared the success of the Human

Genome Project (Int. Human Genome Sequencing Consortium,

2001), calling it ‘the most important scientific discovery of the 20th

century’ (although it was not until 2003 that the human genome as-

sembly was completed). It was the end of a project that took almost

13 years to complete and cost 3 billion dollars ($1 per base pair).

Fortunately, sequencing cost has drastically decreased in recent

years. While in 2004 the cost of sequencing a full-human genome was

around $20 million, in 2008 it dropped to a million, and in 2014 to a

mere $4000 (www.genome.gov/sequencingcosts). Thanks to

Illumina’s latest NGS machine, the HiSeq X, we are approaching the

$1000 human genome milestone. The rate of this price drop is sur-

passing Moore’s law, which suggests that efficient compression will

be crucial for sustaining this growth. As an example, the sequencing

data generated by the 1000 Genomes Project (www.1000genoms.org)

in the first 6 months exceeded the sequence data accumulated during

21 years in the NCBI GenBank database (Pennisi, 2011).

VC The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 626

Bioinformatics, 31(5), 2015, 626–633

doi: 10.1093/bioinformatics/btu698

Advance Access Publication Date: 24 October 2014

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

http://www.stanford.edu//~iochoa/iDoComp.html
http://www.stanford.edu//~iochoa/iDoComp.html
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
``
''
'
www.genome.gov/sequencingcosts
Next-Generation Sequencing (
)
www.1000genoms.org
http://www.oxfordjournals.org/

The compression algorithms proposed previously in the litera-

ture can be classified into two main categories: (i) Compression of

raw NGS data (namely FASTQ and SAM/BAM files) and

(ii) Compression of assembled data, i.e. the compression of FASTA

files containing assembled genomes. See the articles by Zhu et al.,

2015 and Deorowicz and Grabowski (2013a) for an extended re-

view. Moreover, within each of these categories the compression

can be made either with or without a reference. We focus here on

what will likely quickly become a prevalent mode: compression

of assembled genomes, with a reference. Specifically, we consider

pair-wise compression, i.e. compression of a target genome given a

reference available both for the compression and the decompression.

Although there exists a need for compression of raw sequencing

data (FASTQ, SAM/BAM), compression of assembled genomes pre-

sented in FASTA format is also important. For example, whereas an

uncompressed Human genome occupies around 3 GB, its equivalent

compressed form is in general smaller than 10 MB, thus easing the

transfer and download of genomes, e.g. it can be attached to an

email. Moreover, with the improvements in the sequencing technol-

ogy, increasing amounts of assembled genomes are expected in the

near future.

1.1 Compression schemes for assembled genomes
Although there exist general-purpose compression schemes like gzip,

bzip2 and 7zip (www.gzip.org, www.bzip.org and www.7zip.org,

respectively) that can be directly applied to FASTA files containing

assembled genomes, they do not exploit the particularities of these

data, yielding relatively low compression gains (Deorowicz and

Grabowski, 2013a; Zhu et al., 2015). With this gap in mind in com-

pression ratios, several compression algorithms were proposed in

the last two decades. On one hand, dictionary based algorithms as

BioCompress2 (Grumbach and Tahi, 1994) and DNACompress

(Chen et al., 2002) compress the genome by identifying low com-

plexity substrings as repeats or palindromes and replacing them by

the corresponding codeword from the codebook. On the other

hand, statistics-based algorithms such as XM (Cao et al., 2007) gen-

erate a statistical model of the genome and then use entropy coding

that relies on the previously computed probabilities.

Although the aforementioned algorithms perform very well over

data of relatively small size, such as mitochondrial DNA, they are

impractical for larger sequences (recall that the size of the human

genome is on the order of several gigabytes). Further, they focus

on compressing a single genome without the use of a reference se-

quence, and thus do not exploit the similarities across genomes of

the same species.

It was in 2009 that interest in reference-based compression started

to rise with the publication of DNAzip (Christley et al., 2009) and the

proposal from Brandon et al., 2009. In DNAzip, the authors com-

pressed the genome of James Watson (JW) to a mere 4 MB based on

the mapping from the JW genome to a human reference and using a

public database of the most common single nucleotide polymorphisms

(SNPs) existing in humans. Pavlichin et al. (2013) further improved

the DNAzip approach by performing a parametric fitting of the distri-

bution of the mapping integers. The main limitation of these two pro-

posals is that they rely on a database of SNPs available only for

humans and further assume that the mapping from the target to the

reference is given. Thus, while they set a high-performance benchmark

for whole human genome compression, they are currently not applic-

able beyond this specific setting.

Kuruppu et al. (2010a) proposed the Relative Lempel-Ziv

Compression of Genomes (RLZ) algorithm for reference-based com-

pression of a set of genomes. The authors improved the algorithm in

a subsequent publication, yielding the RLZ-opt algorithm (Kuruppu

et al., 2011). The RLZ algorithms are based on parsing the target

genome into the reference sequence in order to find longest matches.

While in RLZ the parsing is done in a greedy manner (i.e. always se-

lecting the longest match), in the optimized version, RLZ-opt, the

authors proposed a non-greedy parsing technique that improved the

performance of the previous version. Each of the matches is com-

posed of two values: the position of the reference where the match

starts (a.k.a. offset) and the length of the match. Once the set of

matches is found, some heuristics are used to reduce the size of the

set. For example, short matches may be more efficiently stored as a

run of base-pairs (a.k.a. literals) than as a match (i.e. a position and

a length). Finally, the remaining set together with the set of literals is

entropy encoded.

Deorowicz and Grabowski (2011) proposed the Genome

Differential Compressor (GDC) algorithm, which is based on the

RLZ-opt. One of the differences between the two is that GDC per-

forms the non-greedy parsing of the target into the reference by

hashing rather than using a suffix array. It also performs different

heuristics for reducing the size of the set of matches, such as allow-

ing for partial matches and allowing or denying large “jumps” in the

reference for subsequent matches. GDC offers several variants, some

optimized for compression of large collections of genomes, e.g. the

ultra variant. Finally, Deorowicz and Grabowski (2011) showed in

their paper that GDC outperforms (in terms of compression ratio)

RLZ-opt and, consequently, all the previous algorithms proposed in

the literature. It is worth mentioning that the authors of RLZ did

create an improved version of RLZ-opt whose performance is simi-

lar to that of GDC. However, Deorowicz and Grabowski (2011)

showed that it was very slow and that it could not handle a data set

with 70 human genomes.

At the same time, two other algorithms, namely GRS and

GReEn (Wang and Zhang, 2011) and (Pinho et al., 2012), respect-

ively, were proposed. The main difference between the aforemen-

tioned ones and GRS and GReEN is that in the later two the authors

only consider the compression of a single genome based on a refer-

ence, rather than a set of genomes. Moreover, they assume that the

reference is available and need not be compressed. It was shown in

(Deorowiczand Grabowski, 2011; Pinho et al., 2012) that GRS only

considers pairs of targets and references that are very similar. Pinho

et al., 2012 proposed an algorithm based on arithmetic coding.

They use the reference to generate the statistics and then they per-

form the compression of the target using arithmetic coding, which

uses the previously computed statistics. They showed clearly that

GReEn was superior to both GRS and the non-optimized RLZ.

However, Zhu et al., 2015 showed in their review paper that there

were some cases where GRS clearly outperformed GReEn in both

compression ratio and speed. Interestingly, this phenomenon was

observed only in cases of bacteria and yeast, which have genomes

of relatively small size.

In 2012, another compression algorithm was presented in

(Chern et al., 2012), where they showed some improved compres-

sion results with respect to GReEn. However, the algorithm they

proposed has relatively high running time when applied to big data-

sets and it does not work in several cases (see Supplementary Data,

Section VI for the results.). Also in 2012, Wandelt and Ulf, 2012

proposed a compression algorithm for single genomes that trades

off compression time and space requirements while achieving com-

parable compression rates to that of GDC. The algorithm divides

the reference sequence in blocks of fixed size, and constructs a suffix

tree for each of the blocks, which are later used to parse the target

into the reference.

iDoComp: a compression scheme for assembled genomes 627

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

,
pape
,
,
www.gzip.org
www.bzip.org
www.7zip.org
-
S
N
P
s
,
,
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
2

Although it is straightforward to adapt GReEn to the database

scenario in order to compare it with the other state-of-the-art algo-

rithm GDC, in the review paper by Zhu et al., 2015 they did not

perform any comparison between them. Moreover, the algorithm

introduced in Wandelt and Ulf, 2012 was not mentioned. On the

other hand, in the review paper by Deorowicz and Grabowski,

2013a the authors did compare all the algorithms stating that GDC

and (Wandelt and Ulf, 2012) achieved the highest compression

ratios. However, no empirical evidence in support of that statement

was shown in the article. Finally, in (Deorowicz et al., 2013b) they

showed that GDC achieved better compression ratios than (Wandelt

and Ulf, 2012) in the considered data sets.

After having examined all the available comparisons in the litera-

ture, we consider GReEN and GDC to be the state-of-the-art

algorithms in reference-based genomic data compression. Thus, we

use these algorithms as benchmark. (We do not use the algorithm

proposed in (Wandelt et al., 2012) because we were unable to run

the algorithm.) However, we also add GRS to the comparison base

in the cases where (Zhu et al., 2015) showed that GRS outperformed

GReEn.

Although in this work we do not focus on compression of collec-

tion of genomes, for completeness we introduce the main algorithms

designed for this task. As mentioned above, the version GDC-Ultra

introduced in (Deorowicz and Grabowski, 2011) specializes in com-

pression of a collection of genomes. In 2013, a new algorithm de-

signed for the same purpose, FRESCO, was presented in (Wandelt

and Ulf, 2013). The main innovations of FRESCO include a method

for reference selection and reference rewriting, and an implementa-

tion of a second-order compression. FRESCO offers lower running

times than GDC-Ultra, with comparable compression ratios.

Finally, in Deorowicz et al. (2013b) they showed that in this scen-

ario a boost in compression ratio is possible if one considers the

genomes are given as variations with respect to a reference, in VCF

format (Danecek et al., 2011), and the similarity of the variations

across genomes is exploited.

In the next section we present the proposed algorithm iDoComp.

It is based on a combination of ideas proposed in Christley et al.

(2009), Brandon et al. (2009) and Chern et al. (2012).

2 Methods and algorithms

In this section, we start by describing the proposed algorithm

iDoComp, whose goal is to compress an individual genome assum-

ing a reference is available both for the compression and the decom-

pression. We then present the data used to compare the performance

of the different algorithms, and the machine specifications where the

simulations were conducted.

2.1 iDoComp
The input to the algorithm is a target string T 2 Rt of length t over

the alphabet R, and a reference string S 2 Rs of length s over the

same alphabet. Note that, in contrast to (Kuruppu et al., 2011),

the algorithm does not impose the condition that the specific pair of

target and reference contain the same characters, e.g. the target T

may contain the character N even if it is not present in the reference

S. As outlined above, the goal of iDoComp is to compress the target

sequence T using only the reference sequence S, i.e. no other aid is

provided to the algorithm.

iDoComp is composed of mainly three steps (see Fig. 1): (i) the

mapping generation, whose aim is to express the target genome T in

terms of the reference genome S, (ii) the post-processing of the

mapping, geared toward decreasing the prospective size of the map-

ping, and (iii) the entropy encoder, that further compresses the map-

ping and generates the compressed file. Next, we describe these

steps in more detail.

2.1.1 Mapping generation

The goal of this step is to create the parsing of the sequence T rela-

tive to S. A parsing of T relative to S is defined as a sequence ðx1;x2

;. . .;xNÞ of substrings of S that when concatenated together in order

yield the target sequence T. For reasons that will become clear later,

we slightly modify the above definition and re-define the parsing as

ð~x1; ~x2;. . .; ~xNÞ, where ~xi ¼ ðxi;CiÞ, xi being a sub-string of S

and Ci 2 R a mismatched character that appears after xi in T but

not in S. Note that the concatenation of the ~x, i.e. both the sub-

strings and mismatched characters, should still yield the target se-

quence T.

A very useful way of expressing the sub-string ~xi is as the triplet

mi ¼ ðpi; li;CiÞ, with pi; li 2 ð1;. . .; sÞ, where pi is the position in the

reference where xi starts and li is the length of xi. If there is a letter

X in the target that does not appear in the reference, then the match

ðpi�1 þ li�1;0;XÞ will be generated, where pi�1 and li�1 are the pos-

ition and length of the previous match, respectively (We assume

p0 ¼ l0 ¼ 0.). In addition, note that if xi appears in more than

one place in the reference, any of the starting positions is a valid

choice.

With this notation, the parsing of T relative to S can be defined

as the sequence of matchesM¼ fmi ¼ ðpi; li;CiÞgNi¼1.

In this work, we propose the use of suffix arrays to parse the

target into the reference due to its attractive memory requirements,

especially when compared to other index structures such as suffix

trees (Gusfield, 1997). This makes the compression and decompres-

sion of a human genome doable on a computer with a mere 2 GB of

RAM. Also, the use of suffix arrays is only needed for compression,

i.e. no suffix arrays are used for the decompression. Finally, we as-

sume throughout the paper that the suffix array of the reference is

already pre-computed and stored in the hard drive.

Once the suffix array of the reference is loaded into memory,

we perform a greedy parsing of the target as previously described

to obtain the sequence of matchesM¼ fmigN
i¼1 (A detailed descrip-

tion of this step is provided in the Supplementary Data, Section II).

Deorowicz and Grabowski (2011) and Kuruppu et al. (2011)

showed that a greedy parsing leads to suboptimal results.

However, we are not performing the greedy parsing as described

in (Kuruppu et al., 2010b), since every time a mismatch is found

we record the mismatched letter and advance one position in the

target. Since most of the variations between genomes of different

individuals within the same species are SNPs (substitutions), record-

ing the mismatch character leads to a more efficient ‘greedy’

mapping.

Moreover, note that at this stage the sequence of matchesM suf-

fices to reconstruct the target sequence T given the reference

sequence S. However, in the next step we perform some

post-processing over M in order to reduce its prospective size,

which will translate to better compression ratios. This is similar to

Fig. 1. Diagram of the main steps of the proposed algorithm iDoComp

628 I.Ochoa et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

3
.
A
are
,
,
)
-
,
4
,
-
5
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
.
``
''

the heuristic used by (Deorowicz and Grabowski, 2011) and

(Kuruppu et al., 2011) for their non-greedy mapping.

2.1.2 Postprocessing of the sequence of matchesM
After the sequence of matches M is computed, a post-processing is

performed on them. The goal is to reduce the total number of elem-

ents that will be later compressed by the entropy encoder. Recall

that each of the matches mi contained inM is composed of two inte-

gers in the range ð1;. . .; sÞ and a character on the alphabet R. Since

jRj � s, the number of unique integers that appear in M will be in

general larger than jRj. Thus, the compression of the integers will re-

quire in general more bits than those needed to compress the charac-

ters. Therefore, the aim of this step is mainly to reduce the number

of different integers needed to represent T as a parse of S, which will

translate to improved compression ratios.

Specifically, in the post-processing step we look for consecutive

matches mi�1 and mi that can be merged together and converted

into an approximate match. By doing this we reduce the cardinality

ofM at a cost of storing the divergences of the approximate match-

ings with regards to the exact matchings. We classify these diver-

gences as either SNPs (substitutions) or insertions, forming the new

sets S and I , respectively.

For the case of the SNPs, if we find two consecutive matches

mi�1 and mi that can be merged at the cost of recording a SNP that

occurs between them, we add to the set S an element of the form

si ¼ ðpi;CiÞ, where pi is the position of the target where the

SNP occurs, with T½pi� ¼ Ci. Then we merge matches mi�1 and mi

together into a new match m ðpi�1; li�1 þ li þ 1;CiÞ. Hence,

with this simple process we have reduced the number of integers

from 4 to 3.

We constrain the insertions to be of length one; that is, we

do not explicitly store short runs of literals (together with its pos-

ition and length). This is in contrast to the argument of Deorowicz

and Grabowski (2011) and Kuruppu et al. (2011) stating that stor-

ing short runs of literals is more efficient than storing their respect-

ive matching. However, as we show next, we store them as a

concatenation of SNPs. Although this might seem inefficient, the

motivation behind it is that storing short runs of literals will in gen-

eral add new unique integers, which incurs a high cost, since the en-

tropy encoder (based on arithmetic coding) will assign to them a

larger amount of bits. We found that encoding them as SNPs and

then storing the difference between consecutive positions of SNPs is

more efficient. This process is explained next in more detail.

As pointed out by Kuruppu et al. (2011), the majority of the

matches mi belong to the Longest Increasing Sub-Sequence (LISS)

of the pi. In other words, most of the consecutive pi’s satisfy

pi � piþ1 � . . .� pj, for i< j, and thus they belong to the LISS. From

the mi’s whose pi value does not belong to the LISS, we examine

those whose length li is less than a given parameter L and whose gap

to their contiguous instruction is more than D. Among them, those

whose number of SNPs is less than a given parameter q, or are short

enough (< K), are classified as several SNPs.

That is, if the match mi fulfills any of the above conditions, we

merge the instructions mi�1 and mi as described above. Note that

the match mi was pointing to the length li sub-string starting at pos-

ition pi of the reference, whereas now (after merging it to mi�1) it

points to the one that starts at position pi�1 þ li�1 þ 1. Therefore,

we need to add to the set S as many SNPs as differences between

these two substrings.

Note that this operation gets rid of the small-length matches

whose pi’s are far apart from their “natural” position in the LISS.

These particular matches will harm our compression scheme as they

generate new large integers in most of the cases. On the other hand,

if the matches were either long, or with several SNP’s, and/or ex-

tremely close to their contiguous matchings, then storing them as

SNP’s would not be beneficial. Therefore, the values of L, D, q and

K are chosen such that the expected size of the new generated

subset of SNPs is less than that of the match mi under consideration.

This procedure is similar to the heuristic used by Deorowicz

and Grabowski (2011) to allow or deny ‘jumps’ in the reference

while computing the parsing.

The flowchart of this part of the post-processing is depicted

in Figure 2. For a more detailed flowchart, we refer the reader to

the Supplementary Data, Section III.

We perform an analogous procedure to find insertions in the se-

quence of matches M. Since we only consider length-1 insertions,

each insertion in the set I is of the form (p, C), where p indicates the

position in the target where the insertion occurs, and C the character

to be inserted. As mentioned earlier, the short runs of literals have

been taken care of in the last step of the SNP set generation.

After the postprocessing described above is concluded, the

sequence of matches M and the two sets S and I are fed to the

entropy encoder.

2.1.3 Entropy encoder

The goal of the entropy encoder is to compress the instructions con-

tained in the sequence of matchesM and the sets S; I generated in

Fig. 2. Flowchart of the post-processing of the sequence of matches M to

generate the set S

iDoComp: a compression scheme for assembled genomes 629

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

2)
-
-
-
``
''
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
before
-
)

the two previous steps. Recall that the elements in M;S, and I are

given by integers and/or characters, which will be compressed in a

different manner. Specifically, we first create two vectors p and c

containing all the integers and characters, respectively, from M;S,

and I . In order to be able to determine to which instruction each

integer and character belongs, at the beginning of p we add the car-

dinalities ofM;S, and I , as well as the number of chromosomes.

To store the integers, first note that all the positions pi in S and

I are ordered in ascending order, thus we can freely store the pi’s as

pi pi � pi�1, for i � 2; that is, as the difference between successive

ones. We perform a similar computation with the pi’s of M.

Specifically, we store each pi as pi jpi � ðpi�1 þ li�1Þj, for i � 2.

However, since some of the matches may not belong to the LISS,

there will be cases where pi�1 þ li�1 > pi. Hence, a sign vector s is

needed in this case to save the sign of the newly computed positions

inM. Finally, the lengths li 2M are also stored in p.

Once the vector p is constructed, it is encoded by a byte-based

adaptive arithmetic encoder, yielding the binary stream ApðpÞ.
Specifically, we represent each integer with 4 B , and encode each of

the bytes independently, i.e. with a different model. (We chose 4 B

as it is the least number of bytes needed to represent all possible inte-

gers.) This avoids the need of having to store the alphabet, which

can be a large overhead in some cases. Moreover, the statistics of

each of the bytes are updated sequentially (adaptively), and thus

they do not need to be previously computed.

The vector c is constructed by storing all the characters belong-

ing toM;S, and I . First, note that since the reference is available at

both the encoder and the decoder, they both can access any position

of the reference. Thus, for each of the characters Ci 2 c we can access

its corresponding mismatched character in the reference, that we de-

note as Ri. Thus, we generate a tuple of the form (R, C) for all the

mismatched characters of the parsing. We then employ a different

model for the adaptive Arithmetic encoder for each of the different

R’s, and encode each Ci 2 c using the model associated to its corres-

ponding Ri. Note that by doing this, one or two bits per letter

can be saved in comparison with the traditional one-code-for-all

approach.

Finally, the binary output stream is the concatenation of ApðpÞ, s

and AcðcÞ (the arithmetic-compressed vector c).

2.2 Data
To assess the performance of the proposed algorithm iDoComp, we

consider pair-wise compression applied to different datasets.

Specifically, we consider the scenario where a reference genome is

used to compress another individual of the same species (the target

genome). (The target and the reference do not necessarily need to

belong to the same species, although better compression ratios

are achieved if the target and the reference are highly similar.) This

would be the case when there is already a database of sequences

from a particular species, and a new genome of the same species is

assembled and thus needs to be stored (and therefore compressed).

The data used for the pair-wise compression are summarized in

Table 1. This scenario was already considered (Brandon et al., 2009;

Christley et al., 2009; Deorowicz and Grabowski, 2011; Pinho

et al., 2012; Wang and Zhang, 2011; Zhu et al., 2015) for assessing

the performance of their algorithms, and thus the data presented in

Table 1 include the ensemble of all the datasets used in the previ-

ously mentioned articles.

As evident in Table 1, we include in our simulations datasets

from a variety of species. These datasets are also of very different

characteristics in terms for example of the alphabet size, the number

of chromosomes they include, and the total length of the target gen-

ome that needs to be compressed.

2.3 Machine specifications
The machine used to perform the experiments and estimate the

running time of the different algorithms has the following specifica-

tions: 39 GB RAM, Intel Core i7-930 CPU at 2.80 GHz�8 and

Ubuntu 12.04 LTS.

3 Results

Next we show the performance of the proposed algorithm

iDoComp in terms of both compression and running time, and com-

pare the results with the previously proposed compression

algorithms.

As mentioned, we consider pair-wise compression for assessing

the performance of the proposed algorithm. Specifically, we con-

sider the compression of a single genome (target genome) given a

reference genome available both at the compression and the decom-

pression. We use the target and reference pairs introduced in Table 1

to assess the performance of the algorithm. Although in all the simu-

lations the target and the reference belong to the same species, note

that this is not a requirement of iDoComp, which also works for the

case where the genomes are from different species.

To evaluate the performance of the different algorithms, we look

at the compression ratio, as well as at the running time of both the

Table 1. Genomic sequence datasets used for the pair-wise com-

pression evaluation

Species Chr. Assembly Retrieved from

L.pneumohilia 1 T: NC_017526.1 ncbi.nlm.nih.gov

R: NC_017525.1

E.coli 1 T: NC_017652.1 ncbi.nlm.nih.gov

R: NC_017651.1

S.cerevisiae 17 T: sacCer3 ucsc.edu

R: sacCer2

C.elegans 7 T: ce10 genome.ucsc.edu

R: ce6

A.thaliana 7 T: TAIR10 arabidopsis.org

R: TAIR9

Oryza sativa 12 T: TIGR6.0 rice.plantbiology.

msu.edu

R: TIGR5.0

D.melanogaster 6 T: dmelr41 fruitfly.org

R: dmelr31

H.sapiens 1 25 T: hg19 ncbi.nlm.nih.gov

R: hg18

H.sapiens 2 25 T: KOREF_20090224 koreangenome.org

R: KOREF_20090131

H.sapiens 3 25 T: YH yh.genomics.org.cn

R: hg18 ncbi.nlm.nih.gov

H.sapiens 4 25 T: hg18 ncbi.nlm.nih.gov

R: YH yh.genomics.org.cn

H.sapiens 5 25 T: YH yh.genomics.org.cn

R: hg19 ncbi.nlm.nih.gov

H.sapiens 6 25 T: hg18 ncbi.nlm.nih.gov

R: hg19

Note: Each row specifies the species, the number of chromosomes they

contain and the target and the reference assemblies with the corresponding

locations from which they were retrieved. T. and R. stand for the Target and

the Reference, respectively.

630 I.Ochoa et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

four
bytes
(We chose four bytes as it is the least number of bytes needed to represent all possible integers.)
6
,
.
In order t
7
.
by
papers

compression and the decompression. We compare the performance

of iDoComp with those of GDC, GReEn, and GRS.

When performing the simulations, we run both GReEn and GRS

with the default parameters. The results presented for GDC corres-

pond to the best compression among the advanced and the normal

variant configurations, as specified in the supplementary data pre-

sented in Deorowicz and Grabowski (2011). Note that the param-

eter configuration for the H.sapiens differs from that of the other

species. We modify it accordingly for the different datasets.

Regarding iDoComp, all the simulations are performed with the

same parameters (default parameters), which are hard-coded in the

code (Please refer to the Supplementary Data, Section IV for more

information regarding the values of the default parameters used for

the simulations in iDoComp, as well as for the versions and options

used for the other algorithms.).

For ease of exhibition, for each simulation we only show the re-

sults of iDoComp, GDC and the best among GReEn and GRS. The

results are summarized in Table 2. For each species, the target and

the reference are as specified in Table 1. To be fair across the differ-

ent algorithms, especially when comparing the results obtained in

the small datasets, we do not include the cost of storing the headers

in the computation of the final size for any of the algorithms. The

last two columns show the gain obtained by our algorithm

iDoComp with respect to the performance of GReEn/GRS and

GDC. For example, a reduction from 100 kB to 80 kB represents a

20% gain (improvement). Note that with this metric a 0% gain

means the file size remains the same, a 100% improvement is not

possible, as this will mean the new file is of size 0, and a negative

gain means that the new file is of bigger size.

As seen in Table 2, the proposed algorithm outperforms in com-

pression ratio the previously proposed algorithms in all cases.

Moreover, we observe that whereas GReEn/GRS seem to achieve

better compression in those datasets that are small and GDC in the

H.sapiens datasets, iDoComp achieves good compression ratios

in all the datasets, regardless of their size, the alphabet and/or the

species under consideration.

In cases of bacteria (small size DNA), the proposed algorithm

obtains compression gains that vary from 30% against GReEn/GRS

to up to 64% when compared with GDC. For the S.cerevisae data-

set, also of small size, iDoComp does 55% (61%) better in compres-

sion ratio than GRS (GDC). For the case of medium size DNA

(C.elegans, A.thaliana, O.sativa and D.melanogaster) we observe

similar results. iDoComp again outperforms the other algorithms in

terms of compression, with gains up to 92%.

Finally, for the H.sapiens datasets, we observe that iDoComp

consistently performs better than GReEn, with gains above 50% in

four out of the six datasets considered, and up to 91%. With respect

to GDC, we also observe that iDoComp produces better compres-

sion results, with gains that vary from 3% to 63%.

Based on these results, we can conclude that GDC and the

proposed algorithm iDoComp are the ones that produce better com-

pression results on the H.sapiens genomes. In order to get more

insight into the compression capabilities of both algorithms when

dealing with Human genomes, in the Supplementary Data, Section

VII we provide more simulation results. Specifically, we simulate

twenty pair-wise compressions, and show that on average iDoComp

employs 7.7 MB per genome, whereas GDC employs 8.4 MB.

Moreover, the gain of iDoComp with respect to GDC for the con-

sidered cases is on average 9.92%.

Regarding the running time, we observe that the compression

and the decompression time employed by iDoComp is linearly de-

pendent on the size of the target to be compressed. This is not the

case of GReEn, for example, whose running times are highly vari-

able. In GDC we also observe some variability in the time needed

for compression. However, the decompression time is more consist-

ent among the different datasets (in terms of the size), and it is in

general the smallest among all the algorithms we considered.

iDoComp and GReEn take approximately the same time to com-

press and decompress. Overall, iDoComp’s running time is seen

to be highly competitive with that of the existing methods.

However, note that the time needed to generate the suffix array

is not counted in the compression time of iDoComp, whereas

the compression time of the other algorithms may include construc-

tion of index structures, like in the case of GDC (see the

Supplementary Data, Section V for details on the construction of the

suffix arrays.).

Table 2. Compression results for the pairwise compression

Species Raw Size GReEn/GRSa GDC iDoComp Gain

(MB) Size (kB) C. time D. time Size (kB) C. time D. time Size (kB) C. time D. time GR GDC

L.pneumohilia 2.7 0.122a 1a 1a 0.229b 0.3 0.03 0.084 0.1 0.1 31% 63%

E.coli 5.1 0.119 1 0.6 0.242b 0.6 0.06 0.086 0.2 0.2 30% 64%

S.cerevisiae 12.4 5.65a 5a 5a 6.47b 1 1 2.53 0.4 0.4 55% 61%

C.elegans 102.3 170 45 47 48.7 1 1 13.3 3 4 92% 73%

A.thaliana 121.2 6.6 54 56 6.32 21 2 2.09 4 5 68% 67%

O.sativa 378.5 125.5 140 146 128.6b 80 6 105.4 11 15 16% 18%

D.melanogaster 120.7 390.6 51 2 433.7 23 1 364.4 4 4 7% 16%

H.sapiens 1 3100 11 200 1687 1701 2770 2636 67 1025 95 130 91% 63%

H.sapiens 2 3100 18 000 652 721 11 973 511 78 7247 120 126 60% 39%

H.sapiens 3 3100 10 300 434 495 6840 141 65 6290 118 125 39% 8%

H.sapiens 4 3100 6500 352 372 6426 191 70 5767 115 130 11% 10%

H.sapiens 5 3100 35 500 1761 1846 11 873b 249 62 11 560 122 130 67% 3%

H.sapiens 6 3100 10 560 1686 1775 6939 2348 70 5241 100 120 50% 24%

Note: C. time and D. time stand for compression and decompression time (s), respectively. The results in bold correspond to the best compression performance

among the different algorithms. We use the International System of Units for the prefixes, that is, 1 MB and 1 kB stands for 106 and 103 bytes, respectively.
aDenotes the cases where GRS outperformed GReEn. In these cases, i.e. L.pneumohilia and S.cerevisiae, the compression achieved by GReEn is 495 kB and

304.2 kB, respectively.
bDenotes the cases where GDC-advanced outperformed GDC normal.

iDoComp: a compression scheme for assembled genomes 631

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
8
KB
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
9

Finally, we briefly discuss the memory consumption of the

different algorithms. We focus on the compression and decompres-

sion of the H.sapiens datasets, as they represent the larger files

and thus the memory consumption in those cases is the most signifi-

cant. iDoComp employs around 1.2 GB for compression, and

around 2 GB for decompression. GReEn consumes around 1.7 GB

both for compression and decompression. Finally, the algorithm

GDC employs 0.9 GB for compression and 0.7 GB for

decompression.

4 Discussion

Inspection of the empirical results of the previous section shows the

superior performance of the proposed scheme across a wide range

of datasets, from simple bacteria to the more complex humans,

without the need of adjusting any parameters. This is a clear advan-

tage over algorithms like GDC, where the configuration must be

modified depending on the species being compressed.

Although iDoComp has some internal parameters, namely, L, D,

K and q, the default values that are hard-coded in the code perform

very well for all the datasets, as we have shown in the previous sec-

tion. (See the Post-Processing step in section 2 for more details.)

However, the user could modify these parameters data-dependently

and achieve better compression ratios. Future work will explore the

extent of the performance gain (which we believe will be substantial)

due to optimizing for these parameters.

We believe that the improved compression ratios achieved by

iDoComp are due largely to the post-processing step of the algo-

rithm, which modifies the set of instructions in a way that is benefi-

cial to the entropy encoder. In other words, we modify the elements

contained in the sets so as to facilitate their compression by the

arithmetic encoder.

Moreover, the proposed scheme is universal in the sense that it

works regardless of the alphabet used by the FASTA files containing

the genomic data. This is also the case with GDC and GReEn, but

not with previous algorithms like GRS or RLZ-opt which only work

with A, C, G, T, and N as the alphabet.

It is also worth mentioning that the reconstructed files of both

iDoComp and GDC are exactly the original files, whereas the recon-

structed files under GReEn do not include the header and the se-

quence is expressed in a single line (instead of several lines).

Another advantage of the proposed algorithm is that the scheme

employed for compression is very intuitive, in the sense that the

compression consists mainly of generating instructions composed of

the sequence of matches M and the two sets S and I that suffice

to reconstruct the target genome given the reference genome. This

information by itself can be beneficial for researchers and gives in-

sight into how two genomes are related to each other. Moreover,

the list of SNPs generated by our algorithm could be compared with

available datasets of known SNPs. For example, the NCBI dbSNP

database contains known SNPs of the H.sapiens species.

Finally, regarding iDoComp, note that we have not included in

Table 2 the time needed to generate the suffix array of the reference,

only that needed to load it into memory, which is already included

in the total compression time. (We refer the reader to the

Supplementary Data, Section V for information on the time needed

to generate the suffix arrays.) The reason is that we devise these

algorithms based on pair-wise compression as the perfect tool for

compressing several individuals of the same species. In this scenario,

one can always use the same reference for compression, and thus

the suffix array can be reused as many times as the number of new

genomes that need to be compressed.

Regarding compression of sets, any pair-wise compression algo-

rithm can be trivially used to compress a set of genomes. One has

merely to choose a reference and then compress each genome in

the set against the chosen reference. However, as was shown in

Deorowicz and Grabowski (2011) with their GDC-ultra version of

the algorithm, and as can be expected, an intelligent selection of the

references can lead to significant boosts in the compression ratios.

Therefore, in order to obtain high compression ratios in sets it is

of ultimate importance to provide the pair-wise compression algo-

rithms with a good reference-finding method. This could be thought

of as an add-on that could be applied to any pair-wise compression

algorithm. For example, one could first analyze the genomes con-

tained in the set to detect similarity among genomes, and then use

this information to boost the final compression. (A similar approach

is used in Wandelt et al. (2013) The latter is a different problem that

needs to (and will) be addressed separately. However, for complete-

ness, we have included some results on compression of sets and on

the influence of the choice of the reference in the Supplementary

Data, Sections VIII and IX.

5 Conclusion

In this article, we introduce iDoComp, an algorithm for compres-

sion of assembled genomes. Specifically, the algorithm considers

pair-wise compression, i.e. compression of a target genome given

that a reference genome is available both for the compression and

the decompression. This algorithm is universal in the sense of being

applicable for any dataset, from simple bacteria to more complex

organisms such as humans, and accepts genomic sequences of an

extended alphabet. We show that the proposed algorithm achieves

better compression than the previously proposed algorithms in the

literature, in most cases. These gains are up to 92% in medium size

DNA and up to 91% in humans when compared with GReEn and

GRS. When compared with GDC, the gains are up to 73% and 63%

in medium size DNA and humans, respectively.

Acknowledgements

The authors would like to thank Golan Yona for providing the initial motiv-

ation for this work and for helpful discussions, and the anonymous reviewers

for helpful suggestions.

Funding

This work is partially funded by a Stanford Graduate Fellowships Program in

Science and Engineering, a fellowship from the Basque Government, a grant

from the Center for Science of Information (CSoI) and 1157849-1-QAZCC

NSF grant.

Conflict of interest: none declared.

References

Brandon,M.C. et al. (2009) Data structures and compression algorithms for

genomic sequence data, Bioinformatics, 14, 1731–1738.

Cao,M.D. et al. (2007) A simple statistical algorithm for biological sequence

compression, IEEE Data Compression Conference (DCC’07), Snowbird,

Utah, 2007.

Chen,X. et al. (2002) DNACompress: fast and effective DNA sequence com-

pression, Bioinformatics, 10 51–61.

Chern,B.G. et al. (2012). Reference based genome compression.

InInformation Theory Workshop (ITW), 2012 IEEE (pp. 427–431). IEEE.

632 I.Ochoa et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

(See the Post-Processing step in section 2 for more details.)
10
.
(We refer the reader to the Supplementary Data, Section V for information on the time needed to generate the suffix arrays.)
1
1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
.
12
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu698/-/DC1
,
paper
,

Christley,S. et al. (2009) Human genomes as email attachments,

Bioinformatics, 2, 274–275.

Danecek,P. et al. (2011), The variant call format and VCFtools.

Bioinformatics, 27, 2156–2158.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of gen-

omes with random access, Bioinformatics, 21, 2979–2986.

Deorowicz,S. and Grabowski,S. (2013a) Data compression for sequencing

data. Algorithms Mol. Biol., 8, 25.

Deorowicz,S. et al. (2013b) Genome compression: a novel approach for large

collections, Bioinformatics, 29, 2572–2578.

Grumbach,S. and Tahi,F. (1994) A new challenge for compression

Algorithms: genetic sequences. Inf. Process Manag., 6, 875–886.

Gusfield,D. (1997). Algorithms on strings, trees and sequences: computer

science and computational biology. Cambridge University Press.

Int. Human Genome Sequencing Consortium (2001) Initial sequencing and

analysis of the human genome, Nature, 409, 860–921.

Kuruppu,S. et al. (2010a) Relative lempel-ziv compression of genomes for

large-scale storage and retrieval, SPIRE 2010. Lecture Notes Comput Sci.,

6393, 201–206.

Kuruppu,S. et al. (2010b) Iterative dictionary construction for compression of

large DNA data sets. IEEE/AMC Trans Comput Biol Bioinform, 1, 137–149.

Kuruppu,S. et al. (2011) Optimized relative lempel-ziv compression of gen-

omes. 34th Australasian Computer Science Conference (ACSC 2011), Perth,

Australia.

Pavlichin,D.S. et al. (2013). The human genome contracts again.

Bioinformatics, 29, 2199–2202.

Pennisi,E. (2011) Will computers crash genomics? Science, 331, 666–668.

Pinho,A.J. et al. (2012) GReEn: a tool for efficient compression of genome

resequencing data, Nucleic Acid Res., 40, e27.

Wandelt,S. and Ulf,L. (2012) Adaptive efficient compression of genomes.

Algorithms Mol Biol., 7, 1–9

Wandelt,S. and Ulf,L. (2013) FRESCO: referential compression of highly similar

sequences. IEEE/ACM Trans Comput Biol Bioinform (TCBB), 10,

1275–1288.

Wang,C. and Zhang,D. (2011) A novel compression tool for efficient storage

of genome resequencing data, Nucleic Acid Res., 39, e45.

Zhu,Z. et al. (2015) High-throughput DNA sequence data compression,

Brief Bioinformatics, 16, 1–15.

iDoComp: a compression scheme for assembled genomes 633

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/5/626/2748151 by guest on 21 August 2022

	btu698-TF1
	btu698-TF2
	btu698-TF3
	btu698-TF4

