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Abstract

Computational drug repositioning and drug-target prediction have become essential tasks in

the early stage of drug discovery. In previous studies, these two tasks have often been con-

sidered separately. However, the entities studied in these two tasks (i.e., drugs, targets, and

diseases) are inherently related. On one hand, drugs interact with targets in cells to modu-

late target activities, which in turn alter biological pathways to promote healthy functions and

to treat diseases. On the other hand, both drug repositioning and drug-target prediction

involve the same drug feature space, which naturally connects these two problems and the

two domains (diseases and targets). By using the wisdom of the crowds, it is possible to

transfer knowledge from one of the domains to the other. The existence of relationships

among drug-target-disease motivates us to jointly consider drug repositioning and drug-tar-

get prediction in drug discovery. In this paper, we present a novel approach called iDrug,

which seamlessly integrates drug repositioning and drug-target prediction into one coherent

model via cross-network embedding. In particular, we provide a principled way to transfer

knowledge from these two domains and to enhance prediction performance for both tasks.

Using real-world datasets, we demonstrate that iDrug achieves superior performance on

both learning tasks compared to several state-of-the-art approaches. Our code and data-

sets are available at: https://github.com/Case-esaC/iDrug.

Author summary

Traditional high-throughput techniques for drug discovery are often expensive, time-con-

suming, and with high failure rates. Computational drug repositioning and drug-target

prediction have thus become essential tasks in the early stage drug discovery. The emer-

gence of large-scale heterogeneous biological networks has offered unprecedented oppor-

tunities for developing machine learning approaches to identify novel drug-disease or

drug-target interactions. However, most existing works focused either on the drug-disease
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network or on the drug-target network, thus failed to capture the inherent dependencies

between these two networks. These two biological networks are naturally connected since

they involve the same drug feature space. In our opinion, ignoring this rich source of

information is a major shortcoming of some existing works. In this paper, we present a

novel approach called iDrug, which seamlessly integrates the drug-disease network and

the drug-target network into one coherent model via cross-network embedding. As a

result, iDrug is able to take full usage of the knowledge within these two biological net-

works to better exploit new biomedical insights of drug-target-disease. Therefore, iDrug

has broad applications in drug discovery.

This is a PLOS Computational BiologyMethods paper.

Introduction

Targeted therapies and personalized treatments are the most promising strategies to treat com-

plex human diseases, especially for cancer. Accurate identification of drug mechanism of

actions (MoAs) is thus of great importance in drug discovery process. Two important tasks,

drug repositioning (also known as drug-disease prediction) [1] and drug-target prediction [2],

have been actively investigated to better understand the drugs’ MoAs. Drug repositioning (as

well as drug-target prediction), aiming to identify new indications (new targets) for existing

drugs, had gained increasing interests over the last decades. Traditional in vitro and in vivo

prediction of interactions between drug-disease or drug-target are desirable in many cases, but

with an expensive and protracted process of experimentation and testing [3, 4]. On the other

hand, computational approaches provide an alternative tool to efficiently predict potential can-

didates with certain reasonable accuracy, thus narrowing down the search space to be investi-

gated by the follow-up wet-lab experiments [5].

Many computational approaches have been developed for each task independently. Two

excellent surveys on drug repositioning [6] and drug-target prediction [7] contain a very

detailed overview of different machine learning techniques for each domain. Among many dif-

ferent methods, one of the most popular approaches is the network-based inference model [8,

9], which formulates drug-disease (or drug-target) prediction as a missing link prediction

problem on a heterogeneous network. Advances in this direction are also essential for identify-

ing biological significance of new disease genes, and for uncovering drug targets and biomark-

ers for complex diseases.

For drug repositioning, Wu et al. proposed a weighted bipartite network to identify the con-

nected communities of drugs and diseases using a network clustering approach [10]. Two net-

work topology-based methods, ProbS and HeatS, were also introduced to predict new

indications for different diseases by considering the disease pathway and phenotype features

[11]. MBiRW further used a bi-random walk algorithm on a two-layer network to identify

potential novel indications for a given drug [12]. Zhang et al. introduced a matrix factorization

method to predict novel drug-disease associations by integrating multiple drug and disease

similarities [13]. Similarly, Chen et al. further applied multiple kernel learning to incorporate

multiple heterogeneous data sources of drug and disease into the prediction framework [14].

Recently, Zeng et al. introduced a network-based deep learning method for in silico drug
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repositioning, which could learn nonlinear features of drugs from the heterogeneous networks

by a multi-modal deep autoencoder [15].

For drug-target prediction, Bleakley et al. applied support vector machine to predict novel

targets based on a bipartite local model [16]. Chen et al. presented a random walk with restart

on a bipartite network to predict potential drug-target interactions on a large scale [17]. Ezzat

et al. proposed two matrix factorization methods for drug-target prediction and constantly

boost the accuracy via graph regularization. In addition, Zheng et al. proposed a coupled

matrix factorization model, which projected drugs and targets into a common low-rank fea-

ture space [18]. Nascimento et al. also integrated multiple heterogeneous information sources

for both drugs and targets by using multiple kernel learning [19]. Chen et al. developed several

effective computational models to predict potential drug–target interactions from heteroge-

neous biological data, which could provide better understanding of various interactions [20].

Luo et al. presented a network integration pipeline for drug-target prediction via low-rank

matrix factorization, which integrated diverse information from heterogeneous data sources

[21]. Recently, Lee et al. constructed a novel drug-target prediction model to extract local resi-

due patterns of target protein sequences using a CNN-based deep learning approach, which

exhibited better performance than previous shallow models [22].

Computational frameworks from the two domains share many common characteristics.

First, most of them, for both domains, obey the guilt by association principle, which assumes

that similar drugs tend to treat (bind to) similar diseases (targets) with high probability and

vice versa [6, 7]. Second, they have exactly the same network structures, i.e., a bipartite network

consisting of one layer of drugs and the other layer of diseases (targets). Moreover, they adopt

many common features of drugs, targets, and diseases, such as drug’s chemical structure, tar-

get’s sequence, and disease phenotype. Based on those commonalities, it is not surprising that

same machine learning methods can be adopted or directly applied to two prediction tasks

interchangeably with barely no compromise on accuracy. For example, random walk with

restart [17], couple matrix factorization [18], and multiple kernel learning [19] were first suc-

cessfully proposed to predict the new drug-target interactions. Subsequently, they can be per-

fectly adaptive to solve drug repositioning problem as well [12–14].

It is generally a challenging task to compare different approaches in either domain for a

couple of reasons. First, many methods are not only different in the computational approaches

that they used, most of the time, they are also very different in the data that they analyzed.

Sometimes, it is just impractical to separate data from computational approaches. Second,

many of the approaches are based on the global structure of the network in predicting missing

links. Although they normally give better results comparing to methods based on local struc-

ture, they may not provide intuitive explanations of the predicted results. Third, most compu-

tational approaches cannot afford experimental validations. Coupled with the issue of different

types of input data required, it is hard to compare different methods objectively. One possible

solution for this problem is through crowdsourcing projects such as the Dream Challenges

[23]. Regardless these challenges, there is still room to improve computational approaches. In

particular, most of the existing studies considered drug-disease and drug-target prediction as

two isolated tasks and the relationships between these two domains—namely, cross-domain

knowledge—are typically ignored. Some recent studies have shown that such cross-domain

knowledge is very useful in improving the success rate of drug development [24]. Indeed, ther-

apeutic effect of drugs on a disease is through their abilities to modulate the biological targets

within the disease pathways, which in turn promotes healthy functioning of the metabolic sys-

tem and cure the disease. In other words, targets can provide evidence to understand drugs’

MoAs, which could serve as a useful bridge in drug discovery. Therefore, it is reasonable to

integrate drug repositioning and drug-target prediction together to better exploit different
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domain-specific knowledge. Wang et al. presented a three-layer heterogeneous network model

named TL_HGBI to learn the potential relationships among drug-target-disease in a unified

model [25]. However, it can only be applied to a small-scale dataset since its drug layer

required that the drugs must interact with known targets and diseases, leading to the issue of

data sparsity. In real-life situation, due to the nature of data collection (i.e., data were generated

by different labs in different time), it is very unlikely that the triple relationships<drug, target,

disease> are always available while integrating drug-disease and drug-target domain. More-

over, the random walk with restart algorithm adopted by TL_HGBI assumed that the next step

of the random walker only depended on the current node, which might suffer from the bias

induced by noise. The limitation motivates us to seek answers to a natural question: can we

still leverage all the available data provided in two domains to alleviate the data sparsity issue,

generate better performance, and extend to large-scale dataset in drug discovery?

In this work, we propose a novel framework—iDrug, which not only jointly performs drug

repositioning and drug-target prediction at the same time, but also integrates diverse informa-

tion from heterogeneous data sources. The key idea of iDrug is mainly inspired by cross-net-

work embedding [26–28], which aims to borrow information from some related domains to

achieve better performance in the domain of interest. Compared with single network embed-

ding, cross-network embedding simultaneously considers at least two types of networks from

different domains [27]. To be specific, two types of relationships are considered for each node

in the networks: (i) within-network relationship, which preserves the specific structural feature

of a node in its own domain; (ii) cross-network dependency, which describes the associations

between nodes across different networks/domains. Fig 1 shows an example of two heteroge-

neous networks corresponding to two domainsD
1
andD

2
. In each domain, the edges connect-

ing those nodes in the same layer (e.g., the disease layer) are defined based on their similarities

(e.g., disease-disease similarity). The edges across two different layers in the same domain

(e.g., drug-disease links) are labeled based on known associations. The goal is to predict novel

cross links in the same domain, which solves the drug repositioning or drug-target prediction

problem. Note that several drug nodes such as {②,③,⑤,⑦,⑧,⑩} in Fig 1 also have another

type of links, which connects the same drug nodes betweenD
1
andD

2
. We call these links as

Fig 1. An overview of iDrug.An illustration of the cross-network framework across two domains: drug-disease and
drug-target networks. iDrug requires only partially overlapped drug nodes between these two domains. The anchor links
among drug nodes are used to transfer domain knowledge across the networks.

https://doi.org/10.1371/journal.pcbi.1008040.g001
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anchor links, which have been shown to play a central role in multi-layered network mining

tasks [29, 30]. We thus regard these anchor links as bridges to fully transfer domain-specific

knowledge to benefit each other during the learning process. iDrug has several advantages

over existing single-domain methods. First, unlike single-domain approaches, iDrug is able to

jointly perform two tasks, drug repositioning and drug-target prediction in one unified model,

which has broader applicability in real-life drug discovery. In addition, by transferring knowl-

edge across different domains, iDrug can substantially alleviate data sparsity issue due to com-

plementary property of the two related domains and thus mutually enhance the performance.

Moreover, unlike some previous methods that requires totally overlap of the drug layer [25,

31], iDrug only requires partial overlap of drugs from the two domains. Therefore, it will be

able to include more data from both domains. Overall, iDrug provides an alternative opportu-

nity for us to better gain new biomedical insights of drug-target-disease relationships.

Materials andmethods

In this section, we first formulate the drug repositioning and drug-target prediction problem

as a matrix completion problem. We then provide the details of multiple heterogeneous data

sources, the framework of iDrug, and the learning algorithm.

Problem definition

Notation. Following the convention, we use bold upper-case for matrices (e.g., A), the

(i, j)-th element of matrix A denotes as A(i, j). A(i,:) or A(:, i) denotes its i-th row or column

and AT denotes the transpose of matrix A.

Domain 1: Drug-disease prediction. In domainD
1
, we try to predict new indications of

drugs using a drug-disease bipartite network, drug-drug similarity, and disease-disease simi-

larity information. We start by representing the bipartite network as a sparse n1 ×m1 matrix

X(1), where n1 is the number of drugs andm1 is the number of diseases. X(1)(i, j) = 1 if i-th

drug and j-th disease are known to interact and X(1)(i, j) = 0 otherwise. The drug-drug similar-

ity can be encoded into a n1 × n1 square matrix Að1Þu , with Að1Þu ði; jÞ representing the similarity

score between i-th and j-th drugs. Analogously, the disease-disease similarity can be repre-

sented by am1 ×m1 square matrix Að1Þv . We can then regard this problem as an analog of user-

item preferences problem in recommender system [32], in which users and items denote

drugs and diseases, respectively. The goal is to predict the new interactions between drugs and

diseases by completing the matrix X(1).

Domain 2: Drug-target prediction. Similarly, we denote the drug-target bipartite net-

work as a sparse matrix Xð2Þ 2 Rn2�m2 in domainD
2
, where n2 andm2 are the numbers of

drugs and targets, respectively. The matrices Að2Þu 2 R
n2�n2 and A

ð2Þ
v 2 R

m2�m2 denote the drug-

drug similarity and target-target similarity, respectively. Note that both Að1Þu and Að2Þu represent

drug-drug similarity but in different domains, resulting in different sizes. Here we only require

partial overlap of drugs betweenD
1
andD

2
. Novel drug-target interactions can then be

inferred by completing the matrix X(2).

Construction of drug-disease and drug-target network

Cross-network construction. To construct the networks, we consider two different data-

sets. For the first one, the initial drug-disease interactions in domainD
1
are obtained from the

Comparative Toxicogenomics Database (CTD): http://ctdbase.org/. For the second dataset,

drug-disease relationships are obtained from Gottlieb et al. [33], which has been frequently

used in many previous studies [12, 34] and is regraded as a gold standard dataset.
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The CTD dataset contains 1, 048, 547 drug-disease associations. We only focus on those

diseases that have OMIM https://www.omim.org/ identifiers for conveniently computing dis-

ease similarity scores later. We thus collect total of 1, 321 drugs, 3, 966 disease as well as 111,

481 drug-disease interactions.

The initial drug-target associations in domainD
2
can be directly obtained from DrugBank

https://www.drugbank.ca/. We mainly focus on the approved small molecule compounds and

require each drug to have at least two targets, resulting in 946 drugs, 3, 610 targets, and 10, 234

drug-target interactions. The requirement to have at least two targets for each drug is moti-

vated by the notion that a drug can be used to treat a different disease most likely due to its off

target activities. Across the two domainsD
1
andD

2
, we have 469 common drugs in the two

networks. The statistics of these two networks are shown in Table 1.

Dataset two is much smaller and only contains 1, 933 known drug-disease associations

involving 593 drugs and 313 diseases. The drug-disease relationships in this dataset are human

curated and are believed to be more reliable than the ones in the first dataset. We further col-

lect the targets of those 593 drugs from the DrugBank database and construct the drug-target

network that consists of 1, 011 targets and 3, 427 known drug-target interactions.

In addition to the cross links of the two heterogeneous networks, we also construct homo-

geneous edges and their weights based on the following similarity measures.

Drug-drug similarity. Although there are a number of measurements developed for com-

puting drug-drug similarities, a recent study showed that Tanimoto coefficient similarity is

highly efficient for fingerprint-based similarity measurement [35]. Chemical structures of

drugs in Canonical SMILES form are directly downloaded from DrugBank. The Chemical

Development Kit is then applied to compute the Tanimoto similarity score of any two drugs

using their corresponding 2D chemical fingerprints [36]. Briefly, two drugs have a higher simi-

larity score if they have more similar of chemical structures.

Target-target similarity. Protein targets consist of long chains of amino acid sequences,

which perform a vast array of functions within organisms. Target-target similarity scores are

thus calculated using the Smith-Waterman algorithm (e.g., 11 for gap open penaltyand 1 for

its extension, BLOSUM62 for the scoring matrix.) based on their amino acid sequences. The

similarity scores are then normalized into [0, 1] using the same method proposed in a previous

work [16].

Disease-disease similarity. A recent study shows that a disease similarity defined based

on the semantic similarity between MeSH terms describing the diseases is an accurate measure

for heritable diseases at the molecular level [37]. The measure is defined based on the concept

of information content of a MeSH term in an ontology, defined as the negative logarithm of

the probability. Therefore, the disease similarity measure is unbounded, non-negative real

number. We directly download their similarities from the Disimweb server http://www.

paccanarolab.org/disimweb.

For the CTD dataset, the intra-similarity distributions of drug-drug and disease-disease are

shown in Fig 2. The intra-similarity distributions of drug-drug and target-target are shown in

Fig 3. The drug-drug similarity distributions from the two domains follow similar patterns.

Table 1. Statistics of drug-disease network (Domain 1) from CTD database and drug-target network (Domain 2) fromDrugBank database. 469 drugs are overlapped
between two networks in total.

Domain |Drug| |Target| |Disease| |Interaction|

Domain 1: drug-disease 1,321 - 3,966 111,481

Domain 2: drug-target 946 3,610 - 10,234

https://doi.org/10.1371/journal.pcbi.1008040.t001
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Fig 2. The intra-similarity distributions in drug-disease domain. (a) The intra-similarity distributions of drug pairs,
the drug-drug similarities are calculated based on Tanimoto Score. (b) The intra-similarity distributions of disease pairs,
the disease-disease similarities are computed based on the semantic similarity of MeSH terms. Note that all the self-
similarity values of drugs and diseases have already been excluded in the histograms.

https://doi.org/10.1371/journal.pcbi.1008040.g002

Fig 3. The intra-similarity distributions in drug-target domain. (a) The intra-similarity distributions of drug pairs, the
drug-drug similarities are calculated based on Tanimoto Score. (b) The intra-similarity distributions of target pairs, the
target-target similarities are calculated using the Smith-Waterman algorithm on target sequences. Note that all the self-
similarity values of drugs and targets have already been excluded in the histograms. For target-target similarities, we only
show the similarity values within [0, 0.2] since most of them are located in this range.

https://doi.org/10.1371/journal.pcbi.1008040.g003
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Overall, most drug pairs have similarities smaller than 0.4, which is not surprising given that

most drugs may not be related. The disease similarities are not normalized. For two diseases,

the lower their shared MeSH terms on the ontology, the higher the information content and

their similarities. The target-target similarities are generally very small because of the diverse

set of targets.

The iDrug model

The key idea behind iDrug is to treat the problem as a cross-network embedding problem [38]

by considering both within-network and cross-network relationships. We next provide more

details for within-network factorization and cross-network consistency, and propose the uni-

fied model.

1) Within-network factorization: For a single-domain such as drug-disease prediction, we

adopt the basic idea of graph regularized non-negative matrix factorization [38–40], which

decomposes the drug-disease interaction matrix Xð1Þ 2 Rn1�m1 into two r1-rank feature matri-

cesUð1Þ 2 Rn1�r1 (i.e., drugs’ feature space) and V
ð1Þ 2 Rm1�r1 (i.e., diseases’ feature space) by

minimizing the following objective function:

min
Uð1Þ�0;Vð1Þ�0

kWð1Þ � ðXð1Þ � U
ð1Þ
V
ð1ÞTÞ k2F þa � ðTrðU

ð1ÞT
L
ð1Þ
u U

ð1ÞÞ þ TrðVð1Þ
T
L
ð1Þ
v V

ð1ÞÞÞ ð1Þ

where Lð1Þu ¼ D
ð1Þ
u � A

ð1Þ
u , Lð1Þv ¼ D

ð1Þ
v � A

ð1Þ
v and� is the Hadamard product, Tr(�) is the Trace

operator, k�kF is the matrix Frobenius norm and α is the regularization parameter.Dð1Þu and

D
ð1Þ
v are the diagonal degree matrices of Að1Þu and Að1Þv , such asDð1Þu ði; iÞ ¼

Pn1
j¼1 A

ð1Þ
u ði; jÞ;

W
ð1Þ 2 Rn1�m1 is weight matrix indicating the weight of entities on X(1). Typically, a smaller

weight is assigned to unobserved samples. Based on the strategy for one-class collaborative fil-

tering [38, 40], we setW(1)(i, j) = 1 if X(1)(i, j) is observed andW(1)(i, j) = w 2 [0, 1) otherwise.

We use trace optimization (i.e., the second term) to achieve within-network smoothness,

which ensures that the low-rank representations of nodes i and j in the same layer will be

close to each other. Finally, the non-negativity constraints on the factor matrices U(1) and V(1)

lead to more interpretable results [41]. Similarly, for drug-target domain, we can decompose

matrix Xð2Þ 2 Rn2�m2 into two r2-rank feature matrices Uð2Þ 2 Rn2�r2 (drugs’ feature space) and

V
ð2Þ 2 Rm2�r2 (targets’ feature space) in a similar way as the Eq (1).

2) Cross-network consistency: iDrug further captures cross-network relationships by mak-

ing the hypotheses that the partial overlap of drugs are consistent with each other across the

two domains because they all represent the same drugs. To achieve this goal, we introduce a

drug mapping matrix Sð1;2Þ 2 Rn2�n1 to represent the anchor links cross domainD
1
andD

2
. To

be specific, S(1,2)(i, j) = 1 if the i-th row ofU(2) and j-th row ofU(1) represent the same drug;

S(1,2)(i, j) = 0 otherwise. Note that at most one element in each row of S(1,2) can be 1 because of

the one-to-one constraint of anchor links across the two domains. We then observe that S(1,2)

U(1) in fact project the partial overlap of drug feature space from domainD
1
to domainD

2
. In

addition, if two drugs are similar in domainD
1
, they should also be similar after projecting to

domainD
2
. The cross-network consistency of the partial overlap of drugs can thus be achieved

by minimizing the following disagreement [42]:

DðUð1Þ;Uð2ÞÞ ¼k Sð1;2ÞUð1ÞðSð1;2ÞUð1ÞÞ
T
� U

ð2Þ
U
ð2ÞT k2F ð2Þ

In other words, the feature space U(1) in the drug domainD
1
should match the feature space

U(2) in the drug domainD
2
as much as possible because of their overlapped drugs.
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3) The unified model: Finally, we can integrate the domain-specific within-network objec-

tive with respect to drug-target and drug-disease in Eq (1), with the cross-network consistency

Eq (2) into a unified objective function as follows:

min J ¼
X2

i¼1

kWðiÞ � ðXðiÞ � U
ðiÞ
V
ðiÞTÞ k2F

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

domain factorization

þ bk Sð1;2ÞUð1ÞðSð1;2ÞUð1ÞÞ
T
� U

ð2Þ
U
ð2ÞT k2F

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cross�network consistency

þ a
X2

i¼1

ðTrðUðiÞ
T
ðDðiÞu � A

ðiÞ
u ÞU

ðiÞÞ þ TrðVðiÞ
T
ðDðiÞv � A

ðiÞ
v ÞV

ðiÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

within�network smoothness

þ g
X2

i¼1

ðk UðiÞk
1
þ k VðiÞk

1
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

regularization

s:t: U
ðiÞ � 0;V

ðiÞ � 0; for i ¼ 1; 2

ð3Þ

where the l1-norm penalty onU(i) and V(i) (e.g., kAk1 = ∑ij Aij) can achieve a more sparse solu-

tion [43]. The regularization parameters α, β, and γ can adjust the relative importance of

within-network smoothness, cross-network consistency, and sparseness of optimal solutions,

which will be studied later. For convenience, all symbols in Eq (3) are summarized in Table 2.

Learning algorithm

In this section, we provide rigorous theoretical analysis of iDrug in terms of its correctness,

convergence, and complexity.

The objective function in Eq (3) is non-convex when considering all variables. We can opti-

mize it by using the multiplicative update minimization approach [41], i.e., the objective func-

tion is alternately minimized with respect to one variable while fixing others. This procedure

repeats until convergence, i.e., k J ðtþ1Þ � J ðtÞ k� d, where δ is a small constant. The optimiza-

tion procedure is summarized in S1 Fig. The details of the correctness and convergence of our

algorithm can be found in the supplementary materials (S1 Appendix). Here we only include

Table 2. The symbols used in the objective function Eq (3) and their descriptions.

Symbol Definition and Description

X(1),W(1) The adjacency matrix and the weight matrix of the known drug-disease interactions

X(2),W(2) The adjacency matrix and the weight matrix of the known drug-target interactions.

U(1),V(1) The low-rank representations of drugs and diseases in the drug-disease domain.

U(2),V(2) The low-rank representations of drugs and targets in the drug-target domain.

S(1,2) The drug mapping matrix to denote anchor links across the two domains.

A
ð1Þ
u ;D

ð1Þ
u

The drug-drug similarity matrix and its degree matrix in the drug-disease domain.

A
ð2Þ
u ;D

ð2Þ
u

The drug-drug similarity matrix and its degree matrix in the drug-target domain.

A
ð1Þ
v ;D

ð1Þ
v

The target-target similarity matrix and its degree matrix in the drug-disease domain.

A
ð2Þ
v ;D

ð2Þ
v

The disease-disease similarity matrix and its degree matrix in the drug-target domain.

n1,m1 The number of drugs and diseases in the drug-disease domain.

n2,m2 The number of drugs and targets in the drug-target domain.

r1,r2 The ranks of matrices {U(1), V(1)} and {U(2), V(2)}.

https://doi.org/10.1371/journal.pcbi.1008040.t002
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the updating formula of each variable as follows:

U
ð1Þ  U

ð1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
ð1Þ
V
ð1Þ þ aAð1Þu U

ð1Þ þ 2bD

T
ð1Þ þ aDð1Þu U

ð1Þ þ 2bYþ 0:5g

s

ð4Þ

U
ð2Þ  U

ð2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
ð2Þ
V
ð2Þ þ aAð2Þu U

ð2Þ þ 2bX

T
ð2Þ þ aDð2Þu U

ð2Þ þ 2bUð2ÞUð2Þ
T
U
ð2Þ þ 0:5g

s

ð5Þ

V
ðiÞ  V

ðiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
ðiÞT

U
ðiÞ þ aAðiÞv V

ðiÞ

ððRðiÞ
T
þ w2V

ðiÞ
U
ðiÞTÞUðiÞ þ aDðiÞv V

ðiÞ þ 0:5g

v
u
u
t ð6Þ

where

D ¼ S
ð1;2ÞT

U
ð2Þ
U
ð2ÞT

S
ð1;2Þ

U
ð1Þ

Y ¼ S
ð1;2ÞT

S
ð1;2Þ

U
ð1Þ
U
ð1ÞT

S
ð1;2ÞT

S
ð1;2Þ

U
ð1Þ

X ¼ S
ð1;2Þ

U
ð1Þ
U
ð1ÞT

S
ð1;2ÞT

U
ð2Þ

R
ðiÞ ¼ ð1� w2ÞIðiÞ � ðUðiÞVðiÞ

T
Þ

T
ðiÞ ¼ ðRðiÞ þ w2

U
ðiÞ
V
ðiÞTÞVðiÞ

and I(i) is an indicator matrix for the observed elements in X(i), i.e., I(i)(u, v) = 1 ifX(i)(u, v)> 0,

and I(i)(u, v) = 0 otherwise.

Once we solve Eq (3), for a give drug i and disease j in the drug repositioning domain, we

can infer their potential association by ~X
ð1Þði; jÞ ¼ U

ð1Þði; :ÞVð1Þðj; :Þ
T
. Similarly, for a give drug

i and target j in the drug-target domain, the novel drug-target associations can be inferred by

computing ~X
ð2Þði; jÞ ¼ U

ð2Þði; :ÞVð2Þðj; :Þ
T
.

Complexity. According to the updating rules (Eqs (4) to (6)), the time complexity of our

optimization algorithm isOðk � ðnmr þ n2r þ srÞ þ n3 þ nr2Þ, where k is the number of itera-

tions, n = max{n1, n2},m = max{m1,m2}, r = max{r1, r2}, and s = max{nnz(X(1)), nnz(X(2))},

where nnz(X) is the number of non-zero elements in X. In practice, r�min{m, n} and s is

usually very small due to the sparsity of networks. Moreover, theOðn3Þ term is from the matrix

multiplication S
ð1;2ÞT

S
ð1;2Þ in Eq (4). Since S(1,2) is the very sparse mapping matrix and is

unchanged in each iteration, we can thus cache Sð1;2Þ
T

S
ð1;2Þ in advance to reduce the time com-

plexity. The overall complexity of our algorithm can be denoted asOðk � ðnmr þ n2rÞÞ in total.

Although iDrug performs cross-domain learning using two biological networks, the computa-

tional complexity remains the same as the state-of-the-art matrix factorization algorithms in a

single domain, such as GRMF [34] for drug-target prediction.

Results

In this section, we conduct several experiments to evaluate the performance of our proposed

iDrug on the two domains, respectively. Specifically, we perform the drug repositioning by

fully using the knowledge containing in drug-target domain and vice versa in the cross-valida-

tion experiments. Many approaches exist for both problems. However, for some approaches, it

is extremely challenging to compare their performance because these approaches are closely

tied to the data that they are using. For example, the model structures are usually determined

by the available data they have [15, 33]. In this study, we only compare four network-based
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methods that can easily take drug/target/disease similarities as inputs. The baseline methods

are as follows:

• RLS-Kron [44], a kernel-based classifier that combines chemical and genomic similarity

matrices for drug-target prediction.

• TL_HGBI [25]: a random-walk based algorithm for a three layers drug-target-disease net-

work to predict the new interactions between drugs and diseases (targets).

• MBiRW [12]: a bi-random walk algorithm on a bipartite network to identify potential indi-

cations by further adjusting the clustering of drugs and diseases.

• GRMF [34]: a matrix factorization method that uses graph regularization to learn low-rank

representations for drugs and targets.

Although some of them are originally designed for drug repositioning (e.g., TL_HGBI and

MBiRW), all of above methods can be directly applied to the two domains as discussed before.

The parameters of these algorithms are first initialized as those in the original paper and then

tuned for the optimal performance. For RLS-Kron, the regularization parameter σ = 1 and the

kernel bandwidths γ = 1. For random-walk based algorithm TL_HGBI and MBiRW, we set

their thresholds the same as the optimal settings in their original papers. For GRMF, we tune

the regularization parameter by using grid search algorithm [34], and λl = 0.5, λd = λt = 10−3

are chosen for the best performance. For iDrug, we set rank r1 = 90 and r2 = 70, weight in Eq

(6) w = 0.3 and regularization parameters α = β = γ = 0.01. The impact of regularization

parameters are presented in the Sensitivity Analysis subsection.

Cross-validation for drug-disease prediction

In order to provide a complete picture of the performance for each approach, we conduct five-

fold cross-validation experiments under the following three scenarios for drug-disease predic-

tion [19, 34, 45]:

1. ‘pair prediction’ scenario, which predicts unknown interactions between known drugs and

diseases. All known drug-disease associations are split into five folds, in which four folds

are used for training and one fold for testing.

2. ‘new drug’ scenario, which predicts diseases for new drugs. In this scenario, the drugs are

divided into five disjoint subsets. The drug-disease associations of four folds of drugs are

used for training and the rest pairs are used for testing.

3. ‘new disease’ scenario, which predicts drugs for new diseases. The setting is similar to sce-

nario two, but data are separated based on diseases.

For scenario 1, the original drug-disease associations are very sparse with a large fraction of

unknown interactions. We choose one fold of known pair interactions as positive samples and

further randomly select an equal number of unknown interactions as negative samples as test

set. The four folds of known interactions and the rest of unknown pairs are used to train the

model [19, 21]. By varying the rank threshold, we can calculate various true positive rate

(TPR), false positive rate (FPR), Precision and Recall values. We then use Area Under the

Receiver Operating Characteristic curve (AUROC) and Area Under the Precision Recall curve

(AUPR) to assess the performance of different models [19, 34, 45].

For scenarios 2 and 3, we evaluate different methods mainly based on the precision of top-k

metric because we are more interested in the top-k ranked candidates for ‘new drug’ or ‘new

disease’ in the drug discovery process [6, 7]. Note that the entire drug-target associations are
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all incorporated when performing the task of drug repositioning. For each method, five-fold

cross-validation experiments are repeated 10 times independently and the average perfor-

mance is reported.

Experimental results. Our results (Fig 4) clearly show that the proposed iDrug consis-

tently outperforms all the other approaches for all three scenarios. Fig 4(a) shows that iDrug

achieves an AUROC value of 0.9213, which is better than that of the other methods in the

same experimental scenario (e.g., TL_HGBI: 0.886, MBiRW: 0.879, GRMF: 0.863, and

RLS-Kron: 0.844). Meanwhile, iDrug achieves an AUPR of 0.938, which are higher than all the

other approaches (TL_HGBI: 0.881, MBiRW: 0.876, GRMF: 0.847, and RLS-Kron: 0.813). Sev-

eral interesting observations can be made based on the results in Fig 4. First, iDrug and

TL_HGBI, both of which integrate target information, perform better than the rest methods,

indicating the contributions of target information for drug-disease prediction. In a previous

study [25], it was shown that the performance gradually decreased when some of the observed

drug-target links in the network were removed randomly. Our results here further confirm

that it is preferable to jointly model drug-target-disease relationships to better understand

drug’s MoAs. Second, comparing iDrug with TL_HGBI, TL_HGBI requires a common set of

drug nodes across the two domains, therefore can be viewed as a sub-network of iDrug and is

more prone to the issue of data sparsity. For instance, for a new compound added to the net-

work, its similarity with existing drugs can be calculated. However, its interactions with dis-

eases and targets might be completely unknown. TL_HGBI cannot address such a cold-start

problem for novel drug discovery. In contrast, iDrug overcomes this issue by jointly learning

on larger drug-disease and drug-target networks, and transferring domain-specific knowledge

through anchor links cross domains [27]. Larger networks tend to contain more information

thus ease the issue of data sparsity. Therefore, iDrug is expected to perform better as shown

here. In comparing iDrug with MBiRW, both approaches employ the concept of drug commu-

nity/cluster to improve their performance, but in different ways. The community of drugs in

MBiRW was constructed based on common drug indications, which highly depended on the

known drug-disease associations and might suffer from bias from data. Different from

MBiRW, iDrug restricts the community of drugs by imposing consistency constraints among

drugs from the two domains, i.e., D(U(1), U(2)). It can therefore obtain more reliable commu-

nity of drugs for both domains. iDrug achieves higher AUPR score than GRMF, presumably

due to the fact that GRMF only incorporates information of drugs and diseases. In fact, GRMF

Fig 4. Comparison on the performance of different methods on drug repositioning. (a) The AUROC curves for the ‘pair
prediction’ scenario. (b) The AUPR curves for the ‘pair prediction’ scenarios. (c) Precision of the top-k candidates for the ‘new
drug’ scenario. (d) Precision of the top-k candidates for the ‘new disease’ scenario.

https://doi.org/10.1371/journal.pcbi.1008040.g004
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can be viewed as a degraded version of iDrug for single-domain prediction since they both try

to learn the low-rank representations of drugs and diseases via matrix factorization with graph

regularization. iDrug improves the accuracy by simply transferring knowledge from multiple

domains. Finally, the kernel-based RLS-Kron model performs the worst among all the

approaches since it is often hard to choose an appropriate kernel function, which usually

requires more specific domain knowledge from the experts.

For scenarios 2 and 3 (Fig 4(c) and 4(d)), iDrug also perform better than the other

approaches in term of the precision of top-5, top-10 and top-15 metrics. It is interesting to

notice the difference in the two scenarios. The precision of top-k candidates In the ‘new drug’

scenario is much lower than the precision in the ‘new disease’ scenario. We suspect that one of

the main reasons is that the number of overlapped drugs connecting the two domains is

decreased when splitting the drugs into five disjoint sets in the ‘new drug’ scenario. The impact

of anchor links is thus reduced and weak domain-specific knowledge can be transferred cross

domains in the cross-validation experiments. In the ‘new disease’ scenario, the anchor links

are preserved and rich domain-specific knowledge are transferred cross domains, resulting in

a higher precision.

Cross-validation for drug-target prediction

In this section, we test and compare iDrug’s performance with other approaches for the task of

drug-target prediction. Similar to drug-disease prediction, we conduct five-fold cross-valida-

tion experiments under three scenarios: ‘pair prediction’, ‘new drug’, and ‘new target’ scenar-

ios. The entire drug-disease network is preserved during the learning process. The

experiments are also repeated 10 times independently and the average scores are reported. For

the task of drug-target prediction, the performance is obtained by setting α = β = 0.01 and γ =
0.001.

Results show that iDrug consistently outperforms all other methods in all three scenarios

for drug-target prediction for all the measures (Fig 5). For instance, iDrug achieves a 0.897

AUPR score, much higher than that of the other approaches. The next two closest competitors

are TH_HGBI (AUPR: 0.856) and MBiRW (AUPR: 0.849). In terms of the precision of top-k

metric, iDrug is also able to better predict candidates for novel drugs and novel targets, for the

same reason as we discussed in drug-disease prediction experiments. The superior

Fig 5. Performance comparison of different methods on drug-target prediction. (a) The AUROC curves for the ‘pair
prediction’ scenario. (b) The AUPR curves for the ‘pair prediction’ scenario. (c) Precision of the top-k candidates for the
‘new drug’ scenario. (d) Precision of the top-k candidates for the ‘new target’ scenario.

https://doi.org/10.1371/journal.pcbi.1008040.g005
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performance of iDrug demonstrates its potential on transferring knowledge across two related

domains, thus serving as a promising tool for drug-target prediction.

Sensitivity analysis

There are six hyper parameters in our proposed framework: r1, r2, α, β, γ and w. For the ranks
of latent matrices (r1 and r2), intuitively, the greater the ranks are, the more latent information

can be captured, while the higher the computational costs are. In the experiments, we find that

ri� 0.1 min{ni,mi} can achieve a good trade-off between accuracy and running time. We thus

set r1 = 90 and r2 = 70 in the sensitivity analysis of other parameters. Here we present the

results of the impacts of these parameters for the task of drug repositioning using the AUPR

measurement in scenario 1. The impacts of the regularization parameters for different scenar-

ios (e.g., using precision of top-k candidates) in different domain (e.g., drug-target prediction)

can be conducted in a similar fashion. We omit the details here.

The impact of α, β, and γ. As discussed earlier, α, β, and γ represent the contributions of
within-domain smoothness, cross-network consistency, and the sparseness of solutions,

respectively. We fix one of three parameters, and study the impacts of the remaining two on

the inference results while fixing all the other parameters (w = 0.3, r1 = 90 and r2 = 70). For

example, we first fix γ = 0.01 and vary α and β within {10−4, 10−3, 10−2, 10−1, 100} by using the

grid-search technique. Results in S2 Fig show that AUPR is very stable across the wide range

for both α and β in the task of drug-disease prediction: all AUPR scores are over 0.910. Similar

patterns are observed in studying the impacts of (α, γ) and (β, γ) pairs (S3 and S4 Figs, respec-
tively). In general, a relatively high AUPR score can be achieved when α = β = γ� 0.01.

The impact of w. The parameter w 2 (0, 1) in the weight matrixW denotes the cost

assigned to unobserved samples, which is very useful for imbalance datasets [38, 40]. To per-

form sensitivity analysis, we fix r1 = 90, r2 = 70 and α = β = γ = 0.01, and vary w within {0.1,

0.2, 0.3, . . ., 0.9}. The AUPRmeasure for drug-disease prediction is used to evaluate the perfor-

mance. S5 Fig shows that iDrug is very robust to the regularization parameter w within (0, 1).

Finally, S6 Fig shows the rate of convergence of our optimization algorithm in the experi-

ments. The values of the objective function in Eq (3) steadily decrease with more iterations

and less than 100 iterations are sufficient for convergence.

Experimental results on a gold standard dataset

We further investigate the performance of various methods on a human curated dataset ini-

tially studied by Gottlieb et al. [33], which has been commonly used in many previous studies

[12, 34]. This dataset only contains 1, 933 known drug-disease associations involving 593

drugs and 313 diseases. We further collect all the 1, 011 targets of those 593 drugs from Drug-

Bank database, which consists of 3, 427 drug-target interactions. We evaluate different meth-

ods for the ‘pair prediction’ scenario for both drug-disease and drug-target predictions.

Results in Fig 6 show that iDrug performs better than the rest of the algorithms for both

tasks using the gold standard dataset. For example, for drug-disease prediction, iDrug achieves

0.917 for AUROC and 0.926 for AUPR, which are higher than the two measures from any

other methods and are consistent with the results based on the CTD dataset. It is also observed

that comparing with other approaches, iDrug achieves the greatest improvement in terms of

AUPR. The next two closest competitors are TH_HGBI (AUPR: 0.883) and MBiRW

(AUPR:0.846). An explanation is that AUPR punishes highly ranked false positives much

more than AUROC does, especially for sparse dataset [46]. Similar trends can be observed for

the task of drug-target prediction.
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Notice that the dataset from Gottlieb et al. [33] was collected almost a decade ago. All the

drugs, diseases, and drug-disease interactions in the dataset can be found in the CTD dataset.

Therefore, we can actually compare our novel prediction results based on the small dataset

with the ones actually exist in the CTD dataset but not in the small dataset, which can be

viewed as an indication of how iDrug might work in reality in predicting new drug-disease

relationships. Towards that end, we collect the top 20 drugs for all the 313 diseases, and iden-

tify 514 new drug-disease interactions that can be found in the CTD dataset. Based on the

hypergeometric distribution (all possible drug-disease pairs in CTD is 5239086, the number of

positive pairs in CTD is 111481, the total number of drug-disease pairs considered 6260 and

the number of positive pairs is 514), the result is extremely significant (p-value is 6.19 × 10−144)

and shows that the top ranked predictions by iDrug are greatly enriched in the CTD dataset.

Discussion

Drug repositioning and drug-target prediction have been widely recognized as promising

tasks to better understand drug’s MoAs. Existing machine learning methods often consider

them as two isolated tasks and ignore the potential dependencies between these two related

domains. In this paper, we propose a new learning framework, iDrug, which seamlessly inte-

grates drug repositioning and drug-target prediction into a unified model. iDrug treats the

problem as a cross-network embedding problem by considering both of within-network and

cross-network relationships. We also develop the optimization algorithm to solve the problem

and provide rigorous theoretical analysis concerning its correctness, convergence and com-

plexity. Experimental results on both tasks of drug repositioning and drug-target prediction

demonstrate that the proposed iDrug outperforms existing algorithms in all cases for both

drug-disease and drug-target prediction. The efficiency and effectiveness of iDrug allows us to

better understand new biomedical insights of drug-target-disease in drug discovery.

Our approach can be further improved in several directions. For example, although our

model considers rich bioinformatics and cheminformatics data from publicly available data-

bases, data quality can not be guaranteed and the network data may be incomplete and contain

noise. Even with existing data, data representations, for example using binary fingerprints to

represent drug chemical structures, can have significant impact on the prediction performance

[33]. To alleviate the problem, one direction of future work is to incorporate more heteroge-

neous data sources describing drugs, targets, and diseases so that multiple data sources may

provide complementary information to allow missing data imputation and noise removal.

Other heterogeneous data sources, such as drug’s side-effect, drug’s ligand binding site informa-

tion, target’s Gene Ontology annotations, disease pathways, and diseases’ Human Phenotype

Fig 6. Performance comparison of different methods for the ‘pair prediction’ scenario on the gold standard dataset. (a) The
AUROC curves for drug-disease prediction. (b) The AUPR curves for drug-disease prediction. (c) The AUROC curves for drug-
target prediction. (d) The AUPR curves for drug-target prediction.

https://doi.org/10.1371/journal.pcbi.1008040.g006
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Ontology, can also be integrated into the heterogeneous network for the two tasks [14, 18, 19,

21, 24, 47]. One possible extension is to use coupled matrix factorization to jointly capture the

low-rank representations of the network and multiple data sources simultaneously.

Additionally, iDrug is built upon the matrix factorization framework, which approximates

unobserved values using linear combinations of latent features. It is therefore can not capture

more complex and non-linear drug-disease or drug-target interactions in the latent space. To

overcome the linearity of iDrug, we will investigate the application of deep learning tech-

niques, which have shown some initial success in capturing more complex and non-linear fea-

ture interactions in medicine and biology [48, 49]. One possible strategy is to train an

autoencoder in an unsupervised way to capture the nonlinear feature representations of drugs,

targets, and diseases. These nonlinear features can be integrated to identify novel drug-disease

and drug-target interactions by using deep cross-network embedding techniques. Another

inherent limitation for all factorization based approaches is the interpretability. Some existing

works use heterogeneous knowledge graphs that incorporate many different types of data and

identify paths from the graphs to interpret identified relationships [24]. However, it is a chal-

lenge task how one can combine these two strategies into one unified framework and is worthy

further investigations.

More recently, a growing number of studies have suggested that non-coding RNAs

(ncRNAs), especially microRNAs (miRNAs), play a significant role in affecting gene expres-

sions and in disease progressions, making them a new class of drug targets [47, 50, 51]. There-

fore, it becomes important to understand the relationship between drugs and miRNA targets.

Theoretically, the framework proposed here can be applied to miRNA targets by defining a

proper miRNA-miRNA similarity. One challenge is that knowledge about existing drug-

miRNA interactions is limited. It is an interesting question to explore how to adopt existing

approaches including iDrug to identify novel drug-miRNA interactions [50, 52].

Finally, most existing work including iDrug, implicitly assuming the monotherapy strategy

in investigating drug-target-disease relationships, cannot easily incorporate polypharmacology

or polytherapy strategy. On the other hand, polypharmacology and polytherapy, offer many

advantages compared to monotherapy [53–56], including better efficacy, lower individual dos-

age, and reduced adverse effects. As an example of potential polytherapy, pentamidine and

chlorpromazine show no anti-tumor activities when being administrated individually, but

their combination inhibits tumor growth more effectively than paclitaxel, an anticancer che-

motherapy drug. Furthermore, drug combinations often use existing drugs that have been

approved by the Food and Drug Administration (FDA). Therefore, their toxic properties and

side effects are usually well studied, and their combination could be directly used safely by

patients [53–56]. For future work, we aim to extend our drug layers to contain drug pairs to

study drug synergy for complex diseases. Eventually, wet lab experimental testing is a neces-

sary step to validate outcomes of any computational approaches, which cannot be done with-

out collaborations with investigators with expertise in biochemistry and drug development.

Supporting information

S1 Appendix. Optimization algorithm. The details of the optimization algorithm for solving

U(i) and V(i), as well as its correctness and convergence results can be found here.

(PDF)

S1 Fig. The pseudocode of the proposed iDrug. The algorithm to solve the objective function

in Eq (3).

(TIF)
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S2 Fig. The impact of α and β.Grid-based search method to study the impact of α and β with

respect to the AUPR measurement for the task of drug repositioning, while γ is fixed to be
0.01.

(TIF)

S3 Fig. The impact of α and γ.Grid-based search method to study the impact of α and γ with
respect to the AUPR measurement for the task of drug repositioning, while β is fixed to be

0.01.

(TIF)

S4 Fig. The impact of β and γ. Grid-based search method to study the impact of β and γ with
respect to the AUPR measurement for the task of drug repositioning, while α is fixed to be

0.01.

(TIF)

S5 Fig. The impact of w. The impact of w with respect to the AUPR measurement for the task

of drug repositioning.

(TIF)

S6 Fig. Convergence on empirical data. The convergence of iDrug on empirical data for the

task of drug repositioning.

(TIF)

Author Contributions

Conceptualization:Huiyuan Chen, Jing Li.

Data curation:Huiyuan Chen, Feixiong Cheng, Jing Li.

Formal analysis:Huiyuan Chen, Jing Li.

Funding acquisition: Jing Li.

Investigation:Huiyuan Chen, Feixiong Cheng, Jing Li.

Methodology:Huiyuan Chen, Jing Li.

Project administration: Jing Li.

Resources:Huiyuan Chen, Jing Li.

Software:Huiyuan Chen.

Supervision: Feixiong Cheng, Jing Li.

Validation:Huiyuan Chen, Jing Li.

Visualization:Huiyuan Chen, Jing Li.

Writing – original draft:Huiyuan Chen, Jing Li.

Writing – review & editing:Huiyuan Chen, Jing Li.

References
1. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs.

Nature Reviews Drug Discovery. 2004; 3(8):673–683. https://doi.org/10.1038/nrd1468 PMID:
15286734

2. Schenone M, Dančı́k V, Wagner BK, Clemons PA. Target identification and mechanism of action in
chemical biology and drug discovery. Nature Chemical Biology. 2013; 9(4):232–240. https://doi.org/10.
1038/nchembio.1199 PMID: 23508189

PLOS COMPUTATIONAL BIOLOGY Drug repositioning and drug-target prediction

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008040 July 15, 2020 17 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008040.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008040.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008040.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008040.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008040.s007
http://doi.org/10.1038/nrd1468
http://www.ncbi.nlm.nih.gov/pubmed/15286734
https://doi.org/10.1038/nchembio.1199
https://doi.org/10.1038/nchembio.1199
http://www.ncbi.nlm.nih.gov/pubmed/23508189
https://doi.org/10.1371/journal.pcbi.1008040


3. Zerbini LF, Bhasin MK, de Vasconcellos JF, Paccez JD, Gu X, Kung AL, et al. Computational reposition-
ing and preclinical validation of pentamidine for renal cell cancer. Molecular Cancer Therapeutics. 2014;
13(7):1929–1941. https://doi.org/10.1158/1535-7163.MCT-13-0750 PMID: 24785412

4. Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review: in vitro safety pharmacology profiling: an
essential tool for successful drug development. Drug Discovery Today. 2005; 10(21):1421–1433.
https://doi.org/10.1016/S1359-6446(05)03632-9 PMID: 16243262

5. Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacologi-
cal Reviews. 2014; 66(1):334–395. https://doi.org/10.1124/pr.112.007336 PMID: 24381236

6. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug
repositioning. Briefings in Bioinformatics. 2015; 17(1):2–12. https://doi.org/10.1093/bib/bbv020 PMID:
25832646

7. Ezzat A, WuM, Li XL, Kwoh CK. Computational prediction of drug-target interactions using chemoge-
nomic approaches: an empirical survey. Briefings in Bioinformatics. 2019; 20(4):1337–1357. https://doi.
org/10.1093/bib/bby002 PMID: 29377981

8. AYM, Goh KI, Cusick ME, Barabasi AL, Vidal M, et al. Drug–target network. Nature Biotechnology.
2007; 25(10):1119–1127. https://doi.org/10.1038/nbt1338

9. Barabási AL, Gulbahce N, Loscalzo J. Networkmedicine: a network-based approach to human disease.
Nature Reviews Genetics. 2011; 12(1):56–68. https://doi.org/10.1038/nrg2918 PMID: 21164525

10. WuC, Gudivada RC, Aronow BJ, Jegga AG. Computational drug repositioning through heterogeneous
network clustering. BMC Systems Biology. 2013; 7(5):S6. https://doi.org/10.1186/1752-0509-7-S5-S6

11. Chen H, Zhang H, Zhang Z, Cao Y, TangW. Network-based inference methods for drug repositioning.
Computational and Mathematical Methods in Medicine. 2015; 2015:130620. https://doi.org/10.1155/
2015/130620 PMID: 25969690

12. Luo H,Wang J, Li M, Luo J, Peng X,Wu FX, et al. Drug repositioning based on comprehensive similarity
measures and Bi-Random walk algorithm. Bioinformatics. 2016; 32(17):2664–2671. https://doi.org/10.
1093/bioinformatics/btw228 PMID: 27153662

13. Zhang P, Wang F, Hu J. Towards drug repositioning: a unified computational framework for integrating
multiple aspects of drug similarity and disease similarity. In: AMIA Annual Symposium Proceedings.
AMIA;2014;2014:1258-1267.

14. Chen H, Li J. A flexible and robust multi-source learning algorithm for drug repositioning. In: Proceed-
ings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics. ACM;2017. p. 510–515.

15. Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-based deep learning approach
to in silico drug repositioning. Bioinformatics. 2019; 35(24):5191–5198. https://doi.org/10.1093/
bioinformatics/btz418 PMID: 31116390

16. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models.
Bioinformatics. 2009; 25(18):2397–2403. https://doi.org/10.1093/bioinformatics/btp433 PMID:
19605421

17. Chen X, Liu MX, Yan GY. Drug–target interaction prediction by randomwalk on the heterogeneous net-
work. Molecular BioSystems. 2012; 8(7):1970–1978. https://doi.org/10.1039/c2mb00002d PMID:
22538619

18. Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization with multiple similarities for
predicting drug-target interactions. In: Proceedings of the 19th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM; 2013. p. 1025–1033.

19. Nascimento AC, Prudêncio RB, Costa IG. A multiple kernel learning algorithm for drug-target interaction
prediction. BMC Bioinformatics. 2016; 17(1):46. https://doi.org/10.1186/s12859-016-0890-3 PMID:
26801218

20. Chen X, Yan CC, Zhang X, Zhang X, Dai F, Yin J, et al. Drug–target interaction prediction: databases,
web servers and computational models. Briefings in Bioinformatics. 2016; 17(4):696–712. https://doi.
org/10.1093/bib/bbv066 PMID: 26283676

21. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, KuangW, et al. A network integration approach for drug-target
interaction prediction and computational drug repositioning from heterogeneous information. Nature
Communications. 2017; 8(1):1–13. https://doi.org/10.1038/s41467-017-00680-8

22. Lee I, Keum J, NamH. DeepConv-DTI: Prediction of drug-target interactions via deep learning with con-
volution on protein sequences. PLoS Computational Biology. 2019; 15(6):e1007129. https://doi.org/10.
1371/journal.pcbi.1007129 PMID: 31199797

23. AstraZeneca-Sanger Drug Combination DREAMConsortium. Community assessment to advance
computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communi-
cations. 2019; 10(1):1–17.

PLOS COMPUTATIONAL BIOLOGY Drug repositioning and drug-target prediction

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008040 July 15, 2020 18 / 20

https://doi.org/10.1158/1535-7163.MCT-13-0750
http://www.ncbi.nlm.nih.gov/pubmed/24785412
http://doi.org/10.1016/S1359-6446(05)03632-9
http://www.ncbi.nlm.nih.gov/pubmed/16243262
https://doi.org/10.1124/pr.112.007336
http://www.ncbi.nlm.nih.gov/pubmed/24381236
https://doi.org/10.1093/bib/bbv020
http://www.ncbi.nlm.nih.gov/pubmed/25832646
http://doi.org/10.1093/bib/bby002
http://doi.org/10.1093/bib/bby002
http://www.ncbi.nlm.nih.gov/pubmed/29377981
http://doi.org/10.1038/nbt1338
https://doi.org/10.1038/nrg2918
http://www.ncbi.nlm.nih.gov/pubmed/21164525
http://doi.org/10.1186/1752-0509-7-S5-S6
https://doi.org/10.1155/2015/130620
https://doi.org/10.1155/2015/130620
http://www.ncbi.nlm.nih.gov/pubmed/25969690
http://doi.org/10.1093/bioinformatics/btw228
http://doi.org/10.1093/bioinformatics/btw228
http://www.ncbi.nlm.nih.gov/pubmed/27153662
https://doi.org/10.1093/bioinformatics/btz418
https://doi.org/10.1093/bioinformatics/btz418
http://www.ncbi.nlm.nih.gov/pubmed/31116390
https://doi.org/10.1093/bioinformatics/btp433
http://www.ncbi.nlm.nih.gov/pubmed/19605421
http://doi.org/10.1039/c2mb00002d
http://www.ncbi.nlm.nih.gov/pubmed/22538619
https://doi.org/10.1186/s12859-016-0890-3
http://www.ncbi.nlm.nih.gov/pubmed/26801218
http://doi.org/10.1093/bib/bbv066
http://doi.org/10.1093/bib/bbv066
http://www.ncbi.nlm.nih.gov/pubmed/26283676
http://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.1371/journal.pcbi.1007129
https://doi.org/10.1371/journal.pcbi.1007129
http://www.ncbi.nlm.nih.gov/pubmed/31199797
https://doi.org/10.1371/journal.pcbi.1008040


24. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017; 6:e26726. https://doi.org/10.
7554/eLife.26726 PMID: 28936969

25. WangW, Yang S, Zhang X, Li J. Drug repositioning by integrating target information through a hetero-
geneous network model. Bioinformatics. 2014; 30(20):2923–2930. https://doi.org/10.1093/
bioinformatics/btu403 PMID: 24974205

26. Tang J, Wu S, Sun J, Su H. Cross-domain collaboration recommendation. In: Proceedings of the 18th
ACMSIGKDD International Conference on Knowledge Discovery and Data Mining. ACM;2012.
p. 1285–1293.

27. Pan SJ, Yang Q. A survey on transfer learning. In: IEEE Transactions on Knowledge and Data Engi-
neering. 2009; 22(10):1345–1359.

28. Chen H, Li J. Learning multiple similarities of users and items in recommender systems. In: 2017 IEEE
International Conference on Data Mining. IEEE; 2017. p. 811–816.

29. Kong X, Zhang J, Yu PS. Inferring anchor links across multiple heterogeneous social networks. In: Pro-
ceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM;
2013. p. 179–188.

30. Chen H, Li J. Exploiting structural and temporal evolution in dynamic link prediction. In: Proceedings of
the 27th ACM International Conference on Information and Knowledge Management; 2018. p. 427–
436.

31. Chen H, Li J. Modeling relational drug-target-disease interactions via tensor factorization with multiple
web sources. In: TheWorldWideWeb conference. ACM; 2019. p. 218–227.

32. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer.
2009;(8):30–37. https://doi.org/10.1109/MC.2009.263

33. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with
application to personalized medicine. Molecular Systems Biology. 2011; 7(1):496. https://doi.org/10.
1038/msb.2011.26 PMID: 21654673

34. Ezzat A, Zhao P, WuM, Li XL, Kwoh CK. Drug-target interaction prediction with graph regularized
matrix factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB).
2017; 14(3):646–656. https://doi.org/10.1109/TCBB.2016.2530062

35. Lim H, Poleksic A, Yao Y, Tong H, He D, Zhuang L, et al. Large-scale off-target identification using fast
and accurate dual regularized one-class collaborative filtering and its application to drug repurposing.
PLoS Computational Biology. 2016; 12(10):e1005135. https://doi.org/10.1371/journal.pcbi.1005135
PMID: 27716836

36. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry Development Kit
(CDK): An open-source Java library for chemo-and bioinformatics. Journal of Chemical Information and
Computer Sciences. 2003; 43(2):493–500. https://doi.org/10.1021/ci025584y PMID: 12653513

37. Caniza H, Romero AE, Paccanaro A. A network medicine approach to quantify distance between hered-
itary diseasemodules on the interactome. Scientific Reports. 2015; 5:17658. https://doi.org/10.1038/
srep17658 PMID: 26631976

38. Chen C, Tong H, Xie L, Ying L, He Q. FASCINATE: fast cross-layer dependency inference on multi-lay-
ered networks. In: Proceedings of the 22nd ACMSIGKDD International Conference on Knowledge Dis-
covery and Data Mining. ACM; 2016. p. 765–774.

39. Cai D, He X, Han J, Huang TS. Graph regularized nonnegative matrix factorization for data representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2010; 33(8):1548–1560. PMID:
21173440

40. Pan R, Zhou Y, Cao B, Liu NN, Lukose R, Scholz M, et al. One-class collaborative filtering. In: 2008
Eighth IEEE International Conference on Data Mining. IEEE; 2008. p. 502–511.

41. Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Advances in Neural Information
Processing Systems; 2001. p. 556–562.

42. ChengW, Zhang X, Guo Z, Wu Y, Sullivan PF,WangW. Flexible and robust co-regularized multi-
domain graph clustering. In: Proceedings of the 19th ACMSIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM; 2013. p. 320–328.

43. Hoyer PO. Non-negative sparse coding. In: Proceedings of the 12th IEEEWorkshop on Neural Net-
works for Signal Processing. IEEE; 2002. p. 557–565.

44. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–tar-
get interaction. Bioinformatics. 2011; 27(21):3036–3043. https://doi.org/10.1093/bioinformatics/btr500
PMID: 21893517

PLOS COMPUTATIONAL BIOLOGY Drug repositioning and drug-target prediction

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008040 July 15, 2020 19 / 20

https://doi.org/10.7554/eLife.26726
https://doi.org/10.7554/eLife.26726
http://www.ncbi.nlm.nih.gov/pubmed/28936969
https://doi.org/10.1093/bioinformatics/btu403
https://doi.org/10.1093/bioinformatics/btu403
http://www.ncbi.nlm.nih.gov/pubmed/24974205
http://doi.org/10.1109/MC.2009.263
https://doi.org/10.1038/msb.2011.26
https://doi.org/10.1038/msb.2011.26
http://www.ncbi.nlm.nih.gov/pubmed/21654673
http://doi.org/10.1109/TCBB.2016.2530062
https://doi.org/10.1371/journal.pcbi.1005135
http://www.ncbi.nlm.nih.gov/pubmed/27716836
https://doi.org/10.1021/ci025584y
http://www.ncbi.nlm.nih.gov/pubmed/12653513
https://doi.org/10.1038/srep17658
https://doi.org/10.1038/srep17658
http://www.ncbi.nlm.nih.gov/pubmed/26631976
http://www.ncbi.nlm.nih.gov/pubmed/21173440
http://doi.org/10.1093/bioinformatics/btr500
http://www.ncbi.nlm.nih.gov/pubmed/21893517
https://doi.org/10.1371/journal.pcbi.1008040
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