
IDS: An Immune-inspired Approach for
the Detection of Software Design Smells

Salima Hassaine∗, Foutse Khomh∗, Yann-Gaël Guéhéneuc†, and Sylvie Hamel∗
∗DIRO, Université de Montréal, Québec, Canada

Email: {hassaisa,foutsekh,hamelsyl}@iro.umontreal.ca
†Ptidej Team, DGIGL, École Polytechnique de Montréal, Québec, Canada

Email: {yann-gael.gueheneuc}@polymtl.ca

Abstract—We propose a parallel between object-oriented sys-
tem designs and living creatures. We suggest that, like any
living creature, system designs are subject to diseases, which
are design smells (code smells and antipatterns). Design smells
are conjectured in the literature to impact the quality and life of
systems and, therefore, their detection has drawn the attention
of both researchers and practitioners with various approaches.
With our parallel, we propose a novel approach built on models
of the immune system responses to pathogenic material. We
show that our approach can detect more than one smell at a
time. We build and test our approach on GanttProject v1.10.2
and Xerces v2.7.0, for which manually-validated and publicly-
available smells exist. The results show a significant improvement
in detection time, precision, and recall, in comparison to the
state–of–the–art approaches.

Index Terms—System design; Reverse engineering; Code
smells; Antipatterns; Artificial Immune Systems.

I. INTRODUCTION

Design smells [1] and antipatterns [2], collectively called in
the following smells, are poor practices to recurring software
design and implementation problems. They occur generally
in object-oriented systems when developers lack knowledge
and–or experience in solving a design problem or applying
some patterns. They are conjectured to have a negative impact
on the quality and life-time of systems [1], [2]. Consequently,
their detection has received attention from both researchers and
practitioners with approaches ranging from manual inspections
to rule-based detection algorithms.

To the best of our knowledge, all previous approaches
require expert’s knowledge and interpretation of the smells
for their implementation. They focus on detecting one smell
at a time, while some smells share similar characteristics, and
exclude classes that are not identical to the smell (given some
thresholds). Yet, in the course of our experiments with various
detection approaches (based on rules [3], Bayesian Beliefs
Networks [4], and B-Splines [5]), we noticed that:
• Several smells have similarities. For example, the Blob

and Spaghetti Code antipatterns both describe classes that
are too large and too complex, the Blob further describing
that these classes should relate to data classes.

• Classes similar but not equal to some design smell
are also of interest to developers and quality assurance
personnel because they could, in the future, emerge as
smells themselves in the “submarine” effect [5].

Moreover, previous approaches have somewhat limited per-
formances in time, precision, and recall. They are also some-
what limited in the interpretation of the detected occurrences
of the smells, being either too restrictive or to lax.

In this paper, we present an approach to systematically de-
tect classes whose characteristics violate some established de-
sign rules; rules inferred from sets of instances (i.e., manually-
validated occurrences) of smells reported in the literature
and freely-available [3], [4]. Our approach detects smells in
general: although we train our approach on only three kinds
of smells, it can detect any number and any kind of smells
specified during the training. Moreover, it reports classes
similar but not identical to the smells, which are of interest to
developers and quality-assurance personnel.

Our approach stems from a parallel between object-oriented
software systems and living bodies, which constantly fight
invading pathogens, such as viruses, bacteria, and so on,
through their immune system defense mechanisms. A natural
immune system is able to protect the body by identifying,
learning from, and defending against invading pathogens. It
recognises pathogens after having fought the disease once
or by the use of vaccines. Vaccines work by stimulating
the immune system using small amounts of disactivated,
disease-causing organisms. They cause the immune system to
produce antibodies matching the pathogens. Antibodies react
concretely to the presence of antigens carried by pathogens.
Once antibodies are developed, the immune system is able
to respond quickly to the infection of a similar or identical
disease-causing organism entering the body, i.e., pathogens
carrying similar or identical antigens.

A useful parallel can be drawn from the natural immune
system: a system design is comparable to a body, we wish to
protect it from pathogens, such as design smells. Design smell
detection approaches are defense mechanisms of the system
design. A design smell is a pathogen. A “vaccine” could be
build using instances of some smells, from which the system
design should be protected. Occurrences of a smell are classes
with characteristics similar or identical to the smell, i.e., cells
contaminated by some pathogen. Antigen that should trigger a
response of the defense mechanism can be any characteristics
of classes, e.g., metrics, binary class relationships, and so on.

Like pathogens, smells come in a variety of forms with
some smells being only slightly different from others. A

1

natural immune system can handle such similar pathogens with
good precision. This good precision is essential for the body
and have inspired a family of classification algorithms name
Artificial Immune Systems (AIS) algorithms. Oda and White
commented that “if the immune system were inaccurate, the
lifespan of the average human would be much shorter as the
system would mistakenly attack vital cells or fail to attack
viruses and other dangerous pathogens” [6]. Therefore, an
AIS-based approach could potentially overcome the limitations
of previous approaches regarding the detection of similar
but not identical smells as well as the performance in time,
precision, and recall of current state-of-the-art approaches.
We propose a novel detection approach, called IDS (Immune-
based Detection Strategy), based on AIS.

In this paper, we apply IDS to detect three smells and
show that its performance in time, precision, and recall are
comparable or superior to that of previous approaches. We
show that IDS recognise similar but not identical smells using
a unique data set. We also discuss IDS other advantages: gen-
eralisation, parameter stability, adaptability, portability across
systems, simplicity, self-regulation, and performance.

The paper is organised as follows. Section II summarises
and discusses previous work. Section III describes our ap-
proach. Section IV provides details on the design of the
experiments carried out to evaluate our approach. Section V
reports and discusses the results. Section VI concludes and
suggests future work.

II. RELATED WORK

Webster [7] wrote the first book on antipatterns in object-
oriented development; his contribution covers conceptual,
political, coding, and quality-assurance problems. Riel [8]
defined 61 heuristics characterising good object-oriented pro-
gramming to assess software quality manually and improve
design and implementation. Fowler [1] defined 22 code
smells, suggesting where developers should apply refactorings.
Mäntylä [9] and Wake [10] proposed classifications of code
smells. Brown et al. [2] described 40 antipatterns, including
the well-known Blob.

These books provide in-depth views on heuristics, code
smells, and antipatterns aimed at a wide academic and indus-
trial audience. We build upon this work to propose an approach
to characterise design smells and identify classes with similar
characteristics. We use the term smell to acknowledge that,
in certain contexts, a code smell or an antipattern may be
unavoidable and the best way to design and–or implement
(part of) a system, e.g., parsers are often Spaghetti Code.

Several approaches to specify and detect design smells have
been proposed in the literature. They range from manual
approaches, based on inspection techniques [11], to metric-
based heuristics [3], [12], [13], where smells are detected
according to sets of rules and thresholds defined on various
metrics. Manual approaches were defined, for example, by
Travassos et al. [11], who introduced manual inspections and
reading techniques to detect code smells.

Marinescu [12] presented a metric-based approach to detect
smells with detection strategies, which capture deviations from
good design principles and consist of combining metrics with
set operators and comparing their values against absolute
and relative thresholds. Similarly to Marinescu, Munro [13]
proposed metric-based heuristics to detect code smells; the
heuristics are derived from template similar to the one used
for design patterns [14]. He also performed an empirical study
to justify the choice of metrics and thresholds.

Moha et al. [3] proposed the DECOR method to specify and
automatically generate detection algorithms. DECOR includes
a domain-specific language based on a literature review of
existing work. It also includes algorithms and a platform to
automatically convert specifications into detection algorithms
and apply these algorithms on any system. DECOR produces
detection algorithm with good precision and perfect recall
while allowing quality assurance personnel to adapt the spec-
ifications to their context.

Khomh et al. [4] argued that threshold-based approaches
do not handle the uncertainty of the detection results and,
therefore, miss borderline classes, i.e., classes with character-
istics of design smells “surfacing” slightly above or “sinking”
slightly below the thresholds because of minor variations in
their characteristics. Consequently, they proposed a Bayesian
Belief Network (BBN) for the detection of design smells in
systems, which output is the probability that a class exhibiting
the characteristics of a smell be truly a smell. Thus, their
approach handles the degree of uncertainty for a class to be
a smell. They also showed that BBNs can be calibrated using
historical data both from a similar and from a different context.

Oliveto et al. [5] proposed ABS, an approach to detect
design smells in systems using signatures of the classes and of
the smells. The signature of a smell is computed as the average
of the signatures of a set of known classes participating to
that smell. For each class in a system, using B-splines, they
compared the signature of the class with that of a smell
and computed their similarity to detect occurrences of the
smell. They reported a case study and claimed that ABS
outperforms previous approaches in precision and recall while
being simpler in practice.

Some visualisation techniques, for example [15], were used
to find a compromise between fully-automatic detection tech-
niques, which are efficient but lose track of the context, and
manual inspections, which are slow and subjective. Other
approaches perform fully-automatic detection and use visu-
alisation to present the detection results [16], [17].

Catal et al. [18] used several machine learning algorithms
to predict the defective modules. They investigated the effects
of dataset size, metrics set, and feature selection techniques
for software fault prediction problem. They employed several
algorithms based Artificial Immune Systems.

Kessentini et al. [19] independently used an AIS to estimate
the risks of classes to deviate from “normality”, i.e., a set
of classes representing a “good” design. They used structural
data to describe a design, i.e., classes, fields, methods. . . They
showed that 90% of the more riskiest classes in GanttProject

2

and Xerces are smells but do not discuss recall even though
there is a balance between precision/recall [3].

Previous approaches advanced the state-of-the-art in the
specification and detection of design smells but all require
experts’ knowledge and interpretation. Moreover, they focus
on detecting one kind of design smells at a time, while some
smells are similar and classes with characteristics similar but
no identical to some smells are also of interest to developers
and quality assurance personnel. In IDS, we use metrics
computed on instances of smells as input to the AIS following
our parallel between object-oriented software systems and
living bodies. We analyses IDS in two distinct, industrial-like
scenarios. We also discuss all the advantages of an AIS over
previous approaches, including precision and recall.

III. ARTIFICIAL IMMUNE SYSTEMS

A. Biological Background

Innate immunity defends the body from any pathogens that
enter the body. Adaptive immunity allows the immune system
to attack any foreign pathogens that the innate system cannot
destroy. It can distinguish between the body’s own cells and
foreign cells.

The adaptive immune system is directed against specific
invaders and is modified by exposure to such invaders. It is
made up of lymphocytes (B cells and T cells). These cells
aid in the process of recognizing and destroying specific
antigens. Immune responses are normally directed against the
antigen that provoked them and are said to be antigen-specific.
The immune system learns to react to particular patterns of
antigens. On the surface, each lymphocyte cell have receptors
to recognize antigens, which are specialized: each can match
only one specific antigen.

B. Computer Models

An artificial immune system (AIS) is a classification algo-
rithm that mimics the immune system defense mechanisms. It
can accept patterns of arbitrary length and it has the ability
to maintain and exploit previously learned data efficiently for
improved performance in future encounters with pathogens.

An AIS produces a large number of randomly-created
detectors to recognise the antigens located on the surface of the
foreign pathogens. A negative selection mechanism is applied
to eliminate detectors that match the body’s own cells. Kept
detectors become naive detectors; they die after some time,
unless they match some antigens; in case of such a matching,
they become memory cells. Detectors that match a pathogen
are quickly multiplied via the clonal selection to accelerate
the response to further attacks. Also, because the clones are
not exact copies (they are mutated, the mutation rate being an
increasing function of affinity between detectors and antigens),
they can both better focus on pathogens and handle similar
pathogens (affinity maturation).

We draw a parallel between the immune system and the
detection of smells. A system design is similar to a living body.
It is protected from design smells by a detection approach, as a
body is by its immune system. The detection approach identify

smelly classes, i.e., pathogens, using some characteristics of
the classes—in the following, metrics values—by comparing
them to sets of metrics values of smelly classes. Our novel
detection approach, IDS (Immune-based Detection Strategy),
can classify cells (system classes) that are present in the body
(system design) as body’s own cells (well-design classes) and
foreign cells (smell-prone classes). We choose to characterise
the body’s and foreign cells with a set of metrics1 [20].

C. Implementations

In general, any AIS algorithm has five steps: initialization,
antigen training, competition for limited resources, memory
cell selection, and classification [21]. The first step and the
last step are applied only once, but Steps 2, 3, 4 are used for
each sample (antigens) in the dataset.

Carter [22] developed the first AIS-based classification
algorithm. It is a supervised learning system based on a
high-level abstraction of T cells, B cells, antibodies, and an
amino-acid library. The artificial T cells control the production
of B-cell populations, which compete for recognition of the
unknowns. The amino-acid library acts as a library of epitopes
or characteristics of antigens currently in the system. When a
new antigen is introduced into the system, its variables are
entered into this library. The T cells then use the library
to create their receptors that are used to identify the new
antigen [23]. Brownlee [21] developed another algorithm,
called Immunos-99, to combine the benefits of AIS-based
classification algorithm with clonal selection classification
algorithm [24]. Each step of this algorithm is explained below:

1: Divided data into antigen-groups (by classification labels)
2: Prepare a B-cell population
3: for each antigen-group do
4: Create an initial B-cell population for an antigen-group
5: for each generation do
6: Create an initial B-cell population for an antigen-group.
7: Calculate fitness scorings
8: Perform population pruning
9: Perform Affinity maturation

10: Insert randomly selected Antigens of the same group
11: end for
12: end for
13: Perform final pruning for each B-cell population
14: Present the final B-cell populations as the classifier

First, the algorithm divides the provided antigens into
groups. Once prepared, a new B-cell population is created
from each antigen group. The initial size of each B-cell
population equals the number of antigens in the original group.
The population is then exposed to all antigens, one antigen
at a time and an affinity value is calculated for each B-
cell to the antigen. The B-cell populations are then sorted
in descending order of affinities. Once the training steps
completed, the resulting B-cell populations form the classifier
for new (invading) antigens. Each B-cell population is exposed
to a new antigen and populations compete for “ownership” of
the new antigen using their affinity. The population that have
the highest affinity classifies the new antigen with its label.

Feature selection can be useful in reducing the dimension-
ality of the data to be processed by the classifier: reduc-
ing the dimensionality of the data reduces the sizes of the

1http://www.ptidej.net/downloads/experiments/quatic10/

3

Numbers of
Classes KLOCs Blobs FDs SCs

Gantt Project 188 31 4 4 4
Xerces 589 240 15 15 18
Total 777 271 19 19 22

TABLE I
SYSTEM CHARACTERISTICS.

hypothesis space and, thus, results in faster execution time
and improving predictive accuracy (inclusion of irrelevant
features can introduce noise into the data, thus obscuring
relevant features). Therefore, in our context of metric-based
software quality classification, we could need a subset of
metrics that can discriminate between the non-smell-prone and
smell-prone classes. However, our approach does not need
any feature selection, because its classification algorithm uses
data reduction: deletion of irrelevant data (antigens) during the
generation of B-cells.

IV. STUDY DEFINITION AND DESIGN

We perform a series of experiments to assess the perfor-
mance in time, precision, and recall of our novel approach for
design-smells detection. Following the Goal Question Metric
(GQM) methodology [25], the goal of our experiments is
to analyse the performance of our approach and understand
whether it performs better than previous approaches. The
purpose is to provide an approach for design-smells detection.
The quality focus is to provide a set of smell occurrences
(i.e., classes with characteristics violating design principles)
with good precision and recall and in a reasonable time. The
perspective is both of developers and quality assurance per-
sonnel, who perform evaluation activities and are interested in
locating accurately parts of a system that need improvements;
and researchers, who want to study design smells. The context
of our experiments is both development and maintenance.

We conduct our experiments using two open-source Java
systems: GanttProject v1.10.2 and Xerces v2.7.0, which char-
acteristics are summarised in Table I. GanttProject2 is a system
for creating project schedules by means of Gantt charts and
resource-load charts. It enables breaking down projects into
tasks and establishing dependencies among tasks. Xerces3 is
a family of packages for parsing and manipulating XML files.
It implements a number of standard API for XML parsing,
including DOM, SAX, and SAX2. We chose these systems
because they are medium-size systems and manually-validated
occurrences of Blob, Functional Decomposition (FD), and
Spaghetti Code (SC) are available [3], [4].

We want to answer the two research questions:
• RQ1: To what extent an AIS-based approach can detect

design smells in a system?
• RQ2: Is our approach better than state of-the-art ap-

proaches, such as DECOR, and BBNs?
We answer RQ1 in the following two scenarios:
• intra-system identification: In this first scenario, we study

how knowledge of previously-detected Blobs in a given

2http://ganttproject.biz/index.php
3http://xerces.apache.org/

Numbers of
Design Smells False Positives Precisions Recalls

Subset 1 16 1 94.11% 100%
Subset 2 16 2 88.23% 100%
Subset 3 16 2 88.23% 100%
Average 90.19% 100%

TABLE II
INTRA-SYSTEM DETECTION ON XERCES: 3-FOLD CROSS VALIDATION.

system, Xerces v2.7.0, can help predict occurrences of
other design smells in the same system. We divide the
classes of Xerces in three subsets with 16 occurrences
of Blobs in each subset. Then, we train IDS on two of
the subsets and apply it on the third subset (of the same
system) in a 3-fold cross-validation.

• extra-system identification: In this second scenario, we
study the performance of our approach using heteroge-
neous data. We assume that a developer has access to
historical data from one system, e.g., GanttProject. We
use this data to detect occurrences of design smells in the
other system, Xerces. We also perform the same study in
the other direction, i.e., using design smells in Xerces to
detect occurrences in GanttProject.

We answer RQ2 by comparing the performance of IDS in
precision, and recall, as computed in Scenario 2, against that
of previous approaches.

In each scenario and research question, we use publicly-
available data [3], [4] as oracle. We collect the numbers of true
and false positive occurrences of the design smells detected
by our approach and compare them with the oracle using the
following IR metrics defined in [26]:

precision =
|correct ∩ detectedd|

|detected|

recall =
|correct ∩ detected|

|correct|

where correct represents the set of known instances of the
design smells and detected that of candidate occurrences
detected by an approach.

V. STUDY RESULTS, ANALYSES AND DISCUSSIONS

We now discuss the results of our experiments.

A. Answer to RQ1

In this first scenario, we use 3-fold cross validation. Table II
shows the precisions corresponding to each fold. The average
precision is 90.19% and the recall is 100%. The results also
confirmed that IDS is not limited to the detection of a specific
design smell: although we train our approach on instances
of Blob, FD, and SC, it was also able to detect LargeClass
and LongMethod. Overall, IDS detects all smelly classes, i.e.,
classes deviating from specific good design rules, exemplified
by some design smells.

In the second scenario, we trained our approach on
GanttProject v1.10.2 and applied it on Xerces v2.7.0 and vice-
versa. Table III shows the results. On Xerces, our approach
achieved a precision above 80%. The precision for GanttPro-
ject, although slightly lower at 65.0%, is still interesting

4

GanttProject Xerces
(Trained on Xerces’ (Trained on GanttProject’s

Blobs, FDs, SCs) Blobs, FDs, SCs)
of Classes 188 589
of Design Smells Instances 20 54
of False Positives 7 10
Precision 65.0% 81.48%
Recall 100% 100%

TABLE III
INTER-SYSTEM DETECTION.

considering that the approach was trained on a system from a
different context. Moreover, a review of the false positives
show that these classes have characteristics similar to the
smells and, therefore, may eventually degenerate in design
smells in the near future. Hence, they are also interesting to
developers as they may be interested in preventing their further
decay. Our approach in both cases achieved 100% recall,
succeeding in returning all smelly classes in the systems.

We thus answer RQ1 positively: the results suggest that
even in the absence of historical data on a specific system,
developers or quality assurance personnel could use IDS on
different systems and obtain good precision and recall.

B. Answer to RQ2

To answer RQ2, we compare the results of our approach
against that of the state-of-the–art approaches: DECOR [3]
and BBNs [4]. Table IV summarises the results achieved by
each approach. Globally, IDS outperforms DECOR and BBNs
in term of precision. Moreover, DECOR and BBNs require
expensive tuning by experts (in time and knowledge) to have
acceptable precision and recall. Indeed, DECOR relies on rule
cards built by expert while BBNs need experts’ knowledge
to build their learning structure. For these two approaches,
an incomplete experts’ knowledge can cause a high number
of false positives, resulting in a waste of time and resources
for developers that must skim through the results. IDS does
not rely on any experts’ knowledge but on a set of metrics
characterising known instances of smells. Therefore, IDS
reduces the bias introduced in BBNs by the experts structuring
the BBNs and in DECOR when crafting rule cards.

Moreover, contrary to DECOR and BBNs, IDS detects a
larger set of design smells. As presented in Table IV, when
trained only on instances of Blob, IDS was still able to detect
the instances of the other smells: on GanttProject, it returned
all the 4 true occurrences of Blob and also 11 true occurrences
of SC; on Xerces, it returned again all the 15 true occurrences
of Blob, 18 true occurrences of SC, and 14 occurrences of
LargeClass. IDS also reported classes with borderline structure
that may decay in design smells in the near future. Another
strong point of IDS is its computation time, i.e., in the order
of milliseconds, e.g., on Xerces, IDS detects Blob occurrences
in 0.26s, while DECOR takes 2.4s.

We thus answer RQ2 also positively: our approach has
precisions and recalls superior than those of DECOR and
BBNs and can detect similar smells as well as classes similar
but not identical to some design smells.

C. Threats to Validity

The main threat to the external validity of our experiments
that could affect the generalisation of the presented results
relates to the analysed systems. We only used two medium-
size systems, yet they support different activities and are open-
source, thus available for replication. We plan to replicate our
experiments on larger systems to confirm our results.

The subjective nature of specifying and detecting design
smells and assessing detected classes is a threat to the internal
validity of our experiments. Our understanding of design
smells may differ from that of others. Our oracle, used to
analyse our approach, was manually built by analysing the
two systems used in the experiments. Three of the authors
independently re-validated the publicly-available data [3], [4]
to reduce the risk of classification errors. Finally, a candidate
occurrence was classified as a real smell only when two out
of three authors classified it as such. Such a process makes us
quite confident about the accuracy of the oracle.

VI. CONCLUSION AND FUTURE WORK

The detection of design smells in object-oriented software
systems is important to improve and assess the quality of the
systems, to ease their maintenance and evolution, and, thus, to
reduce the overall cost of their development and ownership.

Current automated detection approaches are difficult to
develop and put into place because they require experts’
knowledge and interpretation. Moreover, they focus on detect-
ing one kind of design smells at a time, while some smells
are similar and classes with characteristics similar but not
identical to some smells are also of interest to developers and
quality assurance personnel.

In this paper, we presented the first systematic parallel
between artificial immune systems and the detection of de-
sign smells; a machine learning technique inspired from the
immune system of the human body.

We performed experiments using GanttProject v1.10.2 and
Xerces v2.7.0 and the Blob, FD, and SC design smells. The
experiments showed that an AIS can detect smells in programs
with good precision and recall and address the limitations of
previous work: it does not require experts’ knowledge and
interpretation and it can report classes that are similar but not
identical to the detected smell.

Moreover, our AIS-based approach has the following ad-
ditional benefits with respect to previous approaches. Gen-
eralisation: It does not need all of the data set to detect
similar or identical occurrences of the design smells. It has
data reduction capability: it does not require feature selection,
i.e., choosing the set of metrics. Parameter Stability: Current
freely-available implementation of AIS are not optimised for
the detection of design smells but already provide good
precision and recall. Adaptability: It is adaptable and, in some
cases, self-organising and thus can automatically identify new
patterns in the data to create a different representation of
the data being learnt. Portability across Systems: It has a
good precision and recall when applied to different systems
while previous work require recalibration of the conditional

5

GanttProject Xerces

DECOR BBNs IDS DECOR BBNs IDS
(Trained on Blob) (Trained on Blob, FD, SC) (Trained on Blob) (Trained on Blob, FD, SC)

B
lo

b
16 (8.5%) 7 (3.7%) 34

20 (10.6)
44 (7.6%) 41 (6.9%) 55

54 (9.1%)4 (2.1%) 4 (2.1%) 4
13 (6.9%)

15 (2.5%) 15 (2.5%) 15
44 (7.4%)25 % 57.1 % 11.76%

65%
33.3% 36.5 % 27.27%

81.48%

FD

15 (8.0%) – – 29 (5.6%) – –
4 (2.1%) – – 15 (2.9%) – –

26.7% – – 51.7% – –

SC

14 (7.4%) – – 76 (14.8%) – –
4 (2.1%) – 11 18 (3.0%) – 18

28.5% – 32.35% 23.68% – 32.72%
Average 26.73% 57.1 % 65% 36.22% 36.5% 81.48%

TABLE IV
RESULTS OF APPLYING THE DETECTION APPROACHES. (In each row, the first line is the number of detected classes, the second is the number of classes

being design smells, the third is the precision. Numbers in parentheses are the percentages of classes being reported.)

probabilities [4] or changes of thresholds [3], [5]. Simplicity
and Self-regulatory: It does not require a topology or a rule
card: no experts’ knowledge and interpretation. Thus, it does
not embed the experts’ subjective understanding of the design
smells. However, it requires an oracle providing occurrences of
some smells. Performance: It has good performance in terms
of precision, and recall, and it computation is very fast. The
results of the experiments showed that its precision and recall
are comparable or superior to that of previous approaches.

We conclude that the application of an artificial immune
system to detect design smells is valuable. The immune system
provides an interesting metaphor for detecting design smells.
In future work, we plan to compare our approach with other
machine learning techniques, such as support vector machine,
and to further study the parameters of the approach, including
refining the choice of characteristics of classes. Finally, we
will package our approach for the automated detection of
design smells to provide it to developers and quality assurance
personnel. We also plan to perform more in vivo (larger
systems) and in vitro experiments on our approach.

Acknowledgment. This work was partially supported by the
NSERC Research Chair in Software Patterns and Patterns of
Software and the FQRNT.

REFERENCES

[1] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st ed.
Addison-Wesley, June 1999.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[3] Naouel Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,
“DECOR: A method for the specification and detection of code and
design smells,” Transactions on Software Engineering (TSE), 2009, 16
pages. [Online]. Available: http://www-etud.iro.umontreal.ca/∼ptidej/
yann-gael/Work/Publications/Documents/TSE09.doc.pdf

[4] Foutse Khomh, Stéphane Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A bayesian approach for the detection of code and design smells,” in
Proceedings of the 9th International Conference on Quality Software
(QSIC), C. Byoung-ju, Ed. IEEE Computer Society Press, August
2009, 10 pages. [Online]. Available: http://www-etud.iro.umontreal.ca/
∼ptidej/yann-gael/Work/Publications/Documents/QSIC09.doc.pdf

[5] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numer-
ical signatures of antipatterns: An approach based on b-splines,” in
Proceedings of the 14th Conference on Software Maintenance and
Reengineering, R. F. Rafael Capilla and J. C. Dueas, Eds. IEEE
Computer Society Press, March 2010.

[6] T. Oda and T. White, “Increasing the accuracy of a spam-detecting arti-
ficial immune system,” in Proceedings of the Congress on Evolutionary
Computation (CEC 2003), vol. 1, Canberra, Australia, 2003, p. 390396.

[7] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed. M &
T Books, February 1995.

[8] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[9] M. Mantyla, “Bad smells in software - a taxonomy and an empirical

study.” Ph.D. dissertation, Helsinki University of Technology, 2003.
[10] W. C. Wake, Refactoring Workbook. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2003.
[11] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting

defects in object-oriented designs: using reading techniques to increase
software quality,” in Proceedings of the 14th Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM
Press, 1999, pp. 47–56.

[12] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Proceedings of the 20th International Conference on
Software Maintenance. IEEE CS Press, 2004, pp. 350–359.

[13] M. J. Munro, “Product metrics for automatic identification of “bad
smell” design problems in java source-code,” in Proceedings of the 11th

International Software Metrics Symposium, F. Lanubile and C. Seaman,
Eds. IEEE Computer Society Press, September 2005.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley, 1994.

[15] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based refac-
toring,” in Proceedings of the 5th European Conference on Software
Maintenance and Reengineering (CSMR’01), 2001.

[16] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag.

[17] E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE’02). IEEE CS Press, Oct. 2002.

[18] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets,
and feature selection techniques on software fault prediction problem,”
Information Sciences, Elsevier, vol. 179, no. 8, pp. 1040–1058, 2009.

[19] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from perfection
is a better criterion than closeness to evil when identifying risky code,”
in Proceedings of the 25th International Conference on Automated
Software Engineering. IEEE Computer Society Press, September 2010.

[20] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi, “Fingerprinting design
patterns,” in Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE), E. Stroulia and A. de Lucia, Eds. IEEE Computer
Society Press, November 2004, pp. 172–181, 10 pages.

[21] J. Brownlee, “Artificial immune recognition system: a review and
analysis,” Swinburne University of Technology, Tech. Rep. 1-02, 2005.

[22] J. H. Carter, “The immune system as a model for pattern recognition
and classification,” American Medical Informatics Association, vol. 7,
no. 1, pp. 28–41, 2000.

[23] J. Timmis and T. Knight, “Artificial immune systems: Using the immune
system as inspiration for data mining,” 2001.

[24] J. Brownlee, “Clonal selection theory clonalg. the clonal selection
classification algorithm,” Swinburne University of Technology, Tech.
Rep. 2-02, 2005.

[25] R. Basili and D. M. Weiss, “A methodology for collecting valid software
engineering data,” IEEE Transactions on Software Engineering, vol. 10,
no. 6, pp. 728–738, November 1984.

[26] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

6

