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Abstract

Background: Microbiome studies often involve sequencing a marker gene to identify the microorganisms in

samples of interest. Sequence classification is a critical component of this process, whereby sequences are assigned

to a reference taxonomy containing known sequence representatives of many microbial groups. Previous studies

have shown that existing classification programs often assign sequences to reference groups even if they belong to

novel taxonomic groups that are absent from the reference taxonomy. This high rate of “over classification” is

particularly detrimental in microbiome studies because reference taxonomies are far from comprehensive.

Results: Here, we introduce IDTAXA, a novel approach to taxonomic classification that employs principles from

machine learning to reduce over classification errors. Using multiple reference taxonomies, we demonstrate that

IDTAXA has higher accuracy than popular classifiers such as BLAST, MAPSeq, QIIME, SINTAX, SPINGO, and the RDP

Classifier. Similarly, IDTAXA yields far fewer over classifications on Illumina mock microbial community data when

the expected taxa are absent from the training set. Furthermore, IDTAXA offers many practical advantages over

other classifiers, such as maintaining low error rates across varying input sequence lengths and withholding

classifications from input sequences composed of random nucleotides or repeats.

Conclusions: IDTAXA’s classifications may lead to different conclusions in microbiome studies because of the

substantially reduced number of taxa that are incorrectly identified through over classification. Although

misclassification error is relatively minor, we believe that many remaining misclassifications are likely caused by

errors in the reference taxonomy. We describe how IDTAXA is able to identify many putative mislabeling errors in

reference taxonomies, enabling training sets to be automatically corrected by eliminating spurious sequences.

IDTAXA is part of the DECIPHER package for the R programming language, available through the Bioconductor

repository or accessible online (http://DECIPHER.codes).
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Background
It has become increasingly clear that the microbiome is

critically important to human and ecosystem health [1].

Microbiome studies frequently involve sequencing a

taxonomic marker, such as the 16S ribosomal RNA

(rRNA) gene or internal transcribed spacer (ITS), to

identify the microorganisms that are present in a sample

of interest. These sequences can then be classified into a

taxonomic group, which facilitates comparing across

studies and acquiring additional information about the

microorganisms. Classification relies on a training set

containing sequence representatives belonging to known

microbial taxa. Since only a fraction of microbial taxa

have been characterized, it is anticipated that a large

number of microorganisms from many environments

belong to taxonomic groups that are unrepresented in

the training set [2–4]. Thus, the objective of taxonomic

classification is to accurately assign query sequences to

their respective group in the reference taxonomy, while
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avoiding the assignment of sequences belonging to novel

groups that are absent from the training set.

A major challenge to classification is that there is no

standard definition of what constitutes a taxonomic group

(e.g., genus or species) of microorganisms. Although there

are many exceptions, strains belonging to the same genus

tend to have about 95% or greater similarity in 16S rRNA

gene sequence. Therefore, a common classification ap-

proach is simply to label a sequence based on its nearest

neighbor in a training set using a tool such as BLAST [5].

Sequences are left unlabeled, or assigned to a higher rank

(e.g., family), when they are not within a specified distance

(e.g., 5%) of any reference sequence. Nearest neighbor

methods are popular in part due to their simplicity and

clearly defined basis for taxonomic assignment, but fre-

quently fail where taxonomic groups do not conform to

standard distance cutoffs [6].

Phylogenetic-based approaches are similar to nearest

neighbor methods but use a phylogenetic framework for

determining neighbors. Unlike sequence identity, phyloge-

netics can account for variation in evolutionary rates

across sites and other details of sequence evolution. Capit-

alizing on the fact that taxa in reference taxonomies are

often delineated using a phylogenetic tree, a number of

different phylogenetic-based methods have been proposed

[7–9]. These methods use a variety of approaches for cal-

culating their confidence in taxonomic assignments, that

is, how to best determine whether a new leaf of the tree

belongs to any of the taxonomic groups that surround it

on the tree. As in the case of distance-based approaches,

it is often unclear whether a new leaf of the tree represents

a novel taxon or an extension of an existing group.

In principle, machine learning is highly amenable to

“learning” variable definitions of what constitutes a taxo-

nomic group across the tree of life. The most popular

machine learning approach for taxonomic classification

is the naïve Bayes method used by the RDP Classifier

[6], which has been implemented in popular microbiome

software such as mothur and QIIME. The RDP Classifier

is based on repeated random sampling (i.e., bootstrap-

ping) of the k-mers belonging to a query sequence, and

matching these k-mers to those from sequences in the

training set [10]. Rather than using a measure of se-

quence divergence, confidence is calculated as the frac-

tion of bootstrap replicates that were assigned to a given

label (e.g., genus). Variations on this method have been

proposed that claim to give higher accuracy, for example

SINTAX and SPINGO [11, 12].

Machine learning classifiers often fail in situations

where the correct label lies outside the scope of the

training data [13]. For example, it has been demon-

strated that the RDP Classifier has a relatively low mis-

classification rate on sequences that belong to groups in

the training set [10, 14], but a much higher over

classification rate on sequences belonging to novel

groups that are unrepresented in the training set [11].

Over classifications are particularly detrimental in

microbiome studies because many microorganisms are

not represented in reference taxonomies [2, 15]. Two

main approaches are currently employed to reduce over

classifications: use of environment-specific training sets

that decrease the number of unrepresented taxonomic

groups [15, 16] and setting prior probabilities that lower

the likelihood of assignment to an unexpected taxo-

nomic group [17]. Both of these approaches require con-

siderable prior knowledge about what microorganisms

are expected in a sampled environment and, therefore, a

more general solution to the problem of high over clas-

sification rates would be extremely useful.

Here, we introduce IDTAXA, a novel approach to taxo-

nomic classification that shares features from phylogen-

etic, machine learning, and distance-based approaches.

IDTAXA is able to lower over classification rates substan-

tially across a variety of standard reference training sets.

We compare IDTAXA to published classifiers that report

a confidence for taxonomic assignment and scale well to

large datasets. Impressively, IDTAXA achieves lower error

rates than other methods while classifying the same frac-

tion of classifiable sequences. Furthermore, we introduce

novel algorithmic features that improve the practical util-

ity of IDTAXA for classifying microbiome datasets, which

may vary widely in the length and quality of their se-

quences. Finally, we show the implications of these attri-

butes for the interpretation of human and environmental

microbiome sequence data.

Implementation
As with many other classifiers, the IDTAXA algorithm is

split into two discrete phases: learning from a training

set with the LearnTaxa function and classifying new

query sequences with the IdTaxa function. The learning

process only needs to occur once for each training set,

resulting in a trained classifier that can be repeatedly

used to classify as many sequences as desired with the

IdTaxa function. Both functions are part of the R [18]

package DECIPHER [19], which is distributed under the

GPLv3 license as part of Bioconductor [20]. The Learn-

Taxa and IdTaxa functions are written in a combination

of the C and R programming languages.

The learning phase of the IDTAXA algorithm

The purpose of the LearnTaxa function is to identify puta-

tive problem sequences and problem groups in the training

set and speedup the process of classifying new (query) se-

quences with the IdTaxa function. LearnTaxa takes a set of

reference sequences and their respective taxonomic assign-

ments (e.g., “Root; Bacteria; Proteobacteria; Gammaproteo-

bacteria; Enterobacteriales; Enterobacteriacea; Escherichia”)
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as input. Consistent with standard definitions, the reference

taxonomy is defined by a semicolon separated list of taxo-

nomic names beginning with “Root;”, which collectively

denote a multifurcating taxonomic tree. The root rank is

defined as a catch-all for assigning sequences that do not

fit into any lower taxonomic group, such as randomly

generated sequences of A, C, G, and T. The reference

taxonomy may contain as many rank levels as desired per

group, for example the standard seven ranks (i.e., root,

domain, phylum, class, order, family, and genus) or only a

single rank level under the root rank. Optionally, rank

level information (e.g., “genus” or “phylum”) for each

group can be provided in “taxid” table format, which has

been popularized by the RDP Classifier [6].

The LearnTaxa function decomposes each sequence

into a set of overlapping, unique, and unambiguous (i.e.,

A, C, G, or T/U only) k-mers (i.e., subsequences of length

k). By default, the value of k is chosen such that random

k-mer matches between two sequences are expected

roughly 1% of the time. For example, a training set con-

taining full-length 16S rRNA gene sequences (~ 1500 nu-

cleotides) would use a value of k = 8. Next, LearnTaxa

records the top 10% of k-mers that best distinguish among

the subgroups at each rank level, which we term the “deci-

sion k-mers.” For example, in the case of a 16S rRNA gene

training set, at the root rank, it would record ~ 6500

k-mers that collectively indicate whether a sequence be-

longs to the Bacteria or Archaea. The criterion for deter-

mining the top decision k-mers at each rank level is based

on the cross-entropy between a subgroup and its parent

group [21]:

cross-entropyi j ¼ −pi j � logðqiÞ

where pij is the frequency of k-mer i relative to other

k-mers in subgroup j and qi is the frequency of k-mer i

relative to other k-mers in its parent group. Therefore,

the cross-entropy is maximized for k-mers that are fre-

quent in their subgroup but rare in other subgroups,

providing a set of k-mers that distinguish among sub-

groups optimally at each node of the taxonomic tree.

Finally, the LearnTaxa function attempts to reclassify

each training sequence to its labeled taxonomic group

using a method that we term “tree descent,” which is

analogous to a decision tree commonly employed in ma-

chine learning algorithms (Additional file 1: Figure S1).

Beginning at the top (i.e., Root) of the taxonomic tree,

LearnTaxa samples a fraction (by default 6%) of the deci-

sion k-mers at each node (taxon) on the tree and

removes k-mers that are not found in the query se-

quence. The group with the highest remaining sum of pij
is recorded, and this process is repeated for 100 random

bootstrap replicates (i.e., samples with replacement) of

the decision k-mers. If a subgroup is selected in at least 80

bootstrap replicates, then the sequence descends the tree

to this subgroup’s node, unless the subgroup is a terminal

taxon. If the selected subgroup is incorrect for the refer-

ence sequence, or all subgroups are selected less than 80

(of 100) times, then the process terminates at the node.

During tree descent, the algorithm learns the optimal

sampling fraction for each node on the taxonomic tree. If

this fraction is too high (e.g., choosing all decision k-mers

every bootstrap replicate), then the choice among sub-

groups is deterministic and prone to failure. If the fraction

is too low (e.g., choosing one decision k-mer per bootstrap

replicate), then the choice is too stochastic and does not

adequately indicate which subgroup is most likely. There-

fore, the fraction is initialized at a moderate value (by de-

fault 6%) at each node and is lowered when a reference

sequence is assigned to an incorrect subgroup at a node.

This process is repeated until (i) all sequences in the train-

ing set are correctly reclassified to their respective taxo-

nomic group using tree descent, (ii) fraction decreases

below a minimum value (by default 1%) at a specific node,

or (iii) a maximum number of re-classification attempts

(by default 10) are made for a sequence. Note that the

value of fraction at a node is decreased with each failed at-

tempt, which allows the classification at that node to im-

prove in subsequent iterations.

Situation (ii) can occur when many reference sequences

are assigned to the wrong subgroup at a specific node.

Such taxonomic groups are recorded as putative “problem

groups” and reported to the user. Situation (iii) can occur

when the tree descent algorithm is confident that a refer-

ence sequence belongs in a certain subgroup, but this dif-

fers from its assigned taxonomy. The LearnTaxa function

records these as putative “problem sequences” that are re-

ported to the user. In practice, almost all reference se-

quences are correctly reclassified using tree descent, and

the few reported problem sequences and problem groups

correctly point to potential errors in the taxonomy (e.g.,

mislabeled sequences, groups placed into an incorrect

subtree, or taxonomic groups that are not monophyletic).

Ultimately, the tree descent process both serves the pur-

pose of identifying errors in the taxonomy and speeding

up the classification of query sequences with the IdTaxa

function, as described next.

The classification phase of the IDTAXA algorithm

The purpose of the IdTaxa function is to classify new

(query) sequences as accurately and efficiently as pos-

sible. IdTaxa takes as input the object returned by the

LearnTaxa function and a set of query sequences to clas-

sify. It returns a classification for each sequence in the

form of a taxonomic assignment with associated confi-

dences for each rank level (e.g., “Root [99%]; Bacteria

[98%]; Proteobacteria [93%]; Gammaproteobacteria

[89%]; Enterobacteriales [82%]; Enterobacteriaceae
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[80%]; Escherichia [32%]”). The classification is left un-

assigned below a user-specified confidence, by default

60%. For example, the above classification would end at

“unclassified Enterobacteriaceae” because the genus level

classification (Escherichia) falls below the default thresh-

old of 60%. In this case, we could be reasonably

confident that the microorganism belongs to the Entero-

bacteriaceae family, but we do not know the genus to

which it belongs.

The IdTaxa function begins by splitting the query se-

quences into overlapping, unique, and unambiguous

k-mers. Next, the tree descent process is commenced

using the same strategy described for LearnTaxa, but re-

quiring 98 (rather than 80) of 100 bootstrap replicates to

continue descending the tree. The set of candidate taxa

are determined according to the node where tree des-

cent terminated, and the subset of reference sequences

that are assigned to this taxon are used in subsequent

stages (Additional file 1: Figure S1). In this way, IdTaxa

only needs to consider classifying to a portion of the

taxonomic tree, greatly accelerating the classification

process for many query sequences.

The IdTaxa function now switches to subsampling

k-mers of the query sequence rather than the decision

k-mers. By default, IdTaxa samples S = l0.47 k-mers in

each bootstrap replicate, where l is the length of the

query sequence. If at most S unique k-mers exist in the

sequence, then it is automatically assigned to unclassi-

fied Root at 0% confidence. We employ a text mining

approach to weigh k-mer matches based on their inverse

document frequency (IDF) [22, 23]. A k-mer’s weight is

defined by the equation:

weighti ¼ log n= 1þ f ið Þð Þ

where n is the number of different taxa in the training

set and fi is the sum of the frequency of k-mer i across

taxa. In this manner, the weight of very frequent k-mers

approaches zero and the weight of very infrequent

k-mers approaches log(n). The use of different weights

for each k-mer is analogous to how different sites (i.e.,

columns) of an alignment can provide a variable amount

of information when constructing a phylogenetic tree.

Unlike other algorithms, IDTAXA only selects a single

representative sequence from each group in the training

set to use for bootstrapping. This representative is

chosen to be the sequence with the greatest total weight

of k-mers from each terminal taxon. Selecting one se-

quence per group helps to correct for imbalance in the

training set, where some groups have far more represen-

tatives than many other groups. For each bootstrap rep-

licate, a sum of weights is calculated for the sampled

k-mers that are found in each representative sequence,

and the group with the highest total weight is selected as

the “hit.” If multiple groups are tied for the maximum

weight, as is the case when classifying a conserved

sequence shared across several groups, then a random

hit is selected.

The IdTaxa function then computes a confidence from

the total weight of each group across bootstrap repli-

cates. Unlike other classification methods that assign a

confidence based on the number of bootstrap hits, the

confidence reported by IdTaxa is also based on the

weight of those hits. This modification makes the re-

ported confidence better reflect the similarity between

the query and its top hit in the training set. The formula

used to calculate confidence is:

confidence j ¼
X

B

i¼1

di=davg

� �

� hij=di

� �

¼
X

B

i¼1

hij=davg

where hij is the summed weight of all k-mers found in

group j in bootstrap replicate i, di is the maximum pos-

sible summed weight in bootstrap replicate i, and davg is

the average of di across all bootstrap replicates (B, by de-

fault 100). In other words, confidence is the fraction of

the total possible weight assigned to a given group,

which incorporates both the number of bootstrap repli-

cates where it was the hit and how well it matched (i.e.,

its k-mer distance). In this way, it is possible for a group

to be the hit in all bootstrap replicates but still have a

low confidence. Finally, the highest confidence basal

group (e.g., genus) is selected, and confidences are recur-

sively summed to higher rank levels up the tree.

Programs used for benchmark comparisons

The IDTAXA algorithm is implemented in the R [18]

package DECIPHER [19] version 2.6.0. We focused on

benchmarking against the RDP Classifier (v2.12) because

it is widely used and has repeatedly been demonstrated to

be one of the best classification methods [6]. We also

compared against more recent programs that have been

shown to outperform the RDP Classifier: MAPSeq (v1.2.2)

[24, 25], QIIME 2 q2-feature-classifier (v2018.6.0) [17],

SPINGO (v1.3) [12], and SINTAX (v9.2.64) [11]. We

omitted other classification programs because they gener-

ated errors during benchmarking, were too slow to run

leave-one-out cross-validation, or were unpublished. As a

representative of nearest neighbor methods, we included

local and global percent identity as determined from the

top BLAST (v2.6.0) [26] hit with the excluded sequence as

the query and the remaining training set as the subject.

In some cases, we report classification results at a

program-specific confidence: BLAST (95% identity),

QIIME (70% confidence), IDTAXA (60% confidence),

MAPSeq (50% confidence), and SINTAX, SPINGO, and

the RDP Classifier (80% confidence). These thresholds

were selected because they are the programs’ default/
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recommendation or are commonly used for full-length 16S

rRNA gene sequences. We selected a default value of 60%

(very high confidence) for IDTAXA because it provided a

conservative classification with relatively minimal MC and

OC error rates. Less conservative thresholds, such as 50%

(high confidence) or 40% (moderate confidence), could be

specified if a user would prefer to have more sequences

classified at the expense of higher error rates. Note that

BLAST, QIIME, and SPINGO only provide a single confi-

dence value, so this confidence was propagated to every

rank level. For example, we considered a sequence with

90% confidence at the genus level to have 90% confidence

at every level up to, and including, the root rank.

Training sets used for classification benchmarking

Three reference datasets were used to evaluate the per-

formance of different classifiers with leave-one-out

cross-validation (Additional file 1: Figure S2). The most

popular of these is the 16S training set (version 16) pro-

vided by the Ribosomal Database Project (RDP), consist-

ing of 2472 genera [6]. The RDP training set is highly

imbalanced, with 1119 (45%) singleton genera having

only one sequence representative and, at the other ex-

treme, a single genus (Streptomyces) having 594 se-

quences. We also extracted the V4 region (Escherichia

coli positions 534–786) of the 16S rRNA gene from

these sequences to create a test set that reflected the

shorter lengths of reads obtained from current sequencing

technologies. As an alternative to the RDP training set, we

used the contax.trim (Contax) training set, which contains

38,781 full-length 16S rRNA gene sequences [27]. The

Contax training set consist of 1774 genera that have a

consensus taxonomy shared across multiple sequence

repositories, of which only 156 are singleton genera.

To investigate the broader applicability of each classi-

fier to other types of sequences, we compared perform-

ance on the Warcup (version 2) Fungal ITS training set

[28]. The internal transcribed spacer (ITS) is the region

between the small and large subunits of the ribosomal

RNA operon. The Warcup dataset was constructed by

clustering sequences at high similarity (> 97% identity),

manually correcting inconsistencies in labeling, and then

reclassifying the training sequences with the RDP Classi-

fier using the training sequences themselves as the train-

ing set. It contains 17,878 sequences assigned to 8551

species, of which 2262 are singleton species. Note that

both the 16S training set and Warcup use a taxonomy

with a varying number of rank levels. A standardized

taxonomy was used as input for MAPSeq and SINTAX

since both classifiers require a fixed set of rank levels.

Determining accuracy with leave-one-out cross-validation

To compare classifiers, leave-one-out cross-validation

was performed by removing one sequence at a time,

retraining the classifier with the remainder of the training

set, and reclassifying the excluded sequence. For each ex-

cluded sequence, we recorded its predicted taxonomic

classification and confidence at each rank level. This pre-

sents two possible types of error depending on whether

the excluded sequence was the only representative of its

group in the training set (i.e., a singleton) or other

sequence representatives from this group remained in

the training set. Misclassification errors occur when a

sequence is incorrectly reclassified at a confidence ≥

threshold, and the correct group was present in the

training set even after leaving out the sequence. Over

classification errors occur when a sequence is assigned

to any group at a confidence ≥ threshold, and the cor-

rect group did not exist in the training set after leaving

out the sequence (i.e., a singleton).

Importantly, confidences cannot be directly compared

across programs because a given confidence (e.g., 90%)

may not have equivalent meaning. Therefore, we recorded

the fraction of classifiable sequences that are classified,

also known as 1—the under-classification rate [29], at

each confidence level and compared misclassification

(MC) and over classification (OC) error rates at the same

fraction of classifiable sequences classified. Classifiable se-

quences are defined as those whose group remains even

after exclusion from the training set, that is, those that

have the potential to cause an MC error. Therefore, the

fraction of classifiable sequences classified is the fraction

of non-singleton sequences in the training set that were

classified above a given confidence threshold during

leave-one-out cross-validation. To have greater accuracy,

a program must have lower MC and/or OC error rates

while classifying the same fraction of classifiable se-

quences. Notably, this result is independent of the relative

scaling of confidence values across programs, and any

monotonic transformation (e.g., square root) of reported

confidences would yield the same result. Furthermore, we

weighed the sequences from each basal taxon (e.g., genus)

equally when calculating the MC error rate to prevent ex-

tremely over-represented groups (e.g., Streptomyces in the

RDP training set) from dominating the error rate during

leave-one-out cross-validation.

Note that we report the fraction of classifiable se-

quences classified rather than the fraction of total se-

quences classified. This is preferable because it prevents

us from penalizing when classifiers leave unclassifiable

sequences unclassified. For example, consider the case

where the OC error rate is lowered but the MC error

rate is held constant. This would result in fewer total se-

quences classified at a given confidence, which would

make a classifier appear both better (i.e., lower OC error

rate) and worse (i.e., fewer total sequences classified) in

different respects. However, the fraction of classifiable

sequences classified would remain unchanged when the

Murali et al. Microbiome  (2018) 6:140 Page 5 of 14



MC error rate is held constant, and decreasing the OC

error rate would rightly appear as an improvement. This

adequately reflects the goal of classification, which is to

correctly assign as many sequences as possible while

withhold assignment of sequences belonging to groups

that are unrepresented in the training set.

Results
The IDTAXA algorithm exhibits lower over classification

error rates

We focused on the basal taxonomic rank (e.g., genus or

species) in each training set for benchmarking classifica-

tion accuracy because the basal rank is the most difficult

to predict. Setting the confidence threshold to zero pro-

vides a classification for all sequences, which results in

an over classification (OC) error rate of 100% and a

maximal misclassification (MC) error rate. At the other

end of the spectrum, setting the confidence threshold to

100% minimizes error rates but classifies the smallest

fraction of sequences. Figure 1 shows the MC and OC

error rates for different classifiers on the popular RDP

training set for 16S rRNA gene sequences. Better classi-

fiers yield lower error rates while classifying the same

fraction of classifiable sequences, resulting in curves that

are further toward the bottom-right corner of the plot.

It is apparent from Fig. 1a that IDTAXA has a sub-

stantially lower OC error rate than the other classifiers

across the entire range of confidence thresholds on the

RDP training set. The nearest neighbor (BLAST) ap-

proach provides lower OC error rates than the other

methods but higher MC error rates. The QIIME and

SPINGO algorithms yielded lower MC error rates than

the RDP Classifier, but similar OC error rates. The SIN-

TAX algorithm is nearly identical to the RDP Classifier

in MC error rate, but has slightly lower OC error rates.

SINTAX is described as having a substantially lower

error rate than the RDP Classifier [11], but this appears

to be due primarily to SINTAX classifying a lower

a b

c d

Fig. 1 The IDTAXA algorithm exhibits relatively low OC error rates. Plots showing error rates versus the fraction of classifiable sequences classified

as confidence is varied from 100% (left) to 0% (right). A better classifier will exhibit lower error rates during leave-one-out cross-validation while

classifying the same fraction of classifiable sequences, shifting its curves downward. Misclassification (MC) error rates (dashed lines) are much

lower than over classification (OC) error rates (solid lines) on three different training sets: the RDP training set of full-length 16S rRNA gene

sequences (a), the Contax training set (b), and the Warcup ITS training set (c). The IDTAXA algorithm consistently displays the lowest OC error

rates across different training sets. MC and OC error rates are higher when testing the shorter V4 region (~ 251 nucleotides) of the RDP training

set (d). Points indicate error rates at default/recommended confidence thresholds: ≥ 95% sequence identity for BLAST, ≥ 70% confidence for

QIIME, ≥ 60% confidence for IDTAXA, ≥ 50% confidence for MAPSeq, and ≥ 80% confidence for all others
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fraction of classifiable sequences at the same confidence

threshold as the RDP Classifier (i.e., 80%). Notably, we

observe the same pattern for all rank levels, although

error rates decrease at higher ranks as expected

(Additional file 1: Figure S3).

To determine whether IDTAXA’s improved perform-

ance was independent of the training data, we compared

our results across multiple training sets. Benchmarking on

the Contax training set generally resulted in lower error

rates (Fig. 1b), suggesting that this training set may harbor

fewer labeling errors than the RDP training set. The classi-

fiers’ performance ranking was similar with the exception

of BLAST, which performed far more poorly on Contax

than the RDP training set. Next, we compared the classi-

fiers on the Warcup (ITS) training set, which yielded a

similar result to the RDP training set (Fig. 1c). The biggest

difference from the RDP training set was for the RDP

Classifier, which had much higher MC error rates. Not-

ably, BLAST’s curve for OC error rate appears to have a

kink, which may be related to the fact that the Warcup

training set was partly constructed using BLAST [28].

Taken together, these results confirmed the high accuracy

of the IDTAXA algorithm for taxonomic classification

across multiple training sets.

Leave-one-out cross-validation has been criticized

because sequences may remain in the training set that

are closely related to the query sequence. Recently,

cross-validation by identity has been proposed as a vi-

able alternative, whereby the entire training set and test

set do not contain any sequences within a specified per-

cent similarity [29]. We used the TAXXI benchmark to

test whether IDTAXA offers superior accuracy to other

classifiers at its lowest rank level (species) and a corre-

sponding similarity cutoff (≤ 97%) that would ensure all

closely related sequences were absent from the training set.

On both the BLAST 16S and Warcup ITS benchmarks,

IDTAXA outperformed all other classifiers, with lower MC

and OC error rates across all under-classification rates

(Additional file 1: Figure S4). Therefore, the independent

TAXXI benchmark confirmed IDTAXA’s superior ability

to accurately classify microbiome sequences.

We wished to better understand why the IDTAXA al-

gorithm outperforms other classification algorithms.

Figure 2 shows that, for singleton sequences, IDTAXA

assigns confidences that are better correlated with the

distance between the sequence and the nearest sequence

in its assigned group. In particular, all other approaches

assigned some query sequences high confidence even

though they are greater than 10% distant from the

assigned sequence. Since IDTAXA combines both k-mer

distance and bootstrapping into its confidence measure, it

is able to avoid assigning a high confidence to sequences

even if they repeatedly are selected as the top hit

during bootstrapping. Moreover, unlike other algorithms,

IDTAXA down-weights conserved k-mers that provide

minimal power to resolve taxonomic groups.

IDTAXA maintains low error rates across varying input

sequence lengths

Having confirmed that the IDTAXA algorithm is accur-

ate on a training set of mostly full-length sequences, we

sought to understand performance on shorter sequences

that are common in microbiome sequence datasets. We

noted that the degree of stochasticity introduced during

bootstrapping is based on the relative number of samples

(S) drawn from the total set of l k-mers belonging to a se-

quence. The RDP Classifier draws one eighth of the k-mers

(S = l/8) in a sequence for each bootstrap replicate, whereas

the SINTAX algorithm always draws 32 k-mers independ-

ently of query sequence length (S = 32). Rather than arbi-

trarily choosing a function S(l) for drawing k-mers during

bootstrapping, we examined this function using subse-

quences of a simulated training set of 1000 sequences with

90,000 nucleotides each [30]. Full-length sequences were

clustered at ≥ 95% similarity, resulting in 607 groups.

Using this taxonomy as the training set, we calculated

OC error rates for varying bootstrap sample sizes (S) as

a function of subsequence length (l = 32 to 8192). When

the OC error rate is held constant, we observe that S(l)

follows an apparent power-law scaling with S(l) = lx,

where x is a positive constant greater than zero and less

than 1 (Additional file 1: Figure S5). We chose the fixed

point of 10% OC error rate at 1600 nucleotides to define x

as 0.47. While other values of x could be chosen, 0.47 was

selected because it results in sampling most of the k-mers

belonging to sequences of typical length (250–2000 nucle-

otides) across at least one of the 100 bootstrap replicates.

Notably, x has negligible bearing over the MC and OC

error curves in Fig. 1, although it does change where the

confidence threshold (e.g., 60%) is situated on the curve.

Even though the OC error rate is largely independent

of query sequence length, the MC error rate decreases

for longer sequences (Additional file 1: Figure S6). Simi-

larly, the fraction of classifiable sequences that are classi-

fied continues to improve with longer sequences. Thus,

it is preferable to use the longest sequences possible for

classification even though the OC error rate will prob-

ably not change significantly. While we expect this be-

havior to stay consistent across sequence types (e.g., 16S

or ITS), the actual error rates are dependent on the

training set and cannot be inferred from the simulated

sequences. Therefore, we did not compare the perform-

ance of the IDTAXA algorithm to any other classifiers

using the simulated training set. Nevertheless, it is worth

noting that the IdTaxa function allows users to specify

other forms of S(l) as desired (e.g., S(l) = 32 or S(l) = l/8).

We wished to know how the input sequence length af-

fected the accuracy of different algorithms on a real
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training set. To benchmark shorter length sequences, we

performed leave-one-out cross-validation on the RDP

training set while testing a ~ 251 bp subsequence corre-

sponding to the V4 region of the 16S rRNA gene ex-

tracted from the full-length RDP training set. This

variable region is frequently selected for sequencing and,

thus, represents a common test case for classifying short

sequences. As expected, the accuracy of all algorithms

diminished for shorter sequences, although the IDTAXA

algorithm continued to display lower OC error rates

than other programs (Fig. 1d). Importantly, the OC error

rate remained approximately the same on full-length

and shorter test sequences for IDTAXA, even though

the fraction of sequences classified decreased for the

same confidence threshold (60%). In contrast, OC error

rates changed considerably for all other programs at

their respective default thresholds (Fig. 1a, d). This pro-

vides a practical advantage for IDTAXA users because a

single threshold can be used for input sequences of dif-

ferent lengths with the reassurance that the primary

mode of classification error (OC errors) will not increase

dramatically for some sequences over others. In com-

parison, the RDP Classifier documentation suggests

adjusting the confidence threshold to 50% for sequences

shorter than 250 bp [31].

Performance on random and repeat sequences

It has been anecdotally reported that some programs re-

turn high confidence classifications for randomly gener-

ated sequences and sequences composed solely of repeats

(e.g., ACACAC...). To investigate this phenomenon, we

generated 1000 random sequences with a 25% probability

of each nucleotide and 1000 sequences with repeat period-

icity varying from 1 (e.g., AAA...) to 7. All sequences were

of length 1000 to reflect typical sequence lengths used for

classification. Figure 3 shows that the RDP Classifier and

SINTAX often assign high confidence to random se-

quences at the domain level when using the RDP training

set. In contrast, all other classifiers, including IDTAXA,

assign relatively low confidence to random sequences.

Furthermore, the RDP Classifier and SINTAX often assign

high (80–100%) confidence at the genus level to repeat se-

quences. This is because a small number of sequences in

the training data sometimes contain one or more of the

unique k-mers that comprise a repeat sequence. This re-

sults in a single taxonomic group appearing as the top hit

Fig. 2 Variability in sequence similarity at the same confidence level. During leave-one-out cross-validation with the RDP training set, for each singleton

sequence, we computed the distance to the nearest sequence in the group to which it was assigned. The IDTAXA algorithm only assigned a high

confidence to sequences that had a low distance to the query sequence being classified. In contrast, all other k-mer approaches assigned high

confidences even when all of the sequences in the group were distant to the query sequence. The curves indicate the cubic spline that best fits the data
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in nearly every bootstrap replicate. IDTAXA effectively

avoids this problem by assigning 0% confidence to se-

quences having at most S(l) unique k-mers, for which boot-

strapping (i.e., sampling with replacement) would result in

a high number of repeated k-mers per bootstrap replicate.

Mock community sequences recapitulate the

benchmarking results

Having demonstrated the merits of the IDTAXA algo-

rithm through leave-one-out cross-validation, we com-

pared the ability of classification programs to detect the

organisms present in a mock microbial community. We

focused on a mock microbiome (Microbial Community

C) provided by the Human Microbiome Project [32] that

had previously been Illumina sequenced (accession

SRR3225706) as part of a different study [33]. This mock

community is composed of strains belonging to 20 dif-

ferent bacterial genera, all of which are represented in

the RDP training set. The dataset set contains 14,072 se-

quences (median length 374 nucleotides) amplified with

V4-V5 primers after extraction with the QIAamp kit.

Results of classifying with each of the different classifica-

tion programs are summarized in Table 1. All classifiers

assigned between 93 and 98% of sequences to the genus

rank at their default/recommended confidence thresholds.

The BLAST and SPINGO algorithm both identified 17 of

the 20 expected genera, QIIME identified 16, the RDP

Classifier and MAPSeq identified 15, and both SINTAX

and IDTAXA identified 14. However, BLAST also identi-

fied 24 unexpected genera that were not present in the

sample, the RDP Classifier identified 7, MAPSeq and

QIIME identified 6, and SPINGO and SINTAX identified

3. IDTAXA only identified 2 unexpected genera, Prevotella

and Aquabacterium, both of which were also present in al-

most all other programs’ classifications. It also identified

one unexpected family, Comamonadaceae, that includes

the genus Aquabacterium. Interestingly, the sequences

corresponding to these unexpected groups were distant

from any of the known 16S rRNA gene sequences included

in the mock microbiome sample, suggesting that they were

likely artifacts of contamination [34, 35].

Since all of the expected genera were already present

in the RDP training set, the above approach could only

confirm the relatively high MC error rates of some clas-

sifiers. To investigate OC error rates, we removed the

sequences corresponding to the 20 expected genera from

the RDP training set and reclassified the mock commu-

nity sequences. The results (Table 1) further confirmed

that all programs other than IDTAXA suffer from con-

siderable over classifications when the correct group is

not present in the training data. IDTAXA only added a

single unexpected family, Planococcaceae, while all other

classification programs substantially increased their

number of over classifications at the genus rank to be-

tween 9 and 65. Impressively, without the expected

groups present in the training set, IDTAXA only classi-

fied 0.01% of sequences to the genus rank, in sharp con-

trast to the 3.8–26.7% of sequences classified to the

genus rank by the other classification programs. Taken

together, these results demonstrate that IDTAXA’s com-

parably low MC and OC error rates on benchmarks also

extend to mock community microbiome sequences.

IDTAXA’s classifications change the interpretation of

microbiome data

We next sought to determine whether IDTAXA’s im-

proved accuracy had a substantial effect on the inter-

pretation of human and environmental microbiome

samples. We decided to focus on comparing to the RDP

Classifier because it is currently the most popular classi-

fication approach. To this end, we selected full-length

16S rRNA gene sequences collected from the human gut

of an adult male and a compilation of different sediment

samples with high bacterial and archaeal diversity [2].

Fig. 3 Confidences assigned to random and repeat sequences. Using the RDP training set, the RDP Classifier and SINTAX assigned high confidences at

the domain level (i.e., Bacteria or Archaea) to 1000 query sequences composed of 1000 random nucleotides. Similarly, both the RDP Classifier and

SINTAX assigned high confidence at the genus level to 1000 sequences composed of repeats with periodicity varying from 1 (e.g., AAA...) to 7. In

contrast, the IDTAXA, MAPSeq, and SPINGO algorithms assigned low confidences to random and repeat sequences at all taxonomic levels
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The number of reads assigned to each group in the RDP

training set was compared at the default confidence

threshold recommended for IDTAXA (60%) and the RDP

Classifier (80%). Since the RDP Classifier is more permis-

sive than IDTAXA, we repeated the analysis using a max-

imal (100%) confidence threshold with the RDP Classifier.

Figure 4 illustrates the four major conclusions of this

comparison on human and environmental microbiome

data. First, both the RDP Classifier and IDTAXA agree

on the presence of many groups, and often assign a

similar number of reads to the same groups. Second, the

IDTAXA algorithm tends to leave sequences unclassified

at the root rank rather than classifying them to either

Bacteria or Archaea, as seems to be the preference of

the RDP Classifier. Third, there are an extremely high

number of groups assigned by the RDP Classifier that

the IDTAXA algorithm does not indicate are present.

Even with a 100% confidence threshold, the RDP Classi-

fier assigned sequences to 12 genera in the human gut

and 138 genera in the sediment sequences that IDTAXA

did not find present. In sharp contrast, IDTAXA classi-

fied zero genera in human gut sequences and only 22

genera in sediment sequences that the RDP Classifier

did not identify. Forth, IDTAXA assigned fewer se-

quences to low rank levels (e.g., genus) than the RDP

Classifier, as we had observed with the mock community

analysis. IDTAXA classified 5.3% of sequences from

sediment to the genus level and 19.9% of sequences from

the human gut. In contrast, RDP classified 17.7% (≥ 80%

confidence) and 9.5% (100% confidence) of the sediment

sequences, as well as 22.5% and 20.0% of the human gut

sequences, respectively.

Since these classifications were performed on human

and environmental microbiome samples, we do not

know the true community of microorganisms that were

present. However, based on the aforementioned analyses,

it is likely that most of the taxonomic groups that are

unique to the RDP Classifier are false positive classifica-

tions caused by the lack of the correct taxonomic group

in the training data. We also noted that many of these

unique groups had relatively high abundance. By com-

parison, groups that were uniquely assigned by IDTAXA

tended to have relatively low read counts (Fig. 4). High

abundance over classifications could easily lead to incor-

rectly interpreting the known diversity in microbiome

studies, as well as leading to incorrect conclusions about

the groups that are part of a microbiome. Furthermore,

based on the mock community analysis, it is likely that

the RDP Classifier is classifying sequences to lower rank

levels (e.g., genus) than feasible, resulting in incorrect

classifications.

IDTAXA exhibits sub-linear scalability with reference

training set size

As with other classifiers [17], DECIPHER scales linearly

in time with the number of unique query sequences

Table 1 Number of taxonomic groups identified by each classifier among Illumina 16S rRNA gene sequences (SRR3225706) from a

mock microbiome sample [33]. Counts are provided with and without including any sequences in the RDP training set that are

labeled as belonging to the 20 expected genera

Classified to genus
levelα (%)

Groups present in the mock community Absent from mock communityβ

Root Domain Phylum Class Order Family Genus Order Family Genus

Using the RDP training set BLAST 97.9 1 0 0 0 0 0 17 0 0 24

IDTAXA 94.2 1 0 1 1 2 5 14 0 1 2

MAPSeq 96.5 1 0 0 0 0 4 15 0 2 6

QIIME 95.4 1 0 0 0 0 0 16 0 0 7

RDP
Classifier

93.3 1 1 2 3 6 8 15 0 2 6

SINTAX 94.2 1 1 1 4 3 3 14 1 0 3

SPINGO 96.5 1 0 0 0 0 0 17 0 0 3

With expected genera
excluded from training data

BLAST 17.3 1 0 0 0 0 0 0 0 0 65

IDTAXA 0.01 1 1 1 2 3 4 0 0 2 2

MAPSeq 24.6 1 0 0 2 5 11 0 1 8 20

QIIME 13.5 1 0 0 0 0 0 0 0 0 16

RDP
Classifier

3.83 1 1 2 3 6 9 0 0 3 12

SINTAX 8.76 1 1 1 7 5 6 0 1 1 9

SPINGO 26.7 1 0 0 0 0 0 0 0 0 15

αPercent of total sequences from the mock community that were classified to the genus rank
βOther rank levels (root, domain, phylum, and class) all had counts of zero
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because input sequences are processed independently.

To evaluate performance, we measured runtimes on the

largest training set (Contax) with increasing numbers

(N) of reference sequences (Additional file 1: Figure S6)

while maintaining the number of query sequences at

1000. SINTAX was generally the fastest method

tested, except at the highest number of training se-

quence (N = 35,000) where RDP was the fastest.

BLAST was the slowest method, requiring seconds to

process each query sequence, and making it impractical to

use on large sequence sets. IDTAXA was about 10-fold

slower than SINTAX, requiring 0.05 to 0.3 s per query se-

quence depending on the size of the reference training set

(N). This was expected given that IDTAXA needs to per-

form more computations than many other k-mer match-

ing algorithms and there is a trade-off between speed and

accuracy. Notably, we parallelized the step of the IDTAXA

algorithm that requires comparison to reference se-

quences, allowing IDTAXA to achieve approximately

fourfold speedup when using eight processors.

To evaluate scalability, we fit a power-law function

(T~aNb) to the measured runtimes for each classifier

(Additional file 1: Figure S7). Runtimes scaled roughly

linearly for SINTAX (T∝N1.05) and greater than linearly

for MAPSEQ (T∝N1.61). IDTAXA displayed sub-linear

scalability when using one (T∝N0.87) or eight (T∝N0.67)

processors, which is the result of speedups achieved

during the tree descent phase of the algorithm that ex-

ploit hierarchical structure in the reference taxonomy.

IDTAXA’s scalability was similar to that of SPINGO

(T∝N0.89) and BLAST (T∝N0.72). The RDP Classi-

fier (T∝N0.13) and QIIME (T∝N0.09) had the best scalabil-

ity. In terms of maximum memory usage (M), IDTAXA

exhibited sub-linear scalability (M∝N0.5), requiring a max-

imum of about 1.5 GB on the largest reference set tested

(N = 35,000). IDTAXA’s primary usage of memory space is

for storing decision k-mers used during the tree descent

phase of the algorithm. The number of decision k-mers is

proportional to the number of reference groups, which

tends to scale sub-linearly with the number of reference

sequences.

Discussion
Throughout this work, we made the assumption that the

taxonomic assignments of training sequences were un-

equivocally correct. Yet, as demonstrated by the discrep-

ancy in accuracy between the Contax and RDP training

sets, it is highly likely that taxonomies contain errors. As

further proof, we observed that MC errors were often

much more similar to the group they were assigned than

they were to the nearest sequence in their “correct”

group (Fig. 5). However, we cannot rule out the fact that

the distance between 16S rRNA gene sequences is only a

proxy for taxonomic relatedness, and that taxonomic

Fig. 4 Comparison of classifications using human and environmental microbiome data. The number of sequences assigned to each taxonomic

group in the RDP training set is shown for full-length 16S rRNA gene sequences originating from two different environments [2]. The RDP

Classifier was far more permissive at its default (≥ 80%) confidence than IDTAXA at its default (≥ 60%) confidence. Even at a 100% confidence

threshold, the RDP Classifier assigned sequences to many more groups than the IDTAXA algorithm, possibly because of its substantially higher

OC error rate. Note that some points may be overlapping, particularly at low numbers of assigned sequences
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assignments are often based on many factors, such as

the core genome, that may disagree with the 16S rRNA

gene phylogeny. Furthermore, full-length 16S rRNA

gene sequences do not always offer sufficient resolution

to distinguish between taxonomic groups, as has repeat-

edly been shown to be the case for species-level taxo-

nomic assignments [36–40].

These discrepancies raise the important question of

which training set is best for classification. Training

sets differ considerably in their number of sequences,

scope, degree of imbalance, and accuracy of labels.

IDTAXA provides a means of differentiating among

training sets because it flags putative problem se-

quences and problem groups during its learning

phase. We have noted that the RDP training set, which

is one of the most popular, has many putative labeling

errors according to LearnTaxa, whereas the Contax

training set has fewer errors but narrower scope. We

favor the GTDB [41], which is a relatively new training

set based on a standardized taxonomy and has rela-

tively few putative errors flagged by LearnTaxa. Since

the GTDB taxonomy is based on genomes, its scope is

likely to continue to expand in the future.

Conclusions
Here, we have shown that IDTAXA substantially re-

duces false positive classifications of test sequences fall-

ing outside the scope of a training set. Over

classifications are particularly problematic in micro-

biome research as only a fraction of existing microbial

diversity is represented in even the largest training sets

such as the SILVA database [2]. IDTAXA mitigates OC

errors by taking a hybrid approach that combines fea-

tures of phylogenetic, distance-based, and machine

learning classification methods. This helps to circum-

vent the main weakness of purely machine learning ap-

proaches, which is that they are poor at identifying

when test data belongs to a novel label. The hybrid ap-

proach employed here may be applicable to other clas-

sification problems in biology where the training

dataset is incomplete.

The IDTAXA algorithm has been implemented in the

DECIPHER package for the R programming language

and is available from Bioconductor. The documentation

describes how to train the classifier on a new training

set, which can be composed of any type of sequence

(e.g., 16S, ITS, or other). A variety of pre-trained training

Fig. 5 Some misclassifications may be due to labeling errors. Many misclassifications (≥ 0% confidence) on the full-length RDP training set are to

groups containing a sequence that has greater sequence identity than any sequence in the correct group. Extreme cases to the left of the

vertical line are potentially due to labeling errors in the RDP training set
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sets are available from the website http://DECIPHER.codes/.

We have also made available a webserver that will classify

sequences using any of these training sets. The code and

webserver are both able to generate plots (e.g., Fig. 6) that

allow users to visualize their sequences’ classifications, and

the classifications are exportable to standard tabular formats

so that users can integrate the results into their own

bioinformatics pipeline.

Availability and requirements
Project name: DECIPHER

Project home page: http://DECIPHER.codes

Operating system(s): Platform independent

Programming language: R and C

Other requirements: R 3.3 and higher

License: GNU GPL

Any restrictions to use by non-academics: None
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