
IEEE 1588 STYLE SYNCHRONIZATION OVER A WIRELESS LINK

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Hamza Abubakari

December, 2008

IEEE 1588 STYLE SYNCHRONIZATION OVER A WIRELESS LINK

Hamza Abubakari

Thesis

Approved:

Advisor
Dr. Shivakumar Sastry

Committee Member
Dr. Nathan Ida

Committee Member
Dr. James E. Grover

Accepted:

Department Chair
Dr. Alex De Abreu Garcia

Dean of the College
Dr. George K. Haritos

Dean of the Graduate School
Dr. George R. Newkome

Date

ii

ABSTRACT

Networked embedded systems, which rely on inexpensive nodes (hardware) and inter-

act in a peer-to-peer manner over wireless links, offer new opportunities for systems

architecture and design in a variety of domains. The local clocks in such nodes present

relatively large clock offsets at the application level. Achieving time synchronization

across such nodes, however, remains a challenge. The IEEE 1588 time synchroniza-

tion protocol specifies how such synchronization can be achieved over wired networks.

The wireless domain further exacerbates the problem of achieving time synchroniza-

tion because of high packet losses and low bandwidth. This thesis presents the design

and implementation of a technique for synchronizing clocks, over a wireless link, of

a pair of resource-constrained nodes. This is a software-only implementation, in the

sense that there is no special hardware required to support the technique. This de-

sign builds on a prior technique that compensated clock offset using a conventional

digital filter and a Proportional-Integral (PI) controller using IEEE 1588 messages

over a wired network. To mitigate the effects of packet-losses in the wireless envi-

ronment this design tracks and compensates for skew, which is the rate of change

of the offset. Because the skew was determined to be gaussian distributed, a linear

Kalman filter was used to track the skew. This filtered skew was used as the tracking

iii

signal by the PI controller and the output of this controller was used to discipline the

clock by modulating the clock rate to match that of the leader. Experimental results

demonstrate that this technique, which used a Kalman filter and compensated for

skew, performs better than the prior technique that used a conventional digital filter

and compensated for offset. These results demonstrate that this technique is resilient

against packet losses and achieves better accuracy and stability for both single-hop

and multi-hop scenarios. In the future, this technique can serve as a foundation to

improve determinism and predictability in networked embedded systems.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Shivakumar Sastry, for his support,

guidance, and insights that made this thesis possible. My gratitude also goes to my

committee members, Dr. Nathan Ida and Dr. James Grover, for their understanding

and important comments. I am very grateful to Dr. Alex De Abreu Garcia and Dr.

Okechukwu C. Ugweje who made it possible for me to pursue a master’s degree in

the department. I want to express my sincere thanks to “the boss”, Gay Boden,

for making life ever smoother, and Eric Rinaldo, for his patience and being a great

resource. My gratitude also goes to my lab colleagues, Kranthi Mamidisetty, Branden

Archer, John McGonnell, and Maithili Ghamande, for their support and useful ideas.

My friend, Francis Tetteh, derserves my sincere thanks as well for always

being there when I needed help. Finally, I dedicate this thesis to my family who kept

me motivated with their love and endurance.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

I. INTRODUCTION . 1

1.1 Contributions . 3

1.2 Overview of this Thesis . 3

II. BACKGROUND . 4

2.1 MAC Protocols . 4

2.2 Time Synchronization . 6

2.3 The IEEE 1588 Synchronization Protocol 8

III. MEDIA ACCESS CONTROL PROTOCOL 11

3.1 Design Objectives . 12

3.2 Design of the MAC Protocol . 13

3.3 Implementation . 25

IV. PRECISION TIME SYNCHRONIZATION PROTOCOL 34

4.1 Overview of IEEE 1588 . 34

vi

4.2 Clock Servo Design . 39

4.3 Implementation . 44

V. RESULTS AND DISCUSSION . 49

5.1 Distribution of Skew and Message Latency 49

5.2 Synchronization Results . 50

5.3 Discussion . 52

VI. CONCLUSION . 60

BIBLIOGRAPHY . 61

APPENDIX . 64

vii

LIST OF TABLES

Table Page

3.1 B-MAC bidirectional interfaces . 18

viii

LIST OF FIGURES

Figure Page

3.1 A sending node transmits a preamble for at least the duration of
the check interval. This ensures that the receiving node is awake
when the actual data is transmitted. The check interval value is
pre-defined in all the nodes. 14

3.2 Sequence of messages exchanged in reliable communication mode.
Acknowledgements are sent immediately without clear channel as-
sessment and the long preamble. 17

3.3 Typical packet format in a preamble sampling regime. A SOF byte
is used to indicate the beginning of the message packet. 20

3.4 Effective throughput is significantly better using Burst mode. Gains
in throughput with buffer size, however, flattens out after 100 pack-
ets in both modes. The check interval and preamble length were set
at 20ms and 24ms, respectively. 21

3.5 Packet-loss rate is better when radio sleeping is disabled. In either
case, there is an optimum check interval for the lowest packet-loss
rate. Preamble length was made 10% longer than the check interval
to compensate for increased phase drift at higher check intervals. 23

3.6 RSSI measured by a receiver in communication range (top), at edge
of communication range (middle), and out of communication range
(bottom) of a transmitter. 24

3.7 RSSI measurements were taken every 2ms while a node was pe-
riodically transmitting a message every 2secs (Top). Our method
(bottom) correctly detects the channel state at all times compared
with BMAC’s method (middle) that frequently detects the channel
busy when it is actually idle. 25

ix

3.8 Atmega128L-CC1000 interface on the Mica2Dot mote. 28

3.9 Frame parsing algorithm for an N-byte receive buffer. Bits are
shifted to the left and overflow bits are placed in the least significant
bit position of the preceding byte. 31

3.10 State machine for the MAC protocol. 32

4.1 A clock hierarchy established before IEEE 1588 synchronization.
Grandleader clock is an ordinary clock serving as a leader (L) in the
subnet. A boundary clock serves as a follower (F) in one broadcast
domain and as a leader in other broadcast domains. 37

4.2 Exchange of messages in IEEE 1588 protocol’s two-message model. . . . 38

4.3 The control model for our PTP clock servo. 43

4.4 Fixed-size frame structure used to transfer data and synchronization
messages. The message ID in the synchronization message payload
structure was necessary to avoid associating a Follow Up message
with the wrong Sync message. 45

4.5 PTP synchronization protocol state machine. 47

4.6 Clock and Message Timestamp Points. Both inbound and outbound
messages are timestamped in the CC1000 driver. 48

5.1 Relative skew measured with two methods show a Gaussian-
distribution. This is important for optimal tracking of the skew
by the Kalman filter. 54

5.2 Message latency with interrupts (bottom) and without interrupts
(top). Interrupts spread the distribution of the message latency:
standard deviation of message latency increases from 1.5µs without
interrupts to 4.2µs with interrupts. 55

5.3 Single-hop synchronization accuracy with skew-PI method. Stan-
dard deviation is 16.8µs. 56

5.4 Single-hop synchronization accuracy with offset-PI method. Stan-
dard deviation is 40.4µs. 56

x

5.5 Allan deviation plots. While the offset-PI method has better sta-
bility than the undisciplined clock in the large time scale, the PTP
clock servo using the skew-PI method consistently provides a far
more stable clock in the wireless environment. 57

5.6 Single-hop synchronization accuracy versus synchronization period.
While Skew-PI degrades slowly, offset-PI’s servo becomes unstable
for periods greater than 2 seconds. 57

5.7 Multi-hop synchronization accuracy: Skew-PI has higher accuracy
which degrades at a much slower rate with number of hops. 58

5.8 Convergence time with initial skew correction is about 100 seconds
but it is about 800 seconds without initial skew correction. Syn-
chronization period was one second. 59

A.1 The control model for offset-PI clock servo. 66

xi

CHAPTER I

INTRODUCTION

Networked embedded systems, which rely on inexpensive, resource-constrained nodes

and interact in a peer-to-peer manner over wireless links, offer new opportunities

for systems architecture and design in a variety of domains. Such nodes are based

on inexpensive hardware, and transceivers that have relatively low bandwidth and

high packet-loss rates. For example, a relative skew of 3000 parts per million (ppm)

was measured between two Mica2Dot motes; this represents an offset of about 10.8

seconds over an hour. To limit the packet-loss rate on these nodes to around 10%, the

nodes had to be operated at a maximum bandwidth of 19.2 kbps with Manchester

encoding. Consequently, because of the resource constraints, it is challenging to

synchronize activities on multiple nodes. Nevertheless, time synchronization across

asynchronous nodes is an important foundation for engineered systems [1, 2].

Among the synchronization techniques reported in the literature, the IEEE

1588 Precision Time Protocol (PTP) standard is widely used in a variety of appli-

cations over wired networks [3]. To effectively apply PTP over wireless links, it is

necessary to compensate for (a) the skew between the nodes, and (b) the packet-loss.

In addition, processor interrupts and other hardware and software jitter in the nodes

give rise to intermittent offset noise spikes in a software only implementation [4].

1

Filtering is a commonly used technique to eliminate noise spikes. While a

conventional digital filter can attenuate such spikes [4] to some extent, a Kalman

filter [5] provides better attenuation. In addition, a Kalman filter has (a) low mean

error in tracking a Gaussian-distributed signal, (b) lower computational overhead

when the distribution is stationary, and (c) improved robustness in the presence of

lost signals. For these reasons, a Kalman filter was selected as a pre-processor.

A clock servo is used to discipline the clock in nodes. The clock servo used

by Branicky et al. in [4] uses offset as the input to a PI controller with a conventional

digital filter as a pre-processor. This approach is susceptible to packet-losses since

the offset grows linearly with consecutive message losses which can cause instability

in the servo. Because clock drift in a node is relatively constant over short durations,

a Kalman filter was designed to track the skew, which is the rate of change of offset.

The skew was then used as input to a PI controller in the clock servo. The use of

skew mitigated the effects of packet-loss and attenuated large spikes in the offset.

However, it was necessary to derive the closed loop system function for this

control model and establish its stability. The results show that this approach achieves

better synchronization accuracy and reduces Allan variance in all time scales.

2

1.1 Contributions

The contributions of this thesis are:

1. The design of an energy-efficient, flexible, and multicast-capable Media Access

Control (MAC) protocol that is based on enhancements to the B-MAC protocol.

2. Implementation of this MAC protocol on the Mica2Dot wireless sensor node

platform.

3. The design of a clock servo that tracks clock skew and uses a discrete linear

Kalman filter as a pre-processor.

4. Implementation of an IEEE 1588 style time synchronization on the Mica2Dot

platform using the above clock servo.

1.2 Overview of this Thesis

Following a review of related work in Chapter 2, Chapter 3 presents the MAC pro-

tocol used in this investigation. Chapter 4 presents the design and implementation

of a IEEE 1588 style synchronization technique on the Mica2Dot motes. Chapter 5

presents experimental results. The conclusion and next steps are discussed in Chap-

ter 6.

3

CHAPTER II

BACKGROUND

Establishing and maintaining a common notion of time across asynchronous, dis-

tributed, nodes that are not physically connected requires communication of mes-

sages with implicit or explicit timestamps [6]. In distributed systems that share a

communication channel, a media access control (MAC) protocol is often used to en-

able this sharing [7]. This chapter reviews MAC protocols for networked wireless

embedded nodes with constraints of energy, bandwidth, computation, and memory

capacity. The chapter also presents related work in time synchronization and a brief

introduction to the IEEE 1588 PTP.

2.1 MAC Protocols

Wireless embedded nodes have limited energy, bandwith, computational, and mem-

ory capacity. Several MAC protocols have been proposed to address this unique

challenge [8].

Duty cycling is a well-known technique of conserving energy. In this scheme,

nodes periodically cycle between a sleep period and a wake period. This conserves

energy by avoiding idle listening, which wastes a bulk of the energy in most appli-

cations [9]. If the sleep/wake schedule of a target node is unknown, then a sending

4

node must transmit a “dummy”’ message, referred to as a preamble, for the duration

of the sleep/wake schedule before transmitting the actual message. This guarantees a

rendezvous with the receiver, i.e., ensures the receiver is awake to receive the message.

This method of communication is referred to as preamble sampling.

The B-MAC protocol proposed by Hill et al. [10] is a carrier sense multiple

access (CSMA) protocol that achieves low power operation through duty cycling

with preamble sampling. The nodes use a fixed duty cycle but they do not know the

sleep/wake schedule of their neighbors. Channel assessment for CSMA operation is

performed by first re-estimating the noise-floor after transmitting every packet and

then using this as a threshold to determine channel state before the next transmission.

B-MAC provides basic functionality but includes bidirectional interfaces that can be

used to obtain extended functionality. However, a major drawback of B-MAC is the

potential waste of bandwidth and energy by the long preamble that precedes every

message.

S-MAC [11] is a contention-based MAC protocol that also uses fixed duty

cycling to minimize energy waste. However, unlike B-MAC, nodes must broadcast

their sleep/wake schedule to their neighbors. This avoids the need for preamble

sampling but introduces the need for time synchronization. To ensure that nodes in

a local area adopt the same schedule, a new node in the network must first listen

for a schedule from its neighbors and adopt all the schedules it hears. Nodes that

are already in the network must add any new schedule they hear. This coordinated

sleeping may lead to increased collisions as nodes wake at the same time and try to

5

transmit immediately. S-MAC also incurs a high memory overhead from the need to

store multiple sleep schedules.

T-MAC [12] further reduces idle listening in S-MAC by setting a time out

for listening. When a node wakes up, it listens for a short duration of time and goes

back to sleep early if it does not detect any transmission on the channel. T-MAC

suffers the same high probability of collisions and memory overheads as S-MAC.

2.2 Time Synchronization

Time synchronization on wireless embedded nodes that have constraints of energy,

bandwidth, computation, and memory capacity remains a challenge because any re-

source used for synchronization may significantly reduce the resources available to

perform the network’s fundamental task [13]. Eventhough several protocols for time

synchronization on such nodes have been proposed in the literature [14, 15, 6, 16, 17],

a few relevant ones are reviewed below.

In Reference Broadcast Synchronization (RBS) protocol [15], a beacon node

broadcasts a reference message to nodes in its neighborhood. The nodes then ex-

change the time each of them received the message among themselves. After receiv-

ing several messages and using linear regression, each node is able to compute its

offset and skew from the other nodes. Consequently, a node can estimate the time

on another node through timescale transformations. An important feature of RBS is

that it does not depend on a single clock for time reference. Nodes are synchronized

pairwise. However, the pairwise exchange of several messages represent a significant

6

communication overhead and therefore makes RBS unscalable. Also, with the linear

regression, nodes cannot act quickly to changes in skew and offset since they must

wait for several messages before they can re-estimate these parameters.

In [16], Maróti et al. proposed the Flooding Time Synchronization Protocol

(FTSP). FTSP organizes the nodes into a hierarchy with the root node designated

as the leader. The leader periodically broadcasts a synchronization message that

contains its time. This time is recorded by the receiving nodes and then re-broadcast

to nodes down the hierarchy after updating the timestamp. After receiving eight

synchronization messages, a node uses linear regression to compute its offset and skew

from the leader. FTSP synchronization precision is likely to significantly degrade in

multi-hop scenarios for two reasons: first, it does not account for the one-way delay

in the communication path, and second, nodes do not act quickly to changes in clock

rate and offset as they have to wait eight synchronization periods to re-estimate these

parameters. Since linear regression methods are affected by outliers because the data

is weighed by the square, RBS and FTSP are vulnerable to outliers in offset.

Loschmidt et al. [18] present a hyperbolic navigation algorithm for localizing

802.11 client nodes by using base stations that were synchronized by means of IEEE

1588. They used a digitally processed analog signal from the transceiver as a trigger

to timestamp received messages.

Eidson et al. [19] report the jitter of three pairs of timestamp trigger signals

in the MAC-PHY interface of a Cisco AIRONET series 340 IEEE 802.11b WLAN

card. Their results show the lowest jitter with a standard deviation of 145.6ns can

7

be achieved when the rising edge of TX RDY (transceiver ready to receive a packet

from processor) and MD RDY (transceiver ready to transfer a packet to processor) are

used. This work shows that it is important to obtain timestamps, using appropriate

triggers, at the hardware level.

The software-only design and implementation of the IEEE 1588 on ethernet

by Branicky et al. in [4] is closely related to this work. Branicky et al. [4] presented the

results achieved by an application-layer implementation of a PTP daemon on nodes

executing under the Linux operating system. To isolate clock read jitter caused by

interrupts, they used a hardware clock on the node. Their analysis used the notion

of small, medium, and large time-scales for clock stability using Allan variance as

a metric. While the Allan variance of the disciplined clock was decisively less than

that of the undisciplined clock in the large time scale (over 100 seconds), and fairly

close to the undisciplined clock in the small time scale (less than a few seconds), this

variance was large for the medium time scale (10 to 100 seconds). Their filter did

not prevent noise spikes in the offset from entering the PI controller. We believe that

consecutive message losses can produce a spike in offset and exacerbate the medium

time scale instability. The servo design is therefore susceptible to message losses and

thus not well-suited for the wireless environment.

2.3 The IEEE 1588 Synchronization Protocol

IEEE 1588 PTP is a time synchronization protocol for distributed systems. It is an

external synchronization protocol in which all clocks in the network trace their time

8

to a single clock known as the grandmaster clock. The clock that PTP uses to derive

its time is referred to as the leader clock and the clock that derives its time from a

leader clock is called a follower clock.

PTP achieves time synchronization in two steps: First, the clocks in the net-

work are organized into a leader-follower hierarchy, and then timestamped messages

are exchanged between leader and follower clocks to synchronize them. At the start

of the protocol, the clocks broadcast messages containing information about their

“quality”. Using this information and a distributed spanning tree algorithm referred

to as the Best Master Clock (BMC) algorithm, each clock independently determines

the best clock in its broadcast domain. The best clock becomes the leader in the

broadcast domain and the rest become follower clocks. The BMC algorithm logically

partitions the network into a clear leader-follower hierarchy of clocks.

Once this clock hierarchy is formed, the nodes exchange four types of times-

tamped messages to establish and maintain synchronization. These messages are

Sync, Follow Up, Delay Req(uest), and Delay Resp(onse) messages. Sync and Fol-

low Up messages are transmitted by a leader clock to allow a follower clock to calcu-

late its offset. The Follow Up message only transports the timestamp of the preceding

Sync message. A Delay Req message is transmitted by a follower clock and the leader

replies to it with a Delay Resp message containing the time the Delay Req message

was received. This exchange allows the follower to estimate the one-way delay of the

communication path. Suppose a leader transmits a Sync message at time T1 and it

it is received by the follower at time T2, according to its local clock. Also, suppose

9

a Delay Req message is transmitted by the follower at time T3 and it is received by

the leader at time T4. If the offset of the follower clock is offset from leader, and

the one-way delay of the communication path is one way delay and symmetric, then

these two parameters can be calculated as:

one way delay = {(T2 − T1) + (T4 − T3)}/2 (2.1)

offset from leader = (T2 − T1)− one way delay (2.2)

Incorporating the one-way delay in the calculation of the offset is critical for high pre-

cision synchronization. How this offset is used to appropriately correct, or discipline,

the clock is not specified by the protocol.

10

CHAPTER III

MEDIA ACCESS CONTROL PROTOCOL

In networked embedded systems with asynchronous nodes communicating over a

shared communication medium, it is critical to arbitrate access to the medium. A

Media Access Control (MAC) protocol is used for such arbitration [7] in wired and

wireless networks. The MAC was particularly important for this investigation into

inband, software only, IEEE 1588 style synchronization over wireless links because the

temporal properties of the MAC impact the synchronization accuracy across nodes

in the system. For example, a poorly designed MAC can increase non-determinism

in message latency [14], and excessive delays between the IEEE 1588 synchronization

and follow-up messages can destabilize the control loop that is used to discipline the

clock [3].

This chapter presents the design of the MAC protocol that was implemented

to support this investigation. The well-known B-MAC (Berkeley-MAC) protocol [10]

was enhanced to improve latency, throughput and flexibility. This design was imple-

mented on the Mica2Dot platform that uses an Atmega128L microcontroller – an 8-bit

processor running at 7.37 MHz – with an integrated CC1000 radio transceiver which

communicates with the processor over an SPI interface [20]. After briefly discussing

11

the design objectives and the enhancements, critical issues that were important for

the implementation of the CC1000 driver are presented.

3.1 Design Objectives

Network parameters and Quality of Service (QoS) dictated by application require-

ments guide the choice of a MAC protocol. For example, if throughput is the QoS of

interest, then TDMA protocols are generally better suited for high node degree and

high traffic scenarios while CSMA protocols perform better in low traffic scenarios.

Thus, flexibility, i.e., the ability to morph the behavior of the MAC protocol to meet

application requiremets, is important.

The resource-constrained environment of the Mica2Dot platform motivated

us to focus on a light-weight design that could be implemented in a simple manner.

The Mica2Dot platform has only 128K bytes of program memory, 4K bytes of data

memory, and a maximum radio bandwidth of 38.4 Kbps. The CC100 radio does not

provide any buffer to support the communication. A MAC protocol on such platforms

must therefore have low computational, memory, and bandwidth overhead. Further,

it must be simple to deploy and operate nodes that utilize the default behavior of

this MAC protocol. Thus, the three primary design objectives were

• flexibility,

• simplicity, and

• energy-efficiency.

12

As disucussed in Chapter 2, there are a variety of MAC protocols reported in

the literature, each with its own objectives and application. Consequently, the design

of yet another MAC protocol was not a primary objective of this investigation. Among

these protocols, the B-MAC protocol [10] had many interesting attributes that met

the above design objectives in the context of this investigation. The following sections

describe the design and implementation of the MAC protocol in detail.

3.2 Design of the MAC Protocol

The main attraction of B-MAC was the design structure that allowed users to modify

its behavior through a programming interface (API) to support a variety of behaviors.

However, B-MAC transmits a long preamble before, and estimates the noise-floor

after, sending every message. The radio is always put to sleep after a transmission or

reception and no API is provided to disable/enable this behavior. To utilize B-MAC

for this investigation into time synchronization, it was necessary to remedy these

shortfalls. The enhancements are presented following this brief review of B-MAC.

3.2.1 B-MAC Protocol Design

B-MAC is a light-weight CSMA protocol for resource constrained nodes that uses

duty-cycling with preamble sampling to achieve low energy operation. Nodes period-

ically cycle between sleep and wake states. If an alternating sequence of zeros and

ones, called a preamble, is detected in the wake state, the node stays awake to receive

the data that is probably being sent to it by another node in the neighborhood. Oth-

13

erwise, the node goes back to sleep. This periodic sleep/wake schedule is known as

duty-cycling or low power listening [10].

To ensure the destination node is listening when a message is transmitted,

a source node precedes every message with a long preamble, at least as long as the

interval between consecutive checks of the channel by the nodes – the check interval.

This is known as preamble sampling. Figure 3.1 illustrates the need for the long

preamble in low power listening communication. In this figure, both the sender and

receiver have the same pre-defined sleep/wake duty cycle but different sleep/wake

schedules. By its schedule, the receiver wakes up to listen for a preamble at t1 and t5,

i.e, the check interval is 4 units of time. The sender initiates a message transmission

at t2 just after the receiver goes to sleep. Note that the sender must transmit the

preamble for 3 units before the receiver wakes up again at t5. Then the receiver must

stay awake for about 1.5 units until the preamble is completed before it can receive

the data from the sender.

Sender

Receiver sleep

> check interval

data time

time

check interval

= node remains awake

preamble
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

wakewake data

Figure 3.1: A sending node transmits a preamble for at least the duration of the
check interval. This ensures that the receiving node is awake when the actual data is
transmitted. The check interval value is pre-defined in all the nodes.

14

Conservation of energy from the low power listening strategy in B-MAC is

based on the assumption that nodes spend more time listening than transmitting.

Thus, this approach shifts the energy burden from receivers to senders by making

senders consume a little more energy with the transmission of the long preamble.

Analytical and experimental data presented in [10] clearly shows that, given a network

topology and traffic conditions, there is an optimum value for the check interval: if

it is too small, energy is wasted by idle listening, and if it is too large, energy and

bandwidth are wasted by the long preamble.

The design strategy in B-MAC is to provide basic functionality and leave

any extended functionality to upper layers. For example, it does not include channel

reservations or service differentiation schemes. It therefore incurs minimal compu-

tational and communication overhead. Additionally, with the preamble sampling, a

node does not need to store the sleep schedule of its neighbors as required in the S-

MAC [11] and T-MAC [12] protocols. This enables B-MAC to have very low memory

overhead. Also, the CSMA operation makes it easy to deploy and operate.

Clear channel assessment (CCA) is critical for CSMA operation and is the

central idea in B-MAC. The CCA is executed in two parts. First, the noise-floor is

estimated. This estimate is then used to assess the state of the channel, i.e., whether

the channel is clear for sending a message. The noise floor is estimated by collecting

nf Radio Signal Strength Indication (RSSI) samples from the radio when the channel

15

is idle1. The median of the samples is used to update an exponential running average

with decay factor α. This average is the noise-floor estimate. Prior to sending a

message, every sending node must assess the state of the channel by collecting nc

RSSI samples. If the value of any of these samples is below the noise-floor estimate,

the channel is considered to be idle. This technique is referred to as outlier detection.

If all the nc samples are above the noise-floor estimate, the channel is considered

to be busy and the node will not initiate a transmission. Collisions are avoided or

resolved by randomly backing off before a transmission. The suggested values for

these parameters are nf = 10, α = 0.06 and nc = 5 for a typical wireless sensor

environment [10].

To facilitate reliable communication B-MAC supports acknowledments (ACK).

Figure 3.2 shows a typical sequence of messages exchanged between a sending and

receiving node when acknowledgments are enabled. After receiving a message, the

receiving node immediately transmits an ACK message without clear channel assess-

ment and the long preamble. The sending node waits for the ACK and times out if

it is not received.

Figure 3.2 also shows that B-MAC does not prevent overhearing. All the

neighbors overhear messages that are sent to a node in the vicinity. While this

multicast behavior may not be energy efficient, it is a requirement for the IEEE 1588

style synchronization investigation.

1For example, immediately after a transmission or reception, or when valid packets
are not being received

16

Sender

Receiver

Neighbor

preamble ack

sleep

sleep

sleep

sleep

check interval

detects preamble

ack = acknowledgment message

datawake

overhears message

wake wake data

wake wake

detects preamble

datasleep

ack

= node remains awake

t1t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
time

t1t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
time

t1t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
time

Figure 3.2: Sequence of messages exchanged in reliable communication mode. Ac-
knowledgements are sent immediately without clear channel assessment and the long
preamble.

B-MAC provides a flexible design. Various behaviors of the MAC can be

obtained by setting appropriate parameters. For example, to implement a scheduling-

based MAC, clear channel assessment may be disabled, the preamble length set to

the minimum required for radio synchronization, and check interval set to occur in

the receive timeslots. Other MAC protocols reported in the literature such as S-

MAC [11] and ZMAC [21] have also been realized using B-MAC. The B-MAC API

provides flexibility and allows for changes in the default behavior of the protocol.

Table 3.1 shows the methods in the three sets of interfaces defined. MacControl

provides interfaces to enable/disable acknowledgements and CCA. Methods in the

low power listening set allow users to change tranmit/receive power, check interval

and length of the preamble. MacBackoff methods set the initial and congestion

backoff windows.

17

Table 3.1: B-MAC bidirectional interfaces

Interface Methods Purpose

MacControl

EnableCCA enables channel sensing

DisableCCA disables channel sensing

EnableAck enables message acknowledgements

DisableAck disables meassage acknowledgements

MacBackoff
InitialBackoff backoff window size for first tx attempt

CongestionBackoff backoff window size if tx fails

LowPowerListening

SetListeningMode sets radio to low/high power rx mode

GetListeningMode gets the radio rx power mode

SetTransmitMode sets transmit power

GetTransmitMode gets transmit power

SetPreambleLength sets length of preamble

GetPreambleLength gets length of preamble

SetCheckInterval sets channel check period

GetCheckInterval gets channel check period

18

Despite the many positive attributes of B-MAC, there are some shortfalls

that make it inefficient for networked embedded systems. First, consider a scenario

in which a node needs to transmit multiple messages to the same receiver. Preceding

each message with the long preamble is unneccessary, and wastes energy and band-

width. It is more efficient to transmit the long preamble only once with the first

message. Second, since the default API does not support methods to enable/disable

the radio sleep, it was necessary to add such methods to the MacControl interface

set. For nodes that are energy constrained, it is useful to put the radio to sleep but

for nodes that have no energy constraints, it is harmful to put the radio to sleep as

demonstrated in the next section. Finally, it may not be necessary to frequently re-

estimate the noise-floor in several application domains. Based on these observations,

the following improvements were made to remedy the shortfalls.

3.2.2 Improvements to B-MAC

The three improvements designed to enhance B-MAC were:

1. Burst Mode Signalling,

2. Radio Sleep Enabling/Disabling, and

3. Effective Clear Channel Assessment.

19

Burst Mode Signalling

Instead of transmitting long preambles before every message, it was more efficient

to design a signalling scheme to notify the receiver that it must continue to remain

awake to receive further messages.

SOF payload CRCheaderpreamble
...

...

Figure 3.3: Typical packet format in a preamble sampling regime. A SOF byte is
used to indicate the beginning of the message packet.

Figure 3.3 shows the typical structure of a packet in communication systems

that require a preamble. The start-of-frame (SOF) byte is used to indicate the be-

ginning of the message packet. By allowing the SOF byte to take one of two values,

the sending node could signal the receiving node whether this message is the first in

a sequence or not. The overhead for this signalling mechanism is minimal — only a

single logical comparison. We refer to the exchange of messages with this signalling

mechanism as burst mode transmission. While the burst mode does not guarantee

per-packet fairness across the nodes, such fairness is not important for many appli-

cations. For example, the IEEE 1588 protocol specifies a Burst Mode Operation in

which the Sync and Delay Req messages are transmitted more frequently to quickly

synchronize clocks at startup [3].

Figure 3.4(b) compares throughput performance of burst mode and normal

mode that was experimentally obtained using the setup in Figure 3.4(a). The effective

20

throughput was calculated by dividing the total number of packets correctly received

by the duration of transmission. The higher throughput in burst mode may be

attributed to the reduced waste of bandwidth by the preamble, as well as, reduced

packet losses due to guaranteed rendezvous.

B

C

A

Mote A transmits a burst of packets equal to the
buffer size to mote B and repeats after 500ms.
It selects either Burst Mode or Normal Mode

to transmit a total of 10000 packets.

Mote C transmits a
packet every 200ms.

Mote B receives from mote A but can
overhear transmissions by mote C.

(a) Experimental setup

(b) Throughput performance

Figure 3.4: Effective throughput is significantly better using Burst mode. Gains in
throughput with buffer size, however, flattens out after 100 packets in both modes.
The check interval and preamble length were set at 20ms and 24ms, respectively.

21

Enabling/Disabling Radio Sleep

The CC1000 radio required up to 6ms to wake up from a sleep cycle [22] 2. This

delay in the wake time results in reduced throughput, availability, and/or increased

packet-loss rate as demonstrated in Figure 3.5. This figure shows results from an

experiment in which one mote sent 10,000 packets to another mote. A packet was

transmitted every 200ms. This was repeated for different values of the check interval.

The packet-loss rate is smaller at all check intervals with sleeping disabled because

the delay in waking the radio increases the likelihood of the receiver not being in

receive state when a packet is transmitted. The high packet-loss rate for small values

of the check interval may be attributed to interrupt latency causing a rendezvous to

be missed. The increasing packet loss rate for large values of the check interval is

likely caused by an increased probability of missing a rendezvous due to the fact that

the increased listening timeout may not adequately compensate for oscillator drift.

This result demonstrates the need for enabling/disabling radio sleep.

Effective Clear Channel Assessment

Effective clear channel assessment is important for CSMA protocols because under-

estimating the noise-floor may lead to unnecessary backoffs while over-estimating it

may cause collisions. Both increase message latency and negatively impact synchro-

nization precision.

2While periodic sleep/wake operation is useful for energy constrained nodes, this
is not important for nodes that are powered from conventional sources. For example,
nodes in a factory environment can be powered from a wall outlet.

22

Figure 3.5: Packet-loss rate is better when radio sleeping is disabled. In either case,
there is an optimum check interval for the lowest packet-loss rate. Preamble length
was made 10% longer than the check interval to compensate for increased phase drift
at higher check intervals.

CCA schemes that use signal strength as the decision criterion operate on the

assumption that the average signal energy during a transmission is always greater

than the noise-floor. This assumption was empirically found to hold true for the

CC1000 transceiver. The signal strength was measured by a mote at three locations

in the wireless environment while another mote was transmitting a packet every two

seconds. These three regions were: (1) well within the communication range, (2) at

the edge of the communication region3, and (3) outside the communication region.

As can be seen in Figure 3.6, the received signal strength is well above the noise-floor

even at the edge of the communication range. These results indicate that much of

3Locations where a preamble may be detected but a packet is never received
correctly.

23

the error associated with channel state determination can be avoided by using the

maximum instead of the median RSSI value to estimate the noise-floor.

Figure 3.6: RSSI measured by a receiver in communication range (top), at edge
of communication range (middle), and out of communication range (bottom) of a
transmitter.

In the CCA scheme used for this investigation, 11 RSSI samples were collected

when the channel is known to be idle – e.g. when no valid message is received in two

check intervals. The maximum value in the samples is used as an estimate of the

noise-floor which serves as threshold to determine channel state. The noise-floor may

only need to be re-estimated after excessive retransmission failures or backoffs. To

determine the state of the channel, 5 RSSI samples are taken and if the minimum

value is less than the noise-floor, the channel is considered idle. Otherwise, the

channel is considered busy. Figure 3.7 shows that this scheme correctly detects the

channel state at all times compared with B-MAC’s scheme that frequently detects

the channel busy when it is actually idle.

24

Figure 3.7: RSSI measurements were taken every 2ms while a node was periodically
transmitting a message every 2secs (Top). Our method (bottom) correctly detects the
channel state at all times compared with BMAC’s method (middle) that frequently
detects the channel busy when it is actually idle.

It must however be noted that the use of RSSI for channel assessment may

become ineffective for radio transceivers that use spread spectrum techniques since a

message may still be correctly received even if the signal energy is below the noise-

floor [23]. In such tranceivers, detection or non-detection of a valid spreading code

may be used as the criterion to determine channel state.

3.3 Implementation

The Chipcon CC1000 radio integrated on the Mica2Dot platform uses binary fre-

quency shift keying (BFSK) modulation and has no buffer. This modulation scheme

does not provide any robustness against noise encountered during physical trans-

port of data. The enhanced B-MAC protocol discussed in the preceding section was

25

implemented in the nodes and only supported a CRC-based error detection for the

packets. The protocol was implemented in two parts, namely the cc1000 driver and

the B-MAC state machine.

To isolate operating system issues from media access control and synchro-

nization issues, a simple node-level operating system was used.

3.3.1 Basic Operating System Structure

A non-preemptive FIFO scheduler with two levels of priority was implemented using

two queues and a dispatcher. The dispatcher removes the task at the head of the

higher priority queue for execution. It dispatches tasks in the lower priority queue

only if the higher priority queue is empty. The higher priority level was assigned to

tasks posted from within an interrupt service routine.

A system software clock was implemented using COUNTER1 on the At-

mega128L. A clock update rate of once per millisecond was used as a compromise

between timer interrupt processing overhead and clock resolution. Consistent with

the IEEE 1588 standard, time was represented as an 8-byte structure. The first 4

bytes of type integer stored the number of seconds and the second 4 bytes of type

unsigned integer stored the number of nanoseconds from a pre-defined epoch.

In addition to the software clock, B-MAC and the time synchronization

scheme discussed in Chapter 4 required timers to operate. These timers were also

derived from COUNTER1. On every “tick of the clock”, a millisecond counter was

incremented and the timer data was checked to see if any of them had expired. This

26

added more processing overhead in the timer interrupt and care was taken to en-

sure that the service time of this interrupt did not exceed the duration required to

transmit or receive a byte for reasons explained in the next section. To ensure this

constraint was not violated, the number of timers was limited to five.

3.3.2 CC1000 Driver

Because of the simple modulation scheme (BFSK) and lack of buffer in the CC1000

transceiver, it was necessary to design and implement optimization strategies into the

driver to reduce packet errors. The lack of buffer in the transceiver meant that the

microcontroller was required to participate in the sending of every bit of data. The

SPI interface in the Atmega128L has a single 8-bit transmit buffer but a double 8-bit

buffer for receive. Consequently, depending on whether polling or interrupt is used

for transmission, interrupt service times on the microcontroller may not exceed the

duration of time it takes to transmit a bit or a byte by the transceiver.

For optimum receiver sensitivity, the radio was configured to operate with

Manchester coding with maximum frequency separation of 64kHz between bit 0 and

bit 1, and at recommended subcarrier frequencies using the SmartRF Studio program

provided by Chipcon. The oscillator and PLL currents were also programmed high

by default.

Microcontroller-Radio Interface

Figure 3.8 depicts the interface between the Atmega128L and the CC1000 on the

Mica2Dot platform.

27

PALE

PCLK

PDATA

PD5

PD6

PD7

PB2 & PB3

PB1DCLK

DIO

RSSI PF0/ADC0

Register
Configuration

SPI Interface

CC1000

Atmega128L

Figure 3.8: Atmega128L-CC1000 interface on the Mica2Dot mote.

The PDATA, PCLK, and PALE lines serve as serial interface for configuring

the radio through bit-banging. To write to any of the 8-bit configuration registers

on the CC1000, a 2-byte configuration word is placed serially on the bidirectional

PDATA-line beginning with the most significant bit (MSB). The bits are transferred

on the negative edge of a software-generated PCLK signal. The most significant seven

bits of the configuration word represent the register address, the next bit is the mode

bit, which indicates whether a read or write operation is being performed, and finally

the last eight bits is the value to be written to the register. The PALE is held low

during the address and read/write byte and changed to high during the transfer of the

register value. The same procedure is used for a read operation except data flows from

the CC1000 to the microcontroller on the PDATA-line and a read operation must be

specified in the mode bit. The CC1000 datasheet [22] contains details about timing

diagrams and the registers. The pins DIO and DCLK are serial peripheral interface

(SPI) pins used to transfer data between the microcontroller and CC1000 which acts

28

as the SPI master. The RSSI/IF pin provides an analog signal that represents the

received signal strength. Data may be received from the radio using two methods:

polling or interrupt. Polling was favored for three reasons. First, the SPI clock

provided by the CC1000 is continuously running and will generate an interrupt every 8

clock cycles if the SPI interrupt is enabled. This may represent a significant processing

overhead if the interrupt service time is not negligible. Second, polling fits naturally

with our duty cycling MAC protocol. Third, interrupts increase message delay non-

determinism and thus affects synchronization accuracy. However, using pure polling

for transmit meant that to avoid causing frame errors the microcontroller could not

be interrupted for more than a bit duration during transmit. This was considered

too tight a constraint to guarantee its non-violation. Hence a hybrid approach was

adopted where interrupt transmit was used but the SPI interrupt was only enabled

during a transmission.

Message Handling

Every frame starts with a specified number of preamble bytes (0x55 or 0xAA). The

preamble was used to rendezvous with the receiver node, i.e., ensure that the receiver

is receiving when the sending node is transmitting. The preamble was also used to

bit-synchronize the receiving node’s tranceiver. The CC1000 required a minimum

of 7 bytes (98 bauds) of preamble in the Manchester mode for the averaging filter4

to obtain a suitable threshold value to differentiate bit 0 and bit 1. This transceiver

4The averaging filter measures the average voltage level of the preamble bits which
is then used to detect subsequent bits. Longer settling time improves sensitivity.

29

synchronization requirement and the finite time required to wake the radio from sleep

as well as oscillator drift are the three reasons the preamble length must be greater

than the check interval. A start-of-frame (SOF) byte is inserted at the end of the

preamble and the beginning of the frame to indicate where the frame starts in the

byte stream as shown in figure 3.3.

Since a frame is transmitted as a stream of bits in the wireless medium but

is received from the SPI buffer as a stream of bytes, an effective scheme is needed

to parse the byte-stream on a bit-by-bit basis in order to extract the frame. Note

that the received byte-stream may not necessarily be aligned as they were in the

transmitter. One approach is to continuously look for the SOF byte in the last two

received bytes using an 8-bit sliding window. However, this processing in the middle

of a reception combined with interrupt servicing can cause the total processing time

to exceed the time it takes to receive the next byte from the SPI buffer and hence

loose the data. Additionally, the long preamble associated with every frame means

that the processing overhead will be quite large. For these reasons, it was decided to

receive all non-preamble bytes and parse it to extract the frame.

The recording of bytes began only after three consecutive non-preamble bytes.

This approach has the problem that if three consecutive preamble bytes are corrupted,

a frame loss will occur. However, the probability of three consecutive bytes being cor-

rupted is low. Another constraint of this choice is that the next two bytes after the

SOF byte may not be preamble bytes. Since the next two bytes that immediately

follow the SOF is typically associated with an address of a node, this means that a

30

node cannot have an address containing 0x55 or 0xAA. The preamble byte immedi-

ately before the first non-preamble byte is always the first byte stored in the receive

buffer since it may contain the first bit of the SOF.

Direction of bit shifts

Byte index

0

1

2

3

4

N-1

.

.

.

Figure 3.9: Frame parsing algorithm for an N-byte receive buffer. Bits are shifted
to the left and overflow bits are placed in the least significant bit position of the
preceding byte.

Once the data is received into a buffer of size N , it is parsed as depicted in

Figure 3.9. Starting with the most significant bit of the first byte, bits are shifted

to the left. Bits that overflow are moved into the least significant bit position of the

preceding byte. This process continues until the SOF is detected in byte 0.

31

3.3.3 MAC State Machine

Figure 3.10 presents the state machine for the enhanced B-MAC protocol. A sleep-

power up

Sleep/Idle

Set Backoff

CCA

Transmit

Wait Ack

Set Check Timer

Notify Upper Layer

Check Channel

Transmit Ack

Receive

check timer expires
/cancel check timer

no preamble, timeout

preamble
detectedrx complete

[ack disabled or data error]

transmit data [CCA disabled]
/cancel check timer, get initial backoff

transmit data [CCA enabled]
/cancel check timer, get initial backoff

backoff timer
expires

channel idle

channel busy
[attempts <max.]

/get congestion backoff

[ack enabled]

[ack disabled]

Notation: event [condition]/action

ack received or
wait timeout or

data error

Any State

Initialize

power down

channel busy
[attempts = max.]

Figure 3.10: State machine for the MAC protocol.

ing or idle node wakes up periodically and checks the channel for preamble bytes and

goes back to sleep if no preamble is detected after listening for 10% of the pream-

ble duration. If it detects a preamble, it remains awake and receives the message.

32

If acknowledgement is enabled, the receiving node immediately transmits an ACK

message if the message was received correctly, i.e., the CRC was valid. Upper layer

services are notified about the reception.

A transmitting node, on the other hand, directly transitions into the Transmit

state if CCA is disabled. Otherwise it makes a random backoff and performs CCA.

If the channel is clear, it transitions into the Transmit state. If the channel is busy,

the node backs off again. This is repeated until the channel is either clear or the

maximum number of backoffs is exceeded. After transmitting, it waits for an ACK

message with timeout if acknowledgement is enabled. Upper layer services are then

notified about the transmission status. The noise-floor estimate is calculated once at

the first opportunity and only re-estimated after excessive retransmission failures or

backoffs.

33

CHAPTER IV

PRECISION TIME SYNCHRONIZATION PROTOCOL

This chapter presents an overview of the IEEE 1588 protocol, and the design of a

clock servo used to discipline the clocks. Issues that are central to the implementation

of IEEE 1588 protocol on the Mica2Dot platform are presented.

4.1 Overview of IEEE 1588

The IEEE 1588 is designed to synchronize diverse clocks with varying degree of ac-

curacy and stability. For reliable operation and to achieve submicrosecond precision,

the standard [24] requires that

1. oscillator stability and accuracy be such that a second measured by any of the

clocks be within ±0.01% of SI second,

2. timestamps be taken as close to the hardware as possible,

3. the network must support multicast transmission,

4. communication paths be symmetric,

5. each clock be accurately described by well-defined properties.

34

The Mica2Dots used in the investigation do not satisfy requirement (1) as we mea-

sured skew of about 3000ppm on the motes. This may therefore limit the achievable

synchronization accuracy.

The IEEE 1588 achieves time synchronization in two steps. First, a leader-

follower hierarchy is established and then messages are exchanged to synchronize the

clocks. These two steps are described in the next two sections.

4.1.1 Establishing Clock Hierarchy

Each clock participating in an IEEE 1588 synchronization is described by a set of

properties such as its stratum, identifier, and variance. The stratum represents the

synchronization tier of the clock to UTC by means other than PTP, the identifier rep-

resents the accuracy of synchronization to UTC, and the variance gives the stability

and noise properties.

At the start of the protocol, each clock broadcasts its properties to the other

clocks in its neighborhood. Using these properties about its neighbors and a dis-

tributed algorithm referred to as the Best Master Clock (BMC) algorithm, each clock

independently determines the best clock in its neighborhood. The best clock becomes

the leader while the rest of the clocks in that neighborhood become followers. The

BMC algorithm results in a logical partitioning of the network into an acyclic graph

and hence a clear leader-follower hierarchy. Details about this protocol can be found

in [24, 25]

35

Two types of clocks are defined1: ordinary clock and boundary clock. An

ordinary clock interfaces with only one broadcast domain and can serve as a leader

or follower in the domain. A boundary clock interfaces with more than one broadcast

domain but acts as a follower in only one of the domains, and leader in the other

domains.

Figure 4.1 shows an example of a network that has been organized into a

leader-follower hierarchy. Ordinary clock 1 serves as a leader clock in the network

and all other clocks directly or indirectly derive their time from it, i.e, the rest of the

clocks are traceable to clock 1. It is therefore the grandleader clock.

4.1.2 Synchronizing Clocks

Five types of messages are defined in IEEE 1588. These are Sync, Follow Up, De-

lay Req(uest), Delay Resp(onse), and Management messages. Sync and Follow Up

messages are transmitted by the leader clock to synchronize follower clocks. A Fol-

low Up message is used to transport the timestamp of the preceding Sync message.

Delay Req message is transmitted by a follower clock to enable it estimate the one-

way delay of the communication channel. A Delay Resp message is transmitted by a

leader clock in response to the Delay Req message. Management messages are used

by optional management consoles to configure and manage the clocks.

IEEE 1588 protocol specifies two message models for synchronization: a one

message model and a two message model. Figure 4.2 shows the exchange of messages

1Version 2 of the IEEE 1588 protocol adds another type of clock called a trans-
parent clock.

36

Boundary
Clock 4

Ordinary
Clock 1

Ordinary
Clock 2

Ordinary
Clock 5

Boundary
Clock 8

Boundary
Clock 7

Ordinary
Clock 9

Ordinary
Clock 3

Ordinary
Clock 11

Ordinary
Clock 12

Ordinary
Clock 6

Grandleader

L F F

F

L

LF

F

F

F

L

L

F

F

F

L

L

Figure 4.1: A clock hierarchy established before IEEE 1588 synchronization.
Grandleader clock is an ordinary clock serving as a leader (L) in the subnet. A
boundary clock serves as a follower (F) in one broadcast domain and as a leader in
other broadcast domains.

in the two-message model. A Sync message is broadcast by the leader to all follower

clocks in the broadcast domain every sync period. The time the Sync message was

sent, T1, is conveyed to the follower clocks in a Follow Up message. When a follower

clock receives the Sync message it notes the time of reception as T2 according to its

local clock. Similarly, although less frequently, a follower clock sends a Delay Req

message to its leader and notes the time of transmission, T3. The leader responds with

a Delay Resp message that contains the time the Delay Req message was received, T4.

The exchange of messages in the one message model is similar except that the Sync

message carries its timestamp thus eliminating the need for a Follow Up message.

Suppose the follower clock has a phase offset of offset from leader and the the one-

37

way message delay is one way delay. Then, assuming symmetric links with equal

delay in both directions, the following equations calculate these two parameters:

Leader Clock Follower Clock

Time

Sync message

Follow_Up message

Delay_Req message

Delay_Resp message

T
1

T
2

T
3

T
4

Figure 4.2: Exchange of messages in IEEE 1588 protocol’s two-message model.

one way delay = {(T2 − T1) + (T4 − T3)}/2 (4.1)

offset from leader = (T2 − T1)− one way delay (4.2)

(T2−T1) is the leader-to-follower delay, l2fDelay, and (T4−T3) is the follower-to-leader

delay, f2lDelay. Equations (4.1) and (4.2) can thus be written respectively as

one way delay = {l2fDelay + f2lDelay}/2 (4.3)

offset from leader = l2fDelay − one way delay (4.4)

38

If the links are highly asymmetric, the difference in message delay must be

accounted for in order to maintain high synchronization precision.

4.2 Clock Servo Design

IEEE 1588 does not specify how the clocks must be disciplined. In a wireless envi-

ronment where high packet-loss rate is common, loss of consecutive synchronization

messages in an instantaneous clock correction regime will result in a linear increase

in offset [6]. It is therefore important to aggressively estimate and correct for skew in

each node using a continuous clock correction scheme. Also, a software-only imple-

mentation of IEEE 1588 faces intermittent noise spikes from interrupt jitter [4]. An

effective pre-processor is therefore needed to remove these spikes.

4.2.1 Linear Kalman Filter

Several factors, such as variations in (a) medium access time, (b) propagation time,

(c) radio bit synchronization accuracy, (d) delay in reading the clock, and (e) period

of transceiver oscillator, as well as the limited accuracy of computations, induce

jitter in timestamps in a software-only synchronization. Because oscillator jitter

is a consequence of the hardware design, it cannot be corrected in software. The

uncertainty in medium access time is mitigated by recording timestamps as close to

the hardware as possible.

A Kalman filter was chosen to process the clock skew in order to remove the

noise added by all the sources above. The discrete linear Kalman filter (DLKF) is

39

a recursive filter that minimizes the mean square error [5]. The following properties

make the Kalman filter suitable as a pre-processor for the PTP clock servo:

1. The Kalman filter is an optimal estimator when the variations in the tracked

signal are Gaussian-distributed. The cumulative effect of all the variations

discussed above results in a Gaussian-distributed skew as shown in Chapter 5.

2. The Kalman gain effectively determines the bandwidth of the filter. This can

be adjusted by choosing appropriate values of the process and measurement

noise which does not change the filter delay.

3. If timestamps are recorded close to the hardware and there is no store-and-

forward of synchronization messages, message delay as well as the other delays

are relatively independent of traffic load. The skew distribution can therefore be

assumed stationary; in this case, the Kalman gain converges to a constant value

that can be pre-calculated. This reduces the filter computational overhead to

one subtraction, one multiplication and one addition operation.

The temporal dynamics that govern the skew between a leader clock and a

follower clock is modeled as follows. Suppose a synchronization message is sent by

the leader every T seconds and the follower measures an offset of ∆tk in time step k.

Let sk represent the actual skew in time step k. Since the clock drift is assumed zero

over a synchronization interval (which is usually a few seconds), then

sk = sk−1 + vk−1 (4.5)

40

where, vk−1 is process noise, i.e., deviations from the model due to oscillator jitter.

This is a zero-mean, Gaussian-distributed random variable. Let s∗k represent the

measured skew at the node in time step k. Then,

s∗k = sk + wk (4.6)

where wk represents the measurement noise. Because of the high packet-loss rate

in the wireless environment, synchronization messages may not be received by the

follower clocks regularly even if they are transmitted at regular intervals. T may

therefore vary from time step to time step from the perspective of the follower.

Equation (4.5) and Equation (4.6) represent the standard model for the

DLKF. Let

• Q and R represent the variance of v and w, respectively,

• ŝk represent the estimated skew in time step k,

• ŝ−k be the predicted estimate of the skew,

• P−
k be the predicted error variance,

• Kk represents the Kalman gain, and

• Pk the corrected error variance.

Then the Kalman filter equations we use are:

Prediction:

ŝ−k = ŝk−1 (4.7)

P−
k = Pk−1 +Q (4.8)

41

Correction:

Kk = P−
k (P−

k +R)−1 (4.9)

ŝk = ŝ−k +Kk(s∗k − ŝ−k) (4.10)

Pk = (1−Kk)P−
k (4.11)

The skew estimated by this filter is used as input to the PTP clock servo as explained

in the next section.

4.2.2 PTP Clock Servo

A PI controller is commonly used to discipline clocks [3, 4]. For a specified syn-

chronization accuracy, such a controller allows one to have a longer synchronization

interval, i.e., the duration of time between two successive synchronization messages.

This frees up communication bandwidth for application messages, instead of synchro-

nization messages.

PI controllers reported in [3, 4] adjust the clock tick rate, i.e., the oscillator

frequency or model parameters of a software clock, in response to the offset that

is being tracked. This approach is susceptible to packet-losses. For example, if

the leader’s clock rate is not closely tracked or the follower clock has poor holdover

properties, loss of consecutive Sync messages produce spikes in the offset and lead to

instability in the PI controller [4]. It is therefore critical to closely track the leader

clock rate in a lossy communication environment. Therefore, the PI controller was

designed to adjust the clock rate in response to changes in the clock skew. Two

immediate benefits of this approach are:

42

1. it is insensitive to message losses because clock skew remains practically con-

stant over a few synchronization intervals,

2. it attenuates noise in the offset since the skew is estimated by dividing offset

difference, which is in microseconds, by the synchronization period, which is in

seconds.

Figure 4.3 shows a control block diagram of the clock servo.

S  z = 1T
z−1
z

Skew Estimator

P  z=K pK i
z
z−1 C z =K c

T
z−1

r[n] e[n]+

_

y[n]

PI Controller Clock

Figure 4.3: The control model for our PTP clock servo.

The closed loop system function for this controller is

Hcl(z) =
Kc {(Kp +Ki)z −Kp}

z2 + {Kc(Kp +Ki)− 1} z −KcKp

(4.12)

This function is independent of the synchronization period T , and demonstrates its

robustness against synchronization message losses.

4.2.3 Time Calculation

Since we only correct the clock rate in order to drive the skew, rather than the

offset, to zero, the clock may register a fluctuating offset around a constant value.

43

This offset, or phase error, may only be updated at synchronization (sync) instants.

Its value at sync instant n is given by

En = ∆0 +
n∑

i=1

(∆i −∆i−1) (4.13)

where ∆0 is the offset at reference time n = 0 and ∆i is the offset at sync instant i.

The sum term accounts for accumulation in phase error caused by the imperfect rate

synchronization. A leader clock must embed its current time error in the next Sync

message. Consequently, the absolute global time on a follower clock at time t, Sf (t),

is given by

Sf (t) = Sf
c (t)−

{
El

t + Ef
t

}
(4.14)

where Sf
c (t) is the reading of the follower’s local clock, El

t is the phase error of the

leader clock, and Ef
t is the phase error of the follower clock at time t.

4.3 Implementation

The IEEE 1588 protocol was implemented on top of the MAC protocol discussed in

Chapter 3. Figure 4.4 shows the fixed-size MAC layer frame structure that was used

to transfer data and synchronization messages among nodes. IEEE 1588 messages

were uniquely identified with a value of PTP FRAME in the frame type field.

Because the Mica2Dot did not have a capacity to transmit a Sync message

with its own timestamp, the two-message model of the IEEE 1588 was adopted. No

spanning tree or self-organizing algorithm was implemented. Multi-hop synchroniza-

tion was therefore performed with a statically organized network.

44

Dest.
Addr.

(1 byte)

Src.
Addr.

(1 byte)

Frame
Type

(1 byte)
Payload

(N bytes, N >=10)
CRC

(2 bytes)
Frame Structure

Payload Structure of
Synchronization Messages

Msg
Type

(1 byte)

ID
(1 byte)

Timestamp
(8 bytes)

Padding
(N-10 bytes)

Figure 4.4: Fixed-size frame structure used to transfer data and synchronization
messages. The message ID in the synchronization message payload structure was
necessary to avoid associating a Follow Up message with the wrong Sync message.

4.3.1 Protocol State Machine

Figure 4.5 is the state machine that was used to implement the synchronization on

the Mica2Dot motes. The transmission time of the first Sync message by leader clocks

were randomly staggered, based on the node’s address, to avoid collisions and hence

degraded performance. In the implementation, a boundary clock was referred to as

a leader clock.

4.3.2 Timestamping

Timestamping is a critical part of the implementation and the method used limits

the achievable precision. Two reference points are used in taking timestamps [3]:

clock timestamp point and message timestamp point. Figure 4.6 illustrates these

two reference points. The message timestamp point is the location in the message

structure that is used as a reference point for taking timestamps. The clock timestamp

point is the location in the node where timestamps are taken. A timestamp is taken

when the message timestamp point passes the clock timestamp point.

45

The first bit of the SOF was used as the message timestamp point. The clock

timestamp point for outgoing messages was in the CC1000 driver, just before the SOF

byte was transmitted. The clock timestamp point for incoming messages was also in

the CC1000 driver, on reception of the first non-preamble byte. The timestamp was

adjusted according to the position of the most-significant-bit of the SOF byte in the

non-preamble byte.

A clock resolution of 1ms was used. To obtain timestamps at the highest

resolution, the counter value at the occurence of the timestamp event was used to

calculate a more precise time of the event.

4.3.3 Clock Correction

The system software clock was disciplined by modulating the clock rate with the

output of the PI controller. The tick rate of the software clock, represented by

the parameter nanoSecsPerTick, is the number of nanoseconds that is added to the

system time any time a clock interrupt occurs.

Large skews were observed between the motes. Hence, to speed up conver-

gence of the clock servo, the skew of the follower clock was estimated at startup and

used to correct the clock rate. As shown in Chapter 5, this resulted in eight-fold

reduction in convergence time.

46

power up

Ready

Transmit Delay_Req

Calculate f2l_delay

Filter prop_delay

Calculate
l2f_delay & offset

Sync timer [grandleader || leader]
/cancel timer

Delay_Req timer [leader || follower]
/cancel timer

Delay_Resp msg
[(leader || follower) && source addr == OK]

Notation: event [condition]/action Any State

Initialize

Set Delay_Req Timer
(Random number between 5-15 mins)

Transmit Sync

Set Sync Timer

Calculate prop_delay

Estimate skew

Filter skew

Discipline clock

Run clock servo

Follow_Up msg
[(leader || follower) && source addr == OK]

Transmit Follow_Up

Record Local Time

Sync msg
[(leader || follower) && source addr == OK]

Figure 4.5: PTP synchronization protocol state machine.

47

Physical Layer

SOF preambleheaderpayloadCRC

Hardware

Network Protocol Stack

Application

Message Timestamp Point

PTP CLOCK

Clock Timestamp Point
for inbound messages

Clock Timestamp Point
for outbound messages

communication medium

inbound message
 latency

outbound message
 latency

Figure 4.6: Clock and Message Timestamp Points. Both inbound and outbound
messages are timestamped in the CC1000 driver.

48

CHAPTER V

RESULTS AND DISCUSSION

This chapter presents experimental results for the IEEE 1588 style synchronization

on Mica2Dot motes. After presenting data to show that clock skew is Gaussian-

distributed and therefore the Kalman filter is optimal in the mean-square error sense,

the synchronization accuracy and clock stability achieved by the approach in this

thesis and the one by Branicky et al. [4] are compared. Finally, the results are

discussed.

5.1 Distribution of Skew and Message Latency

Two experiments were conducted to obtain the distribution of relative skew between

a pair of motes. First, two motes were programmed to service the external interrupt

and the counter overflow interrupt. An external signal (once every second) was then

applied to interrupt pin and the number of clock cycles between two successive pulses

were recorded on both motes. Next, one mote was designated as the leader and the

other was the follower. On every external interrupt, the leader sent a Sync message

with its local timestamp. The follower recorded both its local timestamp and the

leader’s timestamp for each Sync message it received. The distribution of the skew

from these experiments is shown in Figure 5.1. A third experiment was conducted to

49

obtain the distribution of message latency. In this experiment, messages were sent

between a pair of nodes and the delay between a message transmission and its recep-

tion were measured with an oscilloscope. Figure 5.2 shows the distribution of message

latency with and without interrupts being enabled. All the three distributions exhibit

Gaussian properties.

5.2 Synchronization Results

The technique in this thesis that filters clock skew with a Kalman filter and feeds it

to the PI controller shall be referred to as skew-PI; and the technique by Branicky

et al. [4] that filters offset with a conventional digital filter and feeds it to the PI

controller shall be referred to as offset-PI. The results in this section compare these

two techniques over the wireless link. Two metrics are used in this evaluation: (a)

synchronization accuracy represented by offset standard deviation, and (b) Allan

deviation of the disciplined clock. To make a fair comparison, the Ziegler-Nichols

method [26] was used to tune both controllers.

5.2.1 Single-hop Synchronization

Two nodes were setup with one designated as the leader clock and the other as a

follower clock. A common pulse-per-second (pps) signal was applied to an interrupt

pin on each node, and the nodes printed their local time when a signal occurs.

50

Synchronization Accuracy

The single-hop synchronization accuracy achieved using skew-PI is shown in Fig-

ure 5.3 and that achieved using offset-PI is shown in Figure 5.4. In both cases, the

synchronization period was one second. Skew-PI performs more than twice as better

than offset-PI and has a lower absolute offset.

Allan Deviation

Allan deviation is a standard metric used to evaluate the stability of clocks over

different averaging windows. It is defined as

σ(τ) =

√√√√ 1

2(M − 1)

M−1∑
i=1

(si+1 − si)2 (5.1)

where τ is the averaging period, si is skew measurement number i, and M is the

number of skew samples.

Figure 5.5 shows the Allan deviation achieved by skew-PI and offset-PI. Skew-

PI produces a disciplined clock with better stability in all time scales.

Effect of Synchronization Period on Accuracy

The synchronization period was varied to study its effect on synchronization accuracy.

Figure 5.6 shows a plot of accuracy versus period for both methods. We could only get

data upto 2 seconds for offset-PI because the servo became unstable after 2 seconds.

51

5.2.2 Multi-hop synchronization

Multi-hop synchronization is a more practical scenario than single-hop in engineered

systems. The performance of the two methods were evaluated in a multi-hop setup.

For an n−hop synchronization, n nodes were setup in a logically linear topology

eventhough all the nodes were physically in the same wireless broadcast domain. The

first node was made the grandleader, the middle nodes served as leaders, and the

last node was configured as a follower. The first and last nodes were connected to an

external pps signal and programmed to print their local time on the occurence of a

signal. Figure 5.7 shows that while the accuracy degrades with the number of hops

in both methods, offset-PI degrades much faster.

5.2.3 Convergence Time

We observed large relative skew between the motes. To speed up convergence of

our servo, we used the first few Sync messages to estimate and correct the skew of

the follower, before starting the servo action. Figure 5.8 shows the benefit of this

correction. The clock servo converged within about 100 seconds when the skew was

estimated and corrected; in contrast, it required 800 seconds to converge without the

correction.

5.3 Discussion

The Gaussian distribution of clock skew is important for optimal tracking by the

Kalman filter. Figure 5.2 clearly shows why software only implementations expe-

52

rience offset spikes from interrupts. The interrupts have spread the message delay

distribution. This effectively limits the accuracy that can be achieved using the offset-

PI approach. However, the skew-PI approach is resistant to these spikes since they

are attenuated in the conversion from offset to skew as explained in Section 4.2.2.

The higher accuracy obtained by the skew-PI may partly be attributed to its

resistance to offset noise spikes caused by message-losses. A noise spike produced in

such a case does not translate to a spike in skew. Consequently, the servo remains

stable under such conditions as demonstrated by the Allan deviation plot. The same

reason may account for its superior performance in the multi-hop scenario.

Viewed from a different perspective, a message-loss is equivalent to doubling

the synchronization period. The closed-loop system stability of the skew-PI servo

clearly shows its independence from the synchronization period. It remains stable

under all practical values of the synchronization period. This is important in order

to reliably trade-off accuracy for overhead, as is often the need, and still expect the

servo to remain stable. This tradeoff is not possible with the offset-PI approach as its

stability cannot be guaranteed for all synchronization periods without retuning the

PI controller.

Fast convergence time of the clock servo is important in many applications

where nodes dynamically join the network. It is therefore significant that the conver-

gence time reduced eight-fold with the initial skew estimation and correction scheme.

53

(a) Distribution of relative skew using oscillator

counts

(b) Distribution of relative skew from software

Figure 5.1: Relative skew measured with two methods show a Gaussian-distribution.
This is important for optimal tracking of the skew by the Kalman filter.

54

520 530 540 550 560 570 580 590
0

20

40

60

80

100

120

140

160

180

200

Delay (µs)

F
re

qu
en

cy

Distribution of Packet Delay with Timer Interrupt Disabled (µ = 552.1 µs, σ = 1.5 µs)

520 530 540 550 560 570 580 590
0

50

100

150

200

250

Delay (µs)

F
re

qu
en

cy

Distribution of Packet Delay with Timer Interrupt Enabled (µ = 553.0 µs, σ = 4.2 µs)

Figure 5.2: Message latency with interrupts (bottom) and without interrupts (top).
Interrupts spread the distribution of the message latency: standard deviation of mes-
sage latency increases from 1.5µs without interrupts to 4.2µs with interrupts.

55

Figure 5.3: Single-hop synchronization accuracy with skew-PI method. Standard
deviation is 16.8µs.

Figure 5.4: Single-hop synchronization accuracy with offset-PI method. Standard
deviation is 40.4µs.

56

Figure 5.5: Allan deviation plots. While the offset-PI method has better stability than
the undisciplined clock in the large time scale, the PTP clock servo using the skew-PI
method consistently provides a far more stable clock in the wireless environment.

Figure 5.6: Single-hop synchronization accuracy versus synchronization period.
While Skew-PI degrades slowly, offset-PI’s servo becomes unstable for periods greater
than 2 seconds.

57

Figure 5.7: Multi-hop synchronization accuracy: Skew-PI has higher accuracy which
degrades at a much slower rate with number of hops.

58

(a) Convergence time without initial skew correc-

tion

(b) Convergence time with initial skew correction

Figure 5.8: Convergence time with initial skew correction is about 100 seconds but
it is about 800 seconds without initial skew correction. Synchronization period was
one second.

59

CHAPTER VI

CONCLUSION

A technique for implementing IEEE 1588 style synchronization in networked embed-

ded systems that rely on wireless media was presented in this thesis. To compensate

for the poor stability of local clocks and the lossy wireless medium, a clock servo

was designed that used the follower clock’s skew, filtered with a Kalman filter, as the

tracking signal for a PI controller. The results demonstrated that the PTP clock servo

that uses the skew with a Kalman filter consistently provides a more accurate and

stable disciplined clock than a clock servo that uses offset with a conventional digital

filter in the wireless environment. Even with the poor stability of the oscillators used

by the Mica2Dot motes, synchronization accuracies of about 17 µs standard deviation

was achieved in a software-only implementation. In the future, this technique can be

extended to improve fault tolerance in wireless systems and to achieve determinism in

networked embedded systems. Future work may also focus on using the Kalman filter

as a fusion tool for the offset from other nodes in order to improve synchronization

accuracy and achieve internal synchronization.

60

BIBLIOGRAPHY

[1] H. Kopetz. Why do we need a sparse global time-base in dependable real-time
systems? In IEEE Symposium on Precision Clock Synchronization (ISPCS) for
Measurement, Control and Communication, Vienna, Austria, October 2007.

[2] E. Lee and S. Matic. On determinism in event-triggered distributed systems with
time synchronization. In IEEE Symposium on Precision Clock Synchronization
(ISPCS) for Measurement, Control and Communication, Vienna, Austria, Oc-
tober 2007.

[3] J. C. Eidson. Measurement, control and communication using IEEE 1588. Springer,
2006.

[4] K. Correl, N. Barendt, and M. Branicky. Design considerations for software only
implementations of the IEEE 1588 precision time protocol. In Proceedings of the
Conference on IEEE-1588 Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems, Winterthur, Switzerland,
October 2005. NIST and IEEE.

[5] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical
Report Tech. Rep. 95-041, Department of Computer Science, University of North
Carolina, Chapel Hill, NC, July 2006.

[6] K. Römer, P. Blum, and L. Meier. Time synchronization and calibration in
wireless sensor networks. In Handbook of Sensor Networks, pages 199–237. John
Wiley & Sons, 2005.

[7] D. P. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 2nd edition,
1992.

[8] et. al. M. Ali. Medium access control issues in sensor networks. ACM Sigcomm
Computer Communication Review, 36:33–36, 2006.

[9] I. Demirkol, C. Ersoy, and F. Alagoz. MAC protocols for wireless sensor net-
works: a survey. IEEE Communications Magazine, 44(4):115–121, 2006.

61

[10] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wire-
less sensor networks. In Proceedings of the Second International Conference on
Embedded Networked Sensor Systems, pages 95–107, Baltimore, Maryland, USA,
November 2004.

[11] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated
adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on
Networking, 12(3):493–506, June 2004.

[12] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol
for wireless sensor networks. In First International Conference on Embedded
Networked Sensor Systems, pages 171–180, Los Angeles, CA, 2003.

[13] J. Elson and K. Römer. Wireless sensor networks: A new regime for time synchro-
nization. ACM SIGCOMM Computer Communications Review, 33(1):149–154,
January 2003. Springer Inc.

[14] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization for
wireless sensor networks: a survey. Ad Hoc Networks, 3:281–323, 2005.

[15] J. Elson. Time synchronization in wireless sensor networks. PhD thesis, Uni-
versity of California, Los Angeles, CA, USA, 2003.

[16] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding time synchroniza-
tion protocol. In SenSys ’04, Baltimore, MA, USA, November 2004.

[17] H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization ser-
vice for wireless sensor networks. ACM Mobile Computing and Communications
Review, 8(1):125–139, January 2004.

[18] G. Gaderer P. Loschmidt and T. Sauter. Clock synchronization for wireless po-
sitioning of COTS mobile nodes. In IEEE Symposium on Precision Clock Syn-
chronization (ISPCS) for Measurement, Control and Communication, Vienna,
Austria, October 2007.

[19] T. Cooklev, J. C. Eidson, and A. Pakdaman. An implementation of IEEE 1588
over IEEE 802.11b for synchronization of wireless local area network nodes. IEEE
Transactions on Instrumentation and Measurement, 56:1632–1639, 2007.

[20] MPR-MIB (Mica Platforms) User Manual. http://www.xbow.com/support/

Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf.

62

[21] I. Rhee, A. Warrier, M. Aia, and J. Min. ZMAC:a hybrid MAC for wireless
sensor networks. In SenSys ’05, San Diego, CA, USA, November 2005.

[22] Chipcon CC1000 Radio Datasheet. http://focus.ti.com/lit/ds/symlink/

cc1000.pdf.

[23] T. Rappaport. Wireless Communications: Principles and Practice. Prentice
Hall PTR, 2nd edition, 2002.

[24] The Institute of Electrical and Electronics Engineers, Inc. IEEE standard for a
precision clock synchronization protocol for networked measurement and control
systems, IEEE Std 1588-2002. New York, NY, 2002. ISBN 0-73813369-8.

[25] J. C. Eidson and K. Lee. Sharing a common sense of time. IEEE Instrumentation
and Measurement Magazine, 6:26–32, March 2003.

[26] A. O’Dwyer. Handbook of PI and PID controller tuning rules. London: Imperial
College Press, 2nd edition, 2006.

63

APPENDIX

CLOSED LOOP SYSTEM FUNCTION OF SERVOS

A.1 Closed-loop System Function for Skew-PI Servo

The closed-loop servo block diagram was shown in Figure 4.3. The Open-loop system

function is given by

Hs(z) =
1

T

z − 1

z

{
Kp +Ki

z

z − 1

}
Kc

T

z − 1

=
Kc {(Kp +Ki)z −Kp}

z(z − 1)

Hence the closed-loop system function is

Hscl(z) =
Hs(z)

1 +Hs(z)

=
KcKp(z − 1) +KcKiz

z(z − 1) +KcKp(z − 1) +KcKiz

=
Kc(Kp +Ki)z −KcKp

z2 + (KcKp +KcKi − 1)z −KcKp

64

The poles are:

z =
(1−KcKp −KcKi)±

√
(KcKp +KcKi − 1)2 + 4KcKp

2

Using a normalized value of Kc = 1, the poles may be written as

z =
(1−Kp −Ki)±

√
(Kp +Ki − 1)2 + 4Kp

2

For stability, ∣∣∣∣∣(1−Kp −Ki)±
√

(Kp +Ki − 1)2 + 4Kp

2

∣∣∣∣∣ < 1

Note that the stability criterion is independent of synchronization period T .

65

A.2 Closed-loop System Function for Offset-PI Servo

The closed-loop servo block diagram is shown in Figure A.1. The closed-loop system

P  z=K pK i
z
z−1 C z =K c

T
z−1

r[n] e[n]+

_

y[n]

PI Controller Clock

Figure A.1: The control model for offset-PI clock servo.

function presented in [3] is as follows. Its open-loop system function is given by

Ho(z) =

{
Kp +Ki

z

z − 1

}
KcT

z − 1

=
KcT {(Kp +Ki)z −Kp}

(z − 1)2

Hence the closed-loop system function is

Hocl(z) =
Ho(z)

1 +Ho(z)

=
KcT {(Kp +Ki)z −Kp}

(z − 1)2 +KcT {(Kp +Ki)z −Kp}

=
KcT {(Kp +Ki)z −Kp}

z2 + {KcT (Kp +Ki)− 2} z + {1−KcKpT}

66

The characteristic equation of this system is

z2 + {KcT (Kp +Ki)− 2} z + {1−KcKpT} = 0

and therefore its poles are given by

z =
−(−2 + P + I)±

√
(−2 + P + I)2 − 4(1− P)

2

where P = KcKpT and I = KcKiT . For stability,∣∣∣∣∣−(−2 + P + I)±
√

(−2 + P + I)2 − 4(1− P)

2

∣∣∣∣∣ < 1

The stability of this system depends on the synchronization period T .

67

