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Abstract—The recently proposed Pocket Switched Network
paradigm takes advantage of human social contacts to oppor-
tunistically create data paths over time. Our goal is to examine
the effect of the human contact process on data delivery. We
find that the contact occurrence distribution is highly uneven:
contacts between a few node-pairs occur too frequently, leading
to inadequate mixing in the network, while the majority of
contacts are rare, and essential for connectivity. This distribution
of contacts leads to a significant variation in performance over
short time windows. We discover that the formation of a large
clique core during the window is correlated with the fraction of
data delivered, as well as the speed of delivery. We then show
that the clustering co-efficient of the contact graph over a time
window is a good predictor of performance during the window.
Taken together, our findings suggest new directions for designing
forwarding algorithms in ad-hoc or delay-tolerant networking
schemes using humans as data mules.

I. INTRODUCTION

The Pocket Switched Network (PSN) paradigm was recently
proposed [10] as a means of ferrying data using human social
contacts. At its core is the idea that as the storage capacities of
mobile devices increase, and support for bluetooth and other
short-range data transfer protocols becomes more prevalent,
we could use these devices to construct data paths in a store-
carry-forward fashion: Various intermediate nodes store the
data on behalf of the sender and carry it to another contact
opportunity where they forward the data to the destination or
another node that can take the data closer to the destination.

A typical contact opportunity where data hops from one
node to another happens when two mobile devices are in
range of each other, usually when the humans carrying the
devices meet in a social situation. Thus, the path from source
to destination is constructed over time and consists of a chain
of intermediate nodes that altruistically carry the sender’s data
at various times before the destination gets it.

Designing for, and exploiting human mobility in this manner
becomes important in situations where networking infrastruc-
ture has been damaged (e.g. after a disaster), or does not exist
(e.g. in remote areas and in some developing countries). By
the same token, some applications, such as email, database
synchronization and certain types of event notifications, are in-
herently asynchronous and can tolerate relatively long delays.
Mobility can be exploited to provide multiuser diversity gains
for such applications [8]. New applications, such as exchang-
ing music and media files over an ad-hoc collocated peer-to-
peer network, are being proposed [14] to take advantage of
short-range connectivity between mobile devices.

At an abstract level, the PSN of N nodes can be thought
of as a temporally evolving undirected contact graph with N
vertices. At any given instant, very few edges exist. Paths
are created over time, with each contact corresponding to
a new (momentary) edge in the graph. Edges appear and
disappear according to some underlying stochastic process that
corresponds to the social contacts. The sequences of edges
(contacts) that occur constitutes a trace of the PSN.

Any route selection strategy constructs a path by sampling
the edges that appear. Its performance depends upon the match
between the route selection strategy and the rules governing
the occurrences of contacts. If the route selection strategy is
to flood data at every contact opportunity, we will always
discover the quickest possible path. However, the costs of
flooding are unacceptably high. In this work, we attempt to
investigate the properties of this contact generation process.

We find that contact occurrences exhibit a unique power-
law distribution: An edge randomly chosen from the N(N −
1)/2 possible edges in the PSN’s graph is much more likely
to be a rare contact in the trace than a frequently occurring
contact; a rare contact could occur fewer than ten times in
the trace, whereas a frequent contact could occur hundreds
of times. The PSN’s connectivity depends crucially on the
rare contacts. On the other hand, frequent contacts often occur
without there being new data to exchange, even when data
is being flooded. This inadequate mixing of contacts greatly
increases the number of contacts required to deliver data.

Although it would appear from this macroscopic picture that
PSNs are largely inefficient, we find that over time windows of
small duration, there is a significant variation in performance.
We discover that in time windows in which a large fraction
of data gets delivered, rather than all nodes being able to
uniformly reach each other with the same efficiency, there is
usually a huge clique of nodes that have 100% reachability
between themselves. Furthermore, data is delivered faster
when both the sender and destination are clique members.
We show how to identify such time windows by computing a
clustering co-efficient on the contact graph.

The rest of the paper is structured as follows: Section II
develops the simulation methodology used. The effect of
the contact occurrence distribution and the order of contact
occurrences on data deliveries is presented in Section III. In
Section IV, we show how to identify and exploit periods of
good connectivity. Section V discusses related work in the area
and section VI concludes.
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II. SETUP AND METHODOLOGY

We imagine the participants of a PSN would be a finite
group of people who are at least loosely bound together by
some context – for instance, first responders at a disaster situ-
ation, who need to send emails to each other. Multiple PSNs
could co-exist for different contexts, and a single individual
could conceivably participate in several different PSNs1.

Our model that PSN participants form a cohesive group
places the requirement that an ideal PSN should be able to
create paths between arbitrary source-destination pairs. This
is reflected in our simulation setup, where the destinations for
each source node are chosen randomly. Also, our traces are
picked to be close to the limits of Dunbar’s number (=147.8,
95% confidence limits: 100.2–231.1), the average size for
cohesive groups of humans [5].

Traces: The first trace consists of bluetooth contacts
recorded from 1 Nov. 2004 to 1 Jan. 2005 between par-
ticipants of the MIT Reality Mining project [6]. Because
we wish to measure contact opportunities for data transfer,
we conservatively discarded contacts lasting less than five
minutes. This trace has contacts between N = 91 subjects.
The second trace comes from a four week subset of the UCSD
Wireless Topology Discovery [15] project which recorded Wi-
Fi Access Points seen by subjects’ PDAs. We treat PDAs
simultaneously in range of the same Wi-Fi access point as
a contact opportunity. This data has N = 202 subjects.

The subjects in the MIT trace consist of a mixture of
students and faculty at the MIT Media Lab, and incoming
freshmen at the MIT Sloan Business School. The UCSD trace
is comprised of a select group of freshmen, all from UCSD’s
Sixth College. As such, we can expect subjects in both traces
to have reasons for some amount of interaction, leading to a
loosely cohesive group structure. Prior work on community
mining using the same traces supports this [18].

Simulation setup and workload: At the beginning of
simulation, data is created, marked for a randomly chosen
destination, and associated with the source node. An oracle
with complete knowledge of the future can choose to transfer
data at appropriate contact opportunities and thereby form
the quickest path to the destination. To simulate this, we
exhaustively enumerate all possible paths by flooding data at
each contact opportunity, and choose the quickest.

Performance measure: Consider the time-ordered se-
quence (with ties broken arbitrarily) of contacts that occur
globally in the network. Since there are N(N − 1) quickest
paths between different sender-destination pairs, a maximum2

of N(N−1) contacts in the the global sequence of contacts act
as path completion points. Of these, Nd become “interesting”
when there are d destinations per sender. Since the destinations
are chosen randomly, we might expect that on average, if k

1Note that this is in contrast to a single unboundedly large network of
socially unrelated individuals as in the famous “small-world” experiment [16]
that examined reachability in a network essentially comprising all Americans
and discovered an average 5.2 (≈ 6) degrees of separation.

2The actual number could be lesser because a contact with a particularly
rare node could complete multiple paths that end in that node.

Fig. 1. Fraction of data delivered as a function of the number of contacts,
for the MIT and UCSD traces (number of destinations per sender shown in
brackets). The curves for each network are clustered together, showing that
the delivery ratio evolves independently of the load.

path completion points have occured, the fraction of these that
are interesting is independent of d: When d is greater, more
data gets delivered after k path completion points, but there is
also more data to deliver.

The above discussion motivates our method of measuring
the efficiency of the PSN: At any point in the simulation, the
delivery ratio, measured as the fraction of data that has been
delivered, or equivalently, the number of “interesting” path
completion points we have seen, is taken as a figure of merit.
The more efficient the PSN is, the faster this ratio evolves to
1, as the number of contacts and time increase.

Unless otherwise specified, our experiments examine deliv-
ery ratio evolution statistically averaged over 10 independent
runs, with each run starting at a random point in the trace, and
lasting for 6000 contacts. We confirm our intuition in Fig 1,
which shows that the delivery ratio evolves similarly, whether
d is 1 or a maximum of N − 1 destinations per sender.

III. DELIVERY PROPERTIES OF THE PSN

A PSN contact trace is determined by the distribution of
contact occurrences and the time order in which these contacts
occur. In this section, we examine how these properties affect
delivery ratio evolution. Our approach is to create a synthetic
trace from the original trace by disrupting the property we wish
to study. Comparing delivery ratio evolution in the original and
synthetic traces informs us about the effects of the property.

Our main findings are that in both the traces we examine,
time correlations between contacts that occur too frequently
leads to wasted contacts, and that the progress of the delivery
ratio as well as the connectivity of the PSN itself are precar-
iously dependent on rare contacts.

A. Frequent contacts are inadequately mixed

To investigate the effect of the time order in which contacts
occur, we replay the trace, randomly shuffling the time order
in which links occur. Observe that the delivery ratio increases
much faster (Fig 2, the curve marked “shuffled” evolves faster
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Fig. 2. Delivery ratio evolution for synthetically derived variants of MIT
(left), UCSD (right) traces. ’trace’ is the original. ’Shuffled’, the same trace
with time order of contacts randomly shuffled. ’Effective’ replays ’trace’,
counting only contacts where data was exchanged. ’link distr’ is an artificial
trace with the same size and contact occurrence distribution as the original.

Fig. 3. Contact occurrence distributions (log-log): A random edge appears
n times with probability p(n). To the left of the dashed line at n = 45, the
distributions for both traces coincidentally happen to be similar. The inset
shows the difference when normalised by the number of edges. Inset: A
random edge constitutes a fraction f of the trace with probability p(f).

than “trace”). The random shuffle has the effect of removing
any time correlations of contacts in the original trace. Thus the
improved delivery ratio evolution implies that time correlations
of the contacts in the original data slowed down the mixing
of data among the nodes, causing them to be delivered later.

Manual examination reveals several time correlated contacts
where two nodes see each other multiple times without seeing
other nodes. At their first contact, one or both nodes could
have data that the other does not, which is then shared by
flooding. After this initial flooding, both nodes contain the
same data – subsequent contacts are “non-effective”, and only
increase the number of contacts happening in the network
without increasing the delivery ratio.

To quantify the impact, in the curve marked “effective” on
Fig 2, we plot delivery ratio evolution in the original trace,
counting only the contacts in which data could be exchanged.
This coincides well with the time-shuffled trace, showing that
non-effective contacts are largely responsible for the slower
delivery ratio evolution in the original trace.

Next, we construct a synthetic trace that has the same
number of nodes as the original trace, as well as the same
contact occurrence distribution. By this, we mean that the
probability of contact between any pair of nodes is the same
as in the original trace. The delivery ratio evolution of this
trace, depicted as “link distr” in Fig 2, is seen to evolve in a
similar fashion as the time-shuffled MIT trace. This indicates

(a) Robustness to cutoff: MIT (below), UCSD (above). Max cutoff
specifies a maximum cutoff for the frequency of contacts, thus removing
the most frequently occurring ones. Min cutoff specifies a minimum
frequency of contacts – removing the rarest contacts causes the number
of nodes that are connected to drop precipitously.

(b) Evolution of delivery ratio with contacts that occur more than cutoff
times removed. MIT (left), UCSD (right). The network still remains
connected, and manages to deliver data with slightly fewer contacts.

Fig. 4. Relative importance of rare and frequent contacts

that once time correlations are removed, the delivery properties
are determined mainly by the contact occurrence distribution.

B. Connectivity depends on rare contacts

The fact that three different traces (shuffled, effective, and
link distr), which are based on the same contact occurrence
distribution, essentially evolve in the same manner leads us to
examine this distribution further. Fig 3 shows the distribution:
A random contact in the trace is much more likely to be a rare
one than a frequently occurring contact; a rare contact could
occur fewer than ten times in the trace, whereas a frequent
contact could occur hundreds of times.

Fig 4(a) shows that the rare contacts are extremely important
for the nodes to stay connected. When contacts that occur
fewer than a minimum cutoff number of times are removed,
the number of nodes remaining in the trace falls sharply. This
implies that there are a number of nodes which are connected
to the rest of the nodes by only a few rare contacts.

On the other hand, removing the most frequently occurring
edges (by specifying a maximum cutoff frequency for contact
occurrences) does not affect connectivity greatly. For instance,
the MIT trace remains connected as long as contacts that
occur 10 or more times in the trace are retained. This suggests
that nodes which contact each other very frequently are also
connected by other paths, comprising only rare edges.
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Fig. 5. Reachability graph cliques: (a) Delivery ratio in the contact graph correlates with size of max clique in the reachability graph over the time window.
(b) CDFs of delivery times for all data delivered in a one week time window when the clique size was 65. The four categories shown are different combinations
of sender-receiver pairs when the source (or destination) is inside (or outside) the clique. clique-clique transfers are faster than other combinations. (c) The
size of the maximum clique observed in the reachability graph during one-week time windows seems to be bimodally distributed.

Interestingly, Fig 4(b) shows that with the most frequent
edges removed, achieving a given delivery ratio can take
slightly fewer contacts. This appears paradoxical but can be
explained as follows: In terms of time, data delayed waiting for
the occurrence of a rare contact still takes the same amount
of time to reach their destination, and data previously sent
on paths containing more frequent edges alone is delayed,
because it now has to be re-routed over rare contacts. However,
the reliance on rare contacts allows “batch-processing”: Each
node involved in the rare contact has more data to exchange
when the contact happens, thus decreasing the overall count
of contacts taken to achieve a given delivery ratio.

IV. EXPLOITING PERIODS OF GOOD CONNECTIVITY

The previous section showed that at a macroscopic level,
a PSN is a challenged network, with connectivity crucially
dependent on rare contacts, and frequent contacts non-effective
for data transfer. In this section, we zoom in on small time
windows and find that within windows of the same duration,
there is a huge variation in performance, with some achieving
a very high delivery ratio and others not. We observe the
occurrence of large cliques in successful time windows and
suggest a way to exploit this. Due to lack of space, we only
present results from the MIT trace in this section.

A. Large cliques correlate with good connectivity

Over fixed time windows, the temporal contact graph of the
PSN can be viewed as constructing a static reachability graph
where a directed edge is drawn from node s to t if the sender
s can transfer data to destination t during that window. The
reachability graph is constructed by flooding data during the
window between every possible source-destination pair. We
examine this graph for clues about successful time windows
which achieve high delivery ratios.

Fig 5 (a) shows that a high delivery ratio is strongly
correlated with large cliques in the reachability graph. While
we expect delivery ratio to be high when the reachability graph
has a large clique (implying that there is complete connectivity
between large fraction of nodes), it is unexpected that the
converse is true, viz. whenever the delivery ratio is high, there
is a large clique in the reachability graph.

Fig 5 (b) looks at the quality of the paths between nodes
in the clique, outside the clique, as well as the paths that
go from source nodes in the clique to destinations outside it,
and vice-versa. Plotting the cumulative distribution functions
of the delivery times of the quickest paths for each category
shows that data is transferred faster when both the sender and
receiver are members of the large clique.

Thus, during time intervals when there is a giant clique in
the reachability graph, the PSN is very successful for a large
subset of nodes. However, the membership of the clique, as
well as its size (see Fig 5 (c)) exhibit a large variation.

B. Clustering co-efficient correlates with high delivery ratio

The clique occurs in the reachability graph, and cannot
be easily detected without flooding all paths and performing
extensive computation. We now show that the cliquishness of
the contact graph can serve as an approximation.

Suppose a vertex v has neighbours N (v), with |N (v)| = kv .
At most kv(kv − 1)/2 edges can exist between them (this
occurs when v is part of a kv-clique). The clustering co-
efficient [17] of the vertex,Cv , is defined as the fraction of
these edges that actually exist. The clustering co-efficient of
the graph is defined as the average clustering co-efficient of all
the vertices in the graph. In friendship networks, Cv measures
the extent to which friends of v are friends of each other, and
hence, approximates the cliquishness of the graph.

Fig 6 shows that the average clustering co-efficient of the
contact graph correlates well with the delivery ratio achieved
during time windows of various sizes in the MIT data trace

C. Implications

Taken together, this set of findings implies that algorithms to
predict the presence of large clique situations can be useful.
One strategy is to employ humans in the loop. Cliques that
represent a large meeting occurring in the near future can
easily be predicted by the clique’s members. Such information
could potentially also be deduced from calendars on the nodes’
mobile devices.

An alternate strategy is to force “artificial” contacts to im-
prove delivery ratio. Notice that two cliques in the reachability
graph can be merged by arranging for relatively few contacts
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Fig. 6. Scatter plot showing the correlation between delivery ratio during
random time windows of different sizes and cluster co-efficient of the contact
graph for that time window. squares, circles and triangles represent windows
of one-hour, one-day and 3 days, respectively.

between members of the cliques during the time window
being considered. Also, if there are subsets of nodes that
form small cliques in consecutive time windows of size t,
then by arranging for one representative from each clique to
meet at the end of the first window, we can merge all the
small cliques into a bigger one over a time window of size 2t.
Such rendezvous can also be accomplished using stationary
nodes such as throwboxes [19] placed at strategic locations
common to members of both the small cliques. We suggest
that heuristics that focus on joining smaller cliques or single
nodes to a giant clique would be one way to improve the
delivery capabilities of PSNs.

V. RELATED WORK

Conceptually, PSNs are Delay-Tolerant Networks [7], and
generic results from that framework apply. For instance, a
forwarding algorithm that has more knowledge about contacts
is likely to be more successful [11], and the best performance
is achieved by an oracle with knowledge of future contacts.

Nevertheless, the fact that our underlying network is made
up of human contacts and is less predictable has a large impact:
For instance, reasonably predictable traffic patterns of buses
allow a distributed computation of route metrics for packets
in vehicular DTNs [1], [11]. Similarly, fixed bus routes allow
the use of throwboxes [19] to reliably transfer data between
nodes that visit the same location, but at different times.

The variability of PSNs has naturally led to a statistical
approach: The inter-contact time distribution of human social
contacts has been used to model transmission delay between
a randomly chosen source-destination pair [3], [12]. In this
work, we take a more macroscopic view and look at the
ability of the PSN to simultaneously deliver data between
multiple source-destination pairs. This leads us to look at
the distribution of the number of contacts between randomly
chosen source-destination pairs, and find that this distribution
is not only crucial for global data delivery performance, but
also for the connectivity of the PSN itself.

Others have proposed routing using various ad-hoc metrics,
such as betweenness centrality [4], history of previous meet-
ings [13], and inferred community structure [9]. Computing

such metrics can be costly and the computation can be
inaccurate due to the high variability inherent in PSNs. Our
results point to simpler techniques that could exploit time
windows of good connectivity.

We mention in passing that our finding of large cliques
in the reachability graphs is loosely analogous to the giant
strongly connected component in the WWW graph that ac-
counts for most of its short paths [2]

VI. CONCLUSION

We looked at delivery properties of a pocket switched
network. The PSN is determined by its contact occurrence
distribution and their order of occurrence. The contact occur-
rence distribution exhibits an interesting power law of many
contacts occurring rarely, and a few occurring very frequently.
At a macroscopic level, this presents a bleak picture for the
delivery of packets in a PSN: The connectivity of the PSN is
crucially dependent on rare contacts occurring, and inadequate
mixing due to repeated occurrences of frequent contacts delays
deliveries. However, we also find that there is huge variation at
smaller time windows, and we exploit these to find indicators
for time intervals that have successful deliveries.
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