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ABSTRACT 
The research in information extraction (IE) regards the generation 
of wrappers that can extract particular information from semi-
structured Web documents. Similar to compiler generation, the 
extractor is actually a driver program, which is accompanied with 
the generated extraction rule. Previous work in this field aims to 
learn extraction rules from users’ training example. In this paper, 
we propose IEPAD, a system that automatically discovers 
extraction rules from Web pages. The system can automatically 
identify record boundary by repeated pattern mining and multiple 
sequence alignment. The discovery of repeated patterns are 
realized through a data structure call PAT trees. Additionally, 
repeated patterns are further extended by pattern alignment to 
comprehend all record instances. This new track to IE involves no 
human effort and content-dependent heuristics. Experimental 
results show that the constructed extraction rules can achieve 97 
percent extraction over fourteen popular search engines. 

Keywords 
Information extraction, extraction rule, PAT tree, multiple string 
alignment 

1. INTRODUCTION 
Current Web sites present information on various topics in 
various formats.  A great amount of effort is often required for a 
user to manually locate and extract useful data from the Web sites. 
Therefore, there is a great need for value-added service that 
integrates information from multiple sources. For example, 
customizable Web information gathering robots/crawlers, 
comparison-shopping agents, meta-search engines and newsbots, 
etc. To facilitate the development of these information integration 
systems, we need good tools for information gathering and 
extraction. Suppose the data has been collected from different 
Web sites, a conventional approach for extracting data from 
various Web pages would have to write programs, called 
“wrappers” or “extractors”, to extract the contents of the Web 
pages based on a priori knowledge of their format. In other words, 
we have to observe the extraction rules in person and write 
programs for each Web site. However, programming wrappers 
require manual coding which generally entails extensive 
debugging and is, therefore, labor-intensive. In addition, since the 
format of Web pages is often subject to change, maintaining the 
wrapper can be expensive and impractical. 

Fortunately, researchers have built tools that can generate 
wrappers automatically. For example, WIEN [11], Softmealy [7], 
Stalker [13] etc. are three famous works in this field. Similar to 
scanner or parser generator for compilers where users provide the 
syntax grammar and get the transition tables for scanner or parser 
drivers, these wrapper construction systems actually output 
extraction rules from training examples provided by the designer 
of the wrapper. The common idea involved is the machine 
learning techniques to summarize extraction rules, while the 
difference is the extractor architectures presumed in each system. 
For example, the single-pass, LR structure in WIEN and the 
multi-pass, hierarchical structure in Stalker. Nevertheless, the 
designer must manually label the beginning and the end of the 
training examples for generating the rules. Manual labeling, in 
general, is time-consuming and not efficient enough.   

Recently, researchers are exploring new approaches to fully 
automate wrapper construction. That is, without users’ training 
examples. For example, Embley et al. describe a heuristic 
approach to discover record boundaries in Web documents by 
identifying candidate separator tags using five independent 
heuristics and selecting a consensus separator tag based on a 
heuristic combination [4]. However, one serious problem in this 
one-tag separator approach arises when the separator tag is used 
elsewhere among a record other than the boundary. 

On the other hand, our work here attempts to eliminate human 
intervention by pattern mining [1]. The motivation is from the 
observation that useful information in a Web page is often placed 
in a structure having a particular alignment and order. 
Particularly, Web pages produced by search engines generally 
present search results in regular and repetitive patterns. Mining 
repetitive patterns, therefore, may discover the extraction rules for 
wrappers.  

In this paper, we introduce IEPAD, an information extraction 
system applying pattern discovery techniques. In section 2, we 
present the system overview of IEPAD, including a pattern 
viewer, a rule generator and an extractor module. In section 3, we 
present the details of rule generator, followed by the embodiment 
of extractor in section 4. Finally, we present experimental results 
in section 5 and make the conclusion in section 6. 

2. SYSTEM OVERVIEW 
The system IEPAD includes three components, an extraction rule 
generator which accepts an input Web page, a graphical user 
interface, called pattern viewer, which shows repetitive patterns 
discovered, and an extractor module which extracts desired 
information from similar Web pages according to the extraction 
rule chosen by the user.  
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The core techniques of pattern mining are implemented in the rule 
generator. The extraction rule generator includes a translator, a 
PAT tree constructor, a pattern discoverer, a pattern validator, 
and an extraction rule composer. The results of rule extractor are 
extraction rules discovered in a Web page. The graphical user 
interface can then enable users to view the information extracted 
by each extraction rule. Once the user selects a target extraction 
rule conforming to his information desire, the extractor module 
can use it to extract information from other pages having similar 
structure with the input page.  

Referring to Figure 1, a flowchart of the rule extraction process is 
shown. The flowchart presents an overview of the mining process; 
more details will follow as to how a target pattern for extraction is 
generated. When a user submits an HTML page to IEPAD, the 
translator will receive the HTML page and translate it into a 
string of abstract representations, referred to here as tokens.  Each 
token is represented by a binary code of fixed length l.  The PAT 
tree constructor receives the binary file to construct a PAT tree.  
The pattern discoverer then uses the PAT tree to discover 
repetitive patterns, called maximal repeats. The maximal repeats 
are forwarded to validator, which filters out undesired patterns 
and produces candidate patterns. Finally, the rule composer 
revises each candidate pattern to form an extraction rule in regular 
expression. 

Once the extraction rules are discovered, the user may select from 
these candidate patterns his target pattern that contains desired 
information. The extractor receives a target pattern and a Web 
page as input and applies a pattern-matching algorithm to 
recognize and extract all occurrences of the target pattern in the 
token sequence of the encoded Web page. The extractor is a C++ 
module that can be linked to other information integration systems 
for information extraction. A typical pattern-matching algorithm, 
for example, is the Knuth-Morris-Pratt’s algorithm. Each 
occurrence of the target pattern may represent a desired data 
record, and all of the desired data records form a useful 
information block.  

3. EXTRACTION RULE GENERATOR 
The motivation of IEPAD is based on the observation that desired 
information in a Web page is often placed in a structure having a 
particular alignment and forms repetitive patterns. The repetitive 
patterns, therefore, may constitute the extraction rules for 
wrappers. For a program to discover such repetitive patterns in a 

Web page, we need some abstraction mechanism to translate the 
HTML source to distinguish the display format (translator) and a 
pattern discovery algorithm to find out all repetitive patterns. By 
repetitive patterns, we generally mean any substring that occurs at 
least twice in the encoded token string. However, such a 
definition will definitely include too many patterns fitting this 
requisite. Therefore, we define maximal repeats to uniquely 
identify the longest pattern as follows. 

Definition: Given an input string S, we define maximal repeat α 
as a substring of S that occurs in k distinct positions p1, p2, … , pk 
in S, such that the (pi–1)th token in S is different from the (pj–1)th 
token for at least one i, j pair, 1≤i<j≤k (called left maximal), and 
the (pi’+|α|)th token is different from the (pj’+|α|)th token for at 
least one i', j′ pair, 1≤i'<j’≤k (called right maximal). 

The definition of maximal repeats is necessary for identifying the 
well used and popular term repeats. Besides, it also captures all 
interesting repetitive structures in a clear way and avoids 
generating overwhelming outputs. However, not every maximal 
repeat represents a good one. Maximal repeats have to be further 
verified by the validator to filter interesting ones.  

3.1 Translator 
Since HTML tags are the basic components for document 
presentation and the tags themselves carry a certain structure 
information, it is intuitive to examine the tag token string formed 
by HTML tags and regard other non-tag text content between two 
tags as one single token called TEXT. Tokens often seen in an 
HTML page include tag tokens and text tokens, denoted as 
Html(<tag_name>) and Text(_), respectively. For example, 
Html(</a>) is a tag token, where </a> is the tag. Text (_) is a text 
token, which includes a contiguous text string located between 
two HTML tags.   

Tags tokens can be classified in many ways.  The user can choose 
a classification depending on the desired level of information to 
be extracted. For example, tags in the BODY section of a 
document can be divided into two distinct groups: block-level 
tags and text-level tags. The former defines the structure of a 
document, and the latter defines the characteristics, such as format 
and style, of the contents of the text.   

In Figure 2, a classification of block-level tags and text-level tags 
is shown. Block level tags are divided into different categories 
including headings, text containers, lists, and other classifications, 
such as tables and forms. Text-level tags are similarly divided into 
categories including logical markups, physical markups, and 
special markups for marking up texts in a text block. 

H T M L  P a g e

Token Translator

PAT Tree
Constructor

Validator

Rule Composer

PAT trees and
Maximal Repeats

Advenced Patterns

E x t r a c t i o n  R u l e s

A Token String

Figure 1. Extraction Rule Generator
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Figure 2.  Tag classification
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The many different tag classifications allow different HTML 
translations to be generated. With these different abstraction 
mechanisms, different patterns can be produced. For example, 
skipping all text-level tags will result in higher abstraction from 
the input Web page than when all tags are included. In addition, 
different patterns can be discovered and extracted when different 
encoding schemes are translated. The experiment results also 
indicate that block-level tags, while being a small percentage of 
the input size, contain a significant amount of useful information 
as shown in section 5.   

For example, the translation process will be described using a 
simple Web page that contains only two lines of HTML source 
code (i.e., the Congo code):  

 <B>Congo</B><I>242</I><BR> 
 <B>Egypt</B><I>20</I><BR>$ 

The corresponding translation produced by the translator is a 
token string: 

 Html(<B>)Text(_)Html(</B>)Html(<I>)Text(_)Html(</I>)  
Html(<BR>)Html(<B>)Text(_)Html(</B>)Html(<I>)Text(_)Html(</I>)
Html(<BR>)$, where each token is encoded as a binary string of  
“0”s and “1”s with length l. For example, suppose three bits 
encode the tokens in the Congo code: 

Html(<B>)   000 
Html(</B>)  001 
Html(<I>)  010 
Html(</I>)  011 
Html(<BR>)  100 
Text(_)  110 

The encoded binary string for the token string of the Congo code 
is “000110001010110011100000110001010110011100$” of 
3*14 bits, where “$” represents the ending of the encoded string.  

3.2 PAT Tree Construction 
Our approach for pattern discovery uses a PAT tree to discover 
repeated patterns in the encoded token string. A PAT tree is a 
Patricia tree (Practical Algorithm to Retrieve Information Coded 
in Alphanumeric [12]) constructed over all the possible suffix 
strings [5]. A Patricia tree is a particular implementation of a 
compressed binary (0,1) digital tree such that each internal node 
in the tree has two branches: zero goes to left and one goes to 
right. Like a suffix tree [6], the Patricia tree stores all its data at 
the external nodes and keeps one integer, the bit-index, in each 
internal node as an indication of which bit is to be used for 
branching. For a character string with n indexing point (or n 
suffix), there will be n external nodes in the PAT tree and n–1 
internal nodes. This makes the tree O(n) in size. 

Referring to Figure 3, a PAT tree is constructed from the encoded 
binary string of the Congo example. The tree is constructed from 
fourteen sequences of bits, with each sequence of bits starting 
from each of the encoded tokens and extending to the end of the 
token string. Each sequence is called a “semi-infinite string” or 
“sistring” in short. Each leaf, or external node, is represented by a 
square labeled by a number that indicates the starting position of a 
sistring. For example, leaf 2 corresponds to sistring 2 that starts 
from the second token in the token string. Each internal node is 
represented by a circle, which is labeled by a bit position in the 
encoded bit string. The bit position is used when locating a given 

sistring in PAT tree. As shown in Figure 3, all suffix strings with 
the same prefix will be located in the same subtree. 

Each edge in the PAT tree has a virtual edge label, which is the 
substring between two bit positions of the two nodes. For 
example, the edge label between node k and m is φ =11100, i.e. 
the substring from the fifth bit to the ninth bit of sistring (external 
node) 5 and 12. Edges that are visited when traversing downward 
from root to a leaf form a path that leads to a sistring 
corresponding to the leaf. In fact, we can uniquely identify a 
sistring by a prefix, which is formed by concatenating all the edge 
labels along the path from root to the corresponding leaf. The 
concatenated edge labels along the path form a virtual path label.  
For example, the edge labels “1”, “00”, and “0…” on the path that 
leads from root to leaf 7 form a path label “1000…”, which is a 
unique prefix for sistring 7.  

The PAT tree shown here is actually depicted for understanding. 
In implementation, there are only two pointers at each internal 
node. The index bit alone can distinguish the branches, zero goes 
left and one goes right. The edges labeled with a dollar sign are an 
indication of the end of the string. This edge uses the right link 
and pointed to the internal node itself. At the construction phase, 
sistrings are inserted one by one. To insert a sistring, we first 
search the sistring in the PAT tree and find the proper node that 
can distinguish the sistrings with others. Such an implementation 
requires more time than the optimal algorithm described in 
Gusfield’s book, chapter 3 to 5 (linear), since we are using binary 
tree to store character string and only the character suffixes need 
to be indexed instead of all bit suffixes. However, binary trees 
have the advantage of simpler implementation. 

3.3 Pattern Discoverer 
All the leaves in a subtree share a common prefix, which is the 
path label for the path that leads from root to the root of the 
subtree. Each path label of an internal node represents a repeated 
sequence in the input.  Therefore, to discover repetitive patterns, 
the discoverer only needs to examine path labels to determine 
whether or not they are maximal repeats. Since every internal 
node in a PAT tree indicates a branch, it implies a different bit 
following immediately the common prefix between two suffixes. 
Hence, every path label is right maximal. For a path label of an 
internal node v to be left maximal, at least two leaves in the v’s 
subtree should have different left characters. Let’s call such a 
node left diverse. Followed by definition, the property of being 
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Figure 3.  The PAT tree for the Congo Code
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left diverse propagates upward in T. Therefore all maximal repeats 
in S can be found in linear time based on the following lemma [6]. 

Lemma  The path labels of an internal node v in a PAT tree T is a 
maximal repeat if and only if v is left diverse. 

The essence of a PAT tree is a binary suffix tree, which has also 
been applied in several research fields for pattern discovery. For 
example, Kurtz and Schleiermacher have used suffix trees in 
bioinformatics for finding repeated substring in genome [9]. As 
for PAT trees, they have been applied for indexing in the field of 
information retrieval since a long time ago [5]. It has also been 
used in Chinese keyword extraction [2] for its simpler 
implementation than suffix trees and its great power for pattern 
discovery. However, in the application of information extraction, 
we are not only interested in repeats but also repeats that appear 
regularly in vicinity.  

By recording the occurrence counts and the reference positions in 
the leaf nodes of a PAT tree, we can easily know how many times 
a pattern is repeated and where it occurs. Thus, given the pattern 
length, occurrence count, we can traverse the PAT tree to 
enumerate all maximal repeats. For example, to find all patterns 
with the length greater than three tokens. Since each token is 
encoded with three bits, discoverer only needs to consider the 
internal nodes with index bit greater than 3*3.  Therefore, only 
node “d”, “e”, “g”, “l”, and “m” are qualified.   

The path labels and their respective token representations are 
candidates for useful repetitive patterns. Applying the definition 
of maximal repeat to the Congo example, only node “d” qualifies 
for a left diverse, since the left tokens for other leaves rooted at 
the same node all have the same token. For example, sistrings 3 
and 10 which are rooted at node “e” have the same token Text(_). 
The token representation for the corresponding maximal repeat is, 
therefore, Html(<B>)Text(_)Html(</B>)Html(<I>)Text(_)Html(</I>) 
Html(<BR>). 

The use of maximal repeats reduces the amount of unnecessary 
output produced by the discoverer. Besides, during the process of 
discovering the maximal repeats, the number of occurrences of the 
repeat and their respective positions in the input sequence can be 
easily derived for the validator to use. 

In the above example, where the path label of node “d” is a 
maximal repeat, the subtree having node d as its root contains two 
leaves: leaf 1 and leaf 8. Because leaves 1 and 8 represent the only 
two sistrings that share the maximal repeat as their common 
prefix, the number of occurrences is two, and the positions of the 
maximal repeat in the input are one and eight in the input token 
sequence. 

3.4 Pattern Validator 
The above Congo source code is a simple example that shows 
how a maximal repeat can be discovered for a given input.  
However, a typical web page usually contains a large number of 
maximal repeats, not all of which contain useful information.  To 
eliminate undesired maximal repeats, IEPAD uses the validator to 
determine whether or not the maximal repeats contain useful 
information.  In addition to the occurrence frequency and pattern 
length of a maximal repeat, the validator employs a number of 
criteria, including regularity, compactness, and coverage.  A user 
of IEPAD may choose to use only one of the criteria, or to use 

multiples of them in combination.  Each of the criteria has a 
threshold that can either have a default value, or can be 
determined by the user.  Suppose a maximal repeat α are ordered 
by its position such that suffix p1 < p2 < p3… < pk, where pi 
denotes the position of each suffix in the encoded token sequence, 
we define regularity, compactness, and coverage as follows. 

Regularity of a pattern is measured by computing the standard 
deviation of the interval between two adjacent occurrences 
(pi+1–pi). That is, the sequence of spacing between two 
adjacent occurrences is (p2–p1), (p3–p2), …, (pk–pk-1).  
Regularity of the maximal repeat α is equal to the standard 
derivation of the sequence divided by the mean of the 
sequence.  A commonly used bound for regularity is 0.5. 

Compactness is a measure of the density of a maximal repeat. It 
can be used to eliminate maximal repeats that are scattered far 
apart beyond a given bound.  Using the example of maximal 
repeat α in the previous paragraph, density, is defined as (k–
1)*|α|/{pk–p1}, where |α| is the length of α in number of 
tokens. The criterion of compactness requires that only 
maximal repeats with a density greater than a given bound 
(default 0.5) be qualified for extraction.  

Coverage measures the volume of content in a maximal repeat.  
Suppose the function P(i) returns the position of the ith 
sistring in the input Web page in number of bytes.  Coverage 
is defined as [P(pk+|α|)–P(p1)]/|Webpage|, where |Webpage| is 
the number of bytes of the input Web page. 

These three measures are proposed because most information we 
would like to extract is presented in regular and contiguous 
format. Ideally, the extraction pattern should have regularity equal 
to zero, density equal to one and large coverage. To filter 
potentially good patterns, a simple approach will be to use a 
threshold for each of these measures above. Only patterns with 
regularity less than the regularity threshold and density between 
the density thresholds are considered candidate extraction 
patterns. Additionally, we can see that not every candidate 
maximal repeat is useful. For example, patterns that do not 
contain any text tokens are of no avail to users.  

In this paper, we have utilized regularity and compactness to filter 
the discovered patterns. These two measures, together with 
coverage, can further be used to measure patterns’ fitness for 
pattern ranking. The validation proceeds as follows: all discovered 
maximal repeats with regularity less than the regularity threshold γ 
(= 0.5) are considered potential and are forwarded to rule 
composer if they have density greater than δ (= 0.5), while others 
(patterns with density less than δ) are discarded. As for patterns 
with regularity greater than γ, special care is taken by the partition 
module described below. 

3.5 Occurrence Partition 
The regularity threshold 0.5 can extract information that is placed 
in a structure having a particular alignment and order. However, in 
examples such as Lycos (as will be discussed later), where the 
pattern of the target information occurs as three blocks in the Web 
pages (and forms three information blocks), the regularity can be 
large since it is measured over all instances of the pattern. 
Nonetheless, the regularity of the occurrences in each single block 
is still small. Therefore, the idea here is to partition the 

684



occurrences into segments so that we can analyze each partition 
respectively.  

To handle such Web pages, these occurrences of such a pattern are 
carefully segmented to see if any partition of the pattern’s 
occurrences satisfies the requirement for regularity. Generally, the 
regularity of a pattern is computed through all occurrences of the 
pattern. For example, if there are k occurrences, the k–1 intervals 
(between two adjacent instances) are the statistics we use to 
compute the standard deviation and the mean. To partition those 
occurrences, the occurrences are first sorted by their position. Let 
Gi,j denote the ordered occurrences pi, pi+1, ..., pj and initialize 
variables s=1, j=1. For each instance pj+1, if the regularity of 
Gs,j+1 is greater than γ  then we further consider whether Cs,j is a 
good partition and assign j+1 to s. The pseudo code is as follows: 

If a partition includes occurrences more than the minimum count 
and has regularity less than threshold γm, the pattern as well as the 
occurrences in this partition are outputted. Note that the threshold 
γm is set to a smaller value close to zero to control the number of 
outputted patterns. With this modification, more Web pages such 
as Lycos can easily be handled.  

3.6 Rule Composer 
The main application of PAT tree is on the domain of exact match. 
To allow inexact, or approximate, matching (matching with some 
errors permitted), the technique for multiple string alignment is 
borrowed to extend the discovered exact repeats. The idea is to 
find a good presentation of the critical common features of 
multiple strings. For example, suppose “adc” is the discovered 
pattern for token string “adcwbdadcxbadcxbdadcb”. If we have 
the following multiple alignment for strings “adcwbd,” “adcxb” 
and “adcxbd”:  

a  d  c  w b  d 
a  d  c  x  b  - 
a  d  c  x  b  d 

The extraction pattern can be generalized as “adc[w|x]b[d|-]” to 
cover these three examples where “–” represents a missing 
character. Specifically, for a pattern which has k+1 occurrence, p1, 
p2, ..., pk+1 in the encoded token string. Let string Pi denote the 
string starting at pi and ending at pi+1-1. The problem is 
transformed to find the multiple alignment of the k strings S=P1, 
P2, ..., Pk,  so that the generalized pattern can be used to extract all 
records we need. 

Multiple string comparison is a natural generalization of 
alignment for two strings which can be solved in O(n*m) by 
dynamic programming where n and m are string lengths. 
Extending dynamic programming to multiple string alignment 
yields an O(nk) algorithm. Instead, an approximation algorithm is 
used such that the score of the multiple alignment is no greater 
than twice the score of optimal multiple alignment (see [5], 
Chapter 14). The approximation algorithm starts by computing the 
center string Sc in k strings S that minimizes consensus error 
∑Pi∈S D(Sc, Pi ). Once the center string is found, each string is then 
iteratively aligned to the center string to construct multiple 
alignment, which is in turn used to construct the extraction pattern.  
For each pattern with density less than 1, the center star 
approximation algorithm for multiple string alignment is applied 
to generalize the extraction pattern. Note that the success of this 

approach lies in the assumption of contiguous repeats. If 
alignment of substrings between two adjacent occurrences results 
in extraction rules with alternatives at more than ten positions, 
such an alignment is ignored. In such cases, the original maximal 
repeats are kept instead of the aligned patterns. 

Another problem regarding the aligned extraction pattern is that 
the pattern is not necessarily located at the boundary of the 
information record. Suppose the generalized extraction pattern is 
expressed as “c1c2c3...cn”, where each ci is either a symbol x ∈ Σ 
or a symbol set indicating more than one symbols can appear at 
position i (e.g. subset of Σ∪{-}). If the actual starting position of 
a record is at cj then the correct extraction pattern should be 
“cjcj+1cj+2...cnc1c2...cj–1”. Therefore, an additional step is taken to 
consider whether “cjcj+1cj+2... cnc1c2...cj–1” is the pattern we need. 
Generally, such position j often has only one symbol. Besides, 
since extraction patterns often begin with tags like <DL>, <DT>, 
<TR> etc. and end up with tags such as <P>, <BR>, <HR> etc., 
we therefore use this guide1 to generate possible extraction rules. 
However, the disadvantage here is that a large number of patterns 
can be produced during this rule generation step. 

4. THE EXTRACTOR  
After the extraction rules are constructed, the user may select from 
the pattern viewer one or more target patterns that contain desired 
information. Figure 4 is a demonstration of the pattern viewer 
where two patterns are discovered for SavvySearch. The upper 
frame shows the patterns discovered and the lower frame shows 
the detail measures of the selected pattern. The selected pattern is 
then forwarded to the extractor for pattern recognition and 
extraction. A screen shot of the extracted data when double click 
the pattern is shown in Figure 5. 

The extractor is implemented as a module that can be linked into 
other information integration systems. There are two ways to 
complete the extraction work depending on whether a PAT tree is 
available for the input Web page. The extractor can search the 
PAT tree to find all occurrences of the extraction pattern. Or, the 
extractor can also apply a pattern-matching algorithm to recognize 
and extract all occurrences of the target pattern in the translated 
token string of unseen Web pages. Searching in a PAT is fast, 
since every subtree of a PAT tree has all its sistrings with a 
common prefix. Therefore, it allows efficient, linear-time 
solutions to complex string search problem. For example, string 
prefix searching, proximity searching, range searching, regular 
expression search etc.  

                                                                 
1 Other tags include <TABLE>, <TD>, <UL>, <OL>, <LI>, and <DD>. 

S=φ, s=1; 
For j=1 to k-1 do 
 If  Regularity(Gs,j+1) > γ then 
      If Regularity(Gs,j) > γm then 
  S= S ∪{Gs,j}; 
      endif 
      s= j+1; 
 endif 
endf 
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Figure 4. Pattern Viewer 

Figure 5. Screen shot of the data extracted 

On the other hand, if the pattern is used to extract unseen Web 
pages where no PAT tree has been constructed, pattern-matching 
algorithms can be applied. Typical pattern matching algorithms, 
for example, are the Knuth-Morris-Pratt’s algorithm or Boyer-
Moore’s algorithm [15]. Alternatively, since the extraction rule is 
expressed as a regular expression (with concatenation and 
alternative only), it is easier to construct a finite-state machine for 
such an extraction rule. 

Note that each extraction rule composed by multiple string 
alignment actually represents several patterns. That is, there are 
alternatives at each state of the non-deterministic finite-state 
machine. Therefore, several patterns can apply when matching the 
rule against the translated token sequence. In such cases, the 
longest match is considered. For example, extracting occurrences 
of the rule “ab[a|-][b|-]” in the string “abababab” will find only 
two occurrences of  “abab”. 

The input to the extractor module is the Web pages to be extracted 
and the selected rule together with the encoding scheme used to 
discover the extraction rule. The extractor module first translates 
the Web pages using the encoding scheme specified. In addition 
to the encoded token string, we also record the starting positions 
in the source Web page for each token. Once the occurrences of 

the pattern in the encoded token string are found, the 
corresponding positions in the Web pages can be counted.  

5. EXPERIMENTS 
Extraction results of a rule are often evaluated by retrieval rate 
and accuracy rate. Retrieval rate is defined as the ratio of the 
number of desired data records enumerated by a maximal repeat to 
the number of desired data records contained in the input text. 
Accuracy rate is defined as the ratio of the number of desired data 
records enumerated by a maximal repeat to the number of 
occurrences of the maximal repeat. A data record is said to be 
enumerated by a maximal repeat if the matching percentage is 
greater than a bound determined by the user. The matching 
percentage is used because the pattern may contain only a portion 
of the data record. For example, suppose an input text contains 20 
desired data records, and a maximal repeat that occurs 25 times 
enumerates 18 of them. Then the retrieval rate is 18/20 and the 
accuracy rate is 18/25. A higher retrieval rate indicates that more 
records are extracted.  

We first show the number of maximal repeats validated by our 
system using fourteen state-of-the-art search engines, each with 
ten Web pages. The number of validated maximal repeats is 
sometimes an indicator of the extraction result. If the number of 
validated maximal repeats is 1, the maximal repeat is very likely 
the target pattern. When the number of the maximal repeats is 
increased, it implies that there is a great variance in the records 
and each discovered maximal repeat only captures part of the 
target information block. 

Table 1. Number of maximal repeats validated 

Density Search 
Engine 

Maximal 
Repeats 

Regularity 
< 0.5 >0.25 <1.5 

AltaVista       
Cora 
Excite 
Galaxy 
Hotbot 
Infoseek 
Lycos 
Magellan 
Metacrawler 
NorthernLight 
Openfind 
Savvysearch 
Stpt.com 
Webcrawler 

213.1 
100.5 
120.9 
72.5 
74.8 

143.9 
210.0 
42.8 

190.7 
119.3 
76.2 
119.2 
72.5 
82.7 

49.4 
38.4 
11.7 
26.6 
20.4 
17.1 
18.0 
12.7 
34.5 
21.2 
36.9 
44.3 
39.5 
20.5 

43.5 
14.6 
8.0 
11.7 
14.2 
7.5 
5.6 
6.0 

14.6 
15.3 
9.5 

35.1 
33.2 
14.3 

6.8 
3.5 
1.0 
5.0 
9.4 
7.2 
3.9 
1.0 
6.8 
3.8 
2.4 
8.2 
3.7 
1.3 

Average 117.1 27.9 16.7 4.7 
  

There are several control parameters which can affect the number 
of maximal repeats validated, including the regularity threshold, 
the density thresholds, the minimum length and frequency of a 
pattern, and the encoding scheme, etc. The effect of different 
encoding schemes will be discussed in the next section. We first 
experiment with the all-tag-encoding scheme. Table 1 shows the 
number of maximal repeats validated with regularity smaller than 
0.5, density between 0.25 and 1.5. The thresholds are decided 
empirically to include as many good patterns as possible. The 
effect of various regularity and density thresholds is shown in 
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Figure 6 with fixed minimum length and minimum frequency 
requirements set to 3 and 5, respectively. 

5.1 Encoding Scheme 
The experiments in the previous section present the encoding 
scheme when all tag classes are involved in the translation (each 
tag is translated to their corresponding token class). In this 
section, four additional encoding schemes are conducted, which 
skip logical, physical, special and all text-level tags respectively 
(Figure 2). For example, the second encoding scheme skips 
physical markups, including <TT>, <I>, <B>, and <U>, etc. 
Because of space limitation, we show only the average 
performance for these encoding schemes. In Table 2, we show the 
comparison on the length of translated token string. Basically, the 
higher the abstraction level, the shorter the length. Table 3 shows 
the performance comparison of the last three encoding schemes. 
Note that the patterns evaluated here are maximal repeats past the 
validation criteria. The effects of occurrence partition and 
multiple string alignment are discussed later. The results of the 
first encoding scheme are not shown because logical markups are 
less used in HTML files (only 0.4%) and the difference is not 
obvious from all-tag encoding schemes. For the second encoding 
scheme, the performance is increased for Cora, Metacrawler and 
Savvysearch; while for the third encoding scheme, the matching 
percentage is increased for Cora, Excite, and Metacrawler. That 
is, though the encoding scheme of skipping some markups/tags 
enables the display of extraction pattern for some search engines, 
it may disable the patterns of other Web sites, especially when the 
pattern gets shorter than three tokens. However, high-level 
abstraction has better performance on average.  

The experimental results indicate that block-level tags (skipping 
all text-level tags), while being a small percentage of the input 
size, contain a significant amount of useful information. In our 
experiment, the size of the token string having only block-level 
tags is 2 percent of the input size (Table 2); however, the 
extraction result obtained from the token string can extract 86 
percent of the desired information block (Table 3). Note that for 
the block-level encoding scheme, the performance is increased for 
almost every search engine except for Lycos. Lycos has a 
decreased performance because the maximal repeats occur in three 
blocks and has regularity greater than 0.5 in block-level encoding 
scheme. We conclude that the block-level encoding scheme 
performs best among others. In addition, the token string for the 
block-level encoding scheme is only two percent (514 Bytes) of 
the original HTML file (22.7KB in average). 

Table 2. Size of translated sequences and number of patterns 

Encoding 
Scheme 

Size of translated 
sequences 

No. of Patterns 
discovered 

All Tag 1128 7.9 

No Physical  873 6.5 

No Special 796 5.7 

Block-Level 514 3.8 

Table 3. Comparison of different encoding schemes 

Encoding 
Scheme 

Retrieval 
Rate 

Accuracy 
Rate 

Matching 
Percentage 

All Tag 0.73 0.82 0.60 

No Physical  0.82 0.89 0.68 

No Special 0.84 0.88 0.70 

Block-Level 0.86 0.86 0.78 

5.2 Occurrence Partition and Multiple String 
Alignment 
Since the block-level encoding scheme has better abstraction of 
the input Web page, the following experiments use this encoding 
to show the effect of multiple string alignment and segmentation. 
As discussed above, the block-level encoding scheme discovers 
no patterns for Lycos because its regularity is greater than the 
default threshold 0.5. Though larger threshold can keep such 
patterns, it may also include too many irregular patterns. 
Occurrence partition, on the other hand, provides the opportunity 
to resume those patterns with larger threshold while reserve only 
information blocks with really small threshold. Indeed, with the 
additional step of occurrence segmentation, we can successfully 
partition instances into several blocks and discover such patterns. 
Therefore, the performance is greatly increased to 92% retrieval 
rate and accuracy rate (Table 4). However, the number of patterns 
increased a lot for Web sites like Lycos.  

Table 4 also shows that with the help of multiple string alignment 
the performance is improved to 97% retrieval rate, 94% accuracy 
rate and 0.90 matching percentage. The high percentage of 
retrieval rate is pretty encouraging. The 90% of matching 
percentage is actually higher in terms of the text content retrieved. 
For those Web sites with matching percentage greater than 85%, 
the text contents are all successfully extracted. What bothers is the 
accuracy rate. Since the extraction pattern generalized from 
multiple alignment may comprehend more than the information 
we need, the extractor may extract more than the desired 
information. The detail performance of each Web site is shown in 
Table 5 for reference. 

Table 4. Effect of segmentation 

Method Retrieval 
Rate 

Accuracy 
Rate 

Matching 
Percentage 

Block-level Encoding 
0.86 0.86 0.78 

Occurrence Segmentation 
0.92 0.91 0.85 

Multiple String Alignment 
0.97 0.94 0.90 

Figure 6. Number of Patterns validated
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Table 5. The performance of multiple string alignment 

Search 
Engine 

Retrieval 
Rate 

Accuracy 
Rate 

Matching 
Percentage 

AltaVista       
Cora 
Excite 
Galaxy 
Hotbot 
Infoseek 
Lycos 
Magellan 
Metacrawler 
NorthernLight 
Openfind 
Savvysearch 
Stpt.com 
Webcrawler 

1.00 
1.00 
1.00 
1.00 
0.97 
0.98 
0.94 
1.00 
0.90 
0.95 
0.83 
1.00 
0.99 
0.98 

1.00 
1.00 
0.97 
0.95 
0.86 
0.94 
0.63 
1.00 
0.96 
0.96 
0.90 
0.95 
1.00 
0.98 

0.91 
0.97 
1.00 
0.99 
0.88 
0.87 
0.94 
0.76 
0.78 
0.90 
0.66 
0.97 
0.95 
0.98 

Average 0.97 0.94 0.90 

6. SUMMARY AND FUTURE WORK 
The core technique of information extraction is the discovery of 
extraction rules. In earlier work, extraction rules are learned from 
training examples. In this paper, we presented an unsupervised 
approach to pattern discovery. We propose the application of PAT 
trees for pattern discovery in the encoded token string of Web 
pages. The discovered maximal repeats are further filtered by the 
measures: regularity and compactness. The basic pattern discovery 
module (without occurrence partition and multiple string 
alignment) can extract 86% records with block-level encoding 
scheme. The parameters of the thresholds for regularity and 
compactness have been controlled to keep as many good patterns 
while to filter out useless patterns.  

For patterns with regularity greater than the default threshold, 
occurrence partition is applied to segment the occurrences into 
blocks. This additional step help to solve cases like Lycos whose 
pattern scatters among several blocks and has large regularity. 
Though higher threshold can reserve such patterns, it may also 
include too many irregular patterns. Occurrence partition, on the 
other hand, provides the opportunity to resume those patterns with 
greater threshold than default while reserve only information 
blocks with really small threshold.  

Despite PAT trees’ efficiency in “exact” string problems, “inexact” 
string problems are ubiquitous. Therefore, multiple string 
alignment is applied to patterns to generalize multiple records and 
express the extraction rule in regular expressions. In our 
experiments, the extraction rule generalized from multiple string 
alignment can achieve 97% retrieval rate and 94% accuracy rate 
with high matching percentage. The whole process requires no 
human intervention and training example. It takes only three 
minutes to extract 140 Web pages. Comparing our algorithm to 
others, our approach is quick and effective.  
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