
IEPAD: Information Extraction Based on Pattern Discovery

Chia-Hui Chang
Dept. of Computer Science and Information Engineering

National Central University, Chung-Li, Taiwan 320
Tel: +886-3-4227151x4523

chia@csie.ncu.edu.tw

Shao-Chen Lui
Dept. of Computer Science and Information Engineering

National Central University, Chung-Li, Taiwan 320

anyway@db.csie.ncu.edu.tw

ABSTRACT
The research in information extraction (IE) regards the generation
of wrappers that can extract particular information from semi-
structured Web documents. Similar to compiler generation, the
extractor is actually a driver program, which is accompanied with
the generated extraction rule. Previous work in this field aims to
learn extraction rules from users’ training example. In this paper,
we propose IEPAD, a system that automatically discovers
extraction rules from Web pages. The system can automatically
identify record boundary by repeated pattern mining and multiple
sequence alignment. The discovery of repeated patterns are
realized through a data structure call PAT trees. Additionally,
repeated patterns are further extended by pattern alignment to
comprehend all record instances. This new track to IE involves no
human effort and content-dependent heuristics. Experimental
results show that the constructed extraction rules can achieve 97
percent extraction over fourteen popular search engines.

Keywords
Information extraction, extraction rule, PAT tree, multiple string
alignment

1. INTRODUCTION
Current Web sites present information on various topics in
various formats. A great amount of effort is often required for a
user to manually locate and extract useful data from the Web sites.
Therefore, there is a great need for value-added service that
integrates information from multiple sources. For example,
customizable Web information gathering robots/crawlers,
comparison-shopping agents, meta-search engines and newsbots,
etc. To facilitate the development of these information integration
systems, we need good tools for information gathering and
extraction. Suppose the data has been collected from different
Web sites, a conventional approach for extracting data from
various Web pages would have to write programs, called
“wrappers” or “extractors”, to extract the contents of the Web
pages based on a priori knowledge of their format. In other words,
we have to observe the extraction rules in person and write
programs for each Web site. However, programming wrappers
require manual coding which generally entails extensive
debugging and is, therefore, labor-intensive. In addition, since the
format of Web pages is often subject to change, maintaining the
wrapper can be expensive and impractical.

Fortunately, researchers have built tools that can generate
wrappers automatically. For example, WIEN [11], Softmealy [7],
Stalker [13] etc. are three famous works in this field. Similar to
scanner or parser generator for compilers where users provide the
syntax grammar and get the transition tables for scanner or parser
drivers, these wrapper construction systems actually output
extraction rules from training examples provided by the designer
of the wrapper. The common idea involved is the machine
learning techniques to summarize extraction rules, while the
difference is the extractor architectures presumed in each system.
For example, the single-pass, LR structure in WIEN and the
multi-pass, hierarchical structure in Stalker. Nevertheless, the
designer must manually label the beginning and the end of the
training examples for generating the rules. Manual labeling, in
general, is time-consuming and not efficient enough.

Recently, researchers are exploring new approaches to fully
automate wrapper construction. That is, without users’ training
examples. For example, Embley et al. describe a heuristic
approach to discover record boundaries in Web documents by
identifying candidate separator tags using five independent
heuristics and selecting a consensus separator tag based on a
heuristic combination [4]. However, one serious problem in this
one-tag separator approach arises when the separator tag is used
elsewhere among a record other than the boundary.

On the other hand, our work here attempts to eliminate human
intervention by pattern mining [1]. The motivation is from the
observation that useful information in a Web page is often placed
in a structure having a particular alignment and order.
Particularly, Web pages produced by search engines generally
present search results in regular and repetitive patterns. Mining
repetitive patterns, therefore, may discover the extraction rules for
wrappers.

In this paper, we introduce IEPAD, an information extraction
system applying pattern discovery techniques. In section 2, we
present the system overview of IEPAD, including a pattern
viewer, a rule generator and an extractor module. In section 3, we
present the details of rule generator, followed by the embodiment
of extractor in section 4. Finally, we present experimental results
in section 5 and make the conclusion in section 6.

2. SYSTEM OVERVIEW
The system IEPAD includes three components, an extraction rule
generator which accepts an input Web page, a graphical user
interface, called pattern viewer, which shows repetitive patterns
discovered, and an extractor module which extracts desired
information from similar Web pages according to the extraction
rule chosen by the user.

Copyright is held by the author/owner.
WWW10 ’01, May 1-5, 2001, Hong Kong.
Copyright 2001 ACM 1-58113-348-0/01/0005…$5.00.

681

The core techniques of pattern mining are implemented in the rule
generator. The extraction rule generator includes a translator, a
PAT tree constructor, a pattern discoverer, a pattern validator,
and an extraction rule composer. The results of rule extractor are
extraction rules discovered in a Web page. The graphical user
interface can then enable users to view the information extracted
by each extraction rule. Once the user selects a target extraction
rule conforming to his information desire, the extractor module
can use it to extract information from other pages having similar
structure with the input page.

Referring to Figure 1, a flowchart of the rule extraction process is
shown. The flowchart presents an overview of the mining process;
more details will follow as to how a target pattern for extraction is
generated. When a user submits an HTML page to IEPAD, the
translator will receive the HTML page and translate it into a
string of abstract representations, referred to here as tokens. Each
token is represented by a binary code of fixed length l. The PAT
tree constructor receives the binary file to construct a PAT tree.
The pattern discoverer then uses the PAT tree to discover
repetitive patterns, called maximal repeats. The maximal repeats
are forwarded to validator, which filters out undesired patterns
and produces candidate patterns. Finally, the rule composer
revises each candidate pattern to form an extraction rule in regular
expression.

Once the extraction rules are discovered, the user may select from
these candidate patterns his target pattern that contains desired
information. The extractor receives a target pattern and a Web
page as input and applies a pattern-matching algorithm to
recognize and extract all occurrences of the target pattern in the
token sequence of the encoded Web page. The extractor is a C++
module that can be linked to other information integration systems
for information extraction. A typical pattern-matching algorithm,
for example, is the Knuth-Morris-Pratt’s algorithm. Each
occurrence of the target pattern may represent a desired data
record, and all of the desired data records form a useful
information block.

3. EXTRACTION RULE GENERATOR
The motivation of IEPAD is based on the observation that desired
information in a Web page is often placed in a structure having a
particular alignment and forms repetitive patterns. The repetitive
patterns, therefore, may constitute the extraction rules for
wrappers. For a program to discover such repetitive patterns in a

Web page, we need some abstraction mechanism to translate the
HTML source to distinguish the display format (translator) and a
pattern discovery algorithm to find out all repetitive patterns. By
repetitive patterns, we generally mean any substring that occurs at
least twice in the encoded token string. However, such a
definition will definitely include too many patterns fitting this
requisite. Therefore, we define maximal repeats to uniquely
identify the longest pattern as follows.

Definition: Given an input string S, we define maximal repeat α
as a substring of S that occurs in k distinct positions p1, p2, … , pk
in S, such that the (pi–1)th token in S is different from the (pj–1)th
token for at least one i, j pair, 1≤i<j≤k (called left maximal), and
the (pi’+|α|)th token is different from the (pj’+|α|)th token for at
least one i', j′ pair, 1≤i'<j’≤k (called right maximal).

The definition of maximal repeats is necessary for identifying the
well used and popular term repeats. Besides, it also captures all
interesting repetitive structures in a clear way and avoids
generating overwhelming outputs. However, not every maximal
repeat represents a good one. Maximal repeats have to be further
verified by the validator to filter interesting ones.

3.1 Translator
Since HTML tags are the basic components for document
presentation and the tags themselves carry a certain structure
information, it is intuitive to examine the tag token string formed
by HTML tags and regard other non-tag text content between two
tags as one single token called TEXT. Tokens often seen in an
HTML page include tag tokens and text tokens, denoted as
Html(<tag_name>) and Text(_), respectively. For example,
Html() is a tag token, where is the tag. Text (_) is a text
token, which includes a contiguous text string located between
two HTML tags.

Tags tokens can be classified in many ways. The user can choose
a classification depending on the desired level of information to
be extracted. For example, tags in the BODY section of a
document can be divided into two distinct groups: block-level
tags and text-level tags. The former defines the structure of a
document, and the latter defines the characteristics, such as format
and style, of the contents of the text.

In Figure 2, a classification of block-level tags and text-level tags
is shown. Block level tags are divided into different categories
including headings, text containers, lists, and other classifications,
such as tables and forms. Text-level tags are similarly divided into
categories including logical markups, physical markups, and
special markups for marking up texts in a text block.

H T M L P a g e

Token Translator

PAT Tree
Constructor

Validator

Rule Composer

PAT trees and
Maximal Repeats

Advenced Patterns

E x t r a c t i o n R u l e s

A Token String

Figure 1. Extraction Rule Generator

Block-level tags Text-level tags
Headings

Text containers

Lists

Others

H1~H6

P, PRE, BLOCKQUOTE,
ADDRESS

UL, OL, LI, DL, DIR,
MENU

DIV, CENTER, FORM,
HR, TABLE, BR

Logical markup

Physical markup

Special markup

EM, STRONG, DFN, CODE,
SAMP, KBD, VAR, CITE

TT, I, B, U, STRIKE, BIG,
SMALL, SUB, SUP, FONT

A, BASEFONT, IMG, APPLET,
PARAM, MAP, AREA

Figure 2. Tag classification

682

The many different tag classifications allow different HTML
translations to be generated. With these different abstraction
mechanisms, different patterns can be produced. For example,
skipping all text-level tags will result in higher abstraction from
the input Web page than when all tags are included. In addition,
different patterns can be discovered and extracted when different
encoding schemes are translated. The experiment results also
indicate that block-level tags, while being a small percentage of
the input size, contain a significant amount of useful information
as shown in section 5.

For example, the translation process will be described using a
simple Web page that contains only two lines of HTML source
code (i.e., the Congo code):

 Congo<I>242</I>

 Egypt<I>20</I>
$

The corresponding translation produced by the translator is a
token string:

 Html()Text(_)Html()Html(<I>)Text(_)Html(</I>)
Html(
)Html()Text(_)Html()Html(<I>)Text(_)Html(</I>)
Html(
)$, where each token is encoded as a binary string of
“0”s and “1”s with length l. For example, suppose three bits
encode the tokens in the Congo code:

Html() 000
Html() 001
Html(<I>) 010
Html(</I>) 011
Html(
) 100
Text(_) 110

The encoded binary string for the token string of the Congo code
is “000110001010110011100000110001010110011100$” of
3*14 bits, where “$” represents the ending of the encoded string.

3.2 PAT Tree Construction
Our approach for pattern discovery uses a PAT tree to discover
repeated patterns in the encoded token string. A PAT tree is a
Patricia tree (Practical Algorithm to Retrieve Information Coded
in Alphanumeric [12]) constructed over all the possible suffix
strings [5]. A Patricia tree is a particular implementation of a
compressed binary (0,1) digital tree such that each internal node
in the tree has two branches: zero goes to left and one goes to
right. Like a suffix tree [6], the Patricia tree stores all its data at
the external nodes and keeps one integer, the bit-index, in each
internal node as an indication of which bit is to be used for
branching. For a character string with n indexing point (or n
suffix), there will be n external nodes in the PAT tree and n–1
internal nodes. This makes the tree O(n) in size.

Referring to Figure 3, a PAT tree is constructed from the encoded
binary string of the Congo example. The tree is constructed from
fourteen sequences of bits, with each sequence of bits starting
from each of the encoded tokens and extending to the end of the
token string. Each sequence is called a “semi-infinite string” or
“sistring” in short. Each leaf, or external node, is represented by a
square labeled by a number that indicates the starting position of a
sistring. For example, leaf 2 corresponds to sistring 2 that starts
from the second token in the token string. Each internal node is
represented by a circle, which is labeled by a bit position in the
encoded bit string. The bit position is used when locating a given

sistring in PAT tree. As shown in Figure 3, all suffix strings with
the same prefix will be located in the same subtree.

Each edge in the PAT tree has a virtual edge label, which is the
substring between two bit positions of the two nodes. For
example, the edge label between node k and m is φ =11100, i.e.
the substring from the fifth bit to the ninth bit of sistring (external
node) 5 and 12. Edges that are visited when traversing downward
from root to a leaf form a path that leads to a sistring
corresponding to the leaf. In fact, we can uniquely identify a
sistring by a prefix, which is formed by concatenating all the edge
labels along the path from root to the corresponding leaf. The
concatenated edge labels along the path form a virtual path label.
For example, the edge labels “1”, “00”, and “0…” on the path that
leads from root to leaf 7 form a path label “1000…”, which is a
unique prefix for sistring 7.

The PAT tree shown here is actually depicted for understanding.
In implementation, there are only two pointers at each internal
node. The index bit alone can distinguish the branches, zero goes
left and one goes right. The edges labeled with a dollar sign are an
indication of the end of the string. This edge uses the right link
and pointed to the internal node itself. At the construction phase,
sistrings are inserted one by one. To insert a sistring, we first
search the sistring in the PAT tree and find the proper node that
can distinguish the sistrings with others. Such an implementation
requires more time than the optimal algorithm described in
Gusfield’s book, chapter 3 to 5 (linear), since we are using binary
tree to store character string and only the character suffixes need
to be indexed instead of all bit suffixes. However, binary trees
have the advantage of simpler implementation.

3.3 Pattern Discoverer
All the leaves in a subtree share a common prefix, which is the
path label for the path that leads from root to the root of the
subtree. Each path label of an internal node represents a repeated
sequence in the input. Therefore, to discover repetitive patterns,
the discoverer only needs to examine path labels to determine
whether or not they are maximal repeats. Since every internal
node in a PAT tree indicates a branch, it implies a different bit
following immediately the common prefix between two suffixes.
Hence, every path label is right maximal. For a path label of an
internal node v to be left maximal, at least two leaves in the v’s
subtree should have different left characters. Let’s call such a
node left diverse. Followed by definition, the property of being

$

12

1

2 2

3 4 5

10

1 8 10

0

1

1100
χ

10000

1

$0 φ

0

147

0

5

3

βα

22

$0

16

$0

3 13

7

$0

6

11

13

$0

4

19

γ

$0

92

a

b

c

d e

f

g

h

i

j k

l m

Figure 3. The PAT tree for the Congo Code

α= 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0
β= 1 0 1 0 1 1 0 0 1 1 1 0 0
γ= 0 1 0 1 0 1 1 0 0 1 1 1 0 0
χ= 0 1 1 0 0 1 1 1 0 0
φ= 1 1 1 0 0

683

left diverse propagates upward in T. Therefore all maximal repeats
in S can be found in linear time based on the following lemma [6].

Lemma The path labels of an internal node v in a PAT tree T is a
maximal repeat if and only if v is left diverse.

The essence of a PAT tree is a binary suffix tree, which has also
been applied in several research fields for pattern discovery. For
example, Kurtz and Schleiermacher have used suffix trees in
bioinformatics for finding repeated substring in genome [9]. As
for PAT trees, they have been applied for indexing in the field of
information retrieval since a long time ago [5]. It has also been
used in Chinese keyword extraction [2] for its simpler
implementation than suffix trees and its great power for pattern
discovery. However, in the application of information extraction,
we are not only interested in repeats but also repeats that appear
regularly in vicinity.

By recording the occurrence counts and the reference positions in
the leaf nodes of a PAT tree, we can easily know how many times
a pattern is repeated and where it occurs. Thus, given the pattern
length, occurrence count, we can traverse the PAT tree to
enumerate all maximal repeats. For example, to find all patterns
with the length greater than three tokens. Since each token is
encoded with three bits, discoverer only needs to consider the
internal nodes with index bit greater than 3*3. Therefore, only
node “d”, “e”, “g”, “l”, and “m” are qualified.

The path labels and their respective token representations are
candidates for useful repetitive patterns. Applying the definition
of maximal repeat to the Congo example, only node “d” qualifies
for a left diverse, since the left tokens for other leaves rooted at
the same node all have the same token. For example, sistrings 3
and 10 which are rooted at node “e” have the same token Text(_).
The token representation for the corresponding maximal repeat is,
therefore, Html()Text(_)Html()Html(<I>)Text(_)Html(</I>)
Html(
).

The use of maximal repeats reduces the amount of unnecessary
output produced by the discoverer. Besides, during the process of
discovering the maximal repeats, the number of occurrences of the
repeat and their respective positions in the input sequence can be
easily derived for the validator to use.

In the above example, where the path label of node “d” is a
maximal repeat, the subtree having node d as its root contains two
leaves: leaf 1 and leaf 8. Because leaves 1 and 8 represent the only
two sistrings that share the maximal repeat as their common
prefix, the number of occurrences is two, and the positions of the
maximal repeat in the input are one and eight in the input token
sequence.

3.4 Pattern Validator
The above Congo source code is a simple example that shows
how a maximal repeat can be discovered for a given input.
However, a typical web page usually contains a large number of
maximal repeats, not all of which contain useful information. To
eliminate undesired maximal repeats, IEPAD uses the validator to
determine whether or not the maximal repeats contain useful
information. In addition to the occurrence frequency and pattern
length of a maximal repeat, the validator employs a number of
criteria, including regularity, compactness, and coverage. A user
of IEPAD may choose to use only one of the criteria, or to use

multiples of them in combination. Each of the criteria has a
threshold that can either have a default value, or can be
determined by the user. Suppose a maximal repeat α are ordered
by its position such that suffix p1 < p2 < p3… < pk, where pi
denotes the position of each suffix in the encoded token sequence,
we define regularity, compactness, and coverage as follows.

Regularity of a pattern is measured by computing the standard
deviation of the interval between two adjacent occurrences
(pi+1–pi). That is, the sequence of spacing between two
adjacent occurrences is (p2–p1), (p3–p2), …, (pk–pk-1).
Regularity of the maximal repeat α is equal to the standard
derivation of the sequence divided by the mean of the
sequence. A commonly used bound for regularity is 0.5.

Compactness is a measure of the density of a maximal repeat. It
can be used to eliminate maximal repeats that are scattered far
apart beyond a given bound. Using the example of maximal
repeat α in the previous paragraph, density, is defined as (k–
1)*|α|/{pk–p1}, where |α| is the length of α in number of
tokens. The criterion of compactness requires that only
maximal repeats with a density greater than a given bound
(default 0.5) be qualified for extraction.

Coverage measures the volume of content in a maximal repeat.
Suppose the function P(i) returns the position of the ith
sistring in the input Web page in number of bytes. Coverage
is defined as [P(pk+|α|)–P(p1)]/|Webpage|, where |Webpage| is
the number of bytes of the input Web page.

These three measures are proposed because most information we
would like to extract is presented in regular and contiguous
format. Ideally, the extraction pattern should have regularity equal
to zero, density equal to one and large coverage. To filter
potentially good patterns, a simple approach will be to use a
threshold for each of these measures above. Only patterns with
regularity less than the regularity threshold and density between
the density thresholds are considered candidate extraction
patterns. Additionally, we can see that not every candidate
maximal repeat is useful. For example, patterns that do not
contain any text tokens are of no avail to users.

In this paper, we have utilized regularity and compactness to filter
the discovered patterns. These two measures, together with
coverage, can further be used to measure patterns’ fitness for
pattern ranking. The validation proceeds as follows: all discovered
maximal repeats with regularity less than the regularity threshold γ
(= 0.5) are considered potential and are forwarded to rule
composer if they have density greater than δ (= 0.5), while others
(patterns with density less than δ) are discarded. As for patterns
with regularity greater than γ, special care is taken by the partition
module described below.

3.5 Occurrence Partition
The regularity threshold 0.5 can extract information that is placed
in a structure having a particular alignment and order. However, in
examples such as Lycos (as will be discussed later), where the
pattern of the target information occurs as three blocks in the Web
pages (and forms three information blocks), the regularity can be
large since it is measured over all instances of the pattern.
Nonetheless, the regularity of the occurrences in each single block
is still small. Therefore, the idea here is to partition the

684

occurrences into segments so that we can analyze each partition
respectively.

To handle such Web pages, these occurrences of such a pattern are
carefully segmented to see if any partition of the pattern’s
occurrences satisfies the requirement for regularity. Generally, the
regularity of a pattern is computed through all occurrences of the
pattern. For example, if there are k occurrences, the k–1 intervals
(between two adjacent instances) are the statistics we use to
compute the standard deviation and the mean. To partition those
occurrences, the occurrences are first sorted by their position. Let
Gi,j denote the ordered occurrences pi, pi+1, ..., pj and initialize
variables s=1, j=1. For each instance pj+1, if the regularity of
Gs,j+1 is greater than γ then we further consider whether Cs,j is a
good partition and assign j+1 to s. The pseudo code is as follows:

If a partition includes occurrences more than the minimum count
and has regularity less than threshold γm, the pattern as well as the
occurrences in this partition are outputted. Note that the threshold
γm is set to a smaller value close to zero to control the number of
outputted patterns. With this modification, more Web pages such
as Lycos can easily be handled.

3.6 Rule Composer
The main application of PAT tree is on the domain of exact match.
To allow inexact, or approximate, matching (matching with some
errors permitted), the technique for multiple string alignment is
borrowed to extend the discovered exact repeats. The idea is to
find a good presentation of the critical common features of
multiple strings. For example, suppose “adc” is the discovered
pattern for token string “adcwbdadcxbadcxbdadcb”. If we have
the following multiple alignment for strings “adcwbd,” “adcxb”
and “adcxbd”:

a d c w b d
a d c x b -
a d c x b d

The extraction pattern can be generalized as “adc[w|x]b[d|-]” to
cover these three examples where “–” represents a missing
character. Specifically, for a pattern which has k+1 occurrence, p1,
p2, ..., pk+1 in the encoded token string. Let string Pi denote the
string starting at pi and ending at pi+1-1. The problem is
transformed to find the multiple alignment of the k strings S=P1,
P2, ..., Pk, so that the generalized pattern can be used to extract all
records we need.

Multiple string comparison is a natural generalization of
alignment for two strings which can be solved in O(n*m) by
dynamic programming where n and m are string lengths.
Extending dynamic programming to multiple string alignment
yields an O(nk) algorithm. Instead, an approximation algorithm is
used such that the score of the multiple alignment is no greater
than twice the score of optimal multiple alignment (see [5],
Chapter 14). The approximation algorithm starts by computing the
center string Sc in k strings S that minimizes consensus error
∑Pi∈S D(Sc, Pi). Once the center string is found, each string is then
iteratively aligned to the center string to construct multiple
alignment, which is in turn used to construct the extraction pattern.
For each pattern with density less than 1, the center star
approximation algorithm for multiple string alignment is applied
to generalize the extraction pattern. Note that the success of this

approach lies in the assumption of contiguous repeats. If
alignment of substrings between two adjacent occurrences results
in extraction rules with alternatives at more than ten positions,
such an alignment is ignored. In such cases, the original maximal
repeats are kept instead of the aligned patterns.

Another problem regarding the aligned extraction pattern is that
the pattern is not necessarily located at the boundary of the
information record. Suppose the generalized extraction pattern is
expressed as “c1c2c3...cn”, where each ci is either a symbol x ∈ Σ
or a symbol set indicating more than one symbols can appear at
position i (e.g. subset of Σ∪{-}). If the actual starting position of
a record is at cj then the correct extraction pattern should be
“cjcj+1cj+2...cnc1c2...cj–1”. Therefore, an additional step is taken to
consider whether “cjcj+1cj+2... cnc1c2...cj–1” is the pattern we need.
Generally, such position j often has only one symbol. Besides,
since extraction patterns often begin with tags like <DL>, <DT>,
<TR> etc. and end up with tags such as <P>,
, <HR> etc.,
we therefore use this guide1 to generate possible extraction rules.
However, the disadvantage here is that a large number of patterns
can be produced during this rule generation step.

4. THE EXTRACTOR
After the extraction rules are constructed, the user may select from
the pattern viewer one or more target patterns that contain desired
information. Figure 4 is a demonstration of the pattern viewer
where two patterns are discovered for SavvySearch. The upper
frame shows the patterns discovered and the lower frame shows
the detail measures of the selected pattern. The selected pattern is
then forwarded to the extractor for pattern recognition and
extraction. A screen shot of the extracted data when double click
the pattern is shown in Figure 5.

The extractor is implemented as a module that can be linked into
other information integration systems. There are two ways to
complete the extraction work depending on whether a PAT tree is
available for the input Web page. The extractor can search the
PAT tree to find all occurrences of the extraction pattern. Or, the
extractor can also apply a pattern-matching algorithm to recognize
and extract all occurrences of the target pattern in the translated
token string of unseen Web pages. Searching in a PAT is fast,
since every subtree of a PAT tree has all its sistrings with a
common prefix. Therefore, it allows efficient, linear-time
solutions to complex string search problem. For example, string
prefix searching, proximity searching, range searching, regular
expression search etc.

1 Other tags include <TABLE>, <TD>, , , , and <DD>.

S=φ, s=1;
For j=1 to k-1 do
 If Regularity(Gs,j+1) > γ then
 If Regularity(Gs,j) > γm then
 S= S ∪{Gs,j};
 endif
 s= j+1;
 endif
endf

685

Figure 4. Pattern Viewer

Figure 5. Screen shot of the data extracted

On the other hand, if the pattern is used to extract unseen Web
pages where no PAT tree has been constructed, pattern-matching
algorithms can be applied. Typical pattern matching algorithms,
for example, are the Knuth-Morris-Pratt’s algorithm or Boyer-
Moore’s algorithm [15]. Alternatively, since the extraction rule is
expressed as a regular expression (with concatenation and
alternative only), it is easier to construct a finite-state machine for
such an extraction rule.

Note that each extraction rule composed by multiple string
alignment actually represents several patterns. That is, there are
alternatives at each state of the non-deterministic finite-state
machine. Therefore, several patterns can apply when matching the
rule against the translated token sequence. In such cases, the
longest match is considered. For example, extracting occurrences
of the rule “ab[a|-][b|-]” in the string “abababab” will find only
two occurrences of “abab”.

The input to the extractor module is the Web pages to be extracted
and the selected rule together with the encoding scheme used to
discover the extraction rule. The extractor module first translates
the Web pages using the encoding scheme specified. In addition
to the encoded token string, we also record the starting positions
in the source Web page for each token. Once the occurrences of

the pattern in the encoded token string are found, the
corresponding positions in the Web pages can be counted.

5. EXPERIMENTS
Extraction results of a rule are often evaluated by retrieval rate
and accuracy rate. Retrieval rate is defined as the ratio of the
number of desired data records enumerated by a maximal repeat to
the number of desired data records contained in the input text.
Accuracy rate is defined as the ratio of the number of desired data
records enumerated by a maximal repeat to the number of
occurrences of the maximal repeat. A data record is said to be
enumerated by a maximal repeat if the matching percentage is
greater than a bound determined by the user. The matching
percentage is used because the pattern may contain only a portion
of the data record. For example, suppose an input text contains 20
desired data records, and a maximal repeat that occurs 25 times
enumerates 18 of them. Then the retrieval rate is 18/20 and the
accuracy rate is 18/25. A higher retrieval rate indicates that more
records are extracted.

We first show the number of maximal repeats validated by our
system using fourteen state-of-the-art search engines, each with
ten Web pages. The number of validated maximal repeats is
sometimes an indicator of the extraction result. If the number of
validated maximal repeats is 1, the maximal repeat is very likely
the target pattern. When the number of the maximal repeats is
increased, it implies that there is a great variance in the records
and each discovered maximal repeat only captures part of the
target information block.

Table 1. Number of maximal repeats validated

Density Search
Engine

Maximal
Repeats

Regularity
< 0.5 >0.25 <1.5

AltaVista
Cora
Excite
Galaxy
Hotbot
Infoseek
Lycos
Magellan
Metacrawler
NorthernLight
Openfind
Savvysearch
Stpt.com
Webcrawler

213.1
100.5
120.9
72.5
74.8

143.9
210.0
42.8

190.7
119.3
76.2
119.2
72.5
82.7

49.4
38.4
11.7
26.6
20.4
17.1
18.0
12.7
34.5
21.2
36.9
44.3
39.5
20.5

43.5
14.6
8.0
11.7
14.2
7.5
5.6
6.0

14.6
15.3
9.5

35.1
33.2
14.3

6.8
3.5
1.0
5.0
9.4
7.2
3.9
1.0
6.8
3.8
2.4
8.2
3.7
1.3

Average 117.1 27.9 16.7 4.7

There are several control parameters which can affect the number
of maximal repeats validated, including the regularity threshold,
the density thresholds, the minimum length and frequency of a
pattern, and the encoding scheme, etc. The effect of different
encoding schemes will be discussed in the next section. We first
experiment with the all-tag-encoding scheme. Table 1 shows the
number of maximal repeats validated with regularity smaller than
0.5, density between 0.25 and 1.5. The thresholds are decided
empirically to include as many good patterns as possible. The
effect of various regularity and density thresholds is shown in

686

Figure 6 with fixed minimum length and minimum frequency
requirements set to 3 and 5, respectively.

5.1 Encoding Scheme
The experiments in the previous section present the encoding
scheme when all tag classes are involved in the translation (each
tag is translated to their corresponding token class). In this
section, four additional encoding schemes are conducted, which
skip logical, physical, special and all text-level tags respectively
(Figure 2). For example, the second encoding scheme skips
physical markups, including <TT>, <I>, , and <U>, etc.
Because of space limitation, we show only the average
performance for these encoding schemes. In Table 2, we show the
comparison on the length of translated token string. Basically, the
higher the abstraction level, the shorter the length. Table 3 shows
the performance comparison of the last three encoding schemes.
Note that the patterns evaluated here are maximal repeats past the
validation criteria. The effects of occurrence partition and
multiple string alignment are discussed later. The results of the
first encoding scheme are not shown because logical markups are
less used in HTML files (only 0.4%) and the difference is not
obvious from all-tag encoding schemes. For the second encoding
scheme, the performance is increased for Cora, Metacrawler and
Savvysearch; while for the third encoding scheme, the matching
percentage is increased for Cora, Excite, and Metacrawler. That
is, though the encoding scheme of skipping some markups/tags
enables the display of extraction pattern for some search engines,
it may disable the patterns of other Web sites, especially when the
pattern gets shorter than three tokens. However, high-level
abstraction has better performance on average.

The experimental results indicate that block-level tags (skipping
all text-level tags), while being a small percentage of the input
size, contain a significant amount of useful information. In our
experiment, the size of the token string having only block-level
tags is 2 percent of the input size (Table 2); however, the
extraction result obtained from the token string can extract 86
percent of the desired information block (Table 3). Note that for
the block-level encoding scheme, the performance is increased for
almost every search engine except for Lycos. Lycos has a
decreased performance because the maximal repeats occur in three
blocks and has regularity greater than 0.5 in block-level encoding
scheme. We conclude that the block-level encoding scheme
performs best among others. In addition, the token string for the
block-level encoding scheme is only two percent (514 Bytes) of
the original HTML file (22.7KB in average).

Table 2. Size of translated sequences and number of patterns

Encoding
Scheme

Size of translated
sequences

No. of Patterns
discovered

All Tag 1128 7.9

No Physical 873 6.5

No Special 796 5.7

Block-Level 514 3.8

Table 3. Comparison of different encoding schemes

Encoding
Scheme

Retrieval
Rate

Accuracy
Rate

Matching
Percentage

All Tag 0.73 0.82 0.60

No Physical 0.82 0.89 0.68

No Special 0.84 0.88 0.70

Block-Level 0.86 0.86 0.78

5.2 Occurrence Partition and Multiple String
Alignment
Since the block-level encoding scheme has better abstraction of
the input Web page, the following experiments use this encoding
to show the effect of multiple string alignment and segmentation.
As discussed above, the block-level encoding scheme discovers
no patterns for Lycos because its regularity is greater than the
default threshold 0.5. Though larger threshold can keep such
patterns, it may also include too many irregular patterns.
Occurrence partition, on the other hand, provides the opportunity
to resume those patterns with larger threshold while reserve only
information blocks with really small threshold. Indeed, with the
additional step of occurrence segmentation, we can successfully
partition instances into several blocks and discover such patterns.
Therefore, the performance is greatly increased to 92% retrieval
rate and accuracy rate (Table 4). However, the number of patterns
increased a lot for Web sites like Lycos.

Table 4 also shows that with the help of multiple string alignment
the performance is improved to 97% retrieval rate, 94% accuracy
rate and 0.90 matching percentage. The high percentage of
retrieval rate is pretty encouraging. The 90% of matching
percentage is actually higher in terms of the text content retrieved.
For those Web sites with matching percentage greater than 85%,
the text contents are all successfully extracted. What bothers is the
accuracy rate. Since the extraction pattern generalized from
multiple alignment may comprehend more than the information
we need, the extractor may extract more than the desired
information. The detail performance of each Web site is shown in
Table 5 for reference.

Table 4. Effect of segmentation

Method Retrieval
Rate

Accuracy
Rate

Matching
Percentage

Block-level Encoding
0.86 0.86 0.78

Occurrence Segmentation
0.92 0.91 0.85

Multiple String Alignment
0.97 0.94 0.90

Figure 6. Number of Patterns validated

0
2
4
6
8

10
12
14

0 0.25 0.5 0.75 1

Density

o

f
p

at
te

rn
s

R=0.25

R=0.5

R=0.75

687

Table 5. The performance of multiple string alignment

Search
Engine

Retrieval
Rate

Accuracy
Rate

Matching
Percentage

AltaVista
Cora
Excite
Galaxy
Hotbot
Infoseek
Lycos
Magellan
Metacrawler
NorthernLight
Openfind
Savvysearch
Stpt.com
Webcrawler

1.00
1.00
1.00
1.00
0.97
0.98
0.94
1.00
0.90
0.95
0.83
1.00
0.99
0.98

1.00
1.00
0.97
0.95
0.86
0.94
0.63
1.00
0.96
0.96
0.90
0.95
1.00
0.98

0.91
0.97
1.00
0.99
0.88
0.87
0.94
0.76
0.78
0.90
0.66
0.97
0.95
0.98

Average 0.97 0.94 0.90

6. SUMMARY AND FUTURE WORK
The core technique of information extraction is the discovery of
extraction rules. In earlier work, extraction rules are learned from
training examples. In this paper, we presented an unsupervised
approach to pattern discovery. We propose the application of PAT
trees for pattern discovery in the encoded token string of Web
pages. The discovered maximal repeats are further filtered by the
measures: regularity and compactness. The basic pattern discovery
module (without occurrence partition and multiple string
alignment) can extract 86% records with block-level encoding
scheme. The parameters of the thresholds for regularity and
compactness have been controlled to keep as many good patterns
while to filter out useless patterns.

For patterns with regularity greater than the default threshold,
occurrence partition is applied to segment the occurrences into
blocks. This additional step help to solve cases like Lycos whose
pattern scatters among several blocks and has large regularity.
Though higher threshold can reserve such patterns, it may also
include too many irregular patterns. Occurrence partition, on the
other hand, provides the opportunity to resume those patterns with
greater threshold than default while reserve only information
blocks with really small threshold.

Despite PAT trees’ efficiency in “exact” string problems, “inexact”
string problems are ubiquitous. Therefore, multiple string
alignment is applied to patterns to generalize multiple records and
express the extraction rule in regular expressions. In our
experiments, the extraction rule generalized from multiple string
alignment can achieve 97% retrieval rate and 94% accuracy rate
with high matching percentage. The whole process requires no
human intervention and training example. It takes only three
minutes to extract 140 Web pages. Comparing our algorithm to
others, our approach is quick and effective.

7. ACKNOWLEDGEMENT
This work is sponsored by National Science Council, Taiwan,
under grant NSC 89-2213-E-008-056. Also, we would like to
thank Lee-Feng Chien, Ming-Jer Lee and Jung-Liang Chen for
providing their PAT tree code for us.

8. REFERENCES
[1] Chang, C.H.; Lui, S.C.; and Wu, Y.C. Applying pattern

mining to Web information extraction. In Proceedings of
the Fifth Pacific Asia Conference on Knowledge Discovery
and Data Mining, Apr. 2001, Hong Kong.

[2] Chien, L.F. PAT-tree-based keyword extraction for
Chinese information retrieval. In Proceedings of the 20th
annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 50–58. 1997.

[3] Doorenbos, R.B.; Etzioni, O.; and Weld, D. S. A scalable
comparison-shopping agent for the World Wide Web. In
Proceedings of the first international conference on
Autonomous Agents. pp. 39–48, NewYork, NY, 1997,
ACM Press.

[4] Embley, D.; Jiang, Y.; and Ng, Y. -K. 1999. Record-
boundary discovery in Web documents. In Proceedings of
the 1999 ACM SIGMOD International Conference on
Management of Data (SIGMOD’99)}. pp. 467–478,
Philadelphia, Pennsylvania.

[5] Gonnet, G.H.; Baeza-yates, R.A.; and Snider, T. 1992.
New Indices for Text: Pat trees and Pat Arrays.
Information Retrieval: Data Structures and Algorithms,
Prentice Hall.

[6] Gusfield, D. 1997. Algorithms on strings, tree, and
sequence, Cambridge. 1997.

[7] Hsu, C.-N., and Dung, M.-T. 1998. Generating finite-state
transducers for semi-structured data extraction from the
Web. Information Systems. 23(8): 521–538.

[8] Knoblock, A. et al., Eds. 1998. In Proceedings of the 1998
Workshop on AI and Information Integration, Menlo Park,
California. AAAI Press.

[9] Kurtz, S., and Schleiermacher, C. 1999. REPuter: fast
computation of maximal repeats in complete genomes.
Bioinformatics 15(5): 426–427.

[10] Kushmerick, N. 1999. Gleaning the Web. IEEE Intelligent
Systems 14(2): 20–22.

[11] Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997.
Wrapper induction for information extraction. In
Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI).

[12] Morrison, D. R. Journal of ACM, 15, pp. 514–534, 1968.

[13] Muslea, I.; Minton, S.; and Knoblock, C. 1999. A
hierarchical approach to wrapper induction. In Proceedings
of the 3rd International Conference on Autonomous
Agents (Agents ’99), Seattle, WA.

[14] Muslea, I. 1999. Extraction patterns for information
extraction tasks: a survey. In Proceedings of AAAI ’99:
Workshop on Machine Learning for Information
Extraction

[15] Sedgewick, R. Algorithms in C, Addison Wesley, 1990.

688

