
0-89791-993-9/97 $10.00 1997 IEEE

IES
3
: A Fast Integral Equation Solver for

E�cient 3-Dimensional Extraction

Sharad Kapur David E. Long

Bell Laboratories, Lucent Technologies

Murray Hill, NJ 07974

Abstract
Integral equation techniques are often used to ex-

tract models of integrated circuit structures. This
extraction involves solving a dense system of linear
equations, and using direct solution methods is pro-
hibitive for large problems. In this paper, we present
IES3 (pronounced \ice cube"), a fast Integral Equation
Solver for three-dimensional problems with arbitrary
kernels. Extraction methods based on IES3 are sub-
stantially more e�cient than existing multipole-based
approaches.

1 Introduction
Parasitic extraction of IC packages and intercon-

nect is now critical because of increases in oper-
ating frequencies and reductions in operating volt-
ages. Extraction procedures based on integral equa-
tions [10, 13] are robust and have many advantages
over �nite-di�erence or �nite-element schemes, includ-
ing good conditioning, reduction in dimensionality,
and the ability to treat arbitrary regions. However,
they have one overriding disadvantage: the high cost
of working with large dense matrices. In this paper,
we present IES3 (\ice cube"), an Integral Equation
Solver for three-dimensional problems involving arbi-
trary kernels, and show that this new solver has signif-
icant performance advantages compared to competing
approaches.

The fast multipole method (FMM) [3], while origi-
nally developed for particle simulation problems, can
be combined with iterative techniques to solve the
dense integral equation matrices that arise from the
Laplace equation. Parameter extraction programs
such as FastCap [7] and FastHenry [5] use the FMM
for accelerating the dense matrix-vector products re-
quired by an iterative solver. Because the FMM is
tailored to the 1=jjx � x0jj kernel, dealing with com-
mon situations such as layered dielectrics is di�cult.
For example, in FastCap this requires discretizing the
dielectric boundaries and introducing extra unknowns
for the polarization charge [8, 10]. This can result in
a large increase in problem size. An extractor based
on IES3 has no such di�culty: it simply incorporates
the variation in dielectrics into the Green's function.

Surprisingly, even for extraction problems that only
involve the Laplace kernel, IES3 is faster and more
memory-e�cient than FastCap, as we show in Sec-
tion 4. This is because IES3 provides greater com-

pression than the FMM, though at the cost of a more
expensive preprocessing phase. In extraction prob-
lems, the number of matrix-vector multiplies is typ-
ically large; hence the added compression provided
by IES3 more than makes up for the FMM's smaller
startup cost. In contrast, in a particle simulation en-
vironment where the geometry (and hence the matrix)
changes after each multiply, the FMM has a de�nite
advantage [3].

We did not have access to the Precorrected-FFT
version of FastCap [9], but based on the relative per-
formance of both approaches to the FMM version of
FastCap, we believe that our approach still has per-
formance advantages. Also note that there have been
recent advances in the FMM algorithms [2], but they
have not yet been incorporated into extraction pro-
grams such as FastCap.

IES3 uses the fact that large parts of the integral
operator matrix are numerically low rank. The sin-
gular value decomposition (SVD) is an extremely ef-
fective tool for the compression of rank-de�cient ma-
trices [12]. Based on this observation, Kapur and
Zhao [6] describe a scheme for recursively partition-
ing and compressing the matrix. This compressed
representation is then used to compute matrix-vector
products during an iterative solve. While these prod-
ucts are fast (O(N logN) time), the method su�ers
from an O(N2) preprocessing phase. This justi�es its
use only in situations where there are a large num-
ber of multiplies. The main result of this paper is a
new interpolation-based construction procedure that
reduces the preprocessing time to O(N logN). As

a result, IES3 is dramatically faster than the earlier
method while still retaining the same degree of com-
pression.

2 Formulation of the problem
We consider integral equations such as

�(x) =

Z
R0

G(x; x0)�(x0) dR0 (1)

where � is the known \right-hand side" (for histori-
cal reasons, written on the left), � is the unknown to
be solved for, R is the region of integration and G is
the kernel (or Green's function). For example, in the
standard problem of capacitance extraction in three
dimensions, � is the potential, � is the surface charge

density, R ranges over the surfaces of conductors, and
G is the free-space Green's function 1=(4��0jjx�x0jj).
To solve such a problem numerically, we must �rst
discretize the region and reduce (1) to a matrix equa-
tion. In engineering applications, �rst-order colloca-
tion schemes are adequate. The domain R is sub-
divided into regions fR1; R2; : : : ; RNg, a collocation
point xj is chosen in each region Rj, and � is assumed
to be piecewise constant over each region. Then (1)
reduces to the following set of equations:

�(xi) =

NX
j=1

�Z
R0

j

G(xi; x
0) dR0

j

�
�(xj) 1 � i � N:

(2)
If we de�ne the dense matrix A = faijg by

aij =

Z
R0

j

G(xi; x
0) dR0

j; 1 � i; j � N: (3)

then the system (2) is equivalent to the matrix equa-
tion � = A�. While our algorithm does not assume
any particular method of discretization and does not
depend on the Green's function, we do assume that
the problem has been reduced to matrix form. For
the remainder of this paper, A will denote the N �N
matrix (3) associated with the integral equation. For
notational convenience, we assume that N is a power
of 2.

3 Rapid matrix solution
Direct solution of the linear system A� = � via

Gaussian Elimination requires O(N2) storage and
O(N3) time and is impractical for large problems. For-
tunately, typical systems arising from integral equa-
tions almost always have an asymptotically bounded
condition number and can be solved by Krylov-
subspace iterative schemes such as Conjugate Gradi-
ent [12] or GMRES [11]. Iterative solvers require ap-
plication of the matrix A to a sequence of recursively
generated vectors. The dominant costs become the
O(N2) time and space required for constructing and
storing the matrix and the O(N2) time required for
each matrix-vector product. In this section, we de-
scribe IES3, a kernel-independent algorithm that re-
duces each of these costs to O(N logN) for typical
problems.

3.1 A simple example
The idea behind our algorithm (and other fast al-

gorithms such as the FMM) is to exploit the fact that
typical Green's functions vary smoothly with distance.
Consider the situation depicted in Figure 1. Suppose
that X = fx1; x2; : : : ; xng and Y = fy1; y2; : : : ; yng
are two sets of points in R3 separated by a distance d.
Let H(x; y) be the function giving the interaction be-
tween the points. Then the inuence of Y on X is can
be computed by multiplication of the n � n matrix
B = fbijg = fH(xi; yj)g with a vector. Direct eval-

uation of this product would require n2 operations.
However, if d is relatively large, and the function H
is smooth, then the numerical rank of the matrix B is

small compared to n. Intuitively the inuence due to
a point yj is very similar to the inuence of its neigh-
bors. As a result, the columns of B are nearly linearly
dependent.

X

Y

dxi yj

Figure 1: Well-separated regions

We take advantage of this fact using the Singular
Value Decomposition (SVD) [12]. The SVD of B is
given by

B = USW

where
UU� = W �W = I;

and S = diag(s1; : : : ; sn) with s1 � s2 � � � � � sn � 0.
The numerical rank of a matrix to a precision � is the
integer r such that sr=s1 < �. Clearly, if B is of rank
r then it can be approximated as1

~B = U (:; 1:r)S(1:r; 1:r)W (1:r; :)

with
jjB � ~Bjj < �:

Given the SVD of the matrix B of rank r, a matrix-
vector product can be computed in (2n + 1)r opera-
tions by multiplying the vector in turn by W (1:r; :),
S(1:r; 1:r), and U (:; 1:r). When r � n it is much more
e�cient to multiply with B in this manner.

Use of the SVD to represent B requires no prior
knowledge of the function H, in contrast to the mul-
tipole approach which is based on a Taylor series ap-
proximation of H. This added exibility does not re-
duce the compression that is achieved. In fact, as our
numerical experiments in Section 4 show, we obtain
substantially greater compression than the multipole
schemes.

Even though we use the SVD for the theoretical
development of our algorithm, it is su�cient to use
the Gram-Schmidt process [12]. Given an n�nmatrix
B and a user speci�ed tolerance �, the Gram-Schmidt
process computes the numerical rank r of B and an
n � r orthogonal matrix U which spans the column
space of B. B can be approximated as UV where
V = U�B. Decomposing B in this way is faster than
computing the SVD of B.

1We use Matlab notation for submatrices. U(:; 1:r) denotes
the submatrix consisting of columns 1 through r of U . Similarly,

W (1:r; :) denotes the submatrix consisting of the �rst r rows of
W .

3.2 Ordering
To compress the integral operator matrix A in (3),

which represents both near and far interactions, we
need to identify large submatrices that correspond to
interactions between well-separated regions. (As we
saw in the previous subsection, such submatrices can
be compactly represented as low-rank UV products.)
In some situations, this is easily achieved. For exam-
ple, in a one-dimensional problem, the natural order-
ing of points by their position in space is a good one,
yielding a matrix whose rank map is shown in Figure 2.
(This example is drawn from Section 3-2 of [4]. The
problem is to solve for the surface current induced on
a conducting cylinder by an impressed electric �eld,
and the Green's function G is the Helmholtz kernel
H2

0
(kjjx� x0jj).) The rank map shows the partition-

ing of the matrix A into submatrices and the rank of
each submatrix. The structure of this rank map is typ-
ical in problems where the storage requirements drop
from O(N2) to O(N logN).

4
4 4

4
4

4

4

4

4
4 4

4
4

4

2 2

4 2

2 4

2 2

4
4 4

4
4

4

4

4

4
4 4

4
4

4

4

2 4

2 2

2 2

4 2

4

4

2 4

2 2

2 2

4 2

4

4
4 4

4
4

4

4

4

4
4 4

4
4

4

2 2

4 2

2 4

2 2

4
4 4

4
4

4

4

4

4
4 4

4
4

4

Figure 2: Rank map for a one-dimensional Helmholtz
kernel (N = 2048)

In general, our goal is to �nd a permutation ma-

trix P such that ~A = P�1AP is highly compress-
ible. Ideally, all strong interactions should be close

to the diagonal in ~A, as in Figure 2. For two- and
three-dimensional problems there is generally no per-
mutationP that can completely accomplish this. Nev-
ertheless, the following heuristic based on recursive
subdivision yields excellent results and requires only
O(N logN) time. We assume that there is a spatial
coordinate associated with each element in the dis-
cretization. Under this assumption, the problem re-
duces to one of ordering a set of points such that points
that are close in space are also close in the ordering.
For notational simplicity, we present the algorithm for
the two dimensional case.

1. If the current set of points S is the singleton
f(x; y)g then return the sequence h(x; y)i.

2. Otherwise compute the bounding box for the
points in S. We assume without loss of gener-
ality that the longest dimension corresponds to
the x-axis. Equally divide S into two disjoint
sets S1 and S2 such that x1 � x2 for all points
(x1; y1) 2 S1 and (x2; y2) 2 S2. Recursively order
S1 and S2 and concatenate the results to obtain
the ordering for S.

The rank map for a three-dimensional problem af-
ter ordering with this technique is shown in Figure 4.
This problem corresponds to capacitance extraction
for structure of Figure 3 [8]. Although there are some
strong interactions o� the diagonal, the rank map is
similar to the one in Figure 2. For the remainder of
the paper, we will assume that all matrices have been
ordered in this fashion.

Figure 3: The backplane connector example from [8]

3.3 Compression in O(N2) time
In this subsection, we briey describe the algorithm

of [6] for the recursive UV decomposition of A. The
main di�erence between the algorithm of [6] and IES3

is in the construction of the compressed representation
of the matrix. However, the basic structure of the two
algorithms is the same: both partition the matrix by a
recursive subdivision scheme. In [6], the construction
proceeds as follows.

1. If the dimension n of the current submatrix B is
less than b, where b is a small �xed number, then:

(a) Use the Gram-Schmidt procedure to obtain
an orthonormal column basis to a user spec-
i�ed precision �. If the size of the basis r is
greater than n=2 then B is simply stored as
a dense matrix.

17

20
16

13 6

6 9

9 6
6

5
6

8
8

8
8 8

6

8 4
5 5

6 9 5
6

4 3 6

4 4 5

8

7

9

7 6

5
7 4

3
5

4 4

5 6
6

5 4 7 6

6
6 14

17
6

6

6 4

19 5
7

4 4
5
3 4 4

7 4
6

5 6

6 4
4
5 5

5

11
6 4

4
5 5

5 5
8 6

5 4
12

6

5 5
6

5 4

13 8

8 13

16
4

5 3
3

4 4

7
6

6
6

4 7

3 7
6 5

5 4
6

11

4
5 5

5 4

6 5 6

4 5

4
4

4 3

4 4

6
6 5 5

4 5

13 8

8 13

21

18

4
8 4

4
5 4

6 12

9 7

6
9
4 4

9
6

6

16

7
6
8 7

13 4
5
5 7 4

4 4 5
5
4 5 6

5

7
7

6 7

5
4

5 4
5

4 4
9 7
6 6

5 5
8

4 4 6 7

6

6

15

16

6

6

Figure 4: The rank map for the backplane connector
example (discretized into N = 10672 panels)

(b) Otherwise let U be the n � r matrix whose
columns are the basis. Compute V = U�B.

2. If n is at least b, then construct the represen-
tation of the four submatrices B(1:n=2; 1:n=2),
B(1:n=2; n=2 + 1:n), B(n=2 + 1:n; 1:n=2), and
B(n=2 + 1:n; n=2 + 1:n). If these child subma-
trices are all low rank, i.e., are represented as UV
decompositions, then

(a) Construct a decomposition UV for B by
merging (as described below).

(b) If the size of this decomposition is smaller
than the sum of the sizes of the child subma-
trix representations then represent B by U
and V . Otherwise represent B by the child
submatrices.

3. If some submatrix is not low rank, then represent
B by its four children.

The merging process constructs a decomposition
U12V12 for the matrix

�
U1V1

U2V2

�

where U1; V1; U2, and V2 have dimensions n�r1, r1�n,
n � r2, and r2 � n respectively, and where U1 and
U2 are both orthogonal. We run the Gram-Schmidt
procedure on the rows of V1 and V2 to obtain a row
basis of size r. V12 is the r� n matrix whose rows are
this basis. The 2n� r matrix U12 is given by

�
U1V1V

�

U2V2V �

�
:

U1V1 U3V3

U2V2 U4V4

- U12V12 U34V34 - B = UV

Figure 5: The merging process.

Note that the matrix V12 generated by this procedure
is orthogonal. Three merges (two vertical and one hor-
izontal) yield the UV representation of B in Step 2a
above. As a result of the �nal horizontal merge, U
is orthogonal. The process is illustrated in Figure 5.
Note that directly using the Gram-Schmidt process to
construct the UV decomposition of B would require
O(n2r) operations. In contrast, merging requires only
O(nr2) steps. For rank de�cient matrices (r � n)
merging is much more e�cient.

Computing a matrix-vector product with the �nal
compressed representation of is done with the follow-
ing recursive algorithm.

1. Let B of size n � n be the current submatrix, x
be the current input vector, and y be the current
output vector. If B is represented densely, then
compute y = Bx directly.

2. If B is represented as UV , then compute y =
U (V x).

3. If B is represented as a combination of four sub-
matrices �

B1 B3

B2 B4

�
;

then y(1:n=2) = B1x(1:n=2)+B3x(n=2+1:n) and
y(n=2 + 1:n) = B2x(1:n=2) +B4x(n=2 + 1:n).

This summarizes the algorithm described in [6] for
compression of A and the computation of matrix-
vector products. Empirically, the compression ob-
tained is much higher than that achieved by the mul-
tipole algorithms. This leads to a faster matrix-vector
multiply. However, the construction of the UV decom-
positions requires at least O(N2) operations while con-
structing the multipole representation requires only
O(N logN) steps. In situations where the construc-
tion cost can be amortized over a large number of
solves (as is the case in [6]), the UV representation
is more e�cient. But when there are few solves, the
multipole approach is faster overall. In the following
subsection we present an improved construction pro-
cedure that requires subquadratic time. This makes
our method substantially faster than the multipole al-
gorithms in most cases.

3.4 Compression in subquadratic time
The key idea behind IES3 is to exploit smoothness

in the entries of the interaction matrix. By using inter-
polation, we can build the UV decomposition without
examining all n2 entries.

Consider constructing a UV decomposition of the
interaction matrix B for the situation shown in Fig-
ure 6. Let SX and SY be sets of p sampling points
in X and Y respectively. The idea for reconstructing
B is to use the inuence of SY on X to construct a
column basis for B. Then the inuence of Y on SX is
used to express each column of B in terms of this ba-
sis. The columns of B that have not been completely
sampled (which correspond to points in Y � SY) are
interpolated based on the sampling SX of rows. More
speci�cally, the inuence due to any point in Y on X
is approximated by a linear combination of the inu-
ences of the sampling points SY . Hence if C is the
n� p matrix of columns of B corresponding to points
in SY , then a column basis for C should also span the
columns of B (the validity of this is discussed below).
De�ne U to be the n � r matrix obtained by running
the Gram-Schmidt process on the columns of C. To
get the coe�cients of the columns of B in the basis
represented by U , we use the sampling points SX . Let
R be the p � n matrix of rows of B corresponding to

points in SX and let ~U be the p� r matrix of rows of
U corresponding to these same points. Finally, de�ne
V to be the solution (in the least squares sense) to
~UV = R. Then B is approximated by UV .

X

Y

dxi yj

SX
SY

Figure 6: Well-separated regions with sampling points

In the old algorithm, U was the result of running
the Gram-Schmidt process on all the columns of B.
Clearly, obtaining U from C instead of B is only jus-
ti�ed when there are su�cient sampling points to re-
construct the interaction. The issue is akin to inter-
polation of an unknown function. When the function
is smooth (in the sense that the derivatives over the
interval have a known bound), the accuracy of the in-
terpolation can be rigorously controlled by the num-
ber and location of sampling points [12]. However,
when designing a general-purpose algorithm, requir-
ing bounds on the derivatives of the function is usually
very conservative. Empirically, given the assumptions
that the function is smooth, the sets are well sepa-
rated, and the sampling is reasonably uniform, the in-
terpolation can be made arbitrarily accurate. Hence,
instead of derivative information, our algorithm uses
a statically-determined map which indicates the low-
rank regions of the matrix A and information about
appropriate sampling points within each such region.
We provide default methods that compute this in-
formation based purely on the spatial coordinates of
elements. For typical kernels these default routines

su�ce. As an example, a static map of the interac-
tions for the backplane connector mentioned in Sub-
section 3.2 is shown in Figure 7. Figure 4 shows the
rank map for the same example; note the close corre-
spondence between the two. Also note that the static
map is conservative, in that many of the small sub-
matrices shown on the static map have merged into
larger low-rank matrices in Figure 4.

Figure 7: The static sampling map for the backplane
connector example

The new algorithm is exactly the same as the one in
Subsection 3.3, except for the addition of a new base
case:

If the statically determined map indicates
that B should be low rank, then sample B
and construct the UV decomposition as dis-
cussed at the start of this subsection.

For a (statically-identi�ed low-rank) submatrix B
of size n � n and rank r, the algorithm takes only
O(r2n) operations to construct U and V . As a re-
sult, this simple change dramatically reduces the con-
struction time for the compressed representation of
A. For general problems it is di�cult to give a
bound for the complexity, but for the simple case
of a one-dimensional problem (where we assume that
the rank of each of the submatrices is r), the time is

O(r2N logN).

4 Experimental results
In this section, we present experimental results for

IES3. All tests were run on an SGI machine (200 MHz
R10000 CPU).

4.1 Comparison to FastCap
We begin by comparing IES3 to the FMM-based

FastCap program (version 2) [7, 8]. To make a fair

comparison, we modi�ed FastCap to use our algo-
rithm within FastCap's iterative solver. The dis-
cretization, matrix formulation, and preconditioning
were unchanged. The relative tolerance was set to give
the same accuracy as FastCap's default two-term mul-
tipole expansions. Results for a number of the stan-
dard examples supplied with FastCap are presented in
Table 1. For FastCap we computed the memory re-
quirements by subtracting the preconditioner memory
and the \miscellaneous" memory from the total mem-
ory use reported. Error is determined by running the
same examples at a much higher accuracy and com-

puting jjC � ~Cjj=jjCjj where C and ~C are the high-
and low-accuracy capacitance matrices, respectively.
For the RAM cell example, the default tolerances only
yielded one digit of accuracy for both methods. The
example was run with tighter tolerances for both.

The �rst two examples in the table involve conduc-
tors in free space, while the last two also include dielec-
tric interfaces. For examples with dielectrics, FastCap
uses a �nite-di�erence approximation to compute nor-
mal components of the electric �eld at the dielectric
interfaces. This computation is done after the poten-
tial is evaluated, since incorporating it directly would
require substantial alterations to the multipole algo-
rithm (as discussed in the appendix of [8]). Because
IES3 is not restricted to any speci�c kernel, we chose
to incorporate the same �nite-di�erence computation
directly into the matrix. We could as easily have an-
alytically di�erentiated the potential to avoid the in-
accuracies inherent in �nite-di�erencing.

The memory required by IES3 can be as little as
one-�fth that required by FastCap. As a consequence,
IES3 is much faster than FastCap for larger problems
and those involving many conductors. Our startup
overhead is still substantial for small examples such
as the via structure. For medium-sized examples such
as the backplane connector, IES3 is almost two and
one-half times faster.

4.2 Simulation of an RF test socket

As an example of a problem involving a non-
classical kernel, we consider capacitance extraction for
an RF IC test socket. Figure 8 shows a cross-sectional
view of one side of the socket. The socket is mounted
on a single-layer board with a ground plane. In the �g-
ure, �1 = 3:08 is the e�ective dielectric for the socket
and �2 = 9:8 is the dielectric constant of the circuit
board. Figure 9 is a three-dimensional mesh of the
socket, computed using a surface mesh generator2.
The picture also shows the solution for the charge dis-
tribution on the socket when a potential di�erence of
one volt is applied to the �rst pin. To decrease the
size of the problem, we use an adaptive mesh, with
�ner discretization at corners and edges. This reects
the expected rapid variation in charge density in these
regions. Due to the large separation between the two
sides of the socket, it was su�cient to model only one
side.

2Triangle: A Two-Dimensional Quality Mesh Generator and
Delaunay Triangulator, by Jonathan Shewchuk

�1

�2

Figure 8: Cross section of one side an RF IC socket,
showing dielectric layers and ground plane

Figure 9: Discretization and charge distribution of the
socket with one volt applied to pin one

A standard �rst-order collocation scheme of the
type discussed in Section 2 was used together with
a modi�ed Green's function incorporating the layered
dielectrics and ground plane [13]. This Green's func-
tion takes the form of an in�nite series. Fortunately,
for dielectric constants that are relatively close, the
series is rapidly convergent and can be numerically
approximated with ten to �fteen terms.

For the construction of the matrix A, we use an-
alytic integration for the singular integrals when the
collocation point lies in the triangular panel and low-
order Gaussian integration when the point does not.

Experimental results for the capacitance extraction
are given in Table 2 and Figure 10. For lower levels
of discretization, we compare three methods: standard
Gaussian Elimination (G.E. in the table), GMRES us-
ing a direct matrix multiply, and our algorithm. For
direct GMRES and IES3, a tolerance of 10�2 was used.
The memory and time required to construct the ma-
trix (for both Gaussian Elimination and GMRES) is
shown in the second and third columns. Memory is
in MB and time is in CPU seconds. The \Error"

FastCap IES3

Example Panels Time (sec) Mem. (MB) Error Time Mem. Error
5x5 bus crossing 7360 185 66 3e-3 105 26 6e-3
via structure 6126 45 37 1e-3 60 22 4e-3
backplane connector 10672 675 165 4e-3 280 45 3e-3
RAM cell 6129 480 135 1e-2 195 26 1e-2

Table 1: Comparison of IES3 to the FMM-based scheme in FastCap

Direct Methods IES
3

G.E. GMRES

Panels Mem. Cons. Solve Solve Error Mem. Cons. Solve Error C11 C12

1320 13 40 10 20 1e-3 2 20 10 3e-3 905 -474

2500 48 140 70 90 1e-3 5 65 25 4e-3 906 -484

4440 150 435 385 290 1e-3 11 150 50 5e-3 898 -477

8500 (550) (1650) (2700) (1050) | 24 375 90 | 892 -469

15690 (1870) (5425) (17000) (3600) | 54 865 230 | 891 -467

Table 2: Comparison of IES3 to direct methods

columns give relative errors in the capacitance ma-
trices, as compared to Gaussian Elimination. The
\Solve" columns show CPU times for doing ten solves
(one per pin). The construction time for IES3 includes
the time to compress the matrix. The capacitance ma-
trix entries C11 and C12 are in fF. The numbers in
parenthesis are extrapolated values.

The capacitance matrix entries have converged to
two digits of accuracy at a discretization of N =
15690. At this level of discretization, memory require-
ments made the direct methods impractical. Even if
memory were available, IES3 would be twenty times
faster than Gaussian Elimination and eight times
faster than GMRES. Note that both the time and
memory required by IES3 are growing almost linearly
with problem size. The total time required for the
largest problem is less than twenty minutes.

The extracted capacitance values were used for
building an equivalent circuit model for the socket.
The coupling between pins was measured using a net-
work analyzer. Figure 11 shows predicted crosstalk
with our model, as compared to measurements. The
two agree to about 3 dB.

As an aside, it is interesting that a carefully-
engineered and machine-optimized Gaussian Elimina-
tion code [1] is extremely competitive with iterative
techniques for medium-sized problems. This is be-
cause modern machines tend to be memory bound
rather than CPU bound. In such an environment, we
feel that the primary bene�t of codes such as IES3 is
the dramatic memory reduction that they o�er.

5 Conclusions
In this paper we presented IES3, a fast general-

purpose integral equation solver. The algorithm uses
a combination of SVD-based compression and an it-

erative solver. The compressed representation of the
integral operator matrix is constructed in O(N logN)
time by combining a recursive partitioning strategy
with interpolation of the function that de�nes the ma-
trix entries. Unlike the kernel-speci�c multipole algo-
rithms, IES3 does not depend on the particular form
of the Green's function. Further, our scheme gives
higher compression even for those kernels for which
the multipole methods were developed. We demon-
strated IES3 on three-dimensional capacitance extrac-
tion problems. On large problems with Laplace ker-
nels, our method uses half the time of FastCap and
only about one-�fth the memory. Because IES3 is
not kernel-speci�c, we solve examples involving multi-
ple dielectric layers using a modi�ed Green's function,
thereby restricting the discretization only to conduc-
tor surfaces. On one such example, an RF test socket,
IES3 required an order of magnitude less time and
thirty �ve times less memory than direct GMRES.
While we have discussed IES3 only in the context
of extraction problems, it should also be useful for
other purposes, such as full wave problems involving
Helmholtz kernels.

Acknowledgements
Prashant Singh provided the description and mea-

surements for the socket example. We thank Jacob
White and his group at MIT for making the Fast-
Cap program and the associated examples available
for benchmarking purposes.

References
[1] E. Anderson et al. LAPACK User's Guide, Re-

lease 2.0. SIAM Publications, Philadelphia, 2nd
edition, 1995.

Direct

IES3

1 2 5 10

2

5

10

20

50

100

200

500

1000

2000

Panels (�1000)

M
em
o
ry
(M
B
)

1 2 5 10

50

100

200

500

1000

2000

5000

104
2�104

G.E.

GMRES

IES3

Panels (�1000)

T
im
e
(s
ec
)

Figure 10: Time and memory requirements for the RF
test socket example at various levels of discretization

[2] L. Greengard and V. Rohklin. A new version
of the fast multipole method for the Laplace
equation in three dimensions. Technical Report
YALEU/DCS/RR-1115, Yale University Depart-
ment of Computer Science, September 1996.

[3] L. Greengard and V. Rokhlin. A fast algorithm
for particle simulations. Journal of Computa-
tional Physics, 73(2):325{348, December 1987.

[4] R. F. Harrington. Field Computation by Moment
Methods. IEEE Press, New York, 1991.

[5] M. Kamon, M. J. Tsuk, and J.White. FAS-
THENRY: A multipole-accelerated 3-d induc-
tance extraction program. IEEE Transactions on
Microwave Theory and Techniques, 42(9):1750{
1758, September 1994.

[6] S. Kapur and J. Zhao. A fast method of mo-
ments solver for e�cient parameter extraction of
MCMs. In 34th Design Automation Conference,
pages 141{146, June 1997.

1E+07 1E+08 1E+09 1E+10
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency

HPIC ADVICE PLOT FILE
S-PARAMETER ANALYSIS AT 25.000000C

S12 (meas)
S13 (meas)
S15 (meas)
S12 (sim)
S13 (sim)
S15 (sim)

Figure 11: Comparison of simulated S parameters ver-
sus measurements

[7] K. Nabors and J. White. Fastcap: A multipole-
accelerated 3-d capacitance extraction program.
IEEE Transactions on Computer-Aided Design,
10(10):1447{1459, November 1991.

[8] K. Nabors and J. White. Multipole-accelerated
capacitance extraction for 3-d structures with
multiple dielectrics. IEEE Transactions on Cir-
cuits and Systems, 39(11):946{954, November
1992.

[9] J. R. Philips and J. White. A precorrected-FFT
method for capacitance extraction of complicated
3-d structures. In International Conference on
Computer-Aided Design, November 1994.

[10] S. M. Rao, T. K. Sarkar, and R. F. Harrington.
The electrostatic �eld of conducting bodies in
multiple dielectric media. IEEE Transactions on
Microwave Theory and Techniques, 32(11):1441{
1448, November 1984.

[11] Y. Saad and M. H. Shultz. GMRES: A general-
ized minimal residual algorithm for solving non-
symmetric linear systems. SIAM Journal on Sci-
enti�c and Statistical Computing, 7(3):856{869,
July 1986.

[12] J. Stoer and R. Bulirsch. Introduction to Numer-
ical Analysis. Springer-Verlag, New York, 1979.

[13] W. T. Weeks. Calculation of coe�cients of capac-
itance of multiconductor transmission lines in the
presence of a dielectric interface. IEEE Trans-
actions on Microwave Theory and Techniques,
18(1):35{43, January 1970.

