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ABSTRACT
Machine Vision Components (MVC) are becoming safety-critical.
Assuring their quality, including safety, is essential for their suc-
cessful deployment. Assurance relies on the availability of precisely
specified and, ideally, machine-verifiable requirements. MVCs with
state-of-the-art performance rely on machine learning (ML) and
training data, but largely lack such requirements.

In this paper, we address the need for definingmachine-verifiable
reliability requirements for MVCs against transformations that sim-
ulate the full range of realistic and safety-critical changes in the
environment. Using human performance as a baseline, we define re-
liability requirements as: ‘if the changes in an image do not affect a
human’s decision, neither should they affect the MVC’s.’ To this end,
we provide: (1) a class of safety-related image transformations; (2)
reliability requirement classes to specify correctness-preservation
and prediction-preservation for MVCs; (3) a method to instantiate
machine-verifiable requirements from these requirements classes
using human performance experiment data; (4) human performance
experiment data for image recognition involving eight commonly
used transformations, from about 2000 human participants; and
(5) a method for automatically checking whether an MVC satisfies
our requirements. Further, we show that our reliability require-
ments are feasible and reusable by evaluating our methods on 13
state-of-the-art pre-trained image classification models. Finally, we
demonstrate that our approach detects reliability gaps in MVCs
that other existing methods are unable to detect.

CCS CONCEPTS
• Software and its engineering → Requirements analysis; •
Computing methodologies→ Computer vision.
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1 INTRODUCTION
The use of Machine Vision Components (MVCs) in safety-critical
systems, such as self-driving cars, creates major safety concerns,
since undesired behaviors can lead to fatal accidents [56]. For ex-
ample, recently, Tesla self-driving cars misclassified emergency
vehicles and caused multiple crashes [4, 5]. Knowing how to ana-
lyze these components, provide safety assurance, and ensure their
quality becomes a must for their usability in safety-critical domains.
Particularly, in systems that automate tasks normally performed
by humans, such as driving, the vision task is performed by MVCs
which represent a critical function for the overall system safety.
However, vision tasks are difficult to specify; thus, they are usually
performed using machine learning (ML) [53]. Defining require-
ments for ML is not trivial because the inability to specify clear
requirements is the reason to use ML in the first place [8, 24, 46].
Yet such requirements are necessary for verification and providing
safety guarantees. As a first step towards safe MVCs, one needs to
define what it means for an MVC to be correct and then check its
correctness prior to system deployment.

In this paper, we focus on one aspect of correctness: reliability,
which measures the ability of a system or component to perform
its required functions in a specified environment [1], as it enables
ensuring the quality of the deployed system. We are specifically
interested in whether the performance of an MVC remains reli-
ably unaffected by image transformations that commonly occur
in real-world scenarios. This question has been studied in SE and
ML literature as model robustness, including testing [52] and veri-
fication [23] techniques. Yet, given the lack of detailed reliability
requirements, these approaches are limited to checking the models
within a small neighbourhood of the original input image, i.e., by
applying perturbations that are almost imperceptible to humans.
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(a) original image (b) original image
✗ not car (grille) ✓ car (jeep)

(c) RGB (d) contrast (e) defocus blur (f) brightness
✓ car (limousine) ✗ not car (grille) ✗ not car (EU salamander) ✓ car (jeep)

(g) frost (h) color jitter (i) jpeg compression (j) Gaussian noise
✓ car (minivan) ✓ car (minivan) ✓ car (jeep) ✗ not car (shovel)

Figure 1: Image recognition on original and transformed images.
The top row displays original images containing cars from the
ILSVRC’12 dataset [38]. The transformation applied to the image
is specified under the image. Images from (c) to (j) present all the
safety-related transformations considered in this paper. The classi-
fication result of a state-of-the-art MVC ResNet50 [17] is shown in
brackets in italics under each image. We further specify whether
the predicted category is concidered as a car (✓), or not (✗), based on
the ILSVRC’12 class hierarchy. Transformations are implemented
by Albumentations [6] and Imagenet-c [19].

While considering only the small perturbations allows for require-
ment analysis of model reliability [22], its applicability is limited
in the real-world scenarios, with a much broader range of possible
changes. For example, consider the problem of recognizing cars
in images – see a few examples in Fig. 1. We are interested in be-
ing able to recognize cars under such transformations as frost (see
Fig. 1g) and different brightness levels (Fig. 3d and Fig. 3g).

The range of transformation magnitudes in images in Fig. 1
is not considered small or imperceptible. While humans have no
problem recognizing cars in these images, the state-of-the-art image
classification model ResNet50 [17] failed to do so on the examples
in Figs. 1d, 1e and 1j. Since MVCs are used in systems that automate
tasks normally performed by humans, MVCs, like ResNet50, are
at the minimum expected to consistently classify objects across
range of changes that do not affect human perception. Thus, we
seek a method to establish human performance as a reference for
defining reliability, and an automated method to checkMVC against
a justified range of changes that do not affect human performance.

In this paper, we formally define two classes ofmachine-verifiable
reliability requirements forMVCs: correctness-preservation and prediction-
preservation. For both requirements classes, the range of image
changes we consider (i.e., the human-tolerated range), is a param-
eter estimated using experiments with human participants. Intu-
itively, within the human-tolerated range of changes, correctness-
preservation requires that the MVC’s predictions after changes
in images should be correct, and prediction-preservation requires
that the predictions on original images and on images that under-
went transformations should be the same. Specifically, this paper

makes the following contributions: (1) We identify a class of safety-
related image transformations; (2)We provide a formal specification
of two classes of input-output reliability requirements for MVCs,
with parameters representing human performance; (3) We present
a method to instantiate our requirements classes into machine-
verifiable requirements. This method estimates ranges of changes
to images that do not affect human vision using results of experi-
ments with human participants; (4) We provide human experiment
performance data for image recognition; (5) We provide an auto-
mated method for checking MVCs against our machine-verifiable
requirements.

While our criteria are defined for any computer-vision task (in-
cluding object detection and semantic segmentation), in this paper,
we demonstrate the feasibility of our approach on the image classi-
fication task. We show that our approach captures reliability gaps
that existing methods are unable to detect using 13 state-of-the-art
pre-trained image classification models on two image classification
datasets (Imagenet [38] and CIFAR-10 [30]).
Significance: To the best of our knowledge, we are the first to
define reliability requirements for MVCs using a human-justified
range of changes over realistic safety-related transformations. Our
requirements and the method for checking their satisfaction can
be reused by software engineers for analyzing system reliability of
MVCs before deployment.

The rest of the paper is organized as follows: Sec. 2 gives an
overview of our approach for creating and checking our reliability
requirements. Sec. 3 presents the safety-related image transforma-
tions and a generic metric for measuring changes in images. Sec. 4
presents a formal specification of our reliability requirement classes.
Sec. 5 presents our experiment for measuring human recognition
performance with human participants, and demonstrates an au-
tomated approach for estimating parameters of the requirements,
using data from this experiment. Sec. 6 introduces an automated
method for checking MVC’s against our reliability requirements.
We evaluate our approach in Sec. 7. Sec. 8 compares our work with
related approaches and we conclude in Sec. 9.

2 APPROACH OVERVIEW
Fig. 2 gives an overview of our approach. Given (i) a vision task
for the MVC, (ii) a safety-related transformation and (iii) experi-
mental data for estimating the ranges of visual changes that do not
affect human performance, we provide a process for instantiating
machine-verifiable reliability requirements for MVC (requirement
instantiation) and a process for checking whether an MVC satisfies
these instantiated requirements (requirement checking).

The vision task and the transformation need to be selected based
on the application of the MVC. To help with the selection of trans-
formations that represent changes likely to happen in the operating
environment, we identified a class of safety-related image trans-
formations that represent potentially risky input modifications in
real world situations. For example, frost shown in Fig. 1 is a safety-
related transformation because it can reduce lighting in the scene
which, in turn, can cause machine vision errors. Note that since
transformations have different parameter domains and can have
different visual effects on different images to humans, we defined
a generic metric called a visual change and denoted by Δ𝑣 , which
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Legend:

I.Requirement instantiation II.Requirement checking

: Step : Artifact

Vision
task

Safety-
related
transfor-
mation

Experiment
data of human
performance

I.a. Estimate human
tolerated range of changes
with experiment results
for the vision task and
for each transformation

Parameters for
requirement classes

I.b. Instantiate the re-
liability requirements

Machine-verifiable
requirements

II.a. Generate tests for
checking the satisfac-
tion of requirements

Images sets

Set of test images
(original and
transformed)

II.c Estimate confidence of
requirements satisfaction

(reliability distance)

II.b. Run the
tests on the
MVC under
validation

MVC
prediction
results

Requirements
satisfaction

results

Figure 2: A process for instantiating two reliability requirements
classes for MVCs (requirement instantiation) and a process for
checking their satisfactions (requirement checking).

decouples the perceptible visual change to the image from the
transformation parameters and thus allows stating the reliability
requirements on the MVC more abstractly.
Requirement instantiation: This automated step enables users
to instantiate the reliability requirements for the vision task with
human tolerated range of visual changes for each selected trans-
formation. The human-tolerated range is the requirement param-
eter that describes the range of changes from a transformation
that should not affect the MVC’s behavior. This requirement pa-
rameter is measured with Δ𝑣 and estimated using results from
experiments with human participants. The output of this step is a
set of machine-verifiable requirements. The resulting correctness-
preservation [resp. prediction-preservation] requirement states: for
a vision task and a transformation, if the changes in the images
are within the estimated human tolerated range, then an MVC
should preserve the correctness [resp. prediction] after applying
the changes to its input from before.

For example, for the transformation adding frost artificially, our
resulting requirements are as follows:

• the recognition accuracy of an MVC should not decrease if
the visual change in the images is within the rangeΔ𝑣 ≤ 0.84
(correctness-preservation); and

• the percentage of labels the MVC can preserve after adding
frost should not decrease if visual change in the images is
within the range Δ𝑣 ≤ 0.91 (prediction-preservation).

Note that our requirements do not depend on the state-of-art
ML techniques since they treat the MVC as a black box.
Requirement checking: This automated method checks whether
an MVC satisfies the instantiated reliability requirements. Given a
set with original images, our process generates test cases (step II.a)
by transforming the original images within the range specified in
the instantiated requirements, runs the tests on the model (step II.b),
and checks whether the MVC satisfies our requirements (step II.c).

To summarize, our proposed approach can be used to automat-
ically generate machine-verifiable reliability requirements for a
vision task and a list of transformations, given human experiment

results; and then automatically evaluate whether an MVC satis-
fies these requirements. In the above example, the requirement
checking method will generate a set of test case images within the
ranges (0.84 and 0.91) to check whether an MLC satisfies these
requirements.

An implementation of our method is available online.1 For the
purpose of demonstration and evaluation, we conducted image clas-
sification experiments with 2000 human participants for the vision
task of recognizing car images for 8 transformations: RGB, contrast,
defocus blur, brightness, frost, color jitter, jpeg compression, and
Gaussian noise (see images in Fig. 1(c)-(j)). In the rest of the paper,
we describe the technical details of each step of Fig. 2 using this
experiment.

3 VISUAL CHANGES IN IMAGES
In this section, we start with establishing the definition of the met-
ric Δ𝑣 , which measures human visual changes in images caused
by transformations. Then, we identify a class of safety-related im-
age transformations that are used to instantiate our correctness-
preservation and prediction-preservation requirements (see Sec. 4).

A key idea in our work is to define reliability requirements rela-
tive to Δ𝑣 ranges rather than the transformation parameter ranges
to be tolerated. This is important since each transformation may
have one or more parameters, and each parameter may affect the
transformed image to a different degree—also depending on the
input image. For example, brightening an already bright image
makes the objects harder to see; on the other hand, making a dark
image brighter will have the opposite effect. Further, small changes
to one parameter may cause small changes or large changes to
the transformed image depending on the values of other parame-
ters. The visual change metric Δ𝑣 allows us to abstract from these
complexities of the transformation parameter space. Also, a simple
image distance metric such as mean squared error, which is often
used to define robustness, e.g., [3, 9], does not adequately reflect
the human-perceived visual change in images [48]. Thus, we base
Δ𝑣 on image quality assessment metrics.
Background: Image Quality Assessment (IQA). IQA metrics
are quantitative measures of human objective image quality [49].
Given the original image, the IQA metrics automatically predict
the perceived image quality by measuring the perceptual ‘distance’
between the two images [42]. This ‘distance’ is different from pixel
distance and its calculation depends on the design of the IQAmetric.
VSNR (Visual-Signal-to-Noise-Ratio [7]) checks the visibility of the
changes in images and returns infinity (∞) if they are not visible
to humans [7]. VIF (Visual Information Fidelity [42]) measures the
information fidelity by analyzing the statistics of the natural scenes
in the images. VIF returns a value between 0 and 1 if the changes
degrade perceived image quality, with 1 indicating the perfect qual-
ity compared to the original image; and it returns a value > 1 if
the changes enhances image quality [42]. VIF is empirically shown
to be the closest to human opinions when compared to all other
IQA metrics [43] and VSNR has been shown to be effective to de-
tect non-visible changes [22]. VIF is applicable to transformations

1 See https://carolineeeeeee.github.io/automating_requirements for implementation,
more results and information.

https://carolineeeeeee.github.io/automating_requirements
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that can be described locally by a combination of signal attenua-
tion and additive Gaussian noise in the sub-bands in the wavelet
domain [42].
Measuring visual change in images. We now use IQA metrics
to define a generic metric Δ𝑣 . Our definition of Δ𝑣 shares the same
applicability characteristics as VNSR and VIF. For transformations
that satisfy this characteristic (e.g., noise, blur, brightness and con-
trast changes, color change, etc.), the definition is as follows:

Definition 1: Visual change Δ𝑣

Let an image 𝑥 , an applicable transformation 𝑇𝑋 with a
parameter domain 𝐶 and a parameter 𝑐 ∈ 𝐶 , s.t. 𝑥 ′ =

𝑇𝑋 (𝑥, 𝑐) be given. Δ𝑣 (𝑥, 𝑥 ′) is a function defined as follows:
0 If VSNR(𝑥, 𝑥′) = ∞

or VIF(𝑥, 𝑥′) > 1

1−VIF(𝑥, 𝑥′) Otherwise

Basing Δ𝑣 on IQA metrics means that it provides a general-
ized quantitative measure for visual changes in the images that
is independent of particular images and transformations. We split
this definition into two cases. The first corresponds to changes
imperceptible to humans (when VSNR(𝑥, 𝑥 ′) = ∞) and changes
that enhance the visual quality (when VIF(𝑥, 𝑥 ′) > 1). In this case,
Δ𝑣 = 0 because such changes do not impact human recognition of
the images negatively. The other case deals with visible changes
that degrade visual quality. Since VIF returns 1 for perfect quality
compared to the original image, the degradation is one minus the
image quality score. For example, the visual change of the example
in Fig. 1f compared to its original image in Fig. 1b is 0.507. The
visual change of the example in Fig. 1e compared to the one in
Fig. 1b is 0.985. This suggests that the transformation in Fig. 1e
causes more change visually than the one in Fig. 1f.
Safety-related image transformations.We say that a transfor-
mation is safety-related if it can lead to a hazard in a real-world
machine-vision application scenario. To assess this in a systematic
manner, we utilize the CV-HAZOP checklist [55]. This checklist
comprehensively identifies the potentially hazardous impacts of
different modes of interference in the computer vision (CV) pro-
cess, which is comprised of light sources, transmission medium,
object, observer, and algorithm. A transformation that can produce
such impacts is considered safety-related. For example, contrast
adjustment, defocus blur, and added Gaussian noise shown in Fig. 1
are safety-related transformations because they can reduce lighting
in the scene, cause blurring, and add noise in the images, which
can cause machine vision errors and subsequent system failures.
Since the scope of CV-HAZOP is broader than the image trans-
formation assessment task, we remove non-image-related hazard
scenarios entries from the checklist. In particular, entries related
to Algorithm in the vision process are not relevant because they
modify the CV algorithm and not the images. Entries concerned
with the Number of Observers are also not relevant since they focus
on the interaction between the observers and cannot be represented
by single image transformations. Finally, image transformations

cannot make temporal changes; therefore, entries which deal with
time are not relevant either.

To determine whether a given image transformation belongs to
our safety-related class, one should first identify the location in the
vision process to which the transformation corresponds; then the
property of the process location that the transformation is affecting
(CV-HAZOP parameters); and finally, how the transformation is
changing the property (CV-HAZOP guide words). For example,
defocus blur is changing the focus of the observer (CV-HAZOP
entry No.1018), i.e., camera, and therefore belongs in our class.
Supplementary material1 includes the full list of CV-HAZOP safety-
related entries (954 entries chosen from the overall 1470).

In this paper, we consider transformations provided by the state-
of-the-art library Albumentations [6] and the ML robustness bench-
mark Imagenet-c [19], which consist of 50 unique transformations.
Of these, 45 are safety-related. We further remove those transfor-
mations that cannot produce a continuous range of transformed
images, yielding 31 transformations—see supplementary material1
for the full list. Since multiple transformations can correspond to
a single CV-HAZOP entry, we only instantiate our approach on
one transformation per CV-HAZOP entry, resulting in the eight
transformations illustrated in Fig. 1c-j: RGB, contrast, defocus blur,
brightness, frost, color jitter, jpeg compression and Gaussian noise
addition.

4 SPECIFICATION OF RELIABILITY
REQUIREMENTS CLASSES

In this section, we provide a formal specification of our two relia-
bility requirements classes: correctness-preservation and prediction-
preservation.

Let us assume that we are given anMVC 𝑓 , a distribution of input
images 𝑃𝑋 , a ground-truth labeling function 𝑓 ∗, a transformation
𝑇𝑋 with parameter domain 𝐶 and parameter distribution 𝑃𝐶 . Our
requirements use the joint distribution of pairs of original and trans-
formed images, defined as 𝑃𝑇𝑋 (𝑥, 𝑥 ′) = 𝑃𝑋 (𝑥)∑𝑐∈𝐶,𝑥 ′=𝑇𝑋 (𝑥,𝑐) 𝑃𝐶 (𝑐).

We first introduce our correctness-preservation reliability require-
ment class. It assumes a performance measure𝑚(𝑓 , 𝑓 ∗, 𝑃𝑋 ), which
is typically a measure of similarity between the output of 𝑓 and 𝑓 ∗

given that the input 𝑥 ∼ 𝑃𝑋 . Note that𝑚 should be adequate for the
vision task, such as classification accuracy for image classification,
intersection over union (IoU) for image segmentation, and average
precision for object detection. We define the marginal distribution
of transformed images with changes within the human tolerated-
range Δ𝑣 ≤ 𝑡𝑐 as 𝑃𝑇𝑋,𝑡𝑐

(𝑥 ′) = ∑
𝑥 ∈𝑋 𝑃𝑇𝑋 (𝑥, 𝑥 ′ |Δ𝑣 (𝑥, 𝑥 ′) ≤ 𝑡𝑐 ).

Definition 2: Correctness-preservation requirement,
with parameters 𝑇𝑋 and 𝑡𝑐

Intuitively: For the range of changes in images that do
not affect human performance (Δ𝑣 ≤ 𝑡𝑐 ), the performance
of machine vision component 𝑓 should not be affected as
well. Note that ground truth is required.
Formally: We require the performance𝑚 of 𝑓 for trans-
formed images to be equal to or larger than that for original
images:𝑚(𝑓 , 𝑓 ∗, 𝑃𝑇𝑋,𝑡𝑐

) ≥ 𝑚(𝑓 , 𝑓 ∗, 𝑃𝑋 ).
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Example: For the transformation brightness, correctness-preservation
requires𝑚𝑡𝑐 =𝑚(𝑓 , 𝑓 ∗, 𝑃𝑇𝑋,𝑡𝑐

), the classification accuracy of ResNet50
on all transformed images (which is the percentage of correct pre-
dictions in Fig. 3d-3i), to be at least𝑚0 =𝑚(𝑓 , 𝑓 ∗, 𝑃𝑋 ), the classifi-
cation accuracy of the model on all original images, which is the
percentage of correct predictions in Fig. 3a-3c. Both accuracies are
1/3 ≈ 33%, and the requirement is satisfied.

We then introduce our prediction-preservation requirement class.
Given a distance measure 𝑑 (𝑓 (𝑥), 𝑓 (𝑥 ′)), which measures distance
between the output of 𝑓 on two input images, we define a prediction-
similarity measure 𝑠 (𝑓 , 𝑃𝑋×𝑋 ) = 1− 𝐸 (𝑥,𝑥 ′)∼𝑃𝑋×𝑋 [𝑑 (𝑓 (𝑥), 𝑓 (𝑥 ′))],
which measures the expected similarity between the output of 𝑓
on two images drawn from 𝑃𝑋×𝑋 , a distribution of image pairs.
Note that 𝑑 should also be adequate for the vision task; for exam-
ple, for image classification, 𝑑 (𝑓 (𝑥), 𝑓 (𝑥 ′)) = 0 if 𝑓 (𝑥) == 𝑓 (𝑥 ′)
and 1 otherwise. We define the distribution of pairs of original and
transformed images that are within the human-tolerated range for
prediction-preservation Δ𝑣 ≤ 𝑡𝑝 by conditioning the joint distri-
bution 𝑃𝑇𝑋 as follows: 𝑃𝑇𝑋,𝑡𝑝

(𝑥, 𝑥 ′) = 𝑃𝑇𝑋 (𝑥, 𝑥 ′ |Δ𝑣 (𝑥, 𝑥 ′) ≤ 𝑡𝑝 ).
Since 𝑠 compares outputs with the original outputs, 𝑠 of original
images would always be 1, which is not necessarily achievable. As
an alternative, we estimate 𝑠 of original images with 𝑠 of images
with minimal image changes (Δ𝑣 ≤ 𝜖). More precisely, we rank
the image pairs by Δ𝑣 , determine 𝜖 as a lower 𝑞-th quantile in the
ranking, and define the distribution of image pairs with Δ𝑣 ≤ 𝜖 as
𝑃𝑇𝑋,𝜖

(𝑥, 𝑥 ′) = 𝑃𝑇𝑋 (𝑥, 𝑥 ′ |Δ𝑣 (𝑥, 𝑥 ′) ≤ 𝜖).

Definition 3: Prediction-preservation requirement,
with parameters 𝑇𝑋 and 𝑡𝑝

Intuitively: For the range of changes in images that do
not affect human predictions (Δ𝑣 ≤ 𝑡𝑝 ), the predictions of
machine vision component 𝑓 should stay unaffected as
well. Note that ground truth is not required.
Formally: We require the prediction similarity 𝑠 of 𝑓 for
all transformed images to be equal to or larger than that of
images transformed with Δ𝑣 ≤ 𝜖 , which is: 𝑠 (𝑓 , 𝑃𝑇𝑋,𝑡𝑝

) ≥
𝑠 (𝑓 , 𝑃𝑋,𝜖 ).

Example: For the transformation brightness, prediction-preservation
requires 𝑠𝑡𝑝 = 𝑠 (𝑓 , 𝑃𝑇𝑋,𝑡𝑝

), the prediction similarity of ResNet50 for
all transformed images vs. originals, which is the percentage of pre-
dictions in images in Fig. 3d-3i preserved from images in Fig. 3a-3c
and thus 5/6 ≈ 83%, to be at least equal to 𝑠0 = 𝑠 (𝑓 , 𝑃𝑋,𝜖 ), the pre-
diction similarity of the model for images transformed with Δ𝑣 ≤ 𝜖 .
Given the very small sample, we set 𝜖 to the median, and thus 𝑠0
is the percentage of predictions preserved for images in Fig. 3d-3f,
and 𝑠0 = 3/3 = 100%. Thus, the requirement is not satisfied.

Definitions of the two reliability requirements are similar, with
two main differences. First, correctness-preservation relies on a per-
formance metric to compare predictions to ground truth, whereas
prediction-preservation uses prediction similarity to compare pre-
dictions on transformed images vs. originals. Second, correctness-
preservation compares performance on the full range of trans-
formed images with that on the originals, whereas prediction-
preservation compares the prediction similarity for the full range

(a) original image (b) original image (c) original image

✓ car ✗ not car ✗ not car

(d) brightness (e) brightness (f) brightness

✓ car ✗ not car ✗ not car

(g) brightness ++ (h) brightness ++ (i) brightness ++

✓ car ✗ not car ✓ car

Figure 3: Image recognition on original and transformed images.
Images from (d) to (i) display the same transformation, bright-
ness, applied with different magnitudes. The classification result of
ResNet50 is shown in italics under each image.

of transformed images vs. originals to that for the minimally trans-
formed images (i.e., Δ𝑣 ≤ 𝜖) vs. originals. The design choices for
the prediction-preservation requirement completely remove the
need for human labels on test images, and make this requirement
applicable in environments where such labels are unavailable.

Finally, we define reliability distance as the difference between
the target and the actual correctness- or prediction-preservation,
i.e., Δ𝑚 =𝑚0 −𝑚𝑡𝑐 and Δ𝑠 = 𝑠0 − 𝑠𝑡𝑝 , respectively. This distance
indicates how well the MVC satisfies the respective requirement:
zero distance indicates just meeting it; negative distance indicates
performing better than the target by a margin; and positive distance
indicates how far the MVC is from meeting the target.

5 INSTANTIATING RELIABILITY
REQUIREMENTS

To obtain the reliability requirements range parameters 𝑡𝑐 , and 𝑡𝑝 in
Defs. 2 and 3, we perform two experiments with human participants
and then estimate the parameters from the experimental results to
obtain threshholds at which the human performance drops statisti-
cally significantly (step I.a of Fig. 2). This section first presents the
experimental setup and procedure, and then introduces our method
for instantiating the requirements from the experimental results
(requirement instantiation, steps I.a-b).
Experiments with human participants. The objective of the
human experiments, one per dataset, is to obtain human predictions
on original and transformed images, to be used to estimate 𝑡𝑐 , and
𝑡𝑝 in step I.a. The experiment inputs are the task to be preformed;
the transformation𝑇𝑋 ; the dataset of original images {𝑥𝑖 }, 𝑥𝑖 ∼ 𝑃𝑋 ,
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with their ground-truth labels {𝑓 ∗ (𝑥𝑖 )}; and distributions 𝑃𝐶 for
each transformation parameter. Given these inputs, we generate a
sample of original-transformed images {(𝑥𝑖 , 𝑥 ′𝑖, 𝑗 )}, (𝑥𝑖 , 𝑥

′
𝑖, 𝑗
) ∼ 𝑃𝑇𝑋 ,

by randomly selecting 𝑥𝑖 from {𝑥𝑖 } and 𝑐 𝑗 ∼ 𝑃𝐶 , and transforming
𝑥 ′
𝑖, 𝑗

= 𝑇𝑋 (𝑥𝑖 , 𝑐 𝑗 ). To obtain the human predictions for each image
in {(𝑥𝑖 , 𝑥 ′𝑖, 𝑗 )} for image classification, we follow the experimental
design of Geirhos et al. [16]. The experiment is a forced-choice image
categorisation task: humans are presented with the images with
transformations applied, for 200 ms, and asked to choose one of the
two categories (e.g., car or not car). Between images, a noise mask is
shown to minimize feedback influence in the brain [16]. The tasks
are timed to ensure fairness in the comparison between humans and
machine [14]. However, in contrast to the work by Geirhos et al., we
ensure that the full range of achievable Δ𝑣 values is covered when
sampling from 𝑃𝐶 , and we also collect human predictions for the
original images, so that we can estimate prediction preservation. A
given subject is never shown more than one version of 𝑥𝑖 , whether
original or transformed. Note that human predictions for originals
are different from their ground truth labels: labelers take as long
as needed per image to classify it, but our subjects have only 200
ms to see each image. The human data is specific to a task, an
image distribution, and a class of transformations, and thus has to
be collected for the combination of the three. In other words, the
data is reusable for different samples from the same distribution,
or, intuitively, for images sharing the same characteristics, e.g., the
same image resolution, the same objects, etc. For example, it is
reusable across different sets of images of road scenes taken within
the same geographic area using cameras with same the resolution
and image quality.

To generate predictions for our evaluation, we perform the exper-
iment on two datasets: ILSVRC’12 [38] and CIFAR-10 [30]. While
CIFAR-10 has images of much lower resolution than ILSVRC’12,
we include this dataset to compare our method to the existing work
on robustness checking, which uses CIFAR-10. We also select the
eight safety-related transformations (see images from Fig. 1c-j), as
discussed in Sec. 3, and set 𝑃𝐶 to be uniform. To fit our labeling
budget, we limit the task to a binary classification problem of recog-
nizing car instances. Also, while we apply the eight transformations
to ILSVRC’12, we limit the experiment on CIFAR-10 to four trans-
formations that are also used in the works we compare with. To
differentiate between car and non-car instances, we use the class
hierarchy from the ILSVRC’12 dataset. For each of the selected
transformations, we sample 1000 pairs (𝑥𝑖 , 𝑥 ′𝑖, 𝑗 ), and have each im-
age (original or transformed) labeled by five humans. To achieve
this, we divide the 1,000 (pair samples) × 8 (#considered) transfor-
mations into batches of 20 images. Each batch is shown five times to
different participants using the platform Amazon Mechanical Turk.
We include qualification tests and sanity checks aimed to filter out
participants misunderstanding the task and spammers [35], and
only consider results from participants who pass both tests. As a
result, for the ILSVRC’12 image classification task, we use {𝑥𝑖 } with
13,000 car images and same number of non-car images, and collect
human predictions for 40,000 (= 5× 8× 1, 000) transformed images
and the same number of the original images, for a total of 80,000
predictions. Note that the effort required for measuring human
performance is significantly smaller than the the dataset labeling

effort needed for model training. For example, we collect human
predictions for 5,000 transformed images per transformation, with
0.2 s timebox per image, for a total of 1000 s. Training sets are typi-
cally over 100,000 images, with at least three ground truth labels
assigned independently to each image (for quality control) and each
takes multiple seconds; e.g., 100,000 x 3 x 2 s = 600,000 s. The human
experiment results can be found in supplementary material1.
Estimating tolerated range parameters and instantiating re-
quirements. We propose the following procedure to estimate
𝑡𝑐 and 𝑡𝑝 from the experimentally-obtained human predictions
(step I.a). The key idea is to group and order the image pairs by
Δ𝑣 , compute the human performance𝑚𝑘 and human prediction
similarity 𝑠𝑘 in each group, and use a statistical test to determine
the 𝑡𝑐 [resp. 𝑡𝑝 ] value of Δ𝑣 at which𝑚𝑘 [resp. 𝑠𝑘 ] drops signifi-
cantly from the human performance 𝑚0 for the original images
[resp. the human prediction similarity 𝑠0]. Recall that 𝑠0 is the the
human prediction similarity for images transformed with Δ𝑣 ≤ 𝜖

vs. originals; we set 𝜖 to the lower 5th percentile.
More precisely, we determine threshold 𝑡 (𝑙)𝑐 and 𝑡 (𝑙)𝑝 for a given

transformation 𝑇𝑋,𝑙 from the image pairs (𝑥𝑖 , 𝑥 ′𝑖, 𝑗 ), the human pre-
dictions for these images, and their ground truth 𝑓 ∗. First, we com-
pute Δ𝑣 for each pair, and sort the pairs by their Δ𝑣 into 𝑟 intervals,
defined by 𝑟 + 1 equidistanced thresholds 𝑡𝑘 , with 𝑡0 = 0 and
𝑡𝑟 = 1. We then process the result using smoothing splines [28]
to reduce randomness and remove outliers. Then, to estimate 𝑡 (𝑙)𝑐 ,
for each 𝑘 ∈ [1..𝑟 ] we compute the probability 𝑝𝑘 that𝑚𝑘 on the
transformed images in the 𝑘-th interval [𝑡𝑘−1, 𝑡𝑘 ] is below𝑚0. This
probability is obtained using the single-sided binomial test. We then
determine the interval with the smallest 𝑡𝑘 for which 𝑝𝑘 ≥ 0.05, and
return this 𝑡𝑘 as 𝑡 (𝑙)𝑐 . Similarly, for 𝑡 (𝑙)𝑝 , we compute the probability
𝑝𝑘 that 𝑠𝑘 for the original-transformed image pairs in [𝑡𝑘−1, 𝑡𝑘 ] is
below 𝑠0. Then 𝑡

(𝑙)
𝑐 is the smallest 𝑡𝑘 for which 𝑝𝑘 ≥ 0.05.

With the above procedure, we can now estimate the parameters
for the task of recognizing cars for each of the eight selected trans-
formations (Fig. 1) using our experimental results. The instantiated
parameters are shown in Tbl. 1.

With these parameters, we obtain the instantiated machine-
verifiable reliability requirements for each transformation (step I.b).
For example, for the transformation brightness, given an MVC that
recognizes cars in images, the correctness-preservation requirement
says that the MVC’s recognition accuracy should not decrease if
the visual change in the images is within the range Δ𝑣 ≤ 0.8; and
the prediction-preservation requirement says that the percentage
of labels humans can preserve after a brightness change should
not decrease if the visual change in the images is within the range
Δ𝑣 ≤ 0.86. To obtain the instantiated requirements for other trans-
formations, only the parameter values need to be replaced with the
estimated values in Tbl. 1.

6 CHECKING RELIABILITY REQUIREMENTS
In this section, we describe a method for automatically checking
whether MVCs satisfy our machine-verifiable requirements (see
steps II.a-c requirement checking in Fig. 2). Requirement checking
takes as inputs a list of images, a set of transformations, and an
MVC under validation. It generates test cases (step II.a) within
the specified range of Δ𝑣 ≤ 𝑡𝑐 or 𝑡𝑝 ; runs the tests on the MVC
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Table 1: Estimated parameters for correctness- (𝑡𝑐 ) and prediction-
preservation (𝑡𝑝 ) requirements using human experiment results for
the task of recognizing car instances.

transformation 𝑡𝑐 𝑡𝑝 transformation 𝑡𝑐 𝑡𝑝

Im
ag
en
et RGB 0.82 0.67 brightness 0.87 0.87

contrast 0.77 0.28 Gaussian noise 0.91 0.91
defocus blur 0.98 0.94 color jitter 0.48 0.48

frost 0.84 0.91 jpeg compression 0.94 0.94

CI
FA

R
-1
0 brightness 0.78 0.89 contrast 0.63 0.86

frost 0.61 0.61 jpeg compression 0.60 0.60

(step II.b); and checks whether the MVC satisfies the requirements
by estimating the reliability distance (step II.c).

We test the requirements satisfaction by estimating MVC perfor-
mance or prediction preservation through sampling. This is neces-
sarily, since we do not have direct access to 𝑃𝑋 but only its samples.
Our test case generation is based on the bootstrap method [13],
which estimates the metrics𝑚0,𝑚𝑡𝑐 , 𝑠0, and 𝑠𝑡𝑝 through sampling
the test data with replacement. Since these metrics are defined as
expected values or means, by Central Limit Theorem, the values of
these metrics computed for sample batches, denoted for each batch
𝑖 as �̄�0,𝑖 , �̄�𝑡𝑐 ,𝑖 , 𝑠0,𝑖 , and 𝑠𝑡𝑝 ,𝑖 , respectively, are normally distributed.
Following the bootstrapmethod, we obtain the population estimates
by computing the means �̂�0, �̂�𝑡𝑐 , 𝑠0, and 𝑠𝑡𝑝 and the standard de-
viations 𝜎�̂�0

, 𝜎�̂�𝑡𝑐
, 𝜎𝑠0 , and 𝜎𝑠𝑡𝑝 of the respective batch value sets

{�̄�0,𝑖 }, {�̄�𝑡𝑐 ,𝑖 }, {𝑠0,𝑖 }, and {𝑠𝑡𝑝 ,𝑖 }. To do so, for each transformation
𝑇𝑋 and a list of original images 𝑋 , we sample 𝑛 batches of 𝑘 images
from 𝑋 and then generate a transformed image by applying 𝑇𝑋 to
each sampled original image with randomly sampled parameter
values while ensuring the required Δ𝑣 range, i.e., 𝑛×𝑘 pairs in total.
Since sampling is part of the process, 𝑛 and 𝑘 should be determined
based on |𝑋 |, and the bigger they are, the more accurate the esti-
mated results would be [13]. Although the lower-bound numbers
for 𝑛 and 𝑘 are hard to determine, one can check whether the sam-
pling is sufficient as the bootstrap method always converges with
enough batches of samples for normal distributions [2]. A choice of
𝑛 is considered sufficiently large if two separate runs with different
random seeds result in similar estimated values. After generating
the tests, our method runs them on the MVC under validation, and
obtains the MVC predictions for all the original images and for each
batch 𝑖 of transformed images. We then compute the sample batch
estimates of the four metrics, i.e., {�̄�0,𝑖 }, {�̄�𝑡𝑐 ,𝑖 }, {𝑠0,𝑖 }, and {𝑠𝑡𝑝 ,𝑖 },
and take mean (Δ�̂�,Δ𝑠) and standard deviation (𝜎Δ�̂�, 𝜎Δ𝑠 ) of each
set as the population estimates.

Finally, we want to show that the reliability distance for each
requirement is zero or negative, i.e., Δ𝑚 ≤ 0 for correctness-
preservation and Δ𝑠 ≤ 0 for prediction-preservation. Since our
estimates from the previous step are normally distributed, their
differences are also normally distributed. Thus, the reliability dis-
tance estimates have the following means and standard deviations:
Δ�̂� = �̂�0 − �̂�𝑡𝑐 and 𝜎Δ�̂� =

√︃
𝜎2
�̂�0

+ 𝜎2
�̂�𝑡𝑐

; and Δ𝑠 = 𝑠0 − 𝑠𝑡𝑝 and

𝜎Δ𝑠 =
√︃
𝜎2
𝑠0

+ 𝜎2
𝑠𝑡𝑝

. To ensure that the reliability distances are zero
or negative with a confidence 1 − 𝛼 = 95%, we use the right-
handed confidence interval. Thus, Δ𝑚 ≤ 0 with confidence 1 − 𝛼

iff Δ�̂� + 𝑧𝛼𝜎Δ�̂� ≤ 0, where 𝑧𝛼 is the z-value corresponding to

an area 𝛼 in the right tail of a standard normal distribution, with
𝑧0.05 = 1.645 for 95% confidence. Similarly, Δ𝑠 ≤ 0 with confi-
dence 1 − 𝛼 iff Δ𝑠 + 𝑧𝛼𝜎Δ𝑠 ≤ 0.

For example, to check whether ResNet50 satisfies our instanti-
ated requirements for the transformation Gaussian noise (see Tbl. 1)
for the task of recognizing cars, the testing method first generates
tests with the original and the transformed images within the Δ𝑣

range specified in the requirements. The original images are sam-
pled from the ILSVRC’12 validation dataset using bootstrap with
𝑛 = 200, 𝑘 = 50 and the Gaussian noise transformation. Then
we run the generated tests on ResNet50; compute the four sets
of metrics {�̄�0,𝑖 }, {�̄�𝑡𝑐 ,𝑖 }, {𝑠0,𝑖 }, and {𝑠𝑡𝑝 ,𝑖 } over the batches; and
then compute Δ�̂� = 0.0045, 𝜎Δ�̂� = 0.0061, Δ𝑠 = 0.0011, and
𝜎Δ𝑠 = 0.0045. We check for correctness-preservation with 95%
confidence: Δ�̂� + 𝑧0.05𝜎Δ�̂� > 0; and prediction-preservation with
95% confidence: Δ𝑠 + 𝑧0.05𝜎Δ𝑠 > 0. Therefore ResNet50 does not
satisfy either of the requirements. Note that by estimating the reli-
ability distance, we provide engineers with a quantitative measure
of how much improvement is needed to meet the requirements in
case they are not met.

7 EVALUATION
While our approach is defined for any computer-vision task, in
this paper we demonstrate its feasibility on a particular domain:
image classification, using parameters instantiated via human per-
formance data collected for this domain as explained in Sec. 6.

First, we evaluate the generality of our instantiated image classifi-
cation requirements. For a specific transformation, our instantiated
requirements contain the tolerated range of changes that do not
affect human performance (see Sec. 4), estimated from experiments
with human participants. Since such experiments are costly, we
aim to minimize the number of experiments that need to be con-
ducted. To achieve this goal, we would like to reuse the collected
human performance results for new sets of images from the dataset,
different from the ones presented to the humans during the exper-
iments. We expect the images to come from the same dataset to
share the underlying data-generating distribution 𝑃𝑋 . Crucially, to
be reusable, our requirement parameters should not be affected by
the choice of the images included in the experiments with human
participants. Since our requirements are defined on a particular
distribution of images, we aim to answer (RQ1): How reusable are
the thresholds 𝑡𝑐 and 𝑡𝑝 over different samples from the same image
distribution?

Second, existing methods for evaluating reliability of image clas-
sification MVCs consider either small, imperceptible image changes
or an arbitrary range of perceptible changes in images. In this work,
our focus is on a meaningful range of changes in images, the one
that does not affect human vision, which includes both impercepti-
ble and perceptible changes. Since our goal is to use human perfor-
mance as a baseline (i.e.,“if humans can see it, so should an MVC”),
we are interested in understanding how well the existing reliability
evaluation approaches already cover the human-tolerated range.
We are also interested in comparing the distribution of test cases
generated by our method (step II.a in Fig. 2) with those from the
other reliability methods, to see whether our method addresses the
range better. Therefore, we aim to answer (RQ2): How well do the
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existing reliability evaluation methods cover the human-tolerated
range of changes?

Finally, we would like to determine whether checking the re-
liability of image classification MVC models with our method in
the human-tolerated range of changes reveals reliability gaps in
state-of-the-art image classification models. To do so, we aim to
answer (RQ3): How effective is our requirement checking method
in identifying reliability gaps compared to existing approaches?
RQ1. To answer RQ1, we compare human-tolerated ranges of
transformations (parameters 𝑡𝑐 and 𝑡𝑝 ) estimated using our require-
ment instantiation method with different sets of images from the
ILSVRC’12 experiment. We randomly selected two subsets of our
results containing 60% of all the images included in the experi-
ment. We compared the similarity of the spline models obtained
using these two subsets with all experiment results. As suggested
by Koenker et al. [28], two spline models are considered similar if
their 83% confidence intervals overlap. Following this, for each of
the eight transformation included in our experiment, we compared
the confidence intervals of the estimated spline models represent-
ing the two subsets and the entire set of experiment results. As a
result, for all transformations, we observed that the spline models
are unaffected. For example, the spline models obtained for the
frost transformation are shown in Fig. 4. Due to page limit, we
include the plots and data in supplementary material1. Since the
parameters are derived using the spline models, unaffected spline
models suggest that the parameters estimated are also unaffected.
To conclude, different subsets of experiment results do not affect
the parameters estimated. Therefore, we show evidence that our
estimated human-tolerated ranges can be reused for images that are
not included in the experiment with human participants, answering
RQ1. Note that our requirements are defined on one image distri-
bution, thus the thresholds cannot be reused for different image
distributions. We can check this by comparing the values of 𝑡𝑐 and
𝑡𝑝 estimated using images from CIFAR-10 [30] and ILSVRC’12 [38],
shown in Tbl. 1 (Sec. 5).
RQ2. Existing methods for evaluating the reliability of MVCs with
image transformations (imperceptible and perceptible changes) in-
clude metamorphic testing [12, 32, 52, 56] and benchmarking [19].
Metamorphic testing is based on metamorphic relations; thus, in-
stead of finding a range that does not affect human judgment, it
consider all possible parameter values for each transformation
included [12]. For this RQ, we compare with existing work that
considers a broader range of changes: the state-of-the-art image
corruption benchmark datasets Imagenet-c and CIFAR-10-c [19].
These benchmark datasets include images transformed with five
pre-selected parameter values for 19 arbitrarily chosen transfor-
mations. Due to the low resolution of CIFAR-10 images, they look
blurry to humans and thus do not share the same characteristics
with the ILSVRC’12 dataset [38]. Therefore, to evaluate our method,
we conduct an additional experiment with human participant using
CIFAR-10 [30] images for four transformations (contrast, bright-
ness, frost, and JPEG compression) and estimated the corresponding
human-tolerated ranges, as described in Section 5. We answer RQ2
and RQ3 using six transformations considered by the other works:
brightness, contrast, defocus blur, frost, Gaussian noise, and jpeg
compression.

Figure 4: A comparison of different subsets of experimental
results for estimating 𝑡𝑐 for the frost transformation.

To answer RQ2, we first compare our human-tolerated ranges
with the ranges of changes included in the robustness benchmark
datasets, to see whether existing methods already cover them. In
Fig. 5, we show, for each transformation, the range of changes in
images included in Imagenet-c/ CIFAR-10-c [19]2 in blue, and our
human-tolerated ranges for both requirements in yellow and green.
The overlapping of ranges indicates the degree to which our ranges
are covered by Imagenet-c/ CIFAR-10-c. The ranges in Imagenet-c
and CIFAR-10-c [19] are either larger (e.g., brightness and frost for
CIFAR-10-c; brightness for Imagenet-c) or smaller (e.g., contrast and
jpeg compression of CIFAR-10-c; Gaussian noise, defocus blur and
frost for Imagenet-c) than the human-tolerated range. The images
included in Imagenet-c/CIFAR-10-c are transformed by using a pre-
selected list of five parameter values per transformation. This result
shows that simply generating images this way does not address the
full range of realistic changes that do not affect human performance.
Secondly, we compare the distribution of the test cases (transformed
images) within the human-tolerated range generated from our re-
quirement checking method and from CIFAR-10-c and Imagenet-c.
Our requirement checking method for generating test cases sam-
ples the parameter space uniformly and then transforms the images.
As the number of parameters for a transformation increases, so
does the possible number of combinations of parameter values that
can lead to the same degree of visual change in the images. There-
fore, sampling the parameter space uniformly allows us a better
coverage of possible transformed images resulting in a fairer relia-
bility evaluation compared with transformations with pre-selected
parameter values, as done in CIFAR-10-c and Imagenet-c [19]. In
Fig. 6, we show the distributions of transformed images generated
with our requirement checking method and images in CIFAR-10-c
and Imagenet-c. As we can observe from the plots, the transformed
images from CIFAR-10-c and Imagenet-c either favor certain ranges

2Note that due to the large size of Imagenet-c, the distribution is obtained by uniformly
sampling the entire benchmarking dataset.
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(a) CIFAR-10-c and our ranges. (b) Imagenet-c and our ranges.
Legend: range of changes in CIFAR-10-c/imagenet-c,

our range [0, 𝑡𝑐 ], our range [0, 𝑡𝑝 ]

Figure 5: A comparison of our human-tolerated ranges for
correctness-preservation and prediction-preservation require-
ments and the range of changes included in robustness benchmark
datasets (Imagenet-c and CIFAR-10-c [19]).

of Δ𝑣 score (Fig. 6b, 6c, 6d) or are discontinuous (Fig. 6a) and there-
fore biased. This also suggests that the approach of generating
transformed images in the benchmark datasets does not guarantee
a fair evaluation of reliability within the human-tolerated range
of changes because of the biased distribution of tests. Thus, the
human-tolerated ranges of changes are not addressed or properly
tested by existing methods, answering RQ2.
RQ3. To answer RQ3, we aim to determine whether checking our
requirements enables us to discover reliability gaps that were not
identified with existing reliability benchmarks. We evaluated the
reliability of 13 state-of-the-art image classification models with
the vision task of recognizing cars in images using both our require-
ment checking method and the existing benchmarks CIFAR-10-c
and Imagenet-c. Results are shown in Tbl. 2. Note that no models
satisfy our requirements with 95% confidence, which is not sur-
prising since they were not trained with data covering the human-
tolerated range. However, several models pre-trained on Imagenet
(ILSVRC’12) images have negative reliability distance (𝑠0 − ˆ𝑠𝑡𝑝 ) for
our prediction-preservation requirements, which suggests that these
models are close to satisfying these requirements.

For each transformation, the models in Tbl. 2 are ranked based
on the evaluation results (accuracy) of benchmark images. A higher
ranking means that the model is more reliable. We compare the
reliability ranking of these models using our reliability distance
for both of our requirements (see Sec. 6) with the benchmark rank-
ing, indicating the differences in blue. The tests included in the
CIFAR-10-c and Imagenet-c benchmarks [19] are biased toward im-
ages with small transformation magnitudes, resulting in significant
differences with our ranking for brightness (Fig. 6b), frost (Fig. 6c
and 6h), jpeg compression (Fig. 6d) and defocus blur (Fig. 6g) trans-
formations. Therefore, if a model is lower on the ranking of our
reliability distance than on the benchmark ranking, it is less reliable
than predicted by the benchmark, meaning that our method discov-
ered a new reliability gap. Below we summarize the main reliability
gaps identified by our method. (i) RLAT is ranked by CIFAR-10-c
within the three last models for the transformations contrast, bright-
ness, and frost, but the first for jpeg compression. However, our
method ranks RLAT at the bottom for all the transformations in-
cluding jpeg compression, indicating that the tests generated by our

method are able to detect the reliability gap missed by the bench-
mark. (ii) For jpeg compression, RLATAugMixNoJSD is ranked
second both by the CIFAR-10-c benchmark and by our correctness-
preservation reliability distance. However, RLATAugMixNoJSD is
ranked last by our prediction-preservation reliability distance. Simi-
larly, for Gaussian noise, resnext101_a+d is ranked first by both our
correction-preservation and Imagenet-c benchmark, but it is ranked
second last by our prediction-preservation reliability distance. This
shows that both RLATAugMixNoJSD and resnext101_a+d have a
high accuracy for transformed images but their predictions are
not consistent. Therefore, checking our prediction-preservation
requirement enabled us to identify new reliability gaps that could
not be detected by only checking accuracy on transformed images,
answering RQ3.
Summary. Through answering RQ1, we show that parameters
of the requirements estimated with our requirement instantiation
method are reusable for different images sharing the same class
and images distribution. Through answering RQ2, we show that
existing work does not adequately cover the range of changes that
do not affect humans. Finally, through answering RQ3, we show that
our requirement checking method is useful, since it can discover
reliability gaps that are missed by the existing methods. Also, notice
that our prediction-preservation is close to being satisfied by several
models pre-trained on Imagenet (ILSVRC’12) images; this indicates
that our requirements are satisfiable. Thus, our evaluation suggests
that the proposed requirements are useful and reusable for checking
reliability of MVCs.
Threats to validity. [Construct] For the correctness-preservation
requirement, the human performance may seem too hard for MVCs
to match. However, following guidelines provided by Firestone [14],
we choose to keep the requirements for a fair comparison between
a human and an ML performance. Further, training with data aug-
mentation that covers the range of visual changes for each trans-
formation as per our requirements might enable an MVC to meet
them. Checking this hypothesis is future work. [Internal] We as-
sumed that the parameter values for any transformation should
be uniformly distributed. This may be different depending on the
application of the MVC, e.g., heavy snow may be less relevant for
autonomous cars deployed in tropical regions than other regions.
[External] Due to budget considerations, we included a limited
set of transformations and image classes in our experiments with
humans. Experiments for other visual tasks are also future work.

8 RELATEDWORK
In this section, we first review the software engineering (SE) ap-
proaches defining reliability of MVCs, then the SE and the computer
vision (CV) approaches for evaluating reliability of MVCs and, fi-
nally, those comparing human performance against MVCs.
Specifying reliability of MVCs. The inductive data-driven na-
ture of machine-learning creates several challenges for require-
ments specification and verification in MVCs. Yet, multiple recent
studies explored this area [25, 36, 46]. While they agree on the
necessity of requirements elicitation in MVCs, they fail to pro-
vide a systematic approach for inferring the requirements. Several
authors attempted to specify the expected behaviour of MVCs indi-
rectly through specifying a set of quality characteristics for training
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(a) Contrast with
CIFAR-10 images

(b) Brightness with
CIFAR-10 images

(c) Frost with
CIFAR-10 images

(d) JPEG Compression with
CIFAR images

(e) Gaussian noise with
Imagenet (ILSVRC’12)

images

(f) Brightness with
Imagenet (ILSVRC’12)

images

(g) Defocus blur with
Imagenet (ILSVRC’12)

images

(h) Frost with
Imagenet (ILSVRC’12)

images
Legend: CIFAR-10-c/Imagenet-c images, images generated within [0, 𝑡𝑐 ], images generated within [0, 𝑡𝑝 ]

Figure 6:A comparison of the range and distribution of Δ𝑣 scores in test images of robustness benchmark datasets (CIFAR-10-c and Imagenet-
c [19]) and test images generated with our requirement checking method. The x-axis is the Δ𝑣 score. The y-axis is the number of images.

Table 2: A comparison of reliability evaluation of MVCs using our method and using state-of-the-art benchmarks (CIFAR-10-c and Imagenet-
c). For each transformation and the visual task of car recognition, theMVCmodels are rankedw.r.t. their accuracy on all benchmark images.�̂�0

and 𝑠0 are, resp., the required accuracy and percentage of labels preserved in our requirements. �̂�𝑡𝑐 and 𝑠𝑡𝑝 are, resp., the resulting accuracy
and perception preservation percentage through checking the models against our requirements. The differences between the benchmark
ranking and our ranking using the reliability distance are highlighted in blue.
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ci
fa
r-
10

contrast brightness
Augmix_ResNeXt [20] 0.9920 0.9961 | 0.9871 (2) 0.009 0.996 | 0.9761 (2) 0.0199 Augmix_ResNeXt [20] 0.9952 0.9963 | 0.9776 (3) 0.0187 0.999 | 0.9576 (3) 0.0414
Augmix_WRN [20] 0.9909 0.9952 | 0.9868 (1) 0.0084 0.995 | 0.9756 (1) 0.0194 AugMixNoJSD [27] 0.9945 0.9961 | 0.9782 (1) 0.0179 0.996 | 0.9573 (1) 0.0387
AugMixNoJSD [27] 0.9901 0.9952 | 0.9851 (3) 0.0101 0.997 | 0.9674 (3) 0.0296 Augmix_WRN [20] 0.9943 0.9953 | 0.9768 (2) 0.0185 0.994 | 0.9540 (2) 0.04

Standard [54] 0.9862 0.9952 | 0.9809 (4) 0.0143 0.994 | 0.9570 (4) 0.037 RLATAugMixNoJSD [27] 0.9942 0.9953 | 0.9730 (4) 0.0223 0.998 | 0.9488 (4) 0.0492
RLATAugMixNoJSD [27] 0.9788 0.9936 | 0.9710 (5) 0.0226 0.993 | 0.9416 (5) 0.0514 Standard [54] 0.9933 0.9947 | 0.9690 (5) 0.0257 0.998 | 0.9451 (5) 0.0529
Gauss50percent [27] 0.9577 0.9925 | 0.9261 (6) 0.0664 0.987 | 0.8994 (6) 0.0876 RLAT [27] 0.9928 0.9930 | 0.9557 (7) 0.0373 0.993 | 0.9307 (6) 0.0623

RLAT [27] 0.9550 0.9936 | 0.9133 (7) 0.0803 0.991 | 0.8880 (7) 0.103 Gauss50percent [27] 0.9904 0.9925 | 0.9555 (6) 0.037 0.995 | 0.9305 (7) 0.0645
frost JPEG compression

Augmix_ResNeXt [20] 0.9912 0.9969 | 0.9771 (2) 0.0198 0.995 | 0.9776 (1) 0.0174 RLAT [27] 0.9910 0.9927 | 0.9443 (5) 0.0484 0.999 | 0.9773 (1) 0.0217
RLATAugMixNoJSD [27] 0.9910 0.9958 | 0.9737 (4) 0.0221 0.994 | 0.9738 (2) 0.0202 RLATAugMixNoJSD [27] 0.9899 0.9942 | 0.9659 (2) 0.0283 0.999 | 0.9365 (7) 0.0625

Augmix_WRN [20] 0.9899 0.9955 | 0.9765 (1) 0.019 0.998 | 0.9758 (4) 0.0222 Gauss50percent [27] 0.9897 0.9915 | 0.9701 (1) 0.0214 0.999 | 0.9735 (2) 0.0255
AugMixNoJSD [27] 0.9890 0.9965 | 0.9754 (3) 0.0211 0.997 | 0.9754 (3) 0.0216 Augmix_ResNeXt [20] 0.9894 0.9949 | 0.9516 (4) 0.0433 0.999 | 0.9529 (4) 0.0461

RLAT [27] 0.9875 0.9948 | 0.9414 (7) 0.0534 0.986 | 0.9430 (7) 0.043 Augmix_WRN [20] 0.9886 0.9942 | 0.9511 (3) 0.0431 0.999 | 0.9547 (3) 0.0443
Gauss50percent [27] 0.9867 0.9933 | 0.9506 (6) 0.0427 0.99 | 0.9524 (5) 0.0376 AugMixNoJSD [27] 0.9868 0.9953 | 0.9443 (6) 0.051 0.998 | 0.9471 (5) 0.0509

Standard [54] 0.9752 0.9956 | 0.9567 (5) 0.0389 0.997 | 0.9564 (6) 0.0406 Standard [54] 0.9734 0.9952 | 0.9359 (7) 0.0593 0.996 | 0.9365 (6) 0.0595

im
ag

en
et

Gaussian noise frost
resnext101_a+d [18] 0.9962 0.997 | 0.9959 (1) 0.0011 0.998 | 0.997 (5) 0.001 resnext101_a+d [18] 0.9958 0.9974 | 0.9954 (1) 0.002 0.996 | 0.9962 (1) -0.0002

aug+deep [18] 0.9956 0.9958 | 0.9942 (2) 0.0016 0.996 | 0.9961 (1) -0.0001 aug+deep [18] 0.9952 0.9967 | 0.9943 (2) 0.0024 0.996 | 0.9942 (5) 0.0018
deepaugment [18] 0.9955 0.9963 | 0.9937 (4) 0.0026 0.996 | 0.9959 (3) 0.0001 ANT3x3_SIN [37] 0.9944 0.996 | 0.9935 (3) 0.0025 0.992 | 0.9924 (1) -0.0004
ANT_SIN [37] 0.9946 0.9953 | 0.9935 (3) 0.0018 0.996 | 0.9962 (1) -0.0002 ANT_SIN [37] 0.9941 0.9962 | 0.9927 (4) 0.0035 0.99 | 0.9927 (1) -0.0027

Speckle_Model [37] 0.9934 0.9958 | 0.9916 (5) 0.0042 0.996 | 0.9952 (4) 0.0008 deepaugment [18] 0.9936 0.9966 | 0.993 (5) 0.0036 0.994 | 0.992 (6) 0.002
resnet50 [17] 0.9924 0.9953 | 0.9908 (6) 0.0045 0.996 | 0.9949 (6) 0.0011 resnet50 [17] 0.9921 0.9957 | 0.9907 (6) 0.005 0.992 | 0.9911 (4) 0.0009

brightness defocus blur
resnext101_a+d [18] 0.9972 0.9967 | 0.9953 (2) 0.0014 1 | 0.9972 (4) 0.0028 resnext101_a+d [18] 0.9949 0.9977 | 0.995 (1) 0.0027 0.994 | 0.9957 (1) -0.0017

aug+deep [18] 0.9966 0.9959 | 0.9947 (1) 0.0012 1 | 0.9964 (5) 0.0036 aug+deep [18] 0.9946 0.9972 | 0.9937 (2) 0.0035 0.996 | 0.9943 (2) 0.0017
deepaugment [18] 0.9959 0.9956 | 0.9937 (3) 0.0019 0.996 | 0.9949 (2) 0.0011 deepaugment [18] 0.9924 0.9965 | 0.9914 (5) 0.005 0.998 | 0.9929 (5) 0.0051
ANT3x3_SIN [37] 0.9957 0.9954 | 0.9926 (5) 0.0028 0.996 | 0.994 (3) 0.002 ANT_SIN [37] 0.9920 0.997 | 0.9917 (6) 0.053 0.998 | 0.9929 (5) 0.0051
ANT_SIN [37] 0.9956 0.9954 | 0.993 (4) 0.0024 0.993 | 0.998 (1) -0.005 ANT3x3_SIN [37] 0.9919 0.9963 | 0.9924 (3) 0.0036 0.998 | 0.9931 (4) 0.0049
resnet50 [17] 0.995 0.9956 | 0.9917 (6) 0.0039 1 | 0.9937 (6) 0.0063 resnet50 [17] 0.9909 0.9961 | 0.9921 (4) 0.0040 0.996 | 0.9922 (3) 0.0038

Note: Accuracy is calculated with (true positive + true negative) / all images; all the accuracy values are closed to 1 because of the binary classification task. All numbers are rounded.
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datasets [29], specifying additional ML-related requirements for
each phase of software development processes [39], specifying
higher-level requirements [15], or specifying how MVCs address
the target applications [41]. Yet these approaches cannot be used
to check reliability of MVCs automatically, whereas our reliability
requirements are machine-verifiable.
Checking reliability.Metrics for testingMVCs robustness against
image transformations have been defined using metamorphic test-
ing [12, 32, 52, 56]. In contrast, we focus on a different set of transfor-
mations, the ones that do degrade the image quality while preserv-
ing the human opinion in the image rather than transformations
that can be covered with equivariant relations. Existing works also
use testing to generate corner cases [51], or corner case tests to in-
crease MVCs robustness [31, 47]. In contrast, our approach does not
focus on corner-cases, but rather on typical cases that can be found
in real-world deployments while preserving the human opinion
about the content.

Several works evaluated safety of MVCs through assessing their
robustness against adversarial examples, either by providing a test-
ing approach to generate adversarial examples [33, 40, 50] in the SE
area, providing robustness benchmarks [10, 11, 34] or verifying the
presence of adversarial examples in a given range of image modifi-
cations [23, 44] in the CV area. In contrast, our focus is on defin-
ing boundaries of image modifications using human performance
within which the MVCs are expected to maintain their robustness.
Also, we do not consider an arbitrary range of image modifications;
our approach estimates the range of transformation levels that does
not affect human performance. Previously, we presented the idea
of defining adversarial examples using IQA models [22], focusing
only on non-visible changes. In contrast, our current approach con-
siders both visible and non-visible changes in a broader range of
real world scenarios.
Comparinghumanagainstmachines. Prior studies also referred
to human performance as the benchmark for the evaluation of their
proposed methods [45], to better study the existing differences be-
tween human and neural networks [14], to study invariant transfor-
mations [26], to compare recognition accuracy [21], or to compare
robustness [16]. In contrast, our focus is not on comparing humans
performance withMVCs, but rather on the ranges of transformation
magnitudes that do not affect human performance.

9 CONCLUSION
In this paper, we defined reliability of machine vision components
(MVC) as ‘if a human can see it, so should the MVC’. More precisely,
we specified two classes of reliability requirements: correctness-
preservation and prediction-preservation. Our requirements specify
that an MVC should be reliably unaffected by safety-related image
transformations, at least within the range of changes that does not
affect humans. We showed, through an evaluation with 13 state-of-
the-art pre-trained image classification models, that our approach
captures reliability gaps that state-of-the-art reliability methods
are unable to detect. Therefore, we conclude that checking this
human tolerated range is important to help software engineers
ensure quality and reliability of MVCs. While not discussed in the
paper, our requirements can be used for other SE tasks such as
checking refinement from higher-level system requirements, and

checking consistency and compatibility with requirements of other
connected components.

In the future, we aim to improve of our requirement-checking
process by providing reliability diagnosis that would help software
engineers understand the reliability gaps in their MVCs. We also
aim to validate, through additional experiments, our assumption
that our approach can be applicable beyond image classification
models, e.g., to handle object detection. Finally, we aim to use our
reliability requirements for MVCs to provide evidence for building
safety assurance cases for the overall system.
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