
(If) Size Matters: Size-Hiding Private Set Intersection∗

Giuseppe Ateniese1, Emiliano De Cristofaro2, Gene Tsudik2

1 Johns Hopkins University, ateniese@cs.jhu.edu
2 University of California, Irvine, {edecrist, gts}@ics.uci.edu

Abstract

Modern society is increasingly dependent on, and fearful of, the availability of electronic informa-

tion. There are numerous examples of situations where sensitive data must be – sometimes reluctantly –

shared between two or more entities without mutual trust. As often happens, the research community has

foreseen the need for mechanisms to enable limited (privacy-preserving) sharing of sensitive informa-

tion and a number of effective solutions have been proposed. Among them, Private Set Intersection (PSI)

techniques are particularly appealing for scenarios where two parties wish to compute an intersection of

their respective sets of items without revealing to each other any other information. Thus far, "any other

information" has been interpreted to mean any information about items not in the intersection.

In this paper, we motivate the need for Private Set Intersection with a stronger privacy property of

hiding the size of the set held by one of the two entities ("client"). We introduce the notion of Size-

Hiding Private Set Intersection (SHI-PSI) and propose an efficient construction secure under the RSA

assumption in the Random Oracle Model. We also show that input size-hiding is attainable at very low

additional cost.

1 Introduction

Operations that involve sharing sensitive or private information are increasingly encountered in every-

day life. A typical scenario involves two entities: one that seeks certain information, and the other – that

possibly has this information and is either willing or is compelled to share it. At the same time, each entity

wants to maximize privacy of its information, beyond the minimum disclosure necessary to complete the re-

quired operation. To motivate the problem, we present three concrete (and only slightly contrived) examples

illustrating nuanced requirements of such privacy-preserving operations.

Example 1: U.S. Department of Homeland Security (DHS) maintains a dynamic database of suspected

terrorists (TWL: Terror Watch List). For every flight, DHS needs to know whether the flight passenger

manifest and TWL have any names in common. Airlines are reluctant to unconditionally share passenger

information. Some airlines are foreign and some flights might be transit, i.e., they merely fly over, but not

land in, United States. At the same time, compliance with DHS is mandatory, meaning that names of any

flight passengers that also appear in TWL must be supplied to DHS. For its part, DHS treats TWL as secret

information and is absolutely unwilling to reveal it to any airline.

Example 2: U.S. Central Intelligence Agency (CIA) has a requirement to periodically (e.g., every year)

check whether any of its agents have been arrested or convicted any crimes. It thus needs to approach

every state and, ideally, compare its list of employees against the state’s list of arrestees and/or convicted

offenders. A state (e.g., South Dakota) is unwilling to reveal its information for fear of misuse and legal

liability. Whereas, CIA is mandated by law not to reveal the names of any of its agents.

∗An earlier version of this paper appears in the Proceedings of IACR PKC 2011. This is the full version.

1

Example 3: U.S. Center of Disease Control and Prevention (CDC) maintains a list of people, per city,

afflicted by certain contagious diseases, e.g., the H1N1 virus. CDC needs to monitor high or unusual con-

centrations of infected people in schools, since that might indicate the start of an epidemic. To this end,

it periodically needs to cross-check its list with student rosters in each school district. Privacy regulations

prevent schools from granting wholesale access to student data. However, information regarding students

with highly infectious diseases needs to be disclosed.

1.1 Why Size Matters?

All examples above have some features in common: neither party can reveal its information in its en-

tirety. What they are willing to reveal is limited to common information, i.e., items appearing on both

parties’ lists. Specifically, our examples involve only one-way information sharing, i.e., airlines allow DHS

to learn names that appear on both lists, whereas, DHS does not allow airlines to learn the same.

Another important, but more subtle, feature common to our examples is the need to keep client input

size secret. Specifically, DHS does not reveal the number of names on the TWL. This list is dynamic (names

can be added and removed frequently) and revealing its size would leak sensitive information. Likewise,

by law, CIA cannot divulge the number of its agents, for obvious reasons. Finally, the number of infected

school-kids in a city (school district) is extremely sensitive: its disclosure can cause wide-spread panic

and/or prompt a health insurance rate hikes for that location.

We conclude that there are solid reasons for parties in certain privacy-pre-serving operations to keep

sizes of their inputs secret. The most common reason is that input size represents sensitive information. A

related reason is that, given multiple interactions between the same two parties, fluctuations in input size are

equally (or even more) sensitive. Another factor motivating input size secrecy is related to the amount of

computation imposed on the other party; we discuss it later, in Section 6.

We note, from the outset, that there are limits to input size hiding. For instance, both parties cannot hide

their respective input sizes. One obvious reason is that, in all examples above, (at least) one party learns the

intersection of its input with that of the other party. The intersection itself is a list (or a set) and its size leaks

information about overall input size.

In this paper, we focus on privacy-preserving interactions characterized by the examples above, where

one party (client, the one that learns the intersection) aims to keep the size of its input secret. Next, we argue

that no current cryptographic primitive, (including generic secure two-party computation [18]) supports

input size-hiding for private set intersection. We also discuss the inadequacy of some trivial approaches.

1.2 Size Hiding with Current Tools?

Private Set Intersection (PSI) is a cryptographic primitive, introduced in [13], that allows two parties:

server S and client C, to interact on their respective private input sets: S and C, such that, C learns (S ∩
C, |S|) and S learns nothing beyond |C|.1 Over the last few years, the research community has devised a

number of PSI techniques that vary in costs, security assumptions and adversarial models. We discuss prior

work on PSI in Section 2. One common feature of all current PSI protocols is that client input size (# of

elements in client set) is revealed to server. It is unclear whether they can be extended or amended to support

client input size-hiding. Also, generic secure multi-party computation tools [35] are not applicable as they

provide all players with the sizes of other players’ inputs.

One trivial approach is for client to employ fixed-size input, i.e., pad its input with chaff up to a certain

fixed size. However, this has several drawbacks. First and foremost, this always leaks the upper bound of

input size. Second, if client input is a dynamic set, the fixed size must reflect the maximum possible set size

(otherwise, fluctuations would leak information), which entails wasted computation and communication.

1This is sometimes referred to as one-way PSI; a mutual version involves each party learning the intersection.

1.3 Roadmap and Contributions

In this paper, we introduce the concept of Size-Hiding Private Set Intersection (SHI-PSI).We then

present the first concrete SHI-PSI construction, offering provable security and efficient operation. Next,

we discuss possible extensions to reduce protocol overhead and adapt SHI-PSI to scenarios where client

needs to learn data records associated withe each item in the intersection. Finally, we compare costs of our

SHI-PSI approach to prior work (on non size-hiding PSI) and show that size-hiding is attainable at very low

additional costs.

Notable SHI-PSI features include:

1. It offers a superset of privacy properties of prior PSI protocols: SHI-PSI additionally hides client

input size from server. Client input is hidden unconditionally, without relying on any computational

assumption – a contribution in its own right.

2. It is secure under the standard RSA assumption in the Random Oracle Model (ROM).

3. It is very efficient: (1) communication overhead is linear in server input size only, (2) server compu-

tation complexity is linear in the size of its input only, (3) client computation complexity is almost

linear – O(v · log v) – in the size of its input. (We note that this is remarkably low, since the most

efficient PSI offers linear complexity; hence, the only “penalty” for size-hiding is a small increase in

client computation: O(v · log v) vs O(v).)

4. It is particularly attractive for scenarios where server is mandated (e.g., by law) to take part in the

interaction with client(s). In such scenarios, it makes sense to minimize burden on server, especially,

when client input is large. Current PSI schemes involve server computation proportional to client

input size. Whereas, in SHI-PSI, server computation depends only on its own input size.

Organization: After reviewing related work in Section 2, Section 3 defines SH-PSI as a concept and spec-

ifies its desired properties. Then, Section 4 presents a concrete SHI-PSI protocol and argues its security.

Section 5 discusses possible extensions and Section 6 considers performance issues. The paper concludes

with a laundry-list of future work items in Section 7.

2 Related Work

The problem of Private Set Intersection (either size-hiding or not) resembles that addressed by several

well-known cryptographic constructs. We first review related work on PSI and then on other primitives.

2.1 Prior Work on PSI

Freedman, et al. [13] devised a suite of private set operation protocols based on Oblivious Polynomial

Evaluations (OPE-s) [31]. The main idea is to represent a set as a polynomial, and set elements – as its roots.

Client uses an additively homomorphic cryptosystem (e.g., Paillier [32]) to encrypt coefficients, that are then

evaluated by server, such that client learns the intersection (and nothing else) upon decrypting. Assuming

that client and server sets contain v and w items, respectively, their respective computation overheads amount

to O(v + w) and O(w log log v) exponentiations. The protocol is secure against semi-honest adversaries in

the standard model, and against malicious adversaries in ROM (with increased cost).

There are several improvements to this construction against malicious adversaries in the standard model,

with linear communication and quadratic computation [7], and linear communication and O(w log log v)
computation in [20] (all under DDH). Also, [27] extends OPE-s to more than two players, all learning the

intersection, with quadratic computational and linear communication complexities.

Other PSI constructs rely on Oblivious Pseudo-Random Functions (OPRF-s) [12]. An OPRF is a two-

party protocol that securely evaluates a pseudorandom function fk(·) on key k contributed by sender and

input x contributed by receiver, such that the former learns nothing from the interaction, and the latter only

learns fk(x). OPRF-s can be used to obtain linear complexity PSI, e.g., the solutions in [19] and [24], secure

in the standard model, against, respectively, covert [1] and malicious adversaries.

Recent PSI constructions in the Random Oracle Model (ROM) yielded very efficient solutions with lin-

ear complexity and short-exponent modular exponentiations. They replace OPRF-s with unpredictable func-

tions [25] and blind signatures [11]. These techniques are secure under One-More-DH and One-More-RSA

assumptions [2], respectively. The very recent work in [10] achieves linear computational and communica-

tion complexity (also using short exponents) against malicious adversaries, under the DDH assumption in

ROM.

2.2 Related Primitives

Two-Party Computation (2PC). Private set operations can be performed using secure two-party computa-

tion [18, 35]. 2PC allows two parties, each with its own private input, to privately evaluate a generic public

function, such that nothing else is revealed. However, standard 2PC definitions (see [17]) provide both par-

ties with the length of the other party’s input. This contradicts our input size-hiding goal. Furthermore,

2PC incurs several rounds and relatively high computational overhead. Recent techniques, such as [33]

and [22], proposed efficient tools for 2PC. However, special-purpose protocols for private set operations are

still much faster. For instance, [22] reports the overhead of 12.8 seconds for computing the intersection of

two sets with only 100 items using their 2PC-based techniques. In contrast, [11] shows the overhead of only

6 seconds for computing private set intersection for two sets with 5, 000 items (on comparable hardware),

using specialized PSI tools.

Branching Programs (BP). Ishai and Paskin [23] consider the following problem: given a branching pro-

gram P (held by server) and encryption c of input x (held by client), is it possible to compute ciphertext c′

from which P (x) can be decoded using the secret key? Note that size of c′ depends, polynomially, on sizes

of x and P . Thus, neither client computation nor protocol communication overhead depends on server input

size P , that remains secret to client. Although one can implement PSI with a branching program and thus

hide server input size (whereas, we focus on hiding client input size), we argue that this generic construc-

tion would involve much higher computational overhead – polynomial in the size of inputs. Also, it would

require v parallel executions, where v is client input size.

Secure Pattern Matching Some recent work addressed a somewhat related problem: secure computation

of pattern matching [19, 16, 26, 21]. One party (P1) holds a pattern and the other party (P2) holds a text

string. The goal of P1 is to learn where the pattern appears in the text, without revealing it to P2 or learning

anything else about P2’s input. However, the size of P1’s pattern is always revealed to P2. [21] sketches a

possible way to hide pattern size, however, only by means of random padding. (As discussed earlier, this is

an unsatisfying approach that exposes the upper bound.) It also imposes a substantial performance penalty:

from linear to quadratic complexity.

Zero-Knowledge Sets. The only cryptographic primitive in the context of which the need for hiding input

sizes was discussed is Zero-Knowledge Sets [30]. In it, server publishes a short snapshot of its private

database, i.e., a commitment. Later, client can request server to prove whether a given item belongs to

the committed set. Note that neither the commitment nor the proof reveals server database. However, the

problem addressed by ZK-Sets is quite different from (size-hiding) PSI. In fact, in ZK-Sets, client input is

not private.

3 Definitions

We now formalize the concept of Size-Hiding Private Set Intersection (SHI-PSI). Informally, SHI-PSI

extends PSI with an additional privacy feature that client input size must not be revealed to server. Clearly,

SHI-PSI implies (one-way) PSI. For ease of presentation, instead of first defining PSI and then adding size-

hiding, we begin by defining SHI-PSI directly. Finally, we present our cryptographic assumption, i.e., the

RSA assumption on safe moduli.

Definition 1. (SHI-PSI.) A scheme satisfying correctness, server privacy and client privacy (per Definitions

2, 3 and 4 below), involving two parties: client C and server S, and two components: {Setup,Interaction},
where:

• Setup: an algorithm that selects all global parameters.

• Interaction: a protocol between S and C on respective inputs: S = {s1, · · · , sw} and C = {c1, · · · , cv}.

Definition 2. (Correctness.) If both parties are honest, at the end of Interaction, run on inputs (S, C), S
outputs ⊥, and C outputs (|S|,S ∩ C), or |S| if the intersection is empty.

We assume semi-honest parties and use general definitions of secure computation given in [17]. Specifically,

we define SHI-PSI as a secure two-party protocol realizing the functionality described above. Our client and

server privacy definitions follow from those in related work [28, 13, 12, 19]. In particular, Goldreich ([17],

Sec. 7.2.2) states that, in case of semi-honest parties, the general “real-versus-ideal” definition framework

is equivalent to a much simpler framework that extends the formulation of honest-verifier zero-knowledge.

Informally, a protocol privately computes certain functionality if whatever can be obtained from one party’s

view of a protocol execution can be obtained from input and output of that party. In other words, the view

of a semi-honest party (including C or S , all messages received during execution, and the outcome of that

party’s internal coin tosses), on each possible input (C,S), can be efficiently simulated considering only that

party’s own input and output. This is equivalent to the following formulation:

Definition 3. (Client Privacy.) For every PPT S∗ that plays the role of S, for every S , and for any client

input set (C(0), C(1)), two views of S∗ corresponding to C’s inputs: C(0) and C(1), are computationally

indistinguishable.

Client privacy is guaranteed if no information is leaked about client input. That is, S∗ cannot distinguish

between C(0) and C(1). S∗ cannot even determine whether |C(0)| 6= |C(1)|. In fact, Definition 3 is strictly

stronger than client privacy definition for standard PSI protocols that reveal client input size. In this case,

indistinguishability would be relaxed by the constraint |C(0)| = |C(1)|.

Definition 4. (Server Privacy.) Let ViewC(C,S) be a random variable representing C’s view during

execution of SHI-PSI with inputs C,S . There exists a PPT algorithm C∗ such that:

{C∗(C,S ∩ C)}(C,S)
c
≡ {ViewC(C,S)}(C,S)

In other words, on each possible pair of inputs (C,S), C’s view can be efficiently simulated by C∗ on

input: C and S ∩ C. Thus, as in [17], we claim that the two distributions implicitly defined above are

computationally indistinguishable.

Remark. As mentioned earlier, we consider security in the presence of semi-honest parties, i.e., parties that

faithfully follow protocol specifications. However, during or after protocol execution, they might (passively)

attempt to infer additional information about the other party’s input. Note that this models precisely the class

of adversaries considered in our applications. For instance, in our Example 1 in Section 1, DHS and airlines

have no incentive to deviate from protocol specifications, because they might be subject to auditing and

could face severe penalties for non-compliance. Nonetheless, airline personnel, system administrators, or

other malicious insiders might seek to surreptitiously obtain information about contents or size of the DHS

Terror Watch List (TWL).

The RSA Assumption on safe moduli. Let τ be a security parameter and let RSA.Setup(τ) be an algo-

rithm that outputs so-called safe RSA instances, i.e., pairs (N, e), where: (1) N = pq where p and q are

random distinct τ -bit primes, such that p = 2p′ + 1 and q = 2q′ + 1 for distinct primes p′, q′, and (2)

e < φ(N) is a random positive integer, such that gcd(e, φ(N)) = 1. The RSA problem is (τ, t)-hard on

2τ -bit safe RSA moduli, if, for each algorithm A that runs in time t, it holds that:

Pr[(N, e)←rRSA.Setup(τ), y←r Z
∗
N :A(N, e, y)=β s.t. βe= ymodN] ≤ negl(τ).

We later assume that y is chosen uniformly at random from QRN (the set of quadratic residues in Z
∗
N).

Thus, the order of y is p′q′. In this case, we let e be a random integer (chosen independently of y) such that

gcd(e, p′q′) = 1 with overwhelming probability. If e = 2tu for an odd integer u, then, if t ≥ 1, A would

compute square root of y, which is infeasible if the factoring assumption holds. If t = 0, then e is odd and

A would solve an instance of the standard RSA problem.

4 SHI-PSI Construction

We now present our SHI-PSI instantiation. Observe that its two main building blocks are: (1) RSA ac-

cumulators [4], and (2) the unpredictable function fX,p,q(y) = (X1/y) mod N (under the RSA assumption

on safe moduli).2

Specifically, client computes a global witness for its input C = {c1, · · · , cv}, in the form of an RSA

accumulator: (g
∏v

i=1 H(ci)) mod N , where g is a generator of QRN and H(·) is a full-domain hash func-

tion [3]. Then, client securely blinds the accumulator with a random exponent and sends the result (denoted

as X) to server. The latter learns no information about client input, not even its size. For its part, for each

item sj ∈ S , server computes unpredictable function f over client message X . Server then applies a one-

way function (in practice, a suitable cryptographic hash function) to each output of f . The results are a set

of tags, one for each sj . These tags are then returned to client for matching (details below). We note that

the outer hash is crucial, since server privacy is based on the fact that, in ROM, a hash of an unpredictable

function is a PRF.

In the above, H(·) is a standard random oracle that does not have to output large primes. Also, we obviate

the technical issue of computing the inverse of H(sj) “in the exponent" by selecting the RSA modulus N as

a product of safe primes to ensure that the order of X is itself a product of large and unknown primes (see

proof for details).

Client learns the set intersection as well as |S| since it can only match tags corresponding to the items

in the intersection. The intuition is that client computation of g(
∏

l 6=i H(cl)) leads to it finding a matching tag

only if ci ∈ S ∩ C.

Before presenting the actual protocol, we introduce the notation in Table 1.

2A function (family) fk(·) is an (t, qf , ǫ)−unpredictable if, for any t-time algorithmA and any auxiliary information z, it holds

that: Pr[(x∗, fk(x
∗)←r A

fk(·)(z)) ∧ x∗ /∈ Q] ≤ ǫ where A makes at most qf queries to fk(·), andQ is the set of queries.

a←r A variable a is chosen uniformly at random from set A
τ security parameter

τ1, τ2 security parameters that depend on τ
p, q two τ -bit safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1

N = pq, e, d RSA modulus, public and private exponents

g generator of QRN

H(·) random oracle H : {0, 1}∗ → {0, 1}τ1

F (·) random oracle F : {0, 1}∗ → {0, 1}τ2

C,S client and server sets, respectively

v, w sizes of C and S , respectively

i ∈ [1, v] indices of elements of C
j ∈ [1, w] indices of elements of S

ci, sj i-th and j-th elements of C and S , respectively

hci, hsj H(ci) and H(sj), respectively

π random permutation

Table 1: Notation.

4.1 Protocol Description

Figure 1 shows our SHI-PSI protocol. Common input is extracted from the output of RSA.Setup(τ).
Primes p′ and q′ are provided exclusively to server. Client must treat its exponents as large integers. We

emphasize that arithmetic operations in the exponent are performed in Z
∗
p′q′ . (In particular, squaring is a

permutation of QRN , in our setting.)

Common input: N, g,H(·), F (·)

Client C on input: C = {hc1, · · · , hcv} Server S on input: p′, q′,S = {hs1, · · · , hsw},
where hci = H(ci) where hsj = H(sj)

(Off-line)

For 1 ≤ i ≤ v, PCHi =
∏v

l=1,l 6=i hcl

PCH =
∏v

i=1 hci, A = (gPCH) mod N

(On-line)

Rc ←r {1, . . . , N
2}, X = (ARc) mod N

X
// Rs ←r {0, . . . , p

′q′ − 1} and Z = (gRs) mod N

For 1 ≤ j ≤ w

Ks:j = (XRs·(1/hsj)) mod N

{t1, . . . , tw} = π(F (Ks:1), . . . , F (Ks:w))

For 1 ≤ i ≤ v

Z, {t1, . . . , tw}
oo

Kc:i = (ZRc·PCHi) mod N

t′i = F (Kc:i)

OUTPUT: {t′1, . . . , t
′
v} ∩ {t1, . . . , tw}

Figure 1: SHIPSI Protocol secure under RSA assumption in ROM. (Notation is from Table 1).

Theorem 1. Under the RSA assumption on safe moduli, the protocol in Figure 1 is a server- and client-

private SHI-PSI, satisfying Definitions 1-4, in the Random Oracle Model (ROM).

Proof. We show that the protocol satisfies correctness as well as client and server privacy, defined in

Section 3. We assume that all server elements are distinct.3 Hash functions H(·) and F (·) are modeled as

random oracles.

3However, we can remove this assumption by adding a counter to the input of H(·).

Correctness. We note that: ∀ci ∈ S ∩ C, ∃ j s.t.ci = sj . Hence, hci = hsj and:

Kc:i = ZRc·PCHi = gRcRsPCH(1/hsj)

Ks:j = XRs·(1/hsj) = gRcRsPCH(1/hsj)

Consequently, t′i = F (Kc:i) = F (Ks:j) = tj ; thus, client learns: ci ∈ S ∩C as well as |S| = |{t1, . . . , tw}|.

Client Privacy. Since client’s only message to server is X = g(PCH·Rc) mod N , we claim that the dis-

tribution of X is essentially equivalent to that of random elements in QRN , which is a cyclic group of

order p′q′. Since PCH and p′q′ are relatively prime (with overwhelming probability), we assume that

A = gPCH mod N is a generator of QRN . Moreover, Rc is chosen uniformly at random from {1, . . . , N2}.
Thus, if Rc = r1p

′q′ + r2 with r2 ∈ {0, . . . , p
′q′ − 1}, we have that the distribution of r2 is statistically

indistinguishable from the uniform distribution on {0, . . . , p′q′ − 1} and r1 and r2 are essentially indepen-

dent (see, e.g., [6]). Therefore, X = ARc mod N is essentially distributed as a random quadratic residue

independent of PCH even if factorization of N is known.

Server Privacy. To show that client’s view can be efficiently simulated by a PPT algorithm, we follow a

hybrid argument: The entire client’s view is gradually transformed by replacing values (received by client)

that are outside the set intersection, with elements chosen uniformly and independently at random. It then

suffices to show that this progressive substitution cannot be detected by any efficient algorithm.
Let I = C ∩ S , and |I| = t. For any (C,S), we show that two distributions:

D0 =
{

(Rc, T) : Rc ←r {1, . . . , N
2}, T = π

(

F (XRs(1/hsj1)), · · · , F (XRs(1/hsjw))
)}

and

Dw−t =
{

(Rc, T) : Rc ←r {1, . . . , N
2}, T = π

(

F (XRs(1/hsj1)), · · · , rt+1, · · · , rw
)}

,

are computationally indistinguishable, where (hsj1, · · · , hsjt) ∈ I and values in (rt+1, · · · , rw) are chosen

uniformly and independently at random from {0, 1}τ2 (i.e., the co-domain of the random oracle F (·)).
Our proof follows the standard hybrid argument: Let z = w − t. We define a series of intermediate

distributions Di, for 0 < i < z, where T is constructed by replacing the first i outputs of items NOT in I
with random values in the co-domain of F (·).

After fixing index i and probabilistic polynomial-time distinguisher D, we define:

ǫ(τ) = |Pr[D = 1|Di+1]− Pr[D = 1|Di]|

Our claim is that ǫ(τ) is negligible in τ . Let us assume that this claim is false. The only difference

between Di and Di+1 is the way T is defined. Specifically, (i + 1)-st item of T not in I is F (XRs(1/hsl))
for Di and a random value for Di+1.

Since F (·) is a random oracle, distinguisher D must compute XRs(1/hsl) = gRsRcPCH/hsl for hsl /∈ I .

Then, we can build an efficient algorithm A that, given a challenge (N, e, y), returns y1/e mod N . (We

assume that y is chosen uniformly at random from QRN . Thus, the order of y is p′q′.) The simulation

proceeds as follows: First, A sets g = y and, by programming the random oracle H(·), A assigns random

values to outputs of H(·) and computes d = gcd(RsRcPCH, hsl), for some integers e and b with hsl = ed
and RsRcPCH = bd. Since F (·) is a random oracle,A sees gRsRcPCH/hsl = gb/e. Given that (gb/e)e = gb

and gcd(e, b) = 1, A can use the extended Euclidean algorithm to compute g1/e = y1/e via the well-known

Shamir’s trick4. Thus, under the RSA assumption on safe moduli, formulated for a random exponent, ǫ(τ)
is negligible in τ .

4Note that this is similar to the reduction in [15]. However, in contrast to Theorem 5 in [15], our reduction is not based on the

strong RSA assumption, but on the standard RSA assumption in ROM. This is because e is generated independently of base y and,

thus, e is effectively provided as input to the adversary. Indeed, the signature scheme in [15] is actually secure under the standard

RSA assumption in ROM; this was confirmed via private communication [14].

Remarks. We stress that exponents in our scheme (i.e., outputs of H(·)) do not have to be prime, unlike

related reductions, such as [34, 4, 29, 15]. This is because client cannot compute gRsRcPCH/hsl , for l ∈
{1, . . . , w}, unless RcPCH/hsl is an integer. (Recall that Rc is generated honestly). Clearly, if hsl /∈ I ,

RcPCH/hsl is, – with negligible probability – an integer as long as hsl is sufficiently large: random

oracles are indeed division intractable, as shown in [15, 5] (in particular, [5] presents an algorithm for

finding division collisions sub-exponential in τ1, the digest size).

We readily acknowledge that our construction assumes both semi-honest players and the Random Oracle

Model. Nevertheless, on a positive side, it is interesting to observe that generic 2PC techniques, following

traditional definitions that also apply to malicious adversaries, do not achieve size-hiding of client input.

Goldreich [17] remarks that the program of each party (in a protocol for computing the desired functionality)

must either depend only on the length of that party’s input or obtain information on the counterpart’s input

length. One intuitive argument against the feasibility of input size-hiding protocols secure in the malicious

model is that proving well-formed-ness of client input is only possible by considering each client input set

element separately (e.g., via some ZK proofs). Thus, combined proofs would have to reveal at least the

upper bound on client input size.

Computational and Communication Complexity. The protocol in Figure 1 incurs the following com-

putational complexity (in terms of modular exponentiations). In each interaction, server needs to com-

pute O(w) exponentiations, one for each of its items. Whereas, client operations are divided into off-

line and on-line categories. Client off-line work amounts to O(v) exponentiations for the computation of

A = gPCH mod N , since PCH is the non-modular product of v values. Additionally, client computes

Kc:i = ZRc·PCHi mod N for each item. As each of these operations requires O(v) exponentiations, on-

line client complexity amounts to O(v2) exponentiations.5 Communication complexity in each interaction

is dominated by O(w) outputs of F (·) sent from S to C in the second message. (The first message involves

the transmission of a single log(N)-bit value).

4.2 Reducing Client Complexity

We now discuss a simple technique to reduce client computation. Note that the naïve computation of Kc:i

leads to O(v2) exponentiations. However, this can be reduced to O(v log(v)) via dynamic programming.

Our intuition is as follows: For any (i, j), Kc:i and Kc:j only differ by one exponent, since PCHi =
∏v

l=1,l 6=i hcl, whereas, PCHj =
∏v

l=1,l 6=j hcl.

We define Z ′ = ZRc, and i:j = Z ′[
∏

l/∈[i,j] hcl] mod N . We illustrate this technique using a tree in

Figure 2. The leaves contain values Kc:i, for 1 ≤ i ≤ v, e.g., i = Z ′[
∏

l 6=i hcl] mod N = ZRc·PCHi mod
N = Kc:i.

We now sum up the total number of exponentiations needed to compute all these values. Note that, from

a node with value i:j, one can obtain the children, i:h and h+1:j, as follows:

i:h =
(

i:j
)(

∏j
l=h+1 hcl) (modN)

h+1:j =
(

i:j
)(

∏h
l=i hcl) (modN)

For h = i+ (j − i+ 1)/2, each of these operations involves exactly (j − i+ 1)/2 exponentiations.

At level 0, there are v values, each obtained with a single exponentiation from the parents at level 1. At

level 1, there are v/2 values, each obtained with 2 exponentiations from nodes at level 2. In general, at level

i, there are v/2i values, each obtained with 2i exponentiations from nodes at level i+1.

5Note that, if client knew the factorization of N , it could compute PCH and PCHi’s using multiplication modφ(N), thus

significantly reducing complexity of each exponentiation. However, as discussed earlier, the fact that client does not know φ(N) is

crucial to server privacy.

Z’

1:v/2 v/2+1:v

1:8 9:16

1:4 5:8 9:12 13:16

1:2 3:4 5:6 7:8 9:10 11:12 13:14 15:16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 vLevel 0

Level 1

Level 2

Level 3

Level log(v)− 1

Figure 2: Tree-based strategy to reduce client computation.

Thus, client overhead can be estimated as:

exponentiations =

log(v)−1
∑

i=0

(

2i
v

2i

)

= v log(v).

5 Extensions

In this section, we discuss possible extensions to our SHI-PSI construction presented above.

5.1 Linear-Complexity SHI-PSI

In many scenarios, parties engage in multiple interactions, and it is important to hide (from client) any

changes in server input. This feature is sometimes referred to as unlinkability: client cannot determine

whether any two server interactions are related, i.e., executed on the same input (e.g., see unlinkability

definitions in [9]).

The SHI-PSI construct in Figure 1 clearly guarantees unlinkability: server tags are unlinkable across

multiple interactions, since server computes a new random Rs and a new Z ∈ QRN , in each execution.

However, although we clearly value unlinkability, it is worth considering scenarios where it might be rea-

sonable to trade off unlinkability for better efficiency.

To this end, we sketch a modified SHI-PSI protocol that reduces the number of client on-line exponen-

tiations to linear. The main intuition is that removing Rs allows client to pre-compute the exponentiations

involving (long) PCHi values. We illustrate the resulting protocol in Figure 3. Note that security arguments

in Theorem 1 also apply to this protocol variant. Indeed, given assuming semi-honest client, X = gPCH·Rc ,

similar to XRs in protocol of Figure 1, is also uniformly distributed in QRN , for Rc ←r {1, . . . , N
2}. A

more formal treatment of the problem as well as complete formal proofs are deferred to the full version of

this paper.

Correctness. Observe that ∀ci ∈ S ∩ C, ∃ js.t.ci = sj . Hence, hci = hsj and:

Ks:j = X1/hsj = gRcPCH(1/hsj) = gRc·PCHi = Kc:i

Consequently, t′i = F (Kc:i) = F (Ks:j) = tj , and client learns ci ∈ S ∩ C.

Also, note that client learns |S| = |{t1, . . . , tw}|.

Common input: N, g,H(·), F (·)

Client C on input: C = {hc1, · · · , hcv} Server S on input: p′, q′,S = {hs1, · · · , hsw},
where hci = H(ci) where hsj = H(sj)

(Off-line)

For 1 ≤ i ≤ v

PCHi =
∏v

l=1,l 6=i hcl

ai = gPCHi mod N

PCH =
∏v

i=1 hci, A = (gPCH) mod N

(On-line)

Rc ←r {1, . . . , N
2}, X = (ARc) mod N

X
// For 1 ≤ j ≤ w

For 1 ≤ i ≤ v Ks:j = (X(1/hsj)) mod N

Kc:i = (aRc
i) mod N , t′i = F (Kc:i) {t1, · · · , tw} = π(F (Ks:1), · · · , F (Ks:w)){t1, · · · , tw}

oo T := {t1, · · · , tw}

OUTPUT: {t′1, · · · , t
′
v} ∩ {t1, · · · , tw}

Figure 3: Modified construction of the SHI-PSI protocol to achieve linear client complexity. (Notation is

from Table 1).

Computational and Communication Complexity. The amended SHI-PSI construct in Figure 3 incurs

the following computational complexity: Server overhead is unaltered from Figure 1, i.e., O(w) exponen-

tiations. However, client performs O(v log(v)) exponentiations off-line, and only O(v) exponentiations

on-line. Communication overhead is the same as in the protocol of Figure 1.

5.2 SHI-PSI with Data Transfer

We now show how to extend proposed SHI-PSI constructs to support data transfer. Informally, in SHI-

PSI with Data Transfer, client additionally obtains data records associated with the items in the intersection.

The main idea is to let server encrypt records using a symmetric key (using a secure symmetric cipher,

such as AES [8], used with a proper mode of operation to guarantee CPA security) derived from the output

of the unpredictable function. For example, keys can be derived by computing a one-way function (e.g.,

a cryptographic hash) over the unpredictable function output. Correctness and server privacy of SHI-PSI

guarantee that client can derive the decryption keys only for items with matching tags, i.e., those in the

intersection.

Let Fenc(·) be a secure cryptographic hash function (modeled as a random oracle): Fenc : {0, 1}∗ →
{0, 1}τ2 , chosen at setup. For every j, server computes ks:j = Fenc(Ks:j) and encrypts associated data using

ks:j . For its part, client, for every i, computes kc:i = Fenc(Kc:i) and decrypts only ciphertexts corresponding

to matching tags. (Note that ks:j = kc:i iff sj = ci and tj = t′i). As long as the underlying encryption scheme

is CPA-secure, this extension does not affect security or privacy arguments for any protocol discussed thus

far. Finally, note that this extension leaves the complexity of both protocols unaltered.

6 Cost of Hiding Size

Although prior work produced a number of PSI protocols with different security assumptions and com-

plexities, we presented the first PSI protocol that hides client input size. Therefore, it seems somewhat

counterintuitive to compare our SHI-PSI constructs with prior PSI protocols. Nonetheless, we provide an

estimate of the slow-down incurred by client input size-hiding.

We consider prior PSI techniques and evaluate their asymptotic computation and communication com-

plexities in the RAM computational model (i.e., using a single-processor machine). We estimate compu-

tation overhead as the number of on-line modular exponentiations performed by server and client. Note

that, in order to make the comparison as fair as possible, all protocols are instantiated to provide similar

degrees of security in the same model, i.e., semi-honest players and ROM. For instance, we do not count

zero-knowledge proofs of protocol compliance in protocols secure against malicious adversaries. Results,

reflected in Table 2, summarize: security model (standard or ROM), adversaries (honest-but-curious or mali-

cious), availability of client input size-hiding, communication overhead, number of modular exponentiations

by server and client, size of random exponents (i.e., whether they can be selected from subgroups).

Protocol Model Adv
Size Comm. Server Client Exp-s

Hiding Overhead Exp-s Exp-s Length

FNP04 [13] Std HbC No O(w+v) O(w(log log v)) O(w+v) Short

HN10 [20] Std Mal No O(w+v) O(w(log log v)) O(w+v) Short

KS05 [27] Std HbC No O(w+v) O(w · v) O(w+v) Long

HL08 [19] Std Covert No O(w+v) O(w+v) O(v) Long

JL09 [24] Std Mal No O(w+v) O(w+v) O(v) Long

JL10 [25] ROM Mal No O(w+v) O(w+v) O(v) Short

DT10 [11] (Fig.3) ROM HbC No O(w+v) O(w+v) O(v) Short

DT10 [11] (Fig.4) ROM HbC(*) No O(w+v) O(w+v) O(v) mults Long

DKT10 [10] ROM Mal No O(w+v) O(w+v) O(v) Short

Our Fig.1 ROM HbC Yes O(w) O(w) O(v log v) Long

Our Fig.3 ROM HbC Yes O(w) O(w) O(v) Long

(*)This construct actually achieves malicious security with one-sided simulatability.

Table 2: Performance Comparison of PSI and SHI-PSI constructions.

Observe that the most efficient PSI-s secure in the random oracle model incur linear computational

complexities, i.e., O(w + v) for server and O(v) for client, and involve short exponents (e.g., 160-bit) in

prime order groups. Whereas, our SHI-PSI protocol (Figure 1) uses exponents with length close to the RSA

modulus (e.g., 1024-bit) and incurs O(v log v) client complexity. However, such a drawback is experienced

by one player – client – that benefits from additional privacy, as its set size is hidden from server. Also, note

that our second SHI-PSI construct (Figure 3) reduces client complexity from O(w + v) to O(v).
Finally, we remark that our SHI-PSI constructs achieve better server complexity than PSI-s, in settings

where v (the size of client’s set) is not negligible. In fact, server’s computational load in SHI-PSI is inde-

pendent of client’s input size. Also, protocols not hiding sizes incur higher communication overhead: client

sends a number of values proportional to its set size (as opposed to a single value in SHI-PSI).

7 Conclusions and Future Work

This paper motivated the importance, and introduced the concept, of Size-Hiding Private Set Intersection

(SHI-PSI). It also presented two secure and efficient SHI-PSI constructs, Since this work represents an initial

foray into SHI-PSI protocols, much remains to be done. Items for future work, include (but are not limited

to):

1. Amending proposed SHI-PSI constructs to eliminate the random oracle.

2. Exploring SHI-PSI secure against fully malicious (rather than semi-honest) participants.

3. Investigating SHI-PSI variants that provide authorization of client input, i.e., requiring each item in

client set to be pre-authorized by some trusted authority.

4. Extending SHI-PSI to support multiple clients to obtain private computation of size-hiding a multi-

party set intersection.

Acknowledgements. We are grateful to Rosario Gennaro, Stanislaw Jarecki, and Adi Shamir for some use-

ful hints in the early stage of SHI-PSI protocol design. This research was supported by the US Intelligence

Advanced Research Projects Activity (IARPA) under grant number FA8750-09-2-0071.

References

[1] Y. Aumann and Y. Lindell. Security Against Covert Adversaries: Efficient Protocols for Realistic

Adversaries. In TCC, pages 137–156, 2007.

[2] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion problems

and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–215, 2008.

[3] M. Bellare and P. Rogaway. The exact security of digital signatures-How to sign with RSA and Rabin.

In Eurocrypt, pages 399–416, 1996.

[4] J. Benaloh and M. De Mare. One-way accumulators: A decentralized alternative to digital signatures.

In Eurocrypt, pages 274–285, 1994.

[5] J. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-Rabin signature scheme. In

Eurocrypt, pages 91–101, 2000.

[6] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM Transactions

on Information and System Security, 3(3):185, 2000.

[7] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient Robust Private Set Intersection.

In ACNS, pages 125–142, 2009.

[8] J. Daeman and V. Rijmen. AES proposal: Rijndael. 1999.

[9] E. De Cristofaro, S. Jarecki, J. Kim, and G. Tsudik. Privacy-Preserving Policy-Based Information

Transfer. In PETS, pages 164–183, 2009.

[10] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-Complexity Private Set Intersection Protocols Secure

in Malicious Model. In Asiacrypt, pages 213–231, 2010.

[11] E. De Cristofaro and G. Tsudik. Practical Private Set Intersection with Linear Complexity. In Financial

Cryptography and Data Security, pages 143–159, 2010.

[12] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom

functions. In TCC, pages 303–324, 2005.

[13] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In Eurocrypt,

pages 1–19, 2004.

[14] R. Gennaro. Private Communication, 2010.

[15] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In

Eurocrypt, pages 123–139, 1999.

[16] R. Gennaro, C. Hazay, and J. Sorensen. Text Search Protocols with Simulation Based Security. In

PKC, pages 332–350, 2010.

[17] O. Goldreich. Foundations of Cryptography. Vol 2. Cambridge Univ. Press, 2004.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages 218–229,

1987.

[19] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security

against malicious and covert adversaries. In TCC, pages 155–175, 2008.

[20] C. Hazay and K. Nissim. Efficient Set Operations in the Presence of Malicious Adversaries. In PKC,

pages 312–331, 2010.

[21] C. Hazay and T. Toft. Computationally secure pattern matching in the presence of malicious adver-

saries. In Asiacrypt, pages 195–212, 2010.

[22] W. Henecka, S. Koegl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for Automating

Secure Two-partY computations. In ACM CCS, 2010.

[23] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In TCC, pages 575–594,

2007.

[24] S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT

and Secure Computation of Set Intersection. In TCC, pages 577–594, 2009.

[25] S. Jarecki and X. Liu. Fast Secure Computation of Set Intersection. In SCN, pages 418–435, 2010.

[26] J. Katz and L. Malka. Secure text processing with applications to private dna matching. In ACM CCS,

pages 485–492, 2010.

[27] L. Kissner and D. Song. Privacy-preserving set operations. In Crypto, pages 241–257, 2005.

[28] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In Crypto, pages 36–54, 2000.

[29] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In FOCS, pages 120–130, 1999.

[30] S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In FOCS, pages 80–91, 2003.

[31] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM Journal on Computing, 1–35(5):1254,

2006.

[32] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt,

pages 223–238, 1999.

[33] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical. In

Asiacrypt, pages 250–267, 2009.

[34] A. Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM Transactions

on Computer Systems, 1(1):38–44, 1983.

[35] A. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

	Introduction
	Why Size Matters?
	Size Hiding with Current Tools?
	Roadmap and Contributions

	Related Work
	Prior Work on PSI
	Related Primitives

	Definitions
	SHI-PSI Construction
	Protocol Description
	Reducing Client Complexity

	Extensions
	Linear-Complexity SHI-PSI
	SHI-PSI with Data Transfer

	Cost of Hiding Size
	Conclusions and Future Work

