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“If you’d wiggled A, then B would’ve changed”
Causality and counterfactual conditionals
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Abstract This paper deals with the truth conditions of conditional sentences. It
focuses on a particular class of problematic examples for semantic theories for these
sentences. I will argue that the examples show the need to refer to dynamic, in particu-
lar causal laws in an approach to their truth conditions. More particularly, I will claim
that we need a causal notion of consequence. The proposal subsequently made uses a
representation of causal dependencies as proposed in Pearl (2000) to formalize a causal
notion of consequence. This notion inserted in premise semantics for counterfactuals
in the style of Veltman (1976) and Kratzer (1979) will provide a new interpretation rule
for conditionals. I will illustrate how this approach overcomes problems of previous
proposals and end with some remarks on remaining questions.

Keywords Counterfactual conditionals · Causal dependencies · Premise semantics ·
Fixed point semantics

1 Introduction

(1a) If you had practiced more, you would have won.
(1b) If you had been in Paris next week, we could have met.

It is surprising how often counterfactual conditionals like (1-a) and (1-b) occur in
our daily conversations. They are regularly used when we evaluate previous actions
and plan future behavior. But what do these sentences mean? In which circumstances
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do you agree that they are true?1 These are the questions the present paper tries to
answer. Of course, this is not the first article addressing this topic. In fact there exists
an enormous literature on the meaning of counterfactual conditionals. Students from
the most diverse disciplines have been interested in these sentences, among them phi-
losophers, logicians, linguists, psychologists and computer scientists. A big advantage
of studying a topic that lives at the intersection of different scientific areas is that one
can learn from the authentic perspective and the methodology each of the sciences
comes with. In the present paper we will systematically make use of this opportunity.

To come back to the initial question: how would you describe the meaning of
counterfactual conditionals (shortly: counterfactuals)? Lets simplify things a bit and
assume as logical form of such conditionals A � C , where A is the antecedent, C
the consequent and � the conditional connective.2 A first intuitive description of the
meaning of A � C is this: a counterfactual is true with respect to a world w0 if
the consequent follows from the antecedent: [[A � C]](w0) = 1 iffdef A |≡ C . But
what is the relevant notion of entailment in this definition? One could propose to use
the classical notion of entailment: A |≡ C holds if C is true in all models that make
A true. But this is clearly too strong, as the following example from Lifschitz illustrates.

The circuit example. Suppose there is a circuit such that the light is on (L)
exactly when both switches are in the same position (up or not up). At the
moment switch 1 is down (¬S1), switch 2 is up (S2) and the lamp is out (¬L).

(2) If switch one had been up, the lamp would have been on.

Intuitively, the counterfactual (2) is true in the given context. But it does not hold that
the lamp is on in all possible worlds where switch one is up. For instance, in a world
where switch 1 is up but switch 2 is down, the lamp is off. The fact that switch 1 is
up will only entail that the lamp is on in case switch 2 is still up as well. Hence, there
is more information going into the derivation of the consequence from the anteced-
ent. Certain singular facts of the evaluation world w0 can be used as extra premises.
Furthermore, also certain generalizations considered valid in the context of evaluation
are available as additional premises. In our example this is the generalization that the
light is on (L) exactly when both switches are in the same position. We conclude, the
interpretation scheme of conditionals should be rewritten as follows.

A basic interpretation rule for conditional sentences

[[A > C]]D,w0 = 1 iffdef A + Pw0 |≡D C ,
where Pw0 is a set of singular facts true in the evaluation world w0, D is a set of
regularities considered valid in the evaluation context, and |≡ the relevant notion
of entailment.

This interpretation rule formulates the basic idea behind many approach towards the
semantics of counterfactuals. A large part of the literature, particularly in the tradi-

1 In this paper, we will simply assume that counterfactual conditionals have truth values.
2 This is the syntactic level to which we will analyze the logical form of conditionals within this paper.
This is admittedly still a very coarse-grained view on the compositional structure of natural language
conditionals, but sufficient for the goals pursued here.
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tion of cotenability theory (Goodman 1955) and premise semantics (Veltman 1976;
Kratzer 1979) addresses the question of how to develop an adequate description of
the set Pw0 , the singular facts of the evaluation world that can be used as additional
premisses. The variable D has got less attention. The central claim of this paper is that
in fact already the notion of entailment |≡ is problematic and needs serious attention.
I will argue that in order to obtain an adequate description of the truth conditions of
counterfactuals we need a causal notion of entailment.

Central Claim
The semantics of (the dominant reading of) conditionals relies on a causal notion
of entailment.

Section 2 contains arguments supporting this claim. In Section 3 a formalization of
causal reasoning is developed. This formalization is then put to use in Section 4, where
a semantic theory for counterfactuals will be presented. In Section 5 we will discuss
some philosophical implications of the proposal.

2 Motivation

Assuming a causal notion of entailment the basic receipt of how to interpret condition-
als reads as follows: A counterfactual conditional with antecedent A and consequent
C is true if A will bring about C. The necessity of such a causal notion of entailment
can best be brought out in contrast with its most dominant competitor: an epistemic
notion of entailment. In this case the basic receipt of how to interpret conditionals
gets a different reading: A counterfactual conditional with antecedent A and conse-
quent C is true if on learning A you can conclude C. In order to decide between the
two approaches we have to look for examples they make different predictions for and
compare these predictions with our intuitions. There is only space to discuss one type
of example here3: the assessment example of Harper (1981). This example has been
used as counterexample to epistemic approaches based on the Ramsey receipt.

The assessment example Jones is one of several rising young executives com-
peting for a very important promotion. The company brass have found the candi-
dates so evenly matched that they have employed a psychologist to break the tie
by testing for personality qualities correlated with long run success in the cor-
porative world. The test was administered to Jones and the other candidates on
Thursday morning. The promotion was decided Thursday afternoon on the basis
of the test scores, but will not be announced until Monday. On Friday morning
Jones learnt, through a reliable company grapevine, that the promotion went
to the candidate who scored highest on a factor called ruthlessness; but he is
unable to discover which of them this is.
It is now Friday afternoon and Jones is faced with a decision. Smith has failed
to meet his minimum output quota for the third straight assessment period, and
a long standing company policy rules that he should be fired on the spot. Jones

3 For more see Schulz (2007) and the homepage of the author.
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believes that his behavior in the decision will provide evidence about how well
he scored on the ruthlessness factor.

This example is formulated in the context of probabilistic accounts to the meaning
of conditionals. In this context conditionals are not assigned truth values, but prob-
abilities expressing their acceptability. In this case, the epistemic interpretation rule
for conditionals becomes: A counterfactual conditional with antecedent A and con-
sequent C is acceptable if on learning A the probability you assign to C gets high.
Given that Jones considers his decision to be relevant to his score on the ruthlessness
factor, the probability he assigns to getting the promotion (C) conditional on firing
Smith (A) is high. According to the epistemic receipt of when to accept counterfac-
tuals, this should mean that his belief in the conditional (3) should be high as well.
Intuitively, however, this conditional is neither true nor acceptable in the described
scenario, because Jones’ decision will in no way affect the decision of who will get
the promotion.4

(3) If I fire Smith, I will get promotion.

Intuitively, the wrong predictions result because the semantics (or acceptability)
of the conditional rather relies on a causal dependency than on an evidential rela-
tion: “... what is relevant to deliberation is a comparison of what will happen if I
perform some action with what would have happened if I instead did something else.
A difference between [the conditional probability of C given A, the author] and [the
probability of C , the author] represents a belief that A is evidentially relevant to the
truth of C, but not necessarily a belief that the action has any causal influence on the
outcome.” (Stalnaker 1981, p. 151).

To sum up, the assessment example shows that there is a relation between the inter-
pretation of conditional sentences and causality. Still, there are different options left for
how to explain this observation. One could argue that the sensibility of conditionals to
causal dependencies is only an epiphenomenon (see Lewis 1973). Contrary to Lewis,
I will claim that the truth conditions of conditional sentences build on the contextually
salient causal dependencies. To work out the details of the proposal we first have to
formalize a causal notion of entailment. This will be done in the next section.

3 Causal reasoning

3.1 Technical preliminaries

The semantics developed in this paper will interpret a simple propositional language
to which a conditional connective � has been added. Given a finite set of proposition

4 Some readers might object that the particular causal reading of counterfactual conditionals that we try
to capture in this paper is not the only possible reading of conditional sentences like (3). There is, in par-
ticular, also an epistemic reading of conditionals available, at least to some speakers (see the debate about
the famous Hamburger example from Hansson). For counterfactual conditionals the epistemic reading is
rather marginal, clearly outperformed by the reading we are interested in here. However, the fact that there
are other readings for conditionals available complicates the empirical assessment of semantic theories for
counterfactuals.
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Fig. 1 Three-valued truth tables for ¬,∧ and ∨

letters P the language L0 is the closure of P under the connectives ¬,∧ and ∨. L� is
the union of L0 with the set of expressions φ � ψ where φ andψ are elements of L0.
We will deviate from classical two-valued logic and use Kleene’s strong three valued
logic to interpret the language L�. This logic distinguishes truth values {u, 0, 1} with
the partial order u ≤ 0 and u ≤ 1. The value u is not to be interpreted as a degree
of truth, but rather expresses that the truth value is, so far, undecided. The chosen
ordering reflects the intuition that u can ‘evolve’ towards one of the values 0 and 1.
The three-valued truth tables for the connectives ¬,∧ and ∨ are given in Fig. 1.

An assignment of the truth values u, 1 and 0 to the set of proposition letters P will
be called a situation for L�. If the assignment does not use the value u, the situation
is also called a possible world for L�. W denotes the set of all possible worlds. We

will write [[·]]D,s for the function mapping formulas on truth values given a set of reg-
ularities D and a situation s. [[φ]]D denotes the set of possible worlds where φ is true.
The meaning of sentences in L0 ⊆ L� is determined based on the truth tables given
in Fig. 1. The parameter D is only relevant for the meaning of conditionals φ � ψ .
The interpretation rule for conditionals is the central definition of the paper and will
only be given at the end of Sect. 4.

3.2 Representing causal dependencies

The goal of the present section is to develop a causal notion of entailment. More in
particular, we want to define a notion of entailment that relates a set of literals � to
a formula φ if (the truth of) φ causally depends on (the truth of) �. This relation can
only be defined relative to some representation D of the relevant causal dependencies.
If φ is a causal consequence of � given D we will write: � |≡D φ.5

Before we can give a concrete definition of |≡D we first have to clarify what it
means for D to be a representation of the contextual relevant causal dependencies.
The definition of a dynamics D given below is based on Pearl’s (2000) definition of
a causal model. However, in some important aspects the notion of a dynamics differs
from a causal model in order to overcome some shortcomings of the later notion.6 A

5 In the linguistic literature causal dependence is often analyzed as a primitive relation between events or
events and states etc (see, for instance van Lambalgen and Hamm 2005). In the present article, however,
direct causal dependence is a relation that holds between proposition letters. The reason for taking the prop-
ositional perspective within this paper is that it simplifies formal matters considerably and it is sufficient
for the issues we want to pursue here.
6 For discussion see Schulz (2007).
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dynamics is a structure that distinguishes between two groups of proposition letters. On
the one hand there is the set B of background variables. These are proposition letters
representing facts that are taken to be causally independent of any other proposition.
On the other hand there are the inner variables I = P − B. These are propositions
letters representing facts that causally depend on others. The character of the depen-
dency is described by the function F that associates every inner variable X with a set
of proposition letters Z X and a two-valued truth function fX . The proposition letters in
Z X represent the facts that X directly causally depends on. The function fX describes
the character of the dependency: it describes how one can calculate the truth value of
X given the values of the members of Z X . Definition 1 makes use of the notion of
rootedness which will be defined below.

Definition 1 (Dynamics)
A dynamics for L� is a tuple D = 〈B, F〉, where

i. B ⊆ P is the set of background variables;
ii. F is a function mapping elements X of I = P − B to tuples 〈Z X , fX 〉, where Z X

is an n-tuple of elements of P and fX a two-valued truth function fX : {0, 1}n −→
{0, 1}. F is rooted in B.

The particular character of causal dependencies makes certain restrictions on the
function F necessary. Firstly, causal dependencies cannot be circular; i.e. the fact A
can not at the same time be an effect of a fact B and causally responsible for B. Further-
more, we demand that the background variables are those and only those variables that
everything else depends upon. That means that if you walk backward in the history of
dependencies for every variable you should always end up with background variables.
The next definition summarizes these conditions under the notion of rootedness.

Definition 2 (Rootedness)
Let B ⊆ P be a set of proposition letters and F be a function mapping proposition
letters I = P − B to tuples 〈Z X , fX 〉, where Z X is an n-tuple of elements of P
and fX a two-valued truth function. Let RF be the relation that holds between two
proposition letters X,Y ∈ P if Y occurs in Z X . Let RT

F be the transitive closure of
RF . We say that F is rooted in B if 〈P, RT

F 〉 is a poset and B equals the set of minimal
elements of 〈P, RT

F 〉.
An application. Let us illustrate how this approach models Lifschitz’ circuit example,
repeated here from Sect. 1.

The circuit example Suppose there is a circuit such that the light is on (L) exactly
when both switches are in the same position (up or not up). At the moment switch
1 is down (¬S1), switch 2 is up (S2) and the lamp is out (¬L).

We need to distinguish three proposition letters for this example: S1 stands for
switch 1 is up, S2 for switch 2 is up and L for the lamp is on. The state of the lamp
causally depends on the position of the switches, hence S1 and S2 are background
variables, while L is an inner variable. Thus in the dynamics D of the circuit example
the function F maps L on the tuple 〈{S1, S2}, fL 〉 where fL maps L on 1 if and only
if S1 and S2 have the same truth-value (see Fig. 2).
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Fig. 2 A dynamics for the circuit example

Fig. 3 Constructing fixed points on a dynamics

3.3 Causal reasoning formalized

How can we now define the causal notion of entailment � |≡D φ, i.e. how to define
the causal consequences of a set of literals� given a dynamics D? We will use to this
purpose an idea from logic programming. We will define the causal consequences of
� as the sentences true in a certain minimal model of �. This model will be defined
as the least fixed point of an operator TD . The operator TD maps situations s on new
situations TD(s), calculating the direct causal effects of the settings in s.

Let us illustrate this idea with an example. Figure 3 sketches a new dynamics. In
this figure a straight arrow points from X to Y in case X is a direct cause of Y . For
convenience we assume that the causal dependencies holding in this picture follow
the formulas: X1 ∧ X2 ↔ Y1, X3 ∧ X4 ↔ Y2, and Y1 ∧ Y2 ↔ Z1. Let us assume,
furthermore, that� is the set {X1, X2,Y2}. Let s� be the situation making all formulas
in� true and mapping all proposition letters not occurring in� to the value u. A first
application of the operator TD to the situation s� calculates the value of Y1 from the
values of X1 and X2 and redefines the value of Y1 from u to 1. In s3 = TD(TD(s�))
also the value of Z1 is set to 1. This process continues as long as there are causal effects
predicted by the regularities in D. But given the way the operator TD is defined, the
value of some dependent variable Y never can change the value of some variable X
that Y depends on (see Fig. 3).

A precise description of the operation TD is given in definition 3. For an arbi-
trary proposition letter q, a situation s and a dynamics D the operation T determines
the value of q in the new situation TD(s) as follows: if q is among the background
variables of D then causal dependencies cannot have any effect on its value, hence
the value of q remains unchanged. If q is not part of the background variables and the
laws predict an outcome for q given the value of the direct causes of q in s, then q
is set to this predicted value—provided q was still undetermined in s. Otherwise the
value of q is left unchanged.
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Fig. 4 The fixed-point operator T in action

Definition 3 The operation T .
Let D be a dynamics and s a situation for L�. We define the situation TD(s) as follows.
For all q ∈ P ,

(i) If q ∈ B then TD(s)(q) = s(q).

(ii) If q ∈ I = P − B with Zq = 〈p1, . . . , pn〉, then

a. If s(q) = u and fq(s(p1), . . . , s(pn)) is defined, then TD(s)(q) =
fq(s(p1), . . . , s(pn)).

b. If s(q) = u or fq(s(p1), . . . , s(pn)) is not defined, then TD(s)(q) = s(q).

The application of this operation T to a situation s will produce a new situation
T (s) where the direct effects of the setting in s are calculated. This operation can be
iterated to calculate direct effects again and again. But at some point this process will
stagnate and the output situation will be identically to the input situation: a fixed point
of T is reached. For the example in Fig. 3 this is already the case after two applications
of the operation, see Fig. 4. It can be shown that such a fixed point always exist and
that it can be reached in finitely many steps.7 Based on this fact we can finally define
our causal notion of entailment (see definition 4).

Definition 4 Causal entailment
Let � be a set of literals and D a dynamics. We say that � causally entails φ given D
if φ is true on the least fixed point s∗

� of TD relative to s� .

� |≡D φ iffdef [[φ]]D,s∗
� = 1.

7 Proofs of these claims can be found on the homepage of the author. Notice that the operation T is not
in the sense monotone that from s1 ≤ s2 it follows TD(s1) ≤ TD(s2). Instead, we have s ≤ TD(s). The
reason is that T cannot change the truth value of propositional variable already set to 1 or 0, even if this
contradicts the predictions made by causal regularities described in the dynamics D.
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4 Conditional semantics

Below we repeat the basic interpretation rule for conditional sentences developed in
the first section of this paper (see page 2).

A basic interpretation rule for conditional sentences

[[A > C]]D,w0 = 1 iffdef A + Pw0 |≡D C ,
where Pw0 is a set of singular facts true in the evaluation world w0, D is a set of
regularities considered valid in the evaluation context, and |≡ the relevant notion
of entailment.

I have argued in Sect. 2 that in order to specify the details of this interpretation rule
(in particular Pw0 and |≡D) we need a causal notion of entailment. In Sect. 3 such a
notion of entailment has been introduced. Still, we are not yet in a position to apply
the interpretation rule to concrete examples. Two questions need to be answered first.
On the one hand, the set Pw0 of singular facts of the evaluation world w0 has to be
specified. This is the topic of Sect. 4.1. On the other hand, we have to clarify what
“+” stands for in the formula given above. This sign has to represent an operation of
revising Pw0 with the new information A: A + Pw0 = Rev(Pw0 , A). This revision
function will be defined in Sect. 4.2.

4.1 A causal notion of basis

The set Pw0 of singular facts of the evaluation world w0 will be defined as a minimal
set BD(w0) of primitive facts (literals) of w0 that determine everything else in w0.
Following Veltman (2005), we will call this set the basis of w0.8 The notion “deter-
mine” is in the spirit of the present paper interpreted causally: the basis specifies the
“initial conditions” of w0; everything else in w0 is a direct or indirect causal effect of
the basis facts. This can be formalized using the fixed point operator T of Sect. 3: the
basis has to be such that when you apply T the evaluation world w0 emerges as fixed
point.9

Definition 5 The basis
Let w0 be a possible world and D a dynamics. The basis BD(w0) of w0 with respect
to D is a minimal set of literals B such that s∗

B = w0.

Fact 1 For a possible world w0 and a dynamics D the basis BD(w0) exists and is
uniquely defined.

An application: bases in the shooting squad scenario.

There is a court, an officer, a rifleman and a prisoner. If the court orders the exe-
cution of the prisoner, the officer will give a signal to the rifleman, the rifleman
will shoot and the prisoner will die.

8 In fact, the basic idea of how to define a basis is also directly adopted from Veltman (2005). The only
difference is that he uses an epistemic interpretation of “determine.”
9 For the proof of fact 1 see the homepage of the author.

123



248 Synthese (2011) 179:239–251

Fig. 5 A dynamics for the shooting squad example

In this scenario four proposition letters have to be distinguished: C for the court
orders the execution, O for the officer gives the signal, R for the rifleman shoots, and P
for the prisoner dies. The description of the dynamics D is given in Fig. 5; fO , fR , and
fP are identity functions. The table on the right side of the figure describes a number
of possible interpretations (possible worlds) for the proposition letters C, O, R, P . We
want to calculate the bases of the possible worlds described in Fig. 5. For the world
w0 this is the set of literals {C}. It is easy to see that s∗{C} = w0. Starting with a
situation that evaluates C as true and the three other proposition letters as undefined,
the least fixed point of T is reached after 3 steps. The basis of worldw1 can be equally
unproblematic calculated to be {¬C}. The situation is somewhat more problematic
for the worlds w2, w3 and w4. These worlds are special because they violate some of
the laws described in the dynamics. In w2, for instance, the officer does not give the
signal even though the court orders the execution. As basis for this world the fact C
is not enough, because from this fact it does not causally follow that ¬O . To causally
determine this world one needs additionally the fact that violates the law: ¬O . This
set, {C,¬O}, is sufficient as basis of w2. In world w4 the laws are violated twice:
Even though the officer gives the signal, the rifleman does not shoot, and even though
the rifleman does not shoot, the prisoner dies. Therefore, he basis of w4 contains even
three elements: BD(w4) = {C,¬R, P}.

4.2 Premise semantics for causal entailment

Now that we have specified the set Pw0 , the last thing that needs to be defined is
the revision function, which calculates given Pw0 and the antecedent A the set �
of singular facts that serves as input for the causal notion of entailment (see the
rule on page 10). This revision function is defined using premise semantics (Veltman
1976; Kratzer 1979). According to premise semantics RevD(BD(w0), A) is the set of
maximal subsets of BD(w0) that are consistent with A and the relevant laws (encoded
in the dynamics D), plus the antecedent. The question is what consistency means in
the present frame work. We could interpret it in standard ways and just demand that
there is some possible world where this subset of the basis together with the antecedent
and all laws is true. But such an approach would not be able to account for the data we
want to account for. There is, for instance, no way to predict exclusion of backtracking
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(neither weak, nor strong) within such a framework. Exclusion of backtracking can
only be predicted, if one does allow for worlds where laws are violated, or, to use
Lewis’ words, miracles occur. The way standard premise semantics is defined the
output can never contain words violating laws represented in D. Following the spirit
of this paper, one might suggest to use a causal notion of consistency instead, relying
on the causal notion of entailment. But what would be a causal notion of consistency?
The semantic definition of consistence says that a set S of formulas is consistent if it
has a model. Analogously, we define causal consistence as S |≡D ⊥, what comes down
to the claim that the minimal fixed point s∗

S has to exist. But when does this point not
exist? Have we not shown in Sect. 3 that it always exists? Well, there was one hedge:
the initial conditions � have to be classically consistent. Otherwise, the situation s�
does not exist. We conclude that within the present framework causal consistency
relative to a dynamics D comes down to logical consistency independent of D. Thus,
an improved proposal for the revision function would be to stick to revision as defined
by premise semantics and just erase all reference to laws (causal dependencies).

Definition 6 Premise semantics for causal entailment
Assume A ∈ L0 and B ⊆ L0. We define the revision of B with A relative to D, RevD

(B, A), as the set of sets B ′∪{A} where B ′ is a maximal subset of B logically consistent
with A.

There is one further complication. The causal notion of entailment takes as input
a set of literals. Hence, we have to make sure that the revision function returns a set
of literals. A closer look at definition 6 reveals that this is only a problem in case the
antecedent is not a literal. However, if the antecedent can be rewritten as conjunction
of literals, we can use the set of conjuncts as input of the revision function and will
end up with a set of literals as result. That still leaves us with antecedents that can only
be rewritten in disjunctive normal form with a non-trivial number of disjuncts. In this
case all disjuncts have to be considered individually as input of the revision function.

Definition 7 For every formula φ ∈ L0, Lit (φ) is the set of sets of literals with the
following property: {ϕ1, . . . , ϕk} ∈ Lit (φ) iff ϕ1 ∧ ...∧ ϕk is one of the disjuncts in
the disjunctive normal form of φ.

Definition 8 The truth conditions of conditionals
Let A � C be an element L�, D a dynamics an w0 a possible world.

[[A � C]]D,w0 = 1 iffdef ∀S ∈ Lit (A)∀B ∈ RevD(Bw0 , S) : B |≡D C

An application: the circuit example (see page 2). Let’s go back to the circuit example
discussed in the beginning of the paper. Its dynamics has been described in Sect. 3.2,
page 8. We want to check whether the theory correctly predicts that the counterfac-
tual (2) If switch 1 had been up, the light would have been on., i.e. S1 � L is true
in the world where switch one is down, switch two is up and the lamp is off. The
first thing we have to do is to calculate Lit (S1). Because S1 is itself a literal in the
given model, this is trivial: Lit (S1) = {{S1}}. The next step is to calculate the basis
Bw0 of the evaluation world w0. Also this is easy given the simple scenario we are
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working in: Bw0 = {¬S1, S2}. With these results at hand we can check the truth con-
dition of the conditional sentence: ∀S ∈ Lit (S1)∀B ∈ RevD(Bw0 , S) : S1 |≡D L .
Because Lit (S1) contains only one element we have to calculate the revision function
only once. RevD({¬S1, S2}, {S1}} = {S1, S2}. The last step is to calculate whether
{S1, S2} |≡D L . Thus, we have to construct the smallest fixed point for T applied to
{S1, S2} and check whether L is true on this model. The fixed point is, of course, the
world w where S1, S2 and L are all true. We see that the conditional S1 � L comes
out as true in world w0, as intended.

5 Conclusions

The approach presented in this paper raises various questions. We can only touch on
two of them here. It seems indisputable that the semantics of conditionals exploits cer-
tain invariant relationships, certain dependencies. According to the position defended
here, the best way to characterize these dependencies is as relations of manipulation
and control: a fact A stands in this relation to a fact C , if manipulating A will change
C in a systematic way. I have called this type of dependency causal dependency. But
one might wonder whether this is the right characterization. Consider the following
example.

The math class example. It is a simple fact of basic math that if you add two
natural numbers that are both even or uneven, the sum will be even. If one of
the numbers is even and the other uneven, their sum is uneven. Suppose you are
explaining this fact to some school kids and you have on the board 3 + 4 = 7.
You say...

(4a) If the first number had been even, the result would have been even.
(4b) If the result had been even, the first number would have been even.

Intuitively, the first counterfactual is true, while the second is not. Thus, even in this
case we see that in assessing the truth conditions of these conditionals we assume an
asymmetry between the arguments of the operation + and its result. The present pro-
posal would explain this asymmetry as one of manipulation and control: manipulating
the arguments of an operation has effects on the result, while manipulating the result
will not change the arguments. But in the context of this paper this is called causal
dependency.

Another very interesting question for future work is what the present theory says
about the relation between causality and counterfactuals. The approach seems to go
right contra (Lewis 1979), because it describes the meaning of conditional sentences
based on causal dependencies. However, whether this is true depends on the per-
spective one takes. It is crucial to distinguish between the content of claims exploring
causal relationships and the epistemological issues of how we test and establish causal
relationships. The present paper is concerned with the content-related side of this coin:
the content of conditional sentences is determined with reference to causal regulari-
ties. The proposal made here is silent on the epistemological issue of how to establish
causal relationships.
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But what, then, is causality? The paper is silent on this point as well. But let me
sketch a direction to go that fits very well with the proposal made here.10 Causal-
ity, as presupposed by the meaning of conditionals, is a heuristics, something we use
because it is enormously effective in dealing with reality. But as a heuristics, causality
is nothing that can be reduced to something else. Causality is an a priori form that we
impose on reality to make rational behavior possible.
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