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Abstract: This paper provides an analysis of the asymptotic properties
of consumption allocations in a stochastic general equilibrium model with
heterogeneous consumers. In particular we investigate the market selection

hypothesis, that markets favor traders with more accurate beliefs. We show
that in any Pareto optimal allocation whether each consumer vanishes or
survives is determined entirely by discount factors and beliefs. Since equilib-
rium allocations in economies with complete markets are Pareto optimal, our
results characterize the limit behavior of these economies. We show that, all
else equal, the market selects for consumers who use Bayesian learning with
the truth in the support of their prior and selects among Bayesians according
to the size of the their parameter space. Finally, we show that in economies
with incomplete markets these conclusions may not hold. Payoff functions
can matter for long run survival, and the market selection hypothesis fails.
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1 Introduction

General equilibrium models of macroeconomic and financial phenomena com-
monly assume that traders maximize expected utility with rational, which
is to say, correct, beliefs. The expected utility hypothesis places few restric-
tions on traders’ behavior in the absence of rational expectations, and so
much attention has been paid to the validity of assuming accurate beliefs.
However, an adequate explanation of how traders come to correctly forecast
endogenous equilibrium rates of return is lacking.

Two kinds of explanations have been offered. One posits that correct
beliefs can be learned. That is, rational expectations are stable steady states
of learning dynamics — Bayesian or otherwise. In our view learning cannot
provide, a satisfactory foundation for rational expectations. In models where
learning works, the learning rule is tightly coupled to the economy in ques-
tion. Positive results are delicate. Robust results are mostly negative. See
Blume, Bray, and Easley (1982), Blume and Easley (1998b) and Marimon
(1997) for more on learning and its limits.

The other approach posits “natural selection” in market dynamics.
The market selection hypothesis, that markets favor rational agents over ir-
rational agents, has a long tradition in economic analysis. Alchian (1950) and
Friedman (1953) believed that market selection pressure would eventually re-
sult in behavior consistent with maximization; those who behave irrationally
will be driven out of the market by those who behave as if they are rational.
Cootner (1964) and Fama (1965) argued that in financial markets, investors
with incorrect beliefs will lose their money to those with more accurate as-
sessments, and will eventually vanish from the market. Thus in the long
run prices are determined by traders with rational expectations. This argu-
ment sounds plausible, but until recently there was no careful analysis of the
market selection hypothesis; that wealth dynamics would select for expected
utility maximizers, or, within the class of expected utility maximizers, select
for those with rational expectations.

In two provocative papers, Delong, Shleifer, Summers and Waldman
(1990, 1991) undertook a formal analysis of the wealth flows between ratio-
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nal and irrational traders. They argue that irrationally overconfident noise

traders can come to dominate an asset market in which prices are set exoge-
nously; a claim that contradicts Alchian’s and Friedman’s intuition. Blume
and Easley (1992) address the same issue in a general equilibrium model.
We showed that if savings rates are equal across traders, general equilibrium
wealth dynamics need not lead to traders making portfolio choices as if they
maximize expected utility using rational expectations. We did not study the
emergence of fully intertemporal expected utility maximization, nor did we
say much about the emergence of beliefs. Sandroni (2000) addressed the
latter question. He built economies with intertemporal expected utility max-
imizers and studied the emergence of rational expectations. He showed in a
Lucas trees economy that, controlling for discount factors, only traders with
rational expectations, or those whose forecasts merge with rational expec-
tations forecasts, survive. He also showed that if even if no such traders
are present, no trader whose forecasts are persistently wrong survives in the
presence of a learner.

In this paper we explore more completely when selection occurs, when
it does not occur and why. To do this we build an intertemporal general
equilibrium model with uncertainty. We show that in any Pareto optimal
allocation of resources, whether an agent vanishes or survives is determined
entirely by discount factors and beliefs. Attitudes toward risk are irrelevant
to the long run fate of agents. In particular, controlling for discount factors,
those consumers whose beliefs are closest to the truth end up with all the
resources. By the first theorem of welfare economics, this implies that correct
beliefs are selected for whenever markets are complete, or in any competitive
equilibrium in which markets are dynamically complete. This conclusion is
robust to the asset structure, of course, so long as markets are complete at
the equilibrium prices. So for economies with complete markets the market
selection hypothesis is correct. But the assumption that some trader has
correct beliefs at the outset limits the interest of this result. Therefore we
also examine how the market selects over learning rules.

In studying learning we first assume that all traders have the same
discount factor. Our first learning result is that a Bayesian almost surely
survives for almost all possible truths in the support of her prior. Further-
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more, in the presence of such a Bayesian, any traders who survive are not
too different from Bayesians. They use a forecasting rule that asymptot-
ically looks like Bayes forecasts. Second we show that the market selects
over Bayesians according to the size of the support of their prior beliefs. We
consider Bayesian traders whose belief supports are open sets containing the
true parameter value, and whose prior belief has a density with respect to
Lebesgue measure. We show that survival prospects are indexed by the di-
mension of the support: Those traders with the lowest dimension supports
survive, and all others vanish.1 Having more prior information favors survival
only if it affects the dimension of the support of prior beliefs. Finally, we
show that discount factor differences dominate differences in belief supports.
Among Bayesians, the survivors are always the most patient Bayesians.

Without complete markets, the market selection hypothesis may fail.
Traders with incorrect beliefs may “drive out” those with more accurate
beliefs. In economies with incomplete markets, a trader who is overly op-
timistic about the return on some asset in some state can choose to save
enough to more than overcome the poor asset allocation decision that his
incorrect expectations create. This result is particularly significant because
when traders’ beliefs are heterogeneous, some market incompleteness is nat-
ural. With heterogeneous beliefs, market completeness implies that traders
can bet on any differences in beliefs. This amounts to opening a new set
of markets every time a new trader with sufficiently different beliefs enters
the economy. In the context of the model, the relevant state space contains
the union of the supports of each trader’s beliefs. Thus adding a new trader
can require expanding the state space, and therefore adding new markets.
We believe that in economic models that take agent heterogeneity seriously,
market incompleteness is the natural assumption.

2 The Model

Our model and examples are concerned with infinite horizon exchange econo-
mies which allocate a single commodity. In this section we establish basic
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notation, list the key assumptions and characterize Pareto optimal alloca-
tions.

2.1 Notation and Basics

Formally, we assume that time is discrete and begins at date 0. The possible
states at each date form a finite set {1, . . . , S}. The set of all sequences
of states is Σ with representative sequence σ = (σ0, . . . ), also called a path.
σt = (σ0, . . . , σt) denotes the partial history through date t of the path σ,
and 1s

t (σ) is the indicator function defined on paths which takes on the value
1 if σt = s and 0 otherwise.

The set Σ together with its product sigma-field is the measurable
space on which everything will be built. Let p denote the “true” probability
measure on Σ. Expectation operators without subscripts intend the expecta-
tion to be taken with respect to the measure p. For any probability measure
q on Σ, qt(σ) is the (marginal) probability of the partial history (σ0, . . . , σt).
That is, qt(σ) = q({σ0 × · · · × σt} × S × S × · · · ).

In the next few paragraphs we introduce a number of random vari-
ables of the form xt(σ). All such random variables are assumed to be date-t
measurable; that is, their value depends only on the realization of states
through date t. Formally, Ft is the σ-field of events measurable at date t,
and each xt(σ) is assumed to be Ft-measurable. For a given path σ, σt is the
state at date t and σt = (σ0, . . . , σt) is the partial history through date t of
the evolution of states.

An economy contains I consumers, each with consumption set R++. A
consumption plan c : Σ →

∏∞
t=0 R++ is a sequence of R++-valued functions

{ct(σ)}∞t=0 in which each ct is Ft-measurable. Each consumer is endowed
with a particular consumption plan, called the endowment stream. Trader
i’s endowment stream is denoted ei.

Consumer i has a utility function U i : c 7→ R which is the expected
presented discounted value of some payoff stream with respect to some be-
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liefs. Specifically, consumer i has beliefs about the evolution of states, which
are represented by a probability distribution pi on Σ. We call pi a forecast

distribution. She also has a payoff function ui : R++ → R on consump-
tions and a discount factor βi strictly between 0 and 1. The utility of a
consumption plan is

U i(c) = Epi

{ ∞
∑

t=0

βt
iu

i
(

ct(σ)
)

}

.

This scheme is rather general in its treatment of beliefs. One obvious special
case is that of iid forecasts. If trader i believes that all the σt are iid draws
from a common distribution ρ, then pi is the corresponding distribution on
infinite sequences. Thus, for instance, pi

t(σ) =
∏t

τ=0 ρ(στ ). Markov models
and other, more complicated stochastic processes can be accommodated as
well.

This representation of beliefs nests Bayesian learning. Suppose that
a measurable space Θ of parameters is given, and that each parameter rep-
resents a model of the stochastic process of states; that is, the conditional
distributions p(·|θ) give the probability distribution on Σ that would describe
the stochastic process of states if the true parameter were θ. Assume that
p(·|·) is jointly measurable with respect to the product sigma-field associated
with Θ × Σ. Suppose too that trader i has a prior belief given by a proba-
bility distribution µi on Θ. The conditional distributions on Σ given θ and
the prior distribution µi together determine a joint distribution ν i on Θ×Σ:
We have for any measurable set A ⊂ Θ with indicator function 1A(θ) and
measurable set B ⊂ Σ,

νi(A × B) =

∫

1A(θ)p(B|θ)dµi(θ)

The distribution νi contains everything of relevance for a description of
Bayesian learning from the given models and prior belief. For instance, pos-
terior beliefs from the first t observations of states assign probability ν i(A×
Σ|σ0, . . . , σt) to the set A ⊂ Θ. The forecast probability of a set B ′ ⊂ S at
date t+1 given observations σ0, . . . , σt is νi(Θ×B′×S×S×· · · |σ0, . . . , σt).
In fact, all of the forecast distributions can be constructed from the marginal
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distribution of νi on Σ. Take pi(B) = νi(Θ×B) for any measurable B ⊂ Σ.
Although every Bayesian learning process generates a pi, one cannot in gen-
eral go backwards. A given pi is consistent with many different model sets
and prior beliefs.

Seemingly more generally, we can view a learning rule as a sequence
of Ft-measurable functions which assigns to each history of states through t a
probability distribution of states in period t+1. Beliefs at time 1 are simply
a distribution on S. Beliefs at time 1 together with the learning rule deter-
mine through integration a probability distribution on S×S whose marginal
distribution at time 1 is the time 1 beliefs. And in general, a given t-period
marginal distribution and the learning rule determine through integration a
probability distribution on partial histories of length t + 1 whose marginal
distribution on the first t periods is the given t-period marginal distribution.
The Kolmogorov Extension Theorem (Halmos 1974, sec. 49) guarantees that
there is a probability distribution pi on paths whose finite-history marginal
distributions agree with those we constructed. Notice, however, that the
specification of a learning rule as a collection of conditional distributions is
more detailed than the specification as an S-valued stochastic process, be-
cause from the process pi a conditional distribution for a given partial history
σt can be recovered if and only if pi(σt) > 0. But the seeming loss of general-
ity is inessential because Pareto optimality implies that consumption at any
partial history should be 0 if that partial history is an impossible event.2

We will assume throughout the following properties of payoff func-
tions:

A. 1. The payoff functions ui are C1, strictly concave, strictly monotonic,

and satisfy an Inada condition at 0.

We assume that the aggregate endowment is uniformly bounded from above
and away from 0:

A. 2. ∞ > F = supt,σ

∑

i e
i
t(σ) ≥ inft,σ

∑

i e
i
t(σ) = f > 0.

Finally, we assume that traders believe to be possible anything which is
possible.
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A. 3. For all consumers i, all dates t and all paths σ, if pt(σ) > 0 then

pi
t(σ) > 0.

If pi
t(σ) = 0 for some trader i and date t, it is not optimal to allocate any

consumption to trader i after date t − 1 on path σ. Traders like this who
vanish after only a finite number of periods have no impact on long run
outcomes, and so we are not interested in them.

2.2 Pareto Optimality

Standard arguments show that in this economy, Pareto optima can be char-
acterized as maxima of weighted-average social welfare functions. Because of
the Inada condition, each trader’s allocation in any Pareto optimum is either
pi almost surely interior or it is 0. We are not interested in traders who do
not play any role in the economy so we focus on Pareto optima in which each
trader i’s allocation is pi-almost surely interior. If c∗ = (c1∗, . . . , cI∗) is such
a Pareto optimal allocation of resources, then there is a vector of welfare
weights (λ1, . . . , λI) � 0 such that c∗ solves the problem

max
(c1,... ,cI)

∑

i

λiU i(c)

such that
∑

i

ci − e ≤ 0

∀t, σ ci
t(σ) ≥ 0

(1)

where et =
∑

i e
i
t. The first order conditions for problem 1 are:

For all σ and t,

(i) there is a number ηt(σ) > 0 such that if pi
t(σ) > 0, then

λiβt
iu

i′
(

ci
t(σ)

)

pi
t(σ) − ηt(σ) = 0 (2)

(ii) If pi
t(σ) = 0, then ci

t(σ) = 0.
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These conditions will be used to characterize the long-run behavior of con-
sumption plans for individuals with different preferences, discount factors
and forecasts. Our method is to compare marginal utilities of different con-
sumers which we derive from the first order conditions. This idea was first
applied to the equilibrium conditions for a deterministic production economy
by Blume and Easley (1998a), and to the equilibrium conditions for an as-
set model by Sandroni (2000). All of our results are based on the following
simple idea:

Lemma 1. On the event {ui′
(

ci
t(σ)

)

/uj ′
(

cj
t(σ)

)

→ ∞}, ci
t(σ) ↓ 0. On the

event {ci
t(σ) ↓ 0}, for some trader j, lim supt ui′

(

ci
t(σ)

)

/uj ′
(

cj
t (σ)

)

= ∞.

Proof. ui′
(

ci
t(σ)

)

/uj ′
(

cj
t(σ)

)

→ ∞ iff either the numerator diverges to ∞
or the denominator converges to 0. The denominator, however, is bounded
below by the marginal utility of the upper bound on the aggregate endow-
ment, uj ′(F ). So the hypothesis of the lemma implies that ui′ ↑ ∞, and
so ci

t ↓ 0. Going the other way, in each period some consumer consumes
at least f/I, and so some trader j must consume at least f/I infinitely
often. Then uj ′

(

cj
t (σ)

)

≤ uj ′(f/I) infinitely often. If limt c
i
t = 0, then

lim sup ui′
(

ci
t(σ)

)

/uj ′
(

cj
t(σ)

)

= ∞.

Limsup is the best that can be done for the necessary condition because the
surviving trader j may have fluctuating consumption.

Using the first order conditions, we can express the marginal utility
ratios in three different ways. Consider two consumers i and j, with forecasts
pi and pj. For generic consumers i, j and k, define the following random
variables

Zk
t = −

∑

s∈S

1s
t(σ) log pk(s|Ft−1) Zt = −

∑

s∈S

1s
t (σ) log pk(s|Ft−1)

Y k
t = Zk

t − Zt Lij
t =

pj
t(σ)

pi
t(σ)

,
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where lst (σ) = 1 if σt = s and 0 otherwise. For any two traders i and j, and
for any path σ and date t such that pi

t(σ), pj
t(σ) 6= 0,

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) =
λj

λi

(

βj

βi

)t

Lij
t (3)

log
ui′

(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) = log
λj

λi

+ t log
βj

βi

+

t
∑

τ=0

Zi
τ − Zj

τ (4)

= log
λj

λi

+ t log
βj

βi

+

t
∑

τ=0

Y i
τ − Y j

τ (5)

To see why 4 and 5 are true note that

pi
t(σ) =

t
∏

τ=0

pi(σt|Ft−1) =

t
∏

τ=0

∏

s∈S

pi(s|Ft−1)
1s

τ (σ).

3 Belief Selection in Complete Markets

In this section we establish that belief selection is a consequence of Pareto
optimality. The intuition is simple: In any optimal allocation of resources,
consumers are allocated more in those states they believe to be most likely.
Consequently, along those paths which nature identifies as most likely, con-
sumers who believe these paths to be most likely consume the most. From
these results on optimal paths, results on the behavior of competitive equilib-
rium prices and allocations in complete markets follow immediately from the
First Fundamental Theorem of Welfare Economics.3 In contrast, Sandroni’s
(2000) results come from a direct characterization of equilibrium paths in the
markets he studies. Proofs for results in this section and in the remainder of
the paper can be found in the Appendix.

Our results are concerned with the long-run behavior of individuals’
consumptions along optimal paths. Throughout most of the paper we will
make only the coarse distinction between those traders who disappear and
those who do not.
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Definition 1. Trader i vanishes on path σ iff limt c
i
t(σ) = 0. She survives

on path σ iff lim supt ci
t(σ) > 0.

We want to be clear that, in our view, survival is not a normative concept.
We do not favor the ant over the grasshopper. It is not “better” to have
a higher discount factor. We do not label as irrational those who say “It’s
better to burn out than to fade away.” We simply observe that they will not
have much to do with long run asset prices.

Survival is actually a weak concept. Trader i could survive and con-
sistently consume a large quantity of goods. But trader i surviving and
lim inf ci

t = 0 are not inconsistent. And in fact a survivor could consume a
significant fraction of goods only a vanishingly small fraction of time. These
three different survival experiences have different implications for the role of
trader i in the determination of prices in the long run.

By examining equation (3) we can distinguish two distinct analytical
problems. When discount factors are identical, a given trader i will vanish
when there is another trader j for which the likelihood ratio Lij

t of j’s model
to i’s model diverges. We can analyze this question very precisely. When
discount factors differ, we need to compare the likelihood ratio to the geo-
metric series (βj/βi)

t. This is more difficult, and our results will be somewhat
coarser. In this case our results about the effects of differences in beliefs are
phrased in terms of the relative entropy of conditional beliefs with respect to
the true beliefs. The relative entropy of probability distribution q on S with
respect to probability distribution p is defined to be

Ip(q) =
∑

s∈S

p(s) log
p(s)

q(s)

It is easy to see that Ip(q) ≥ 0, is jointly convex in p and q and Ip(q) = 0
if and only if q = p. In this sense it serves as a measure of distance of
probability distributions, although it is not a metric.
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3.1 An Example — IID Beliefs

We first demonstrate our analysis for an economy in which the true distri-
bution of states and the forecast distributions are all iid. The distribution
of states is given by independent draws from a probability distribution ρ on
S = {0, 1}, and forecasts pi and pj are the distributions on infinite sequences
of draws induced by iid draws from distributions ρi and ρj on S, respectively.

This is the leading example for the complete markets results of this
paper. Dividing equation (5) by t and taking limits shows that

1

t
log

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) =
1

t
log

λj

λi

+ log
βj

βi

+
1

t

t
∑

τ=0

Y i
τ − Y j

τ

The Y k
t are iid random variables with a common mean Iρ(ρ

k), so

1

t

t
∑

τ=0

Y k
τ → Iρ(ρ

k) p-almost surely.

Consequently,

1

t
log

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) →
(

log βj − Iρ(ρ
j)

)

−
(

log βi − Iρ(ρ
i)
)

(6)

p-almost surely. If the rhs is positive, the ratio of marginal utilities diverges,
and so by Lemma 1, limt c

i
t(σ) → 0 almost surely. This says nothing about

the consumption of trader j. She may or may not do well, but whatever
her fate, i is almost sure to disappear. The expression κi = log βi − Iρ(ρ

i)
is a survival index that measures the potential for trader i to survive. This
analysis shows that a necessary condition for trader i’s survival is that her
index be maximal in the population.

When traders have identical discount factors, traders with maximal
survival indices are those whose forecasts are closest in relative entropy to the
truth. A trader with rational expectations survives, and any trader who does
not have rational expectations vanishes. When discount factors differ, higher
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discount factors can offset bad forecasts. A trader with incorrect forecasts
may care enough about the future in general that she puts more weight on
future consumption even in states which she considers unlikely, than does a
trader with correct forecasts who considers those same states likely but cares
little about tomorrow.

Maximality of the survival index is not, however, sufficient for sur-
vival. The analysis of iid economies in which more than one trader has
maximal index is delicate, and we will not pursue this here.4 The analysis
below generalizes these results to dependent processes. This generalization
is necessary for an analysis of learning, and selection over learning rules.

Our analysis proceeds in three steps. First we consider the survival of
traders with rational expectations in an economy in which all traders have
identical discount factors. This analysis differs from the iid example in that
we place no assumptions on the true distribution or on forecast distributions.
Next we consider the survival of Bayesian and other learners in the identical
discount factor case. Finally, we consider the effect of differing discount
factors.

3.2 Rational Expectations — Identical βi

When traders i and j have identical discount factors, equation (3) simplifies
to

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) =
λj

λi

Lij
t (3a)

Lemma 1 implies that trader i vanishes on the event {lim inf t L
ij
t = +∞}. All

analysis of economies in which traders have identical discount factors hinges
solely on the behavior of likelihood ratios.

In order to state and prove the results of this section we need to make
use of the Lebesgue decomposition of a probability distribution p on Σ with
respect to a distribution q. Briefly, there is a measurable set U ⊂ Σ, a
function l ∈ L1(q), and measures p∼q and pq such that
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1. q(U) = 0,

2. p∼q(B) = p(B ∩ U) and pq(B) =
∫

B∩Uc l dq,

3. for all measurable B ⊂ Σ, p(B) = p∼q(B) + pq(B),

4. pt/qt → l in the L1(q)-norm on U c,

5. pt/qt → ∞ p-a.s. on U .

We call U the singular set for p with respect to q. The identity p = p∼q + pq

is the Lebesgue decomposition of p into a measure p∼q ⊥ q (singular with
respect to q) and a measure pq ≺ q (absolutely continuous with respect to q).

Our first result gives a survival condition for trader i that is based on
absolute continuity of the actual distribution p with respect to the forecast
distribution pi.

Theorem 1. Assume A.1–3. Trader i survives p-almost surely on U c, the

complement of the singular set for p with respect to pi.

That traders with rational expectations survive is an immediate con-
sequence of this theorem.

Definition 2. Trader i has rational expectations if pi = p.

Corollary 1. A trader with rational expectations p-almost surely survives.

Absolute continuity of the actual distribution p with respect to the fore-
cast distribution pi is a very strong condition. It is more than the absolute
continuity of finite horizon marginal distributions. For example, all finite
dimensional distributions of the process describing iid coin flips with Heads
probability 1/4 are mutually absolutely continuous with those from the pro-
cess describing iid coin flips with Heads probability 1/3, but clearly the dis-
tributions on infinite paths are not absolutely continuous processes since the
Heads fraction converges almost surely to 1/4 in one process and 1/3 in the
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other. The absolute continuity of the truth with respect to beliefs is the merg-

ing condition of (Blackwell and Dubins 1962), who showed that it has strong
implications for the mutual agreement of conditional distributions over time.
This kind of condition has been important in the literature on learning in
games, and we will have more to say about it in the next section.5

Corollary 1 has a converse. In the presence of a trader with ratio-
nal expectations, absolute continuity of the truth with respect to beliefs is
necessary for survival. This fact is a consequence of the following Theorem:

Theorem 2. Assume A.1–3. Suppose that traders i and j both survive on

some set of paths V with pj(V ) > 0. Then pi(V ) > 0 and the restriction of

pj to V is absolutely continuous with respect to the restriction of pi to V .

The assumption that pj(V ) > 0 is hardly innocuous. Consider an iid economy
in which all discount factors are identical. The trader with beliefs nearest
the true distribution survives almost surely. If her beliefs are not accurate,
then she assigns probability 0 to the event that she survives.

Corollary 2. If trader j has rational expectations and i almost surely sur-

vives, then p is absolutely continuous with respect to pi.

The Corollary does not require that i have rational expectations too. It does
require that i’s beliefs be not very different from the truth — in particular,
i’s forecasts of the future are asymptotically p-almost surely correct.

The proofs of the Theorems in this section all rest on the fact that,
under the stated hypotheses, trader i survives on the set where the likelihood
ratio of j’s forecasts to i’s forecasts remains bounded. This question is iden-
tical to the issue of efficiency in Dawid’s (1984) development of prequential

forecasting systems.

3.3 Bayesian Learning — Identical βi

In this section we consider the survival possibilities for learners. To see that
merging is of at least mild interest for learning, suppose trader i is a Bayesian
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learner. Models are parametrized by θ ∈ Θ, the parameter space. Suppose
that pθ = p for some θ ∈ Θ. If Θ is countable and trader j’s prior belief on Θ
has full support, then for all θ ∈ Θ, pθ is absolutely continuous with respect
to pi. To see that merging is of at most mild interest, note that if Θ is an
open subset of a Euclidean space, absolute continuity will fail. Consider the
case of iid coin flips from a coin with unknown parameter θ ∈ (0, 1). If a
decisionmaker holds a prior belief that is absolutely continuous with respect
to Lebesgue measure, no pθ is absolutely continuous with respect to her belief.
She assigns probability 0 to the event that the frequency of Heads converges
to θ, but distribution pθ assigns this event probability 1. Nonetheless it is
true that posterior beliefs are consistent in the sense that they converge to
point mass at θ a.s.-pθ. Absolute continuity of beliefs with the truth is thus
a stronger statement than the claim that traders can learn the truth, at least
in a Bayesian context.

Classes of models with richer parameterizations are larger, and there-
fore more likely to be representative of the world we are trying to model.
The countable Θ case, with the possibility of hyper-learning agents, is not
particularly interesting. We are led to study models with Θ a bounded, open
subset of some Euclidean space. If the parameter is identified, there will be
no beliefs which can be absolutely continuous with respect to pθ for a large
set of θ, say a set of positive Lebesgue measure. It is always possible that
an economy will have a trader whose beliefs are tightly tuned to a finite or
countable subset of parameters. If the “true θ” is in this set, she will survive
and wipe out anyone else who is not like her. We dispense with this unlikely
possibility, and look for the existence of learning rules that will guarantee
almost sure survival for almost all θ ∈ Θ.

Our first result in this line is that any Bayesian will survive for almost
all θ in the support of her prior.

Theorem 3. Assume A.1–3. If trader i is a Bayesian with prior belief µi

on Θ, then she survives for µi-almost all θ.

At first reading the theorem may seem to contradict the results of the previ-
ous section. Consider a two person iid economy in which the states are flips
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of a coin. The true Heads probability is 1/2. One trader has rational expec-
tations — she knows the coin is fair. The other does not. He is a Bayesian
whose belief about the parameter can be represented by a uniform prior on
[0, 1]. His forecast and the true state process are mutually singular. She,
the rational trader, survives according to Theorem 1, while he, the learner,
vanishes according to Theorem 2. But according to Theorem 3 he survives
for almost all θ. The puzzle is resolved by noting that the exceptional set
of the Theorem is the singleton {1/2}. With the forthcoming Theorem 5
one can see that if the first trader’s beliefs are fixed, then for any θ except
θ = 1/2, the second trader survives and the first trader vanishes.

For Bayesians there is an analogue to Theorem 2 for prior beliefs.
Suppose that the parameter can be identified from the data.

A. 4. There is a partition of Σ into sets Σθ such that pθ(Σθ) = 1.

Theorem 4. Assume A.1–4. Suppose that some trader j is a Bayesian with

prior belief µj. Suppose that trader i is a Bayesian, and that trader i survives

for µj almost all θ. Then trader j’s prior belief is absolutely continuous with

respect to i’s prior belief µi.

More generally, Theorem 2 applies as well. In the presence of a
Bayesian, traders who almost surely survive make forecasts that are not too
different from Bayesian, although they need not be Bayesians. In particular,
their forecasts must merge with the Bayesian’s forecasts in the sense of Kalai
and Lehrer (1994). An example of such a forecasting rule is suggested by
maximum likelihood estimation. Suppose that at each date there are two
possible states, 1 and 2. States are distributed iid, and the probability of
state 2 is θ. The trader forecasts using the maximum likelihood estimate
of θ, mt(σ) =

∑T

t=0(σt − 1)/(T + 1). The MLE converges to the Bayes esti-
mate for the Dirichlet prior with mean 1/2 sufficiently quickly that it satisfies
our survival criteria. But the MLE estimate is not Bayes. No Bayes forecast
can predict 1 for sure after a finite string of all 1’s and predict 2 for sure after
a finite string of all 2’s. We cannot use the MLE as an example however, be-
cause this boundary behavior violates Axiom A.3. In the following example
we consider a trader investing according to a “trimmed” MLE. She survives
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in the presence of a Bayesian, and thus is nearly a Bayesian. But our trimmed
MLE is not a Bayes forecast because, although it never assigns probabilities
0 or 1, it converges to the boundary faster than any Bayes forecast can on
strings of identical observations.

Example: A Non-Bayesian Survivor.

Suppose that trader 1 is a Bayesian with a full support prior, and trader
2’s forecasted probability of st+1 = 2 given σt is Mt(σ), which is defined as
follows:

Choose 0 < ε < 1. Let at = 1/(1 + εt2) and bt = εt2 .

M0(σ) = 1/2,

Mt(σ) =











at if mt(σ) > at,

mt(σ) if at ≥ mt(σ) ≥ bt,

b(t) if bt > mt(σ).

This estimator does not take on the values 0 or 1, but in response to a string
of all 2’s it goes to 1 fast enough that it cannot be Bayes. To see this, suppose
it was a Bayes posterior belief for prior µ. Since it can converge to any value
in [0, 1], supp µ = [0, 1]. Let xt denote the initial segment of length t on the
path (2, 2, . . . ). Choose 0 < δ < 1. Notice that the likelihood function is
increasing in θ when the observation is xt. It is easy to see that

µ{(δ, 1]|xt} ≤
µ{(δ, 1]}

µ(δ, 1] + µ{[0, δ]}δt
.

Consequently

1 − µ{σt+1 = 2|xt} ≥
µ{[0, δ](1 − δ)δt

µ(δ, 1] + µ{[0, δ]}δt

Since under the same conditions the forecasts from zt converge to probability
one on state 2 geometrically in the square of t, they cannot be Bayesian
forecasts. On the other hand, they are identical with the MLE forecasts as
soon as even one 1 is observed (or, in the case of all 1’s, one 2), which is a
probability one event for all θ ∈ (0, 1). Consequently, if θ is interior, trader
2 almost surely survives.
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So far we have shown that a Bayesian will survive almost surely with
respect to her prior belief, and that Bayesians who almost surely survive
on the same parameter set have mutually absolutely continuous beliefs. This
would lead one to conjecture that Bayesians who consider larger model spaces
are more likely to survive. This is true insofar as considering more possible
models makes it more likely to consider the “true” model. But there is also
a cost to a larger model space. We will see next that consideration of more
parameters entails slower learning, and so Bayesians with large model spaces
are at a disadvantage with respect to those with smaller spaces, when these
smaller spaces also contain the true model.

We examine the survival question more closely in a special class of
economies in which the process of states {σt}

∞
t=0 is iid. We have two comments

on this assumption. First, it does not imply that endowments or any other
observables we may wish to add to the model are iid. It simply means that
these processes are built on an iid state space. This is not terribly restrictive.
Any process which has only a finite number of possible conditional one-step-
ahead distributions can be built on a finite iid state space. (If we did not
require a finite state space, any process can be built on a state space of iid
draws from the uniform distribution on [0, 1].) On the other hand, the iid
assumption does have implications for updating rules. Second, we make this
assumption because we want to make use of some particular results about
the behavior of Bayesian forecasts. These results have been shown to hold
for a number of very general stochastic processes, but it is off the point of our
paper to establish for exactly which discrete state processes they do hold.6

Since processes will be iid, we let pθ refer, as before, to the entire process,
and p(·|θ) refer to the distribution of a single draw. Without further apology
we assume

A. 5. The model set Θ is a bounded open set of a d-dimensional Euclidean

space, and the processes pθ are all iid. For each θ0 ∈ Θ, suppose that for each

s ∈ S, p(s|θ) is C2 in θ in a neighborhood of θ0. Suppose too that

Eθ0
sup

||θ−θ0||<δ

∣

∣

∣

∣

∂2

∂θi∂θj

log p(s|θ)

∣

∣

∣

∣

< ∞
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and

Eθ0

∣

∣

∣

∣

∂

∂θi

log p(s|θ0)

∣

∣

∣

∣

2

< ∞

for some δ > 0 and all i and j from 1 to d.

The conditions involving derivatives all have to do with how the pa-
rameters describe the models. The natural choice is that the parameters are
the selection probabilities, that p(s|θ) = θs, and in this case the assumptions
are satisfied.

Suppose that a decision maker has prior beliefs which have a density
q with respect to Lebesgue measure on Θ, which is continuous and positive
at θ0. Let I(θ) denote the Fisher information matrix at θ. Let ρ(σt) =
∫

Θ
pθ(σt)q(θ) dθ denote the predicted distribution of the partial history σt.

The following Theorem is due to Clarke and Barron (1990):

Clarke and Barron’s Theorem. For all θ,

log
pθ(σt)

ρ(σt)
−

(

d

2
log

t

2π
+

1

2
log det I(θ) − log q(θ)

)

prob
−−−→ χ2(d)

a χ2 random variable with d degrees of freedom.

Notice that the conclusion of this theorem holds for all, and not just
almost all θ. This result has some interesting consequences for the survival
of learners. We already know from Theorem 2 that if trader j knows the
truth or has a prior with countable support containing the truth, a Bayesian
trader i with a prior absolutely continuous with respect to Lebesgue measure
does not almost surely survive. In fact, her belief will be singular with
respect to the truth, and so the likelihood ratios Lij

t will almost surely diverge.
Consequently, she will almost surely vanish. That is, limt ci

t = 0, pθ almost
surely. But suppose we have no informed or nearly informed trader. Suppose
that trader j instead has a prior belief which is concentrated on a lower-
dimensional subset of Θ. If she is correct, then in fact she has less to learn
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than does trader i. The following theorem shows that in this situation,
dimension matters. Let Θ′ denote an open manifold of dimension d′ < d
contained in Θ.

Theorem 5. Assume A.1–3 and A.5. Suppose that trader j has a prior

belief which has positive density with respect to Lebesgue measure on Θ′, and

that trader i has a prior belief with a similar representation on Θ. Then

for µi-almost all θ ∈ Θ/Θ′, trader j vanishes pθ-almost surely, while for

µi-almost all θ ∈ Θ′, trader i vanishes in probability.

Just as low dimensional learning, when right, is better than high dimensional
learning, learning in a countable parameter space, when right, is better than
learning in a continuum.

Corollary 3. Suppose traders i and j are Bayesians. The support of trader

j’s prior belief is a countable set Θ, and trader i’s prior belief has a positive

density with respect to Lebesgue measure on some bounded open set Θ′ ⊃ Θ
in some Euclidean space. Then trader i vanishes for all θ ∈ Θ.

In conclusion, we have seen that traders with correct beliefs survive,
and if such traders exist, other survivors are not to different from them in
the sense that their opinions merge (in the Blackwell-Dubins sense). Absent
traders who know the truth, Bayesians survive robustly. That is, for almost
all parameters they believe to be possible, they will almost surely survive.
Again, other survivors must merge with them. Finally, we can rank-order
Bayesians by the dimension of their uncertainty — the dimension of the
support of their beliefs. All Bayesians will learn, but when the truth falls
into the lower-dimensional supports, those traders will learn faster than those
with higher dimensional supports, and enough faster that they drive the
high-dimensional traders out. Of course, when the truth does not lie in their
supports, they in turn are almost surely driven out.

3.4 Heterogeneous Discount Factors

When discount factors differ, the effect of bad forecasts can be offset by
a higher discount factor. One trader may make worse investments than
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another, but because he consumes less and saves more, he consumes more
in the long run. When discount factors differ, our concern becomes the rate
at which likelihood ratios diverge. Our main tool for comparing divergence
rates with discount factors will be the relative entropy, or Kullback-Leibler

distance between probability distributions. Unfortunately this measure is
not well-behaved as probabilities approach 0 and 1, so we we will need an
additional boundedness condition on probabilities.

A. 6. There is a δ > 0 such that for all paths σ, dates t, s ∈ S and traders

i, p(s|Ft−1)(σ) > 0 implies p(s|Ft−1)(σ) > δ and pi(s|Ft−1)(σ) > δ.

The analysis of the iid economy in section 3.1 extends generally in the
following manner.

Theorem 6. Assume A.1–3 and A.6. On the event

{

log
βj

βi

> lim sup
t

1

t

( t
∑

τ=0

E(Y j
τ |Fτ−1) −

t
∑

τ=0

E(Y i
τ |Fτ−1)

)}

lim supt c
i
t(σ) → 0 p-a.s.

The conditional expectation E(Y k
τ |Fτ−1) is the entropy of trader k’s forecast

about date τ given previous history with respect to the true conditional
distribution of date τ ’s state given history. Consequently this Theorem is a
direct generalization of the calculation in equation (6).

One implication of the Theorem is that if traders i and j have the same
discount factors and trader i has uniformly less accurate forecasts than does
j, then i vanishes. The proof technique of Theorem 6 provides some further
characterizations of sample path behavior. If lim sup is replaced with lim inf
in the hypothesis, then the same replacement can be made in the conclusion.
That is, lim inf ci

t = 0 on the event that the log of the discount factor ratio
exceeds the liminf of the difference of the time average of relative entropies.

The following example demonstrates how the Theorem can be used
in more general settings than the iid economy.
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Example: Markov States.

Suppose that the true distribution of states and all forecasts are Markov.
Suppose too that the true distribution of states is ergodic with unique in-
variant distribution ρ on S. Agent i’s (j’s) forecasts are represented by a
transition matrix P i (P j) while the true transition matrix is P . For a given
transition matrix Q, let Q(s) denote the row of Q corresponding to state s.
In other words, Q(s) is the conditional distribution of tomorrow’s state if
today’s state is s. Suppose that for traders i and j,

Eρ IP (σt−1)

(

P i(σt−1)
)

− log βi > Eρ IP (σt−1)

(

P j(σt−1)
)

− log βj

Since the Markov process of states is ergodic, (1/t)
∑t

τ=0 Zk
τ converges to the

expectation of the relative entropy of k’s conditional forecasts with respect
to the true conditional distribution under the invariant distribution. Conse-
quently, limt c

i
t = 0 almost surely. If the Markov process is not ergodic, one

carries out this exercise on each communication class.

Theorem 6 lets us explore the tradeoff between learning speed and
discount factors. We saw that when discount factors were identical, not all
successful learners survived. The market favored faster learners. This is not
true when discount factors differ. The following result does not require an
iid state process or other process where learning rates can be measured.

Corollary 4. Suppose Axioms 1–3 and 6. Let pθ denote the true state pro-

cess. Suppose too that traders i and j are Bayesians and for both of them, pos-

terior distributions converge to point mass at θ pθ-almost surely. If βj > βi,

then trader i almost surely vanishes.

The theorem says that when discount factors differ, different rates at
which Bayesians learn are irrelevant to survival. Trader i could know the
true distribution while trader j could be updating on a high-dimensional
parameter space. In the iid case, the dimension of the parameter spaces is
irrelevant here because the effects of differences in dimension are of order log t,
while the effect of discount factors is of order t. But this result does not rely
on the log t rate. Since the relative entropies with respect to p of conditional
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forecasts almost surely converge, the time average of their difference is 0, and
so the linear-in-time effect of discount rate differences determines survival.

The conclusions of Theorem 6 are false without the uniform bounds.
The following example answers in the negative a question raised by Sandroni
(2000) about the possibility of doing without uniform bounds across dates
and states on ratios of forecasted and true state probabilities for results
involving entropy calculations.

Example: The Need for A.6.

Consider a two person exchange economy with two traders, i and j. At
each date there are two states, sa and sb. To save on notation, the economy
begins at date 1. States are drawn independently over time, and at date t
the probability of sa is 1 − 1/t2 and the probability of sb is 1/t2. Traders’
utility functions satisfy A.1, and endowments are fixed at e > 0, and are
independent of state. But traders have different forecasts. At date t trader
i assigns probability (exp t3 − 1)/(exp t3 − exp−t) to state a, and trader j
assigns probability (exp t2−exp−t)/(exp t3−exp−t) to state a. Thus Z i

t−Zj
t

takes on the value −t in state sa and t3 in state sb. The entropy difference
is Ipt

(pi) − Ipt
(pj) = 1/t, and so the series

∑∞
t=1 Ipt

(pi) − Ipt
(pj) diverges to

+∞. If the conclusions of Theorem 6 were true, trader i would disappear.
Nonetheless the sum

∑∞
t=0 Zi

t − Zj
t diverges quickly to −∞, implying that j

disappears and, consequently, that i does not. That is, cj
t → 0 almost surely,

and ci
t → 2e. To see why this is true, observe that {

∑

t Z
i
t − Zj

t → −∞}c ⊂
{st = sb i.o.}, and according to the Borel-Cantelli Lemma, this is a 0
probability event since

∑∞
t=1 1/t2 converges. The magnitude of

∑t

τ=1 Zi
τ −Zj

τ

grows at rate O(t2), and so trader i will survive no matter how small her
discount factor and how large trader j’s.

Intuitively, we should expect i to survive, as indeed she does. The
probability of state sa’s occurrence is converging to 1, as is i’s belief about sa,
while the probability j assigns to a is converging to 0. But trader i overshoots
the mark, giving her the larger relative entropy with respect to the truth.
This is possible even though trader i is forecasting more accurately than is
j in any intuitive sense because of the asymmetry of the relative entropy



Incomplete Markets 24

function, which becomes extreme as the true distribution assigns negligible
probability to some states.

4 Belief Selection in Incomplete Markets

Results in the previous section showed that a form of belief selection is a
consequence of Pareto optimality. The first welfare theorem can be used to
draw implications for prices when markets are complete. When markets are
incomplete, optimality no longer characterizes equilibrium allocations, and
the belief selection properties of market equilibrium must be investigated
directly. In this section we build two examples to show that the strong
belief selection properties exhibited by complete markets fail in incomplete
markets. They fail for two reasons, one trivial, one less so. The trivial reason,
demonstrated in the second example, is that entropy does not match well
with the asset structure — one distribution could be very far from the true
distribution in ways that are totally irrelevant to the equilibrium investment
problem, while another distribution could be quite near, but differ from the
truth in ways which are critical. The less trivial reason for the failure of
the market selection hypothesis has to do with savings behavior. Undue
optimism or pessimism (depending upon the payoff function) can lead to
excessive saving, so that the investor with the worst beliefs will come to
dominate the market over time.

Example: Savings Effects.

The story of the first example is that two traders buy an asset from a third
trader. The two traders hold different beliefs about the return of the asset.
Trader 1 is correct, while trader 2 consistently overestimates the return.

At each date there are two states: S = {s1, s2}. The true evolution
of states has state 1 surely happening every day. There is a single asset
available at each date and state which pays off in consumption good in the
next period an amount which depends upon next period’s state. The asset



Incomplete Markets 25

available at date t pays off, at date t + 1,

Rt(σ) =















(

1 +
(

1
2

)t
)

if σt = s1,

2
(

1 +
(

1
2

)t
)

if σt = s2.

Traders 1 and 2 have CRRA utility with coefficient 1/2. Trader 3 has log-

arithmic utility. Traders 1 and 2 have common discount factor (8)−
1

2 and
trader 3 has discount factor 1/2. Traders 1 and 3 believe correctly that state
s1 will always occur with probability 1, and trader 2 incorrectly believes
that state s2 will always occur with probability 1. All three traders have
endowments which vary with time but not state. Traders 1 and 3 know the
correct price sequence. Trader 2 believes that at each date, state s2-prices will
equal the (correct) state s1 prices. Traders 1 and 2 have endowment stream
(1, 0, 0, . . . ). Trader 3’s endowment stream is e3

1 = 0 and e3
t = 5/4+3(1/2)t−1

for t > 1.

This model has an equilibrium in which the price of the asset (in terms
of the consumption good) is, for every state,

qt =
1

2

(

1 +
(1

2

)t
)

.

In this equilibrium, at each date trader 3 supplies 1 unit of asset and traders
1 and 2 collectively demand 1 unit of asset. Trader 1’s wealth at date t is
(1/2)t−1 and at each date he consumes 3/4 of this wealth. Trader 2’s wealth
is 1 at each date and at each date he consumes 1/2 of this wealth. Trader 3
consumes 3/4 at each date. So trader 1’s wealth and consumption converges
to 0 even though he has correct beliefs and trader 2 has incorrect beliefs.
Although the details of the example are complicated, the intuition is simple.
At each date, trader 1 believes that the rate of return on the asset is 2, while
trader 2 believes it is 4. Trader 2’s excessive optimism causes him to save
more at each date, so in the end he drives out trader 1.

It is more enlightening to understand how this example was con-
structed than it is to go through the details of verification of the equilibrium
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claim. We constructed it as follows: Our idea was to fix some facts that
would allow us to solve the traders’ Euler equations, and then to derive pa-
rameter values that would generate those facts. Accordingly, we fixed the
gross rates of return on the asset at 2 and 4 in states s1 and s2, respectively.
We also assumed that traders 1 and 2’s total asset demand would be 1. For
an arbitrary gross return sequence the Euler equations pinned down prices.
We then turned to the supply side and chose an endowment stream for trader
3 and a gross return sequence that would cause trader 3 to supply 1 unit of
asset to the market at each date.

In our example the over-optimistic trader drives out the trader on the same
side of the market with rational expectations. If markets were complete,
trader 1 would be able to bet with trader 2, and his more accurate forecasts
would cause him to systematically benefit at trader 2’s expense.

It is tempting to conclude that overly optimistic beliefs play a sys-
tematic role. In fact there is no general theorem here. Our method also
allows us to construct examples for other risk aversion parameters. When
the risk aversion coefficient is negative, optimism causes under-saving rather
than over-saving. To drive out the rational trader in this case, the other
trader would have to be overly-pessimistic.

Finally, this example illustrates the difference between “fitness” and
happiness. Both traders have identical payoff functions and discount factors,
and so there is some sense to asking who envies whom. Clearly trader 2
prefers the present discounted value of trader 1’s realized utility stream to
his own. Trader 2 is accumulating wealth share because he is consuming less
than trader 1. He prospers through excessive saving. We see in this example
a clear disconnect between utility maximization and survival.

The failure of the market selection hypothesis in this example is due to
inefficient intertemporal allocation. Blume and Easley (1992) forced agents to
have identical savings behavior and studied the effects of selection on portfolio
choices. The next example shows how, even when investors have identical
savings behavior, portfolio effects can cause incorrect beliefs to survive and
even prosper.
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Example: Portfolio Choice Effects.

Consider an economy with two assets and 3 states. Asset 1 pays off 1 unit of
the consumption good in state 1 and 0 in the other two states. Asset 2 pays
off 0 in state 1, but 1 unit in each of states 2 and 3. There are three traders
with logarithmic payoff functions and common discount factor β. The state
probabilities and beliefs are described in the following table:

states

s1 s2 s3

truth 1/2 1/2 − ε ε

trader 1 1/2 1/2 − ε ε

trader 2 1/2 ε 1/2 − ε

trader 3 1/2 1/2 − ε ε

The parameter ε > 0 is small. Traders 1 and 3 have rational expectations,
while trader 2 does not. As before, trader 3’s role is to sell assets to traders
1 and 2. Traders 1 and 2 have a state-independent endowment: ei

1 = 1/2
and ei

t ≡ 0 for t > 1. Trader 3’s endowment is also state independent: e3
1 = 0

and e3
t = 1 for t > 0.

There is an equilibrium such that for all t and σ, q1
t (σ) = q2

t (σ) = β/2.
In equilibrium trader 3 supplies 1 unit of each asset. Each trader attributes
to asset 2 the same distribution of returns, and so both traders hold identical
amounts of both assets. Consequently the distribution of wealth between
traders 1 and 2 remains unchanged.

To push this point farther, consider the following configuration of
beliefs where δ > 0 is small:

states

s1 s2 s3

truth 1/2 1/2 − ε ε

trader 1 (1 − δ)/2 (1/2 − ε)(1 + δ) ε(1 + δ)

trader 2 1/2 ε 1/2 − ε
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Because the traders have logarithmic utility, their portfolios maximize their
expected growth rates of wealth. Trader 1 has slightly incorrect beliefs while
trader 2 has grossly incorrect beliefs. But trader 2’s beliefs lead him to make
the same decisions that a trader knowing the truth would make, while trader
1 will do something else. Consequently trader 1 will vanish and trader 2 will
dominate the market.

In this example, relative entropy is simply the wrong measure. What we care
about in the nearness of the chosen portfolio to the log-optimal portfolio at
each date. When markets are complete this is measured by relative entropy
of forecasts with respect to the truth. When markets are incomplete these
measures do not coincide.

5 Conclusion

According to conventional wisdom, general equilibirum theory is devoid of
positive implications. Our analysis shows that this is not correct. We do not
claim that the Debreu-Mantel-Mas Colell-Sonnenschein Theorem is wrong.
Rather our argument is that in economies with dynamically complete mar-
kets, there is structure to long run outcomes, and this structure does not re-
quire homogeniety of agents’ preferences and beliefs. Instead, in some sense
we get more structure the richer is the set of agent types in the economy; as
then it is more likely that someone will for whatever reason have beliefs that
are closer to rational expectations.

One could criticize this claim for its focus on the long run. But how
long is the long run? The appropriate time scale is governed by the frequency
of transactions. In some markets, such as housing and labor markets, indi-
viduals transact infrequently and our results do not have anything useful to
say. In other markets, such as financial markets, transaction frequencies are
high and it is plausible that the long run happens very quickly.

Here our focus is on which traders survive, but our results also have
implications for long run asset pricing. In dynamically complete markets
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economies in which all traders have a common discount factor, if one trader
has correct beliefs, then in the long run all assets will be priced efficiently.
In fact, they will be priced using this trader’s preferences and his correct
beliefs. This claim stands in direct contradiction to much of the rapidly
growing behavioral economics and behavioral finance literature. In that lit-
erature, traders are often assumed to behave irrationally in that they maxi-
mize expected utility with incorrect beliefs which are updated according to
various psychologically motivated rules. Of course such irrational behavior
exists, but economists used to believe that it did not matter for asset market
aggregates such as prices. Our analysis shows that this old idea is correct in
some settings and not correct in others. What matters is the completeness
of markets. If markets are dynamically complete then irrationality cannot
survive. If markets are incomplete then irrationality may be able to survive.
But in any case there are selection pressures that cannot be ignored. Not all
behaviors can survive in all market settings.

Appendix

Proof of Theorem 1. Choose an arbitrary trader j. From (3),

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) =
λj

λi

pj
t (σ)

pi
t(σ)

=
λj

λi

pj
t (σ)

pt(σ)

pt(σ)

pi
t(σ)

(∗)

The first ratio on the rhs of (∗) is a fixed number. The limit of the second
ratio is finite p-a.s. since the pj

t are probability measures. The third ratio
converges to a finite limit on U c. So on U c Lemma 1’s necessary condition
for vanishing fails to hold.

Proof of Theorem 2. From equation (3),

λi

λj

ui′(ci
t)

uj ′(cj
t )

=
pj

t

pi
t

= Lij
t (7)
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Suppose there is a measurable subset A of V such that pj(A) > 0 and pi(A) =
0. Then there is a measurable set B ⊂ A such that pj(B) = pj(A) > 0 and
pj

t(σ)/pi
t(σ) → ∞ for all σ ∈ B. Consequently equation (7) implies that

ci
t(σ) → 0 on B, which contradicts the hypothesis.

Proof of Theorem 3. It is sufficient to show that the necessary condition for
vanishing is pθ-almost never met for ν-almost all θ. Consider trader j. The
likelihood ratios Lij

t are a non-negative martingale with mean 1 under pi,
and so they converge pi-almost surely. Since pi is a mixture of the pθ,
pθ(lim supi L

ij
t = ∞) = 0 for all but a set of zero measure with respect

to trader i’s prior belief. Extending this to all j 6= i, the necessary condition
for vanishing fails as required.

Proof of Theorem 4. This is an immediate consequence of Theorem 2. Ob-
serve that if the conclusion of Theorem 4 were false, then Axiom 4 implies
that pj is not absolutely continuous with respect to pi, contradicting Theo-
rem 2.

Proof of Theorem 5. Consider the form of the first order conditions given in
equation (5). Since discount factors are identical, this becomes

log
ui′

(

ci
t(σ)

)

uj ′
(

cj
t (σ))

) = log
pθ

t (σ)

pi
t(σ)

− log
pθ

t (σ)

pj
t (σ)

(∗)

Choose δ ∈ (0, 1/2). From Clarke and Barron’s Theorem we can assert that
for almost all θ ∈ Θ′, for all ε > 0 there is a T such tha for all t > T ,

pθ

{

log
pθ

t (σ)

pi
t(σ)

<
(d − δ)

2
log t

}

< ε

and

pθ

{

log
pθ

t (σ)

pj
t (σ)

>
(d′ + δ)

2
log t

}

< ε
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Consequently for all B > 0 and ε > 0 there is a T such that for t ≥ T ,
pθ{ui′/uj ′ < B} < ε. In other words, ui′/uj ′ ↑ ∞ in probability, and so ci

t

converges to 0 in probability.

For almost all θ ∈ Θ/Θ′, trader i will survive almost surely according
to Theorem 3. To see that trader j vanishes, expand the logarithms in
equation (∗) and divide by t. The right hand side becomes

1

t

t
∑

τ=0

(

log p(στ |θ) − log pi
τ (στ |σ

τ−1)
)

−
1

t

t
∑

τ=0

(

log p(στ |θ) − log pj
τ (στ |σ

τ−1)
)

Applying the SLLN, the first term in each parenthetical expression converges
to

∑

s p(s|θ) log p(s|θ), the entropy of p(·|θ).

Because Bayes learning is consistent for trader i, limt p
i(s|σt) con-

verges pθ-almost surely to p(s|θ). Therefore the time average of this term
also converges to the entropy of p(·|θ), and so the expression for trader i
converges almost surely to 0. Bayes learning is inconsistent for trader j since
the truth is outside the support of her prior belief. The standard convergence
argument for the consistence of Bayes estimates from an iid sample shows
in this case that the support of posterior beliefs converges upon those which
minimize the relative entropy

∑

s p(s|θ) log p(s|θ)/p(s|θ′) over θ′ ∈ Θ′. Sup-
pose wlog that θ /∈ cl Θ′. Then this minimum is some K > 0. Consequently
trader j’s term converges to K. Thus (1/t) logui′(ci

t)/u
j ′(cj

t) converges al-
most surely to −K < 0, and so log uj ′(cj

t)/u
i′(ci

t) converges almost surely
to ∞. We see from Lemma 1 that trader j disappears almost surely.

Proof of Corollary 3. Trader j’s beliefs are absolutely continuous with re-
spect to the truth. Axiom 4 implies that pi and pθ are singular, and so the
claim follows from Theorem 2.

Proof of Theorem 6. The following Lemma describes the behavior of the ran-
dom variables Y k

t . These results are necessary for the proof of Theorem 6
and are also of independent interest as a step towards proving other limit
results.
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Lemma 2. Suppose Axioms 1–3 and 6.

1. On the set {σ :
∑

t E(Y i
t |Ft−1) < ∞},

∑

t Y i
t converges to a finite

limit p-a.s.

2. On the set {σ :
∑

t E(Y i
t |Ft−1) = +∞},

lim
t→∞

1

t

( t
∑

τ=1

Y i
τ − E(Y i

τ |Fτ−1)

)

= 0 p-a.s.

Proof of Lemma 2. Observe that E(Y k
τ |Fτ−1)(σ) is the relative entropy of

pk(·|σt) with respect to p(·|σt).

Fix a support S ′ ⊂ S, a (true) probability distribution ρ on S and
a belief q on S which are both elements of Bε(S

′), the set of all probability
distributions q on S which assigns mass at least ε > 0 to every state in the
support of p. Then E(log ρ − log q) = Iρ(q) and Var(log ρ − log q) are both
bounded, non-negative, C2 functions of q which take the value of 0 if and
only if q = ρ. Furthermore, both are strictly convex at q = ρ, and so there
are bounds kρ, Kρ > 0 such that kρ E(log ρ − log q) ≤ Var(log ρ − log q) ≤
Kρ E(log ρ−log q). These bounds are uniform on Bε(S

′), and since S is finite,
they can be chosen uniformly over all S ′ ⊂ S. According to axiom 6, each
pt(s|σ

t−1) and pi
t(s|σ

t−1) are in one of the sets Bε(S
′).

To prove the first claim, note that the bounds imply Var(Y i
t |Ft−1) ≤

K E(Y i
t |Ft−1). Summability of the conditional means implies the summabil-

ity of the conditional variances. Kolmogorov’s inequality implies that the
sum

∑∞
t=1 Y i

t − E(Y i
t |Ft−1) is almost surely finite, from which the result fol-

lows.

To prove claim 2, note that a consequence of the bounds is that if
∑

t E(Y i
t |Ft−1) = +∞, then

∑

t Var(Y i
t |Ft−1) = +∞. It follows from a

Theorem of Neveu (1972, p. 150) that

lim
t→∞

∑t
τ=1 Y i

τ − E(Y i|Fτ−1)
∑t

τ=1 Var(Y i
τ |Fτ−1)

= 0 p-a.s.
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Replacing the variances in the denominator by their upper bound and mul-
tiplying both sides by that bound gives the result.

Now we prove the Theorem. In either case of the Lemma,

1

t

( t
∑

τ=0

Y i
τ − E(Y i

τ |Ft−1)

)

= 0 (∗)

Dividing equation (5) by t gives

1

t
log

ui′
(

ci
t(σ)

)

uj ′
(

cj
t(σ)

) =
1

t
log

λj

λi

+ log
βj

βi

+
1

t

( t
∑

τ=0

Y i
τ − Y j

τ

)

(∗∗)

According to equation (∗), we can replace each Y i
τ in (∗∗) with its conditional

expected value, and the result follows.

Proof of Corollary 4. The consistency of Bayesian updating implies that for
pθ-almost all σ, pk(s|σt) − pθ(s|σt) → 0 for all s and k = i, j. For both
traders, then, the relative entropy of tomorrow’s forecast relative to the true
distribution of states tomorrow, E(Y k

t |Ft−1)(σ), converges to 0 almost surely.
Time averages converge to 0, and so

1

t
log

ui′
(

ci
t(σ)

)

uj ′
(

cj
t (σ)

) → log
βj

βi

> 0

pθ-almost surely. From Lemma 1 conclude that trader i vanishes.
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Notes

1This does not contradict the previous statement about survival of Bayes-
ians as the lower dimensional set has prior measure zero for the Bayesian with
higher dimensional support.

2 One implication of this construction is that every forecasting rule is
Bayesian with respect to some prior belief. Given the sequence of prediction
functions, construct the stochastic process of states as described. Then an
individual who was sure this process was the true process — a special case
of a point mass prior — would have these forecasting rules as conditional
distribution of tomorrow’s state given information available through today.
The Bayesian assumption by itself is quite weak. Its power comes from
ancillary assumptions about the set of processes which could be generating
the data, which are embedded in the prior beliefs on processes, which this
construction would not satisfy.

3We characterize Pareto optimal allocations in which each trader is allo-
cated at some time, on some path, some of the good. So we only characterize
competitive equilibrium allocations in which each trader’s endowment has
positive value. A trader whose endowment has zero value clearly has no
effect on the economy and we ignore such traders.

4For a complete discussion of the iid economy, see (Blume and Easley
2000).

5Kalai and Lehrer (1994) is an excellent discussion of the implications of
merging.

6See Dawid (1984) and Ploberger and Phillips (1998). The key require-
ments are suitable differentiability of the model and asymptotic normality
of the maximum likelihood estimator of the parameters, which are certainly
quite broad.
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