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Abstract

Multi-hop reasoning requires aggregation and

inference from multiple facts. To retrieve such

facts, we propose a simple approach that

retrieves and reranks set of evidence facts

jointly. Our approach first generates unsuper-

vised clusters of sentences as candidate evi-

dence by accounting links between sentences

and coverage with the given query. Then, a

RoBERTa-based reranker is trained to bring

the most representative evidence cluster to the

top. We specifically emphasize on the impor-

tance of retrieving evidence jointly by showing

several comparative analyses to other meth-

ods that retrieve and rerank evidence sen-

tences individually. First, we introduce sev-

eral attention- and embedding-based analy-

ses, which indicate that jointly retrieving and

reranking approaches can learn compositional

knowledge required for multi-hop reasoning.

Second, our experiments show that jointly re-

trieving candidate evidence leads to substan-

tially higher evidence retrieval performance

when fed to the same supervised reranker. In

particular, our joint retrieval and then rerank-

ing approach achieves new state-of-the-art evi-

dence retrieval performance on two multi-hop

question answering (QA) datasets: 30.5 Re-

call@2 on QASC, and 67.6% F1 on MultiRC.

When the evidence text from our joint retrieval

approach is fed to a RoBERTa-based answer

selection classifier, we achieve new state-of-

the-art QA performance on MultiRC and sec-

ond best result on QASC.

1 Introduction

Recent advances in question answering (QA) have

achieved excellent performance on several bench-

mark datasets (Wang et al., 2019a), even when rely-

ing on partial (Gururangan et al., 2018), incorrect

(Jia and Liang, 2017) or no supporting knowledge

(Raffel et al., 2019). Specifically, black-box neural

QA methods have shown to rely on spurious signals

confirming unfaithful or non-explainable behavior

Question: RNA is a small molecule that can squeeze through
pores in (A) dermal & vascular tissue (B) space between (C)
eukaryotic cells (D) jellyfish (E) · · · · · · (H)

Gold evidence sentences:
1. RNA is a small molecule that can squeeze through pores

in the nuclear membrane
2. Cells with a nuclear membrane are called eukaryotic.

BM25 sentences:
1. RNA is a small molecule that can squeeze through pores

in the nuclear membrane.
2. RNA synthesis in eukaryotic cells is synthesized by

three types of RNA polymerases
3. Eukaryotic cells have three different RNA polymerases.
4. the molecule seems to have evolved specifically to para-

sitize eukaryotic cells

WAIR Step-1 sentences:
1. RNA is a small molecule that can squeeze through pores

in the nuclear membrane.
2. RNA synthesis in eukaryotic cells is synthesized by

three types of RNA polymerases
WAIR Step-2 sentences:

1. Cells with a nuclear membrane are called eukaryotic
2. Eukaryotic cells have three different RNA polymerases.

Figure 1: An example question from the QASC dataset

with evidece sentences retrieved by BM25 and two

steps of WAIR. The evidence retrieved in step-2 of

WAIR contain information missed by sentences in step-

1 and are associated with each other. Both the gold evi-

dence are also found in sentences from step-1 and step-

2.

(Geva et al., 2019). Thus, justifying the underly-

ing knowledge or evidence text has been deemed

very important for faithfulness and explainability

of neural QA methods (DeYoung et al., 2019; Yang

et al., 2018). Our work is also focused on improv-

ing the explainability of QA methods by the means

of evidence (or justification) sentence retrieval.

Evidence retrieval for multi-hop QA is a chal-

lenging task as it requires compositional infer-

ence based aggregation of multiple evidence sen-

tences (Yang et al., 2018; Khashabi et al., 2018;

Welbl et al., 2018; Khot et al., 2019a). For such

compositional aggregation, we emphasize on the

importance of jointly handeling the set of evidence
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facts within the QA pipeline. The motivation be-

hind our work is simple: jointly handling evidence

sentences gives access to the complete information

together and thus enable compositional reasoning.

On the other hand, handling evidence sentences

individually leads to selection of disconnected evi-

dence that do not support compositional multi-hop

reasoning (Jansen, 2018; Chen and Durrett, 2019).

For retrieving compositional evidence, we pro-

pose a simple unsupervised retriever - weighted

alignment-based information retrieval algorithm

(WAIR) that generates candidate evidence chains

based on two key heuristics - coverage and asso-

ciativity. Coverage denotes the proportion of query

covered by the evidence text and associativity de-

notes links between individual evidence sentences.

We show that WAIR evidence candidate chains

lead to substantially higher retrieval performance

when compared to the other approaches that handle

evidence sentences individually. Particularly, we

show that just feeding the candidate evidence chain

from WAIR to RoBERTa reranker achieves sub-

stantially better performance than when the same

reranker is instead fed with individual candidate

sentences. Further, we present several attention-

and embedding-based analyses of the reranker

RoBERTa model highlighting that WAIR retrieved

chains enable a) learning of compositional reason-

ing and, b) complementary knowledge aggregation.

Our overall QA approach operates in three steps.

We first retrieve candidate evidence chains for a

given query using WAIR. In 2 iterations, our un-

supervised WAIR approach weighs down query

terms that have already been covered by previously

retrieved sentences, and increases the weights of

reformulated query terms that have not been cov-

ered yet. In the second step of our QA framework,

we jointly rerank clusters of evidence sentences

generated by WAIR. The reranking is implemented

as a regression task, where the score assigned to

each sentence cluster is F1 score computed from

the gold annotated evidence sentences. Lastly, the

top reranked set of sentences are fed into an answer

classification component.

In particular, our key contributions are:

(1) We introduce a simple, unsupervised and fast

evidence retrieval approach -WAIR for multi-hop

QA that generates complete and associated candi-

date evidence chains. To show the multi-hop rea-

soning approximated within WAIR candidate evi-

dence chains, We present several attention weights

and embeddings based analyses1. Our attention

analyses highlights that jointly retrieving candidate

evidence chains using WAIR assists the reranker

model to learn contextual and compositional knowl-

edge necessary for multi-hop reasoning. Specifi-

cally, our transformer based reranker attends more

on the linking terms necessary for combining mul-

tiple evidence facts. Further, our embedding based

analysis shows that the reranking of WAIR evi-

dence chains helps the reranker to project embed-

ding representations of evidence facts differently,

thus allowing complementary knowledge aggrega-

tion during the QA stage necessary for multi-hop

reasoning.

(2) We show that just the simple construction of

candidate evidence using WAIR leads to substan-

tial higher (10.2% Recall@2 on QASC (Khot et al.,

2019a) and 3.6% F1 on MultiRC (Khashabi et al.,

2018)) evidence selection performance with the

same RoBERTa reranker over the case when it is

fed with individual candidate sentences. Specifi-

cally, we achieve the new state-of-the-art evidence

selection results on two multi-hop QA datasets

- (30.5% Recall@2 on QASC and 68.0% on

MultiRC. Further, our simple candidate chain gen-

eration approach can be coupled with any reranker

and QA method, and can be applied to different QA

settings, e.g., large KB-based QA such as QASC,

reading comprehension and passage-based MCQA

such as MultiRC, etc. We also show that the QA

performance improves by 2.3% EM0 in MultiRC

and 5.2% accuracy in QASC when the top reranked

WAIR evidence chain is fed to the QA module over

the case of feeding individually reranked sentences.

By just feeding the top reranked WAIR evidence

chain, we achieve state-of-the-art QA performance

on MultiRC and second best QA results on QASC.

2 Related Work

Evidence retrieval has been shown to improve ex-

plainability of complex inference based QA tasks

(Qi et al., 2019). There are two potential ways to

retrieve evidence sentences: individually or jointly.

Retrieving individual evidence sentences:

Most unsupervised information retrieval tech-

niques, e.g., BM25 (Robertson et al., 2009), tf-idf

(Ramos et al., 2003; Manning et al., 2008), or

alignment-based methods (Kim et al., 2017), have

1Codes - https://github.com/vikas95/WAIR_
interpretability

https://github.com/vikas95/WAIR_interpretability
https://github.com/vikas95/WAIR_interpretability
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been widely used to retrieve evidence texts for

open-domain QA tasks (Joshi et al., 2017; Dunn

et al., 2017). Although these approaches have been

strong benchmarks for decades, they usually do not

perform well on recent complex reasoning-based

QA tasks (Yang et al., 2018; Khot et al., 2019a).

More recently, supervised neural network (NN)

based retrieval methods have achieved strong

results on complex questions (Karpukhin et al.,

2020; Nie et al., 2019; Tu et al., 2019). However,

these approaches require annotated data for initial

retrieval and suffer from the same disadvantages

at the reranking stage as the other methods that

retrieve+rerank individual evidence sentences,

i.e., the retrieval algorithm is not aware of what

information has already been retrieved and what

is missing, or how individual facts need to be

combined for explaining the multi-hop reasoning

(Khot et al., 2019b). Our proposed joint retrieval

and reranking approach mitigates both these

limitations.

Jointly retrieving evidence sentences: Re-

cently, several works have proposed retrieval of

evidence chains that has led to stronger evidence

retrieval performance (Yadav et al., 2019b; Khot

et al., 2019a). Our WAIR approach aligns in the

same direction and particularly utilizes coverage

and associativity that leads to higher performance.

Importantly, our work focuses on highlighting the

benefits of feeding evidence chains to transformer

based reranking methods. First, the evidence re-

trieval performance of the same reranker is sub-

stantially improved resulting in state-of-the-art per-

formance and thus outperforming all the previous

approaches. Second, we show that the candidate

evidence chain from WAIR assist reranker method

to learn compositional and aggregative reasoning.

Other recent works have proposed supervised

iterative and multi-task approaches for evidence

retrieval (Feldman and El-Yaniv, 2019; Qi et al.,

2019; Banerjee, 2019). But, these supervised chain

retrieval approaches are expensive in their run-

time and do not scale well on large KB based QA

datasets. On the contrary, our retrieval approach

does not require any labeling data and is faster be-

cause of its unsupervised nature. Further, our joint

approach is much simpler, performs well and scales

on large KB based QA such as QASC.

In this work, we focus on analyzing the multi-

hop evidence reasoning via attention (Clark et al.,

2019) and learned embeddings (Ethayarajh, 2019)

analyses. Several works have shown attention based

analysis on pretrained transformer language models

(Rogers et al., 2020) on various NLP tasks includ-

ing QA (van Aken et al., 2019). Our novel analyses

are particularly focused on a) evaluating attention

scores on linking terms that approximate multi-hop

compositionality and, b) complementary knowl-

edge aggregation necessary for multi-hop QA.

Importance of Evidence Retrieval for Question

Answering Several neural QA methods have

achieved high performance without relying on evi-

dence texts. Many of these approaches utilize ex-

ternal labeled training data (Raffel et al., 2019; Pan

et al., 2019), which limits their portability to other

domains. Others rely on pretraining, which tends

to be computationally expensive but can be used

as starting checkpoints (Devlin et al., 2019; Liu

et al., 2019). More importantly, many of these di-

rections lack explanation of their selected answers

to the end user. In contrast, QA methods that in-

corporate an evidence retrieval module can provide

these evidence texts as human-readable explana-

tions. Further, several works have demonstrated

that retrieve and read approaches (similar to ours)

tend to achieve higher performance than the former

QA methods (Chen et al., 2017; Qi et al., 2019).

Our work is inspired by these directions but mostly

focuses on jointly retrieving+reranking clusters of

evidence sentences that leads to substantial QA

performance improvements.

3 Proposed Approach

We summarize the overall execution flow of our

QA system in Figure 2. The four key components

of the system are explained below.

1. Initial evidence sentence retrieval: In the first

step, we retrieve candidate evidence sentences (or

justification) given a query. We propose a sim-

ple unsupervised approach, which, however, has

been designed to bridge the “lexical chasm” in-

herent between multi-hop questions and their an-

swers (Berger et al., 2000). We call our algorithm

weighted alignment-based information retrieval

(WAIR). WAIR operates in two steps, by combin-

ing ideas from embedding based-alignment (Yadav

et al., 2019a) and pseudo-relevance feedback (Bern-

hard, 2010) approaches.

In its first step, WAIR uses a query that con-

sists of the non-stop words of the original ques-
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RNA is a small molecule that can squeeze through pores in  

|| eukaryotic cells

WAIR

{Sent 0,Sent 1}

{Sent 0,Sent 2}

.

..

{Sent 8,Sent 9}

K = 2

{Sent 0, Sent 1, Sent 2}

{Sent 0, Sent 1, Sent 3}

. . . . 

. . . . 

{Sent 7,Sent 8, Sent 9}

K = 3

Sent 0 - RNA is a small 

molecule that can 

squeeze ..… membrane

Sent 1 - RNA synthesis 

in eukaryotic cells ….

Sent 2 - Cells with a 

nuclear membrane

.
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Figure 2: Flow diagram of the overall QA approach.

The left branch implements a baseline method, which

retrieves and feeds candidate evidence sentences to

reranker individually. We denote this method “sin-

gle sentence retrieval and reranking” (SingleRR). The

method on the right branch feeds WAIR candidate

chains to the RoBERTa reranker which jointly reranks

the complete evidence text (referred to as JointRR).

tion2 (Q = q1, q2, ..., qn). Using Q, WAIR re-

trieves k justification sentences (J1, J2, ...Jk) with

the alignment IR method3 of Yadav et al. (2019a).

In the second step, WAIR generates k new queries

(Q1, Q2, ...Qi, ..Qk) by concatenating Q with each

retrieved justification in the previous step. For each

new query Qi, WAIR assigns a weight4 of 2 to

the original query tokens which are not retrieved

in the corresponding justification sentence Ji. All

the other covered terms in Qi receive a weight of

1. This simple idea encourages the algorithm to

focus on terms that have not yet been retrieved in

Ji. Also, weighing uncovered query terms higher

encourages the retrieval approach to retrieve the

remaining query terms thus yielding higher query

2and candidate answer for multiple-choice QA
3Please note that for larger KB, BM25 is used to retrieve

initial pool of sentences. Then, alignment IR method is applied
on this pool to retrieve top k sentences similar to Yadav et al.
(2019a)

4These term weights were tuned on the training partition

Dataset WAIR BM25 Alignment Gold
Evidence

QASC (top 2) 78.85 61.42 63.40 80.81
MultiRC (top 3) 55.92 39.86 52.98 63.95

Table 1: The coverage of question (+candidate answer)

terms in the sentences retrieved by various IR tech-

niques. Last column gives the upper-bound of coverage

from gold justifications and also suggests the effective-

ness of coverage for the retrieval task.

coverage scores as shown in table 1. Further, the

concatenation of Ji with Q encourages retrieval

of sentences that are associated or linked with the

previously retrieved sentences. The Ji terms are

also weighted 1 to mitigate the semantic drift prob-

lem by helping the second retrieval iteration stay

close to the original query (see WAIR sentences

in fig. 1). In both iterations of WAIR, the score be-

tween a given query Q and a justification sentence

J is calculated as:

s(Q, J) =

|Q|
∑

m=1

idf (qm) · align(qm, J) (1)

align(qm, J) =
|J |
max
k=1

cosSim(qm, jk) (2)

where qm and jk are the mth and kth terms of the

query Q and justification sentence J , respectively.

The inverse document frequency values (idf ) are

computed over the complete knowledge base of

QASC (Khot et al., 2019a) and all the paragraphs in

MultiRC dataset. The cosine similarity (cosSim) is

computed over GLoVe embeddings for simiplicity.

2. Generating candidate evidence sets: From the

N sentences retrieved in the 2 iterations of previous

step, WAIR generates
(

N
p

)

combinations, where p
denotes the number of sentences in a candidate ev-

idence chain. To reduce the overhead on the next

supervised component, we implemented a beam

filter strategy on these sets. We first rank each evi-

dence set Ei by how many query terms are included

in the set (referred to as coverage which has been

shown as a strong retrieval indicator for multi-hop

QA (Wang et al., 2019b) (as also shown in table 1)):

C(Ei) =
1

|t(Q)|

∑

w∈t(Q)∩t(Ei)

idf (w) (3)

where t(Q) and t(Ei) denote the unique terms in Q
and evidence set Ei, respectively. We then keep the

top n sets with the highest coverage score (C). We

implement an equivalent process for the SingleRR
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baseline: we compute the coverage C for individual

evidence sentences, and keep the top n.

3. Supervised evidence reranking: This compo-

nent uses a supervised RoBERTa classifier to rerank

evidence sets (for JointRR) or classify individual

justifications (for SingleRR). The latter scenario

is modeled as binary classification of individual

justification sentences. The former scenario (for

JointRR) is modeled as a regression task, where

the score of each evidence set is the F1 score com-

puted from gold evidence sentences. For example,

an evidence set with 3 sentences, out of which 2

are correct has a precision of 2/3. Assuming 2 gold

justifications are not included in the set, its recall

is 2/4, and the F1 score used for regression is 0.57.

Please note that we directly use the sets created in

the previous step even in the training step i.e., we

do not insert gold sentences in the set to keep the

consistency between training and test step.

For both classifiers, we used RoBERTa-base

with a learning rate of 1e−5, maximum sequence

length of 256 5, batch size of 8, and 4 epochs. For

the SingleRR approach, all the evidence sentences

having probability larger than 0.5 are concatenated

to create the final evidence text. For JointRR ap-

proach, the evidence set with the highest regression

score is selected. Similarly, all the sentences in this

set are concatenated into a single text.

4. Answer selection: The last component clas-

sifies candidate answers given the original ques-

tion and the evidence text assembled in the pre-

vious step. Similar to previous works, we use the

multiple-choice question answering (MCQA) ar-

chitecture of RoBERTa for QASC (Khot et al.,

2019a; Wolf et al., 2019) where a softmax is used

to discriminate among the eight answer choices.

The inputs to RoBERTa-MCQA consist of eight

queries (from eight candidate answers) and their

corresponding eight evidence texts. The hyperpa-

rameters used were: RoBERTa large, maximum se-

quence length = 1286 (for each candidate answer),

batch size = 8, epoch = 3. For MultiRC, where ques-

tions have variable number of candidate answers

and multiple correct answers, a RoBERTa binary

classifier7 is used for each candidate seperately.

5We tried sequence length of 128 and 512 also but that
resulted in 1.5% lower performance

6We tried 184 as sequence length (with batch size as 2 to
fit on GPU’s) but it resulted in 1-2% lower performance for
majority of the experiments

7hyperparameters same as the RoBERTa retrieval classifier

4 Experimental Results

We focus on complex non-factoid and long answer

span based explainable multi-hop datasets:

Multi-sentence reading comprehension

(MultiRC): a reading comprehension dataset pro-

vided in the multiple-choice QA format (Khashabi

et al., 2018). Every question is supported by one

document, from which the answer and justification

sentences must be extracted. WAIR retrieves

n = 10 sentences,8 which are separately consid-

ered as candidates in the downstream components

of SingleRR. For the JointRR approach, we

generate combinations of evidence texts with

k ∈ {2, 3, 4} sentences, i.e.,
(

n=10
k∈{2,3,4}

)

. We use

the original MultiRC dataset9 which includes the

gold annotations for evidence text.

Question Answering using Sentence Composi-

tion (QASC): a multiple-choice QA dataset (Khot

et al., 2019a), where each question is provided with

8 answer candidates, out of which 4 candidates are

hard adversarial choices. The evidence sentences

are to be retrieved from a large KB of 17.2 mil-

lion facts. Similar to Khot et al. (2019a), WAIR

first retrieves n = 10 sentences10 for each can-

didate answer, where the query concatenates the

question and candidate answer texts. WAIR uses

each of these retrieved sentences to reformulate

and reweigh the query, to retrieve an additional 1

sentence in a second iteration. This results in a to-

tal of 20 candidate evidence sentences for a given

question and candidate answer. We generate evi-

dence chains using the same approach as the one

used for MultiRC, except here we focus on k = 2,

i.e.,
(

n=20
k=2

)

, because all questions in QASC are an-

notated with only two gold justification sentences.

We report QA and evidence selection performances

in both the datasets using standard evaluation mea-

sures (Khot et al., 2019a; Khashabi et al., 2018).

4.1 Evidence Retrieval Results

Tables 2 and 4 list the main results for both ques-

tion answering and evidence retrieval for the two

datasets. Table 3 shows a more detailed analysis

8The recall for the retrieval of gold evidence sentences is
approximately 94% at n = 10 in the MultiRC training set.

9https://cogcomp.seas.upenn.edu/

multirc/
10Since QASC is a large KB based dataset, we use BM25

for the retrieval of initial pool of evidence sentences similar to
Yadav et al. (2019a) and Khot et al. (2019a).

https://cogcomp.seas.upenn.edu/multirc/
https://cogcomp.seas.upenn.edu/multirc/
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# Retrieval Method Accuracy Evidence Evidence
steps Both found At least one found

Unsupervised Baselines

1 Single Lucene BM25 35.6 5.5 56.0
2 Two Heuristics+IR (Khot et al., 2019a) 32.4 25.2 51.9

Previous work

3 - ESIM Q2Choice (Khot et al., 2019a) 21.1 25.2 51.9
4 Single BERT-LC (Khot et al., 2019a) 59.8 5.6 54.6
5 Two BERT-LC (Khot et al., 2019a) 71.0 25.2 51.9
6 Two BERT-LC[WM]⋆ (Khot et al., 2019a) 78.0 25.2 51.9
7 Two KF+SIR+2Step⋆ (Banerjee and Baral, 2020) 82.4 - -
8 Two AIR+RoBERTa (Yadav et al., 2020b) 76.2 25.6 56.6

Our work

9 Two BM25 + RoBERTa 68.0 11.5 51.0
10 Two Alignment-IR + RoBERTa 71.5 22.8 49.1
11 Two WAIR + RoBERTa 74.0 23.6 51.1
12 Two SingleRR + RoBERTa 73.4 20.1 65.3
13 Two JointRR + RoBERTa 78.6 30.5 65.1
14 Two Pseudo oracle + JointRR + RoBERTa 82.4 32.4 69.8

TEST DATASET

15 Two BERT-LC (Khot et al., 2019a) 68.5 - -
16 Two BERT-LC[WM]⋆ (Khot et al., 2019a) 73.2 - -
17 Two KF+SIR+2Step⋆(Banerjee and Baral, 2020) 80.0 - -
18 Two AIR + RoBERTa⋆ (Yadav et al., 2020b) 81.0 - -
19 Two JointRR + RoBERTa 78.0 - -

Table 2: Question answering and evidence retrieval results on QASC. The second column indicates if the initial

retrieval process is single step (e.g., a single iteration of BM25), or two steps (as in the WAIR approach). ⋆ highlight

the methods that use ensembling or external labeled resources. "Both found" reports the recall scores when both the

gold justifications are found and "Atleast 1 found" reports the recall when either one or both the gold justifications

are found in the top 2 ranked sentences.

for QASC11 at different levels of recall, i.e., the

percentage of gold evidence sentences found in

top N reranked evidence sentences (Recall@N ).

We draw following observations from evidence re-

trieval experiments (answer selection results are

discussed in the following subsection):

(1) Unsupervised retrieval: Indicating initial ben-

efits of retrieving evidence chains, our alignment-

based evidence retrieval approach (WAIR) outper-

forms the other IR benchmarks (BM25 and align-

ment) as shown in rows 10-11 vs. 12-13 in table 4

and rows {1,9,10} vs. 11 in table 2. WAIR also

outperforms the two-step IR-based methods for

evidence retrieval (row (9, 10 vs. 11) in table 2),

highlighting the importance of query reweighing in

iterative retrieval methods.

(2) Supervised reranking: Reranking WAIR can-

didate evidence chains (JointRR) leads to absolute

10.4% on QASC (row 12 vs row 13 in table 2) and

3.6% F1 improvement on MultiRC (row 14 vs row

15 in table 4) over the case where the same reranker

is fed with individual sentences (SingleRR). This

highlights the importance of feeding candidate evi-

11We found similar trends for MultiRC but present anal-
ysis only on QASC (large KB based QA) because of space
constraints.

dence chains to the supervised reranker.

(3) Recall comparison: As shown in table 3, just

feeding WAIR candidate chains result in higher

performance for retrieving complete evidence (the

"Both found" columns) than SingleRR, espe-

cially for low recall scenarios. Notably, SingleRR

achieves marginally better performance on finding

atleast 1 evidence sentence but performs poorly on

retrieving both the evidence sentences indicating

absence of compositional multi-hop reasoning. We

observe similar gains on MultiRC i.e., JointRR

achieves 6% higher recall compared to SingleRR

(row 14, row 15 in table 4).

(4) (Pseudo) oracle JointRR: To investigate the

ceiling of JointRR, we inserted the gold justifica-

tion sentences within the WAIR retrieved sentences

and then created candidate evidence chains. These

chains were then reranked by the same RoBERTa

reranker. As shown in row 18a of table 4 and row 14

of table 2, the performance of JointRR approach

is substantially improved when gold evidence sen-

tences are retrieved in the initial WAIR pool. The

ceiling performance of JointRR is much higher

than the current actual method (row 13 in table 2

and row 15 in table 4), which suggests there is
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SingleRR JointRR

Recall@N Evidence Evidence QA Evidence Evidence QA

Both found Atleast 1 found Accuracy Both found Atleast 1 found Accuracy

Recall@2 20.1 65.3 73.8 30.5 65.1 78.6

Recall@4 35.0 67.9 74.7 40.5 66.7 80.7

Recall@6 40.2 69.0 77.9 44.1 68.2 80.0

Recall@8 43.3 69.4 76.8 45.2 69.0 79.6

Recall@10 44.4 69.6 79.7 45.3 69.4 81.7

Table 3: Evidence retrieval and QA performance comparison of SingleRR and JointRR at different recall levels

on the QASC development dataset. "Both found" and "Atleast 1 found" notations are same as in table 2 but at top

N sentences. Recall@N of "Both found" means when both the gold justifications are found in top N sentences.

All the N sentences are concatenated to feed into the answer classifier for QA task.

# Other-resources Method F1m F1a EM0 Evidence retrieval
/Ensembling P R F1

DEVELOPMENT DATASET

Baselines

1 No IR(paragraphs) (Khashabi et al., 2018) 64.3 60.0 1.4 –
2 No SurfaceLR (Khashabi et al., 2018) 66.5 63.2 11.8 –
3 No RoBERTa+ Full passage (Yadav et al., 2020b) 73.9 71.7 28.7 17.4 100.0 29.6

Previous work

5 No EERDPL + FT (Wang et al., 2019b) 70.5 67.8 13.3 –
6 Yes Multee (ELMo)⋆ (Trivedi et al., 2019) 73.0 69.6 22.8 –
7 Yes RS⋆ (Sun et al., 2019) 73.1 70.5 21.8 – – 60.8
8 No AutoROCC (Yadav et al., 2019b) 72.9 69.6 24.7 48.2 68.2 56.4
9 Yes AIR + RoBERTa (Yadav et al., 2020b) 74.7 72.3 29.3 66.2 63.1 64.2

Our work

10 No 3 Evidence sents(BM25) + RoBERTa 70.5 68.0 24.9 42.6 56.1 48.4
11 No 3 Evidence sents(Alignment) + RoBERTa 72.4 69.8 25.1 49.3 65.1 56.1
12 No 3 WAIR sents + RoBERTa 74.3 71.5 24.6 50.9 67.6 58.1
13 No WAIR max-coverage + RoBERTa 74.2 72.2 27.0 55.0 67.2 60.5
14 No SingleRR + RoBERTa 74.9 72.4 25.9 63.9 64.0 64.0
15 No JointRR + RoBERTa 75.2 72.7 28.2 65.4 69.9 67.6
15a No JointRR (± 1 neighboring sentence ) + RoBERTa 77.0 74.5 32.9 65.4 69.9 67.6

Reranking checkpoints transferred to QA task

16 No SingleRR transferred 71.7 68.8 21.6 63.9 64.0 64.0
17 No JointRR transferred 75.9 73.1 28.2 65.4 69.9 67.6

Ceiling systems with gold justifications

18 No Oracle knowledge + RoBERTa 81.4 80 39 100.0 100.0 100.0
18a No Pseudo oracle + JointRR + RoBERTa 77.9 74.8 32.9 87.8 82.9 85.3
19 No Human 86.4 83.8 56.6 –

TEST DATASET

20 No SurfaceLR (Khashabi et al., 2018) 66.9 63.5 12.8
21 Yes Multee (ELMo)⋆ (Trivedi et al., 2019) 73.8 70.4 24.5 –
22 No AutoROCC (Yadav et al., 2019b) 73.8 70.6 26.1
23 Yes RoBERTa + AIR (Yadav et al., 2020b) 79.0 76.4 36.3
24 No JointRR (± 1 neighboring sentence ) + RoBERTa 79.5 76.5 35.4

Table 4: Answer selection (column 4-6) and evidence retrieval results (column 7-10) on the MultiRC development

and test sets. The second column specifies if any external labeled or ensembling resources were used in the ap-

proach. ± 1 neighboring sentence (row 15a) indicates concatenation of neighboring sentences with the predicted

evidence sentences to utilize coreferences in the context.

potential for progress from future works.

(5) State-of-the-art evidence retrieval perfor-

mance: The top reranked WAIR chain achieves

30.5% Recall@2 on QASC (row 13, table 2) and

67.6% F1 on MultiRC (row 15, table 4). Thus,

establishing the new state-of-the-art evidence re-

trieval performance on both the datasets.

4.2 Answer Selection Results

(1) Impact of two-step evidence retrieval: Un-

surprisingly, the two-step evidence retrieval process

substantially impacts QA performance (e.g., row 1

vs. row 9 in table 2), which is consistent with the

observations of previous works (Khot et al., 2019a;

Yadav et al., 2020b). The top reranked WAIR chain
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leads to higher QA performance (+5.2% on QASC

(row 12 vs. 13, table 2), and 2.3% F1 on MultiRC

(row 14 vs. 15, table 4)).

(2) Impact of retrieval recall: As shown in ta-

ble 3, JointRR always achieves higher Recall@N

score for finding both (or complete) evidence.

As a result, it also achieves better QA accuracy

when compared to SingleRR. On the other hand,

SingleRR always achieves marginally better per-

formance on finding atleast 1 evidence sentence

indicating that retrieval of incomplete information

leads to lower QA performance. Further, the best

QA performance is also achieved at higher recalls

(last row of table 3 and row 15 in table 4).

(3) Ceiling performance: When coupled with

the (pseudo) oracle retriever, the QA scores of

JointRR approaches human performance (row 18,

table 4). This emphasizes the importance of evi-

dence retrieval for the QA performance.

(4) Top QA performance: RoBERTa answer clas-

sifier that just the uses top reranked evidence of

WAIR achieves state-of-the-art QA performance on

MultiRC development and test sets. It also achieves

the second and third best results on QASC devel-

opment and test sets. Notably, the approaches that

score higher than JointRR use ensembling or ad-

ditional labeled data.

5 Representational Analysis

5.1 Attention Analysis

To better understand the differences in learned fea-

tures of RoBERTa reranker from WAIR chains

(JointRR) and individual candidate evidence sen-

tences (SingleRR), we performed several analyses

of their attention weights. We focus on the attention

score on the [CLS] token, whose representation

is fed into the decision layer of the RoBERTa clas-

sifier (Wolf et al., 2019). We compute the attention

score from a given token to [CLS] by summing

up the attention scores from all the 12 heads in

each layer (Clark et al., 2019). Similar to Clark

et al. (2019); Rogers et al. (2020), we remove the

attention scores from < s >,< /s >, punctuation

and stopword tokens in our analysis.

Attention from semantically matching tokens

in query and evidence : Retrieval tasks are of-

ten driven by the lexically matching query tokens

in the retrieved document(Robertson et al., 2009;

Manning et al., 2008). Thus, to understand the fo-

Token QASC MultiRC

type SingleRR JointRR SingleRR JointRR

SMA 50.3 56.0 60.0 64.0

Linking 50.6 54.8 55.7 64.4

Table 5: Various attention scores of the SingleRR and

the JointRR approaches. These normalized attention

values are reported from the average of last 3 layers

(10th, 11th and 12th layer) of RoBERTa-base. We ob-

served similar trends with few exceptions in the lower

layers as well which are farthest away from the deci-

sion layer that uses representation of [CLS].

cus of the reranker on semantic matching, we com-

pute the attention on [CLS] from all the tokens

that are not lexically matched between the given

question+candidate answer text and the retrieved

evidence text (Yadav et al., 2020a). We refer it to

as Semantic Matching Attention (SMA) score. As

shown in table 5, reranker fed with WAIR chain

(JointRR approach) attends more on the tokens

requiring semantic matching when compared to

SingleRR (50.3% vs 56% on QASC and 60.0 vs.

64.0% on MultiRC) suggesting that it learns how

to “bridge the lexical chasm” between question and

answers (Berger et al., 2000)

Attention from linking tokens of evidence: Here,

we focus only on the terms that are shared between

sentences in the gold evidence texts (referred to as

Linking terms). As shown in fig. 1, {nuclear, mem-

brane} are examples of linking terms that compose

the two justification sentences into a complete ex-

planation. The remaining terms in the evidence text,

i.e., terms that are uniquely present in any one of

the evidence sentences are referred to as Non link-

ing terms.As shown in table 5, JointRR attends

considerably more to the Linking terms (50.6 vs.

54.8 and 55.7 vs. 64.4), which suggests that it fo-

cuses more on the relevant compositional pieces

after the retrieval training.

5.2 Learned Embedding Analysis

We also analyzed the embedding representations

of the reranking model (Ethayarajh, 2019). In par-

ticular, we computed the embedding based cosine-

similarity scores (or alignment scores (Yadav et al.,

2019a)) between the two gold evidence sentences

to determine their similarity in embedding space.

As shown in fig. 3, the inter-justification align-

ment similarity score of JointRR is substantially

lower across the majority of the layers after layer
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Figure 3: Layer-wise embedding based alignment sim-

ilarity scores between the two gold justification sen-

tences. In QASC, every question is annotated with just

two gold justification sentences; for simplicity, we con-

sider only the subset of MultiRC questions which have

two gold justifications( 65% of dev set).

3. This indicates that the RoBERTa reranker fed

with WAIR chains has learned to differentiate the

individual justification sentences (in embedding

space) enabling complementary and compositional

knowledge aggregation. As shown in table 4 (row

17 vs. row 15), this compositionality information

is useful when the evidence reranking RoBERTa is

transferred to the answer selection component i.e.,

we see a (small) QA performance improvement. On

the other hand, SingleRR learns to consider both

sentences similar, and this hurts the QA perfor-

mance by 4.3% EM0 (row 16 vs. row 14, table 4).

Recent works have shown importance of vector

normalization (Kobayashi et al., 2020) for analyz-

ing the transformer embeddings. In future works,

normalized embedding analysis can be added to fur-

ther study the behavior of trained retriever’s across

different layers.

6 Conclusion

We introduced a simple unsupervised approach

for retrieving candidate evidence chains that af-

ter reranking achieves state-of-the-art evidence re-

trieval performance on two multi-hop QA datasets:

QASC and MultiRC. We highlight the impor-

tance of generating and feeding candidate evi-

dence chains by showing several benefits over the

widely followed approach that retrieves evidence

sentences individually. Further, we introduced few

attention and embedding analyses demonstrating

that jointly retrieving and reranking chains assist in

learning compositional information, which is also

beneficial to the downstream QA task. Overall, our

work highlights the strengths and potential of joint

retrieval+reranking approaches for future works.
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