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ABSTRACT:

The automated reconstruction of Building Information Modeling (BIM) objects from point cloud data is still ongoing research. A key

aspect is the creation of accurate wall geometry as it forms the basis for further reconstruction of objects in a BIM. After segmenting and

classifying the initial point cloud, the labelled segments are processed and the wall topology is reconstructed. However, the preocedure

is challenging due to noise, occlusions and the complexity of the input data.

In this work, a method is presented to automatically reconstruct consistent wall geometry from point clouds. More specifically, the use

of room information is proposed to aid the wall topology creation. First, a set of partial walls is constructed based on classified planar

primitives. Next, the rooms are identified using the retrieved wall information along with the floors and ceilings. The wall topology is

computed by the intersection of the partial walls conditioned on the room information. The final wall geometry is defined by creating

IfcWallStandardCase objects conform the IFC4 standard. The result is a set of walls according to the as-built conditions of a building.

The experiments prove that the used method is a reliable framework for wall reconstruction from unstructured point cloud data. Also,

the implementation of room information reduces the rate of false positives for the wall topology. Given the walls, ceilings and floors,

94% of the rooms is correctly identified. A key advantage of the proposed method is that it deals with complex rooms and is not bound

to single storeys.

1. INTRODUCTION

The creation of as-built Building Information Modeling (BIM)

models is a widely researched topic. These models reflect the

state of the building up to as-built conditions and are used for

quality control, quantity take-offs, maintenance and project plan-

ning (Volk et al., 2014, Patraucean et al., 2015). An as-built

model is obtained by updating an existing as-design model of the

structure or by reverse engineering it from measurements taken

on the site. This research focusses on the creation of a BIM with-

out a prior model since few buildings currently have a model. A

key aspect in the reconstruction is the modeling of the wall ge-

ometry as it forms the basis for other objects. Currently, these

objects are created by manually designing them based on point

cloud data acquired from the built structure. However, this pro-

cess is labour intensive and error prone.

Automated reconstruction approaches focus on the unsupervised

processing of point clouds. The interpretation of this data is chal-

lenging due to the number of points, noise and the complexity of

the structure (Tang et al., 2010). Also, most point clouds are ac-

quired with remote sensing techniques which are bound to Line-

of-Sight (LoS). As a result, crucial parts of the structure are oc-

cluded due to clutter or inaccessible areas. Reconstruction algo-

rithms make assumptions about these zones which are prone to

misinterpretation.

The emphasis of this work is on the reconstruction of walls from

large unstructured point clouds of buildings. More specifically,

we look to create wall objects that are both accurate and have

consistent topology. The proposed method is able to properly re-

construct and connect wall geometry even in highly cluttered and
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noisy environments. Also, our approach operates directly on the

3D point cloud itself and is designed for multi-storey buildings.

The remainder of this work is structured as follows. The back-

ground and related work is presented in Section 2. In Section 3.

the methodology is presented. The test design and experimen-

tal results are proposed in Section 4. Finally, the conclusions are

presented in Section 6.

2. BACKGROUND & RELATED WORK

The automated procedure of creating BIM objects from point

cloud data commonly consists of the following steps (Nguyen

and Le, 2013). First, the data is preprocessed for efficiency. In 2D

methods, the point cloud is represented as a set of raster images

consisting of a slice of the data or other information (Landrieu

et al., 2017, Anagnostopoulos et al., 2016). In 3D methods, the

point cloud is restructured as a voxel octree which allows efficient

neighbourhood searches (Vo et al., 2015). After the preprocess-

ing, the data is segmented. A set of primitives is detected that

replaces the point representation with the purpose of data reduc-

tion. Typically, lines are used in 2D methods and planes or cylin-

ders are used in 3D methods (Vo et al., 2015, Lin et al., 2015,

Fan et al., 2017, Vosselman and Rottensteiner, 2017). Next, the

segments are classified by reasoning frameworks exploiting lo-

cal and contextual information. Class labels such as floors and

walls are computed for each segment by using heuristics or ma-

chine learning techniques (Bassier et al., 2016, Wolf et al., 2015,

Xiong et al., 2013, Nikoohemat et al., 2017). The resulting la-

belled segments are used to extract the necessary parameters for

class-specific reconstruction algorithms.

Several researchers have proposed methods for the reconstruction

of wall geometry. Most approaches focus on the creation of wall
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Figure 1: Overview general workflow wall reconstruction. Colorised point cloud (a), labelled planar primitives including walls, ceilings,

floors, etc. (b), partial walls in grey and other geometry in red (c), partial rooms in grey and remaining geometry in red (d) and final

walls in grey with green interior and remaining geometry in red (e).

surfaces opposed to actual BIM geometry. For instance, Xiong

et al. and Adan et al. reconstruct planar wall boundaries and

openings based on machine learning (Xiong et al., 2013, Adan

and Huber, 2011). Michailidis et al. reconstruct severely oc-

cluded wall surfaces using a bayesian graph-cut optimization on

a cell complex decomposition (Michailidis and Pajarola, 2016).

We extend these approaches by clustering the wall segments and

thus using both faces of a wall to extract the necessary parameters

to accurately reconstruct volumetric BIM objects.

The reconstruction of rooms opposed to walls is also being re-

searched. Typically the initial wall segments are used to create

watertight room meshes. For instance, Oesau et al. consider

the creation of watertight rooms as a 2D graph-cut optimization

problem (Oesau et al., 2014). Budroni et al. and Previtali et

al. use line intersections in a 2D cell decomposition (Budroni

and Böhm, 2010, Previtali et al., 2014). Similar to our approach,

they combine both ceiling and floor geometry to create initial blue

prints for the rooms. Valero et al. solves the intersections of pre-

segmented wall lines to create a closed area (Valero et al., 2012).

In this research, the wall intersections are performed in 3D and

aided by the volumetric room representations which can deal with

more complex zones. Several 3D approaches also have been pre-

sented. For instance, Turner et al. proposed 3D voxel carving

to create watertight meshes of rooms (Turner and Zakhor, 2014).

They determine individual room labels by performing a min-cut

on a 2D graph of the Delaunay mesh of the floor plan. They

are one of the few researchers that perform a multi-storey recon-

struction which also is the goal of this research. However, their

emphasis is on room boundaries while this research focusses on

accurate wall reconstruction.

Closely aligned with our work are the room reconstruction meth-

ods of Ochmann et al. (Ochmann et al., 2016) and Mura et al. (Mura

et al., 2016, Mura et al., 2014). They both focus on finding the

optimal room layout. Ochmann et al. considers room reconstruc-

tion as a 2D graph optimization problem based on intersecting

candidate wall segments. After determining the room informa-

tion, they fit wall objects on the rooms edges. Mura et al. does

not reconstruct walls but computes the most likely set of 3D room

representations based on a 3D graph of the wall, floor and ceiling

segments. Both show very promising results for wall and room

reconstruction. We distinguish ourselves from them by consider-

ing volumetric wall segments opposed to surfaces for the recon-

struction. The best fit partial wall objects are very accurate and

lower the number of candidate intersections. Also, our method

focusses on multi-storey data sets.

3. METHODOLOGY

In this paper, a reconstruction algorithm is proposed that creates

both accurate and consistent wall geometry. An overview of the

general workflow is depicted in Fig. 1. First, the point cloud

data is segmented (Fig. 1a) and semantically labelled (Fig. 1b).

Next, the pre-segmented wall surfaces are clustered to create par-

tial wall objects (Fig. 1c). In parallel, partial rooms are computed

based on the nearby floor, ceiling and partial walls (Fig. 1d). Fi-

nally, the topology of the walls is computed given the intersec-

tions between the partial walls aided by the room information

(Fig. 1e). The consecutive steps are discussed in detail in the

following paragraphs.

Data Preprocessing Prior to the reconstruction, the data is seg-

mented and classified. First, the unstructured point cloud is rep-

resented as a voxel octree (Fig. 1a) after which planar patches are
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Figure 2: Overview workflow partial room reconstruction with partial walls in grey, floors in red and ceilings in purple: partial walls

(a), adjusted floors/ceilings by intersection with partial walls (b), match between floors and overlaying ceilings trough ray-tracing (c)

and convex hull of partial walls (d).

extracted from the data as presented in our previous research (Bassier

et al., 2017a). Next, the planar patches are subjected to a rea-

soning framework that computes class labels for each patch. A

pre-trained set of Support Vector Machines (SVM) is used for

the classification (Bassier et al., 2017b). The result is a set of

labelled segments that replaces the point cloud representation of

the building (Fig. 1b).

Partial Wall Reconstruction The partial wall reconstruction

consists of two consecutive steps. First, the individual wall seg-

ments are clustered using a heuristic reasoning framework. A

graph G(S,E) is defined with each node s ∈ S a wall seg-

ment and each edge e ∈ E a connection between neighbouring

surfaces. The euclidean distance between the boundaries of the

segments is used as the criterium for the adjacency matrix of G.

Pairwise relations are computed for each edge including the par-

alellity, coplanarity, orthogonality, intersection of the edges with

other surfaces and distance between boundaries. A majority vote

based on heuristic thresholds is used as a graph cut to compute a

set of clusters. The result is a set of associatively clustered walls

segments.

The second step is the reconstruction of the partial walls them-

selves. In this research, IfcWallStandardCase objects are created

conform the IFC4 standard (BuildingSMART International Ltd,

2013). This subtype of the IfcWall entity has access to the IfcMa-

terialLayerSet that defines the material layers in the wall, making

it the preferred type in Scan-to-BIM workflows. Additionally, the

parametric representation allows other entities to interact with the

object such as door and window openings. However, there are

geometric constraints to the IfcWallStandardCase such as verti-

cality and uniform thickness. Given the clustered segments, the

wall parameters including the orientation, location, boundary and

thickness are extracted. A weighted approach is considered based

on the area of each segment s to compute the best fit partial walls

w ∈ W . All parameters are extracted from the 3D surface rep-

resentation which ensures an accurate 3D reconstruction. The

orientation of the wall object is given by computing the best fit

centre plane p(w) (Eq. 1).

p(w) =



















cw =
∑

s∈w

ωscs

~nw =
∑

s∈w

ωs ~ns

(1)

Where the wall orientation ~nw and location cw are based on each

s ∈ w. The weights ωS are based on the surface areas of s.

As discussed above, each wall is computed with a uniform thick-

ness. Given p(w), the surfaces on both faces of each wall si, sj
are identified. Next, the best fit thickness d of w is given by

the weighted average distance from si and sj to p(w) along ~nw

(Eq. 2).

d(p(w), si, sj ,ω) =
∑

s∈si,sj

ωs

|axs + bys + czs + d|√
a2 + b2 + c2

(2)

where p(w) : d = ax + by + cz and ωs are the same as in the

orientation. The wall boundary of the partial walls is given by

the height between overlaying floors and the length of w in the

XY plane. The result is set of best fit partial wall objects with a

uniform thickness (Fig. 2a).

Room Reconstruction The room reconstruction is based on

the floors, ceilings and partial wall objects. Three consecutive

steps are defined for the room reconstruction (Fig. 2). First, the

partial wall objects W are used to segment the floors and ceil-

ings (Fig. 2b). The nearby w of each floor sf and ceiling surface

sc are identified based on the distance between boundaries. The

floors and ceilings are segmented by solving the physical inter-

section between sf , sc and W . The portions of sf and sc that lie

within W are removed. Also, the segmented surfaces are filtered

by size to avoid small parts of ceilings or floors to contribute to

the reconstruction.

Once the data is segmented, the floors and ceilings belonging to

each other are determined. A raytracing algorithm is proposed

that computes which floors and ceiling are directly overlayed

(Fig. 2c). For each triangle t in sf , a semi-infinite vertical ray
~l(x) = ~zx+ ~t(c) is constructed that contains the centroid t(c) of

t. Candidate ceilings for sf are found by the intersection between
~l(x) and the sc above. The candidates of sf are conditioned to in-

clude only the first intersection of each ray. Also, only candidate

sc are withheld when having sufficient overlap with the source

sf based on a threshold. sf and sc with no inliers are given an

offset up to the height of their nearest counterpart. Once sf and

sc are paired, their combined surface area is used to compute the

volumetric convex hull (Fig. 2d). the result is a set of volumetric

partial rooms.

Wall Topology The topology of the walls is computed based

on the intersections of the partial walls aided by the room infor-

mation. The centre plane of each partial wall is tested for inter-

sections with other nearby partial walls (Fig. 3a). The euclidean
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Figure 3: Overview workflow wall topology with partial walls in grey, floors in red, affected walls in green and changes in yellow:

Intersections partial walls (a), trim overextend walls (b), extend walls horizontally (c) and extend walls vertically (d).

Table 1: Properties Multi-storey School Facility

Properties Multi-storey building

Points ±500Million

Pre-segmented surfaces 7000

Wall segments 258

Floor segments 59

Ceiling segments 60

Reconstruction Time [s] 9.1s

Points ∈ LOA20 (0.05m) 49%

Points ∈ [95%] 0.22m

distance between the boundaries of the partial walls is used a cri-

terium for the neighbourhood search. Two types of connections

are defined: The intersection of two non-parallel walls and the or-

thogonal connection between two near parallel walls. A connec-

tion is valid when meeting the following conditions. The average

distance from the boundary of both partial walls to the intersec-

tion should fall within a threshold. Also, the intersecting walls

should be approximately orthogonal or parallel (Eq. 3).

θ‖ ≤ ~npw1 · ~npw2 ≤ θ⊥ (3)

where θ‖ and θ⊥ are the thresholds for respectively the paral-

lelism and orthogonality. Additionally, candidate intersections

may not extend walls so they collide with the partial rooms. Once

the intersections are determined, the final wall objects are created

by updating the partial wall objects given their new dimensions.

First, the partial walls that are overextended up to a threshold

Table 2: Results of intermediate steps

Category Ground Truth Recall [%] Precision [%]

Partial Walls 11 91 100

Partial Rooms 16 94 94

Wall Topology 14 100 100

are trimmed to match the centre plane of the intersecting wall

(Fig. 3b). Next, the walls with valid intersection points are ex-

tended along there centre plane in horizontal direction (Fig. 3c).

The height of the walls is determined by the height of the closest

overlaying and underlaying floor (Fig. 3d). The result is a set of

walls with consistent topology that accurately reflect the as-built

conditions of the Building Information Model (BIM).

The final step is to convert the geometry to actual BIM objects.

In this research, the IFC4 protocol is used since it is compati-

ble with most software. As previously stated, instances of the

IfcWallStandardCase class are created to have access to the ex-

tensive parameter set provided for this class (BuildingSMART

International Ltd, 2013). However, these objects have geometric

constraints such as verticality and uniform thickness. Therefore,

an abstraction is made of the geometry of each wall to create the

objects along the Z-direction with a uniform height and thickness.

The result is a set of best fit generic parametric BIM objects that

reflect the state of the building and have access to an extensive set

of wall parameters.

Figure 4: Overview clutter and occlusions wall reconstruction.
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Figure 5: Overview Results wall reconstruction: The wall segments in green and the IfcStandardWallcase objects in grey (left) and the

deviations between the model and the initial point cloud (right).

Figure 6: Overview partial room detection and wall topology: Failed room detection in purple due to absence floors and ceilings (left)

and overextended wall in red that was rejected by room information (right).

4. EXPERIMENTS

The algorithm was tested on a multi-storey building on the Tech-

nology Campus in Ghent, Belgium. A total of 55 scans was ac-

quired resulting in over half a billion 3D points (Table 1). The

data was not de-noised and a wide variety of objects was present

in the point clouds (Fig. 4). The algorithm was implemented

Rhino Grasshopper (McNeel, 2015). The segmentation and clas-

sification were performed with algorithms developed in previous

research (Bassier et al., 2017b, Bassier et al., 2017a).

The accuracy of the reconstructed BIM objects is tested against

the initial point cloud which serves as ground truth (Fig. 5a). Ta-

ble 1 and Fig. 5b show that the deviations between both data

sets is 0.05m and 0.22m for respectively 49% and 95% of the

data (U.S. Institute of Building Documentation, 2014). While the

majority of the wall boundaries are accurate, substantial devia-

tions are reported for complex walls with high detailing. This is

mainly due to the abstractions that were made to create IFCStan-

dardWallcase objects (BuildingSMART International Ltd, 2013).

For instance, the bottom portion of the exterior walls shows in-

creased errors due to an offset in the geometry. Additionally, sev-

eral erroneous walls are present due to misclustering and failed

intersections.

Table 2 reports the results of each step in the reconstruction pro-

cess. For the comparison, 11 partial walls were defined as ground

truth based on 258 pre-segmented wall segments. By default, the

maximum wall thickness for the clustering was set to 0.7m with

an angular threshold between segments of 15◦. Over 90% of the

wall segments were properly clustered save for a few smaller sur-

faces in complex scenarios. Next, the partial room detection was

based on 59 floors and 60 ceilings surfaces. By default, the per-

mitted overlap between overlaying ceilings for the raytracing of

the floors was set to 20%. Several floor and ceiling surfaces did

not have an overlaying or underlaying counterpart and were given

an assumed extrusion height. The associative clustering of the

partial room objects had a 94% recall and precision even though

the scenes were highly cluttered and occluded. Fig. 6a reveals

that zones that do not contain any floor or ceiling information are

initially not detected. This is expected since our algorithm relies

on this data for the reconstruction. For the wall topology, 14 inter-

sections were defined as ground truth (Table 2). For the detection,

the search radius for non-parallel walls was set to 2m while and

for near-parallel walls it was set to 0.8m. Overall, all candidate

intersections were found correctly due to the incorporation of the

partial room geometry. The experiments show that crucial con-

nections were rejected because of collisions with partial rooms

(Fig. 6b).
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5. DISCUSSION

Wall reconstruction is currently ongoing research. While most

methods are capable of dealing with single-storey box-like rooms,

there are few methods that deal with complex multi-storey zones.

A key aspect is the formulation of the wall reconstruction as a 2D

or a 3D optimization problem. In this research, it is stated that

a 3D approach is preferred as it is more likely to be independent

of horizontal floors, horizontal ceilings, vertical walls and con-

sistent storeys. However, some assumptions are still made. Our

approach relies for the initial detection of the rooms based on the

presence of planar floors and ceilings. Therefore, a small percent-

age of the rooms will not be detected. However, the results show

that the partial rooms have great potential to aid the wall topol-

ogy without the need for extensive assumptions about occluded

zones.

6. CONCLUSION

This paper presents an unsupervised method to reconstruct wall

objects from unstructured point clouds of buildings. A 3D ap-

proach is proposed that deals with complex multi-storey data sets.

First, partial walls are computed by associatively clustering pre-

segmented planar wall segments. Next, partial rooms are defined

by combining the floor,ceiling and wall geometry. The wall topol-

ogy is created by computing wall intersections conditioned on

the partial room objects. The final walls are created by defining

IfcWallStandardCase objects for each object conform the IFC4

standard. The result of the method is a set of topologically con-

sistent BIM walls that accurately reflect the as-built conditions of

a building.

The experiments indicates that the used method is a promising re-

construction framework for unstructured point cloud data. Over

90 % recall and precision is reported for the clustering of the wall

segments, the detection of the partial rooms and the reconstruc-

tion of the wall topology. When comparing to the initial point

cloud, it is revealed that the majority of the wall boundaries are

accurately reconstructed. However, there are major deviations

near wall detailing due to the abstractions made to create IfcWall-

StandardCase objects. The results also prove that, by integrating

room information in the reconstruction process, crucial false pos-

itives for the wall intersections are mitigated. Additionally, by

operating in 3D, the method is independent of horizontal floors,

ceilings and vertical walls. Overall, it is stated that the used algo-

rithm shows promising results for wall reconstruction.

In future work, the presented approach will be investigated fur-

ther to enhance the wall, room and topology detection. Also,

the integration of wall detailing in IfcWallStandardCase objects

is being researched along with wall opening detection. A similar

approach will be implemented toward the creation of floor and

ceiling objects.
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