
SIAM REVIEW c© 2014 Society for Industrial and Applied Mathematics
Vol. 56, No. 2, pp. 261–273

IFISS: A Computational
Laboratory for Investigating
Incompressible Flow Problems∗

Howard C. Elman†

Alison Ramage‡

David J. Silvester§

Abstract. The Incompressible Flow & Iterative Solver Software (ifiss) package contains software
which can be run with MATLAB or Octave to create a computational laboratory for the
interactive numerical study of incompressible flow problems. It includes algorithms for
discretization by mixed finite element methods and a posteriori error estimation of the
computed solutions, together with state-of-the-art preconditioned iterative solvers for the
resulting discrete linear equation systems. In this paper we give a flavor of the code’s main
features and illustrate its applicability using several case studies. We aim to show that
ifiss can be a valuable tool in both teaching and research.

Key words. finite elements, incompressible flow, iterative solvers, mathematical software

AMS subject classifications. 97N80, 76D99, 65M60, 65N22

DOI. 10.1137/120891393

1. Introduction. Research in computational mathematics is often motivated by
the results of numerical experiments. Frequently, a result is conjectured based on
behavior observed using a software environment such as MATLAB long before it is
supported by any formal analytic results. In this sense, the “computational labora-
tory” plays just as important a role in modern mathematics as physical laboratories
do in physics, chemistry, biology, and engineering. A similar observation applies in the
context of teaching computational mathematics: carrying out investigative numerical
experiments on particular topics helps students learn how to formulate hypotheses,
design simple experiments to test them, and interpret the resulting data. As well as
developing important deduction and interpretation skills, this hands-on approach is
often more useful in helping students remember critical ideas over a significant period
of time than a traditional textbook-only method.

With this in mind, the Incompressible Flow & Iterative Solver Software (ifiss)
toolbox [36] has been developed as a computational laboratory for the interactive

∗Received by the editors September 14, 2012; accepted for publication (in revised form) July 25,
2013; published electronically May 8, 2014.

http://www.siam.org/journals/sirev/56-2/89139.html
†Department of Computer Science, University of Maryland, College Park, MD 20742 (elman@

cs.umd.edu). The work of this author was supported in part by the U.S. National Science Foundation
under grant DMS1115317 and the U.S. Department of Energy under grant DE-SC0009301.

‡Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
(A.Ramage@strath.ac.uk).

§School of Mathematics, The University of Manchester, Manchester M13 9PL, UK (d.silvester@
manchester.ac.uk).

261

262 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

numerical study of incompressible flow problems.1 The software package includes
algorithms for discretization by mixed finite element methods and a posteriori error
estimation of the computed solutions, together with state-of-the-art preconditioned
iterative solvers for the discrete linear systems that arise. The current release is ifiss
3.2. Version 2.0 was released in conjunction with the monograph Finite Elements and
Fast Iterative Solvers [13] and was used to perform the computational experiments
described therein. An overview of this earlier version of ifiss can be found in [12].
The aim of this review article is therefore not to give a technical description of the
software, but, instead, to give a flavor of its usefulness in driving our research and in
enhancing our teaching. In what follows we focus on four specific examples of how
we have used ifiss in this way, both as a teaching and research tool and as a starting
point for developing code for more specialized research applications.

2. Overview. The ifiss toolbox is structured as a standalone package for study-
ing discretization algorithms for partial differential equations (PDEs) and for explor-
ing and developing algorithms in numerical linear and nonlinear algebra for solving the
associated discrete systems. There are currently twenty eight built-in test problems,
all based on common PDEs. Seventeen of these are elliptic PDE problems and are as-
sociated with the Poisson equation or steady-state versions of the convection-diffusion
equation, the Stokes equations, or the Navier–Stokes equations. The remaining test
problems are parabolic and involve the heat equation, advection-diffusion equations,
or the Navier–Stokes equations modeling unsteady incompressible flow.

The first main feature of the package concerns problem specification and finite
element discretization. For each PDE, ifiss offers a choice of two-dimensional do-
mains on which the problem can be posed, along with boundary conditions and other
aspects of the problem, and a choice of finite element discretizations on uniform or
stretched quadrilateral element meshes. The package therefore makes it easy to study
the accuracy of finite element solutions, different choices of elements, and a poste-
riori error estimates (see section 3.1). In addition, special features associated with
individual problems can be explored. These include the effects of boundary layers on
solution quality for the convection-diffusion equation, and the effects of discrete inf-
sup stability and adaptive time stepping on accuracy for the Stokes and Navier–Stokes
equations.

Another important aspect of ifiss concerns iterative solution of the discrete alge-
braic systems, with emphasis on preconditioned Krylov subspace methods. The key
to fast solution lies in the choice of effective preconditioning strategies. The ifiss

package offers a range of options, including algebraic methods such as incomplete LU
factorizations and algebraic multigrid, as well as more sophisticated state-of-the-art
methods designed to take advantage of the specific structure of discrete flow equa-
tions. In addition, there is a choice of iterative strategies, Picard iteration or Newton’s
method, for solving the nonlinear algebraic systems arising from Navier–Stokes prob-
lems. Again, ifiss offers scope for investigating issues like the choice of finite element
approximation and the influence of the time step on the convergence of iterative solvers
in a straightforward way (see section 3.2).

There are of course many other finite element packages that could be used to inves-
tigate any of the above topics. As well as commercial codes (for example, ABAQUS,
COMSOL, and LS–DYNA), there are a number of excellent free software packages: in

1The software package is freely available (see http://www.manchester.ac.uk/ifiss or http://www.
cs.umd.edu/∼elman/ifiss) and can be run using MATLAB or Octave. The source may be redis-
tributed and/or modified under the terms of the GNU Lesser General Public License.

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 263

particular, ALBERTA [32], DUNE [6], and FEniCS [23]. A distinctive feature of ifiss
is that it runs within a MATLAB environment, which means that the programming
level is relatively high, so the source code is readable, portable, and easily adaptable.
In this sense, MATLAB is an ideal computational laboratory. Our finite element im-
plementation is also very efficient. Throughout ifiss all local calculations (for exam-
ple, quadrature in generating element matrices, application of essential boundary con-
ditions, and a posteriori error estimation) are vectorized over the elements—leading to
efficient computation on the current generation of multicore processor architectures.
We speculate that the majority of the ifiss code runs as fast as if it were coded in C
or FORTRAN.

The design of ifiss not only facilitates the study of alternative discretizations
and iterative solution algorithms, it also makes it easy to examine the interaction
between the two and hence determine the overall solution cost. This feature is illus-
trated later using the example of the development of an optimal iterative solver for
symmetric indefinite systems (see section 3.3). As well as being a useful source of
benchmark problems, the package provides a convenient starting point for research
projects that require the construction of new problem classes, discretizations, or so-
lution algorithms. A detailed description of how new problems can be incorporated
into ifiss is given in the Installation and Software Guide [35]. An example of this
type of spin-off development is described in section 3.4.

3. Illustrative Examples. In this section we describe four situations where ifiss

has been used as a teaching or research tool. The descriptions given here are, by
necessity, somewhat abbreviated. Readers who would like to learn more about the
specific details should consult the cited references.

3.1. Investigating Finite Element Convergence. When teaching finite element
analysis, it is common to establish a priori and a posteriori error bounds which describe
the convergence of the finite element approximation as the underlying grid is refined
(see, for example, [3, 13, 20, 41] for an introduction to finite element approximation
and [4] for a detailed derivation of classical error bounds). Having done this in class, it
is easy to reinforce the practical importance of these ideas using numerical experiments
within ifiss. (The following example uses diffusion test problems 3 and 4. Figures 3.1
and 3.3 can be generated using the ifiss function sirev ex3 1.)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

(a) Square domain.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) L-shaped domain.

Fig. 3.1 Sample finite element approximations of analytic solutions.

264 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

Let us consider the problem of solving Laplace’s equation on the domain [−1, 1]×
[−1, 1] for a smooth solution whose analytic form is known (see [13, Example 1.1.3]).
A three-dimensional surface plot of a finite element solution computed on a 16× 16
square grid is shown in Figure 3.1(a). The ifiss toolbox automatically provides
a posteriori energy estimates of the approximation error for both bilinear Q1 and
biquadratic Q2 approximation. These energy estimates are plotted in Figure 3.2(a)
for a sequence of square grids (Q1: solid line, Q2: dashed line). It can be readily seen
that the Q1 error is halved with every successive grid refinement, whereas the Q2

error is reduced by a factor of four. This behavior is consistent with classical energy
estimates; see, e.g., (1.80) and (1.81) in [13].2

Next, let us repeat the experiment for a more interesting test problem with a
singular solution. This time we cut out the region [−1, 0]× [−1, 0] and solve Laplace’s
equation on the resulting L-shaped domain. The problem now has a singularity at
the reentrant corner (see Figure 3.1(b)). The errors for this problem are plotted in
Figure 3.2(b).

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

no. of degrees of freedom

er
ro

r
es

tim
at

e

Q1 elements
Q2 elements

(a) Square domain.

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

no. of degrees of freedom

er
ro

r
es

tim
at

e

Q1 elements
Q2 elements

(b) L-shaped domain.

Fig. 3.2 Behavior of the a posteriori error estimates.

This time, using higher-order elements does not improve the asymptotic conver-
gence rate, and both discretization methods have exactly the same rate of convergence.
To emphasize the importance of the smoothness in the solution, we re-solve the sec-
ond problem using a stretched grid, whose successive element edges are a factor of
1.5 times longer then the adjacent edge; see Figure 3.3(a). The surface plot of the
estimated error that ifiss provides, shown in Figure 3.3(b), clearly shows the diffi-
culty encountered at the interior corner. By comparing the estimated errors, it can
be seen that for Q2 approximation, the overall accuracy obtained with 161 degrees of
freedom is comparable with that obtained using a uniform grid with 2945 degrees of
freedom. Of course, the challenge here is to determine the optimal stretching a priori!

3.2. Comparing Iterative Solvers for Parabolic PDE Problems. The ifiss tool-
box is an excellent tool for studying unsteady flow problems. To show this, consider
solving a Navier–Stokes flow problem with a view to exploring the effect of the size of
the time step on the convergence of the linear solvers used at each time level. Details

2The a posteriori estimates are remarkably accurate—the effectivity index (the ratio of the esti-
mated and the exact energy errors) is 0 · 9992 for the 16 × 16 grid shown in Figure 3.1(a).

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 265

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Q1 finite element solution.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(b) Q1 estimated error.

Fig. 3.3 L-shaped domain with an optimally-stretched rectangular grid.

of the mixed finite element methodology required for such situations can be found
in [5, 13, 14, 18]. As a representative problem, we take the example of spinning up
from a quiescent state to a steady lid-driven cavity flow in a square-shaped domain.
The viscosity parameter ν is set to 1/200 and the flow Reynolds number is 400. The
spatial discretization is a mixed finite element method with a stable Q2–Q1 mixed
approximation of the velocity and pressure, respectively. (See [13, Example 7.1.3] for
details of the steady-state version of this problem). Snapshots of the computed flow
(generated by the ifiss function sirev ex3 2) are shown in Figure 3.4.

Streamlines: time = 1.05 Streamlines: time = 200.00Streamlines: time = 5.08

Fig. 3.4 Representative snapshots of the lid-driven cavity flow.

The self-adaptive time-stepping algorithm used in ifiss involves an implicit time
integrator using a stabilized trapezoidal rule with an explicit Adams–Bashforth meth-
od for error control (see [21] for details). The evolution of the time step with the
accuracy error tolerance εt set to 10−4 is shown in Figure 3.5(a). At each individual
time step, a linear algebra system with a distinctive saddle-point structure (see [13,
section 7.3]),

(
F BT

B 0

)(
u
p

)
=

(
f
g

)
,

must be solved. We present results here using a preconditioned GMRES linear solver
[31], comparing the performance of three alternative preconditioners (additional meth-

266 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

ods are available in ifiss). The choices are
• ilu Incomplete LU factorization with zero fill-in (using the MATLAB function
ilu with the ‘nofill’ option); see, e.g., [29, Chapter 10].

• pcd Pressure convection-diffusion preconditioning, described in [13, 22, 34].
• lsc Least-squares commutator preconditioning, described in [9, 10, 13].

The first of these is a standard “black-box” preconditioner, while the latter two meth-
ods are specifically designed for saddle-point systems coming from discretization of
the linearized Navier–Stokes equations. Both of these involve the use of an upper
block-triangular preconditioner,

M =

(
F BT

0 −MS

)
,

where MS is an approximation to the Schur complement operator S = BF−1BT . The
two alternatives differ in the way in which this approximation is made.

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Time step number

T
im

e
st

ep
 s

iz
e

(a) Time step size.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

Time step size

Ite
ra

tio
ns

ILU
LSC
PCD

(b) Iterations per time step.

Fig. 3.5 Time-stepping data for the representative lid-driven cavity flow problem.

Figure 3.5(b) shows the number of preconditioned GMRES iterations taken for
the linear solve at each time step for the lid-driven cavity test problem with 8450
degrees of freedom (these individual systems are generated using the ifiss function
snapshot solveflow). The horizontal axis shows the time step size, and the vertical
axis shows the number of GMRES iterations required for convergence with a tolerance
of 10−6 at that time step. From this plot it is evident that the performance of all
the preconditioned linear solvers tested deteriorates as the time step size increases—
this is a known issue with unsteady simulations. The interesting thing, however, is
the degree of deterioration, which is clearly different for each preconditioner. Such
considerations can be important in the design of an efficient adaptive solver, suggesting
the possibility of automatically switching the type of preconditioner used as the time
step size changes.

3.3. Linking Discretizations and Solvers. One of the more unusual features that
ifiss offers is easy access to the interplay between finite element discretizations and
iterative solvers. Details of how this can be achieved are given in the Installation and
Software Guide [35]. As an example of how the package has been used effectively in
this way, we now briefly summarize the work of Silvester and Simoncini [38] on the
development of an optimal solver for symmetric linear systems associated with mixed

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 267

approximation of PDEs. Specifically, we consider this work in the context of solving
a discrete Stokes problem, namely, the slow-flow version of the regularized lid-driven
cavity problem described in the previous section (see, for example, [5, 13, 14, 18] for
background material on Stokes problems).

The new optimal solver described in [38] has three key ingredients. First, it uses
a block preconditioner which gives convergence at a rate independent of the problem
parameters. Second, it uses an adaptation of the usual minres algorithm of Paige
and Saunders [26], which takes advantage of certain aspects of the finite element dis-
cretization in the design of the iterative solution method. The resulting est minres

algorithm (see [38, Fig. 10]), instead of minimizing in the standard Euclidean norm of
the residual vector, minimizes in a computable monotonically decreasing norm that
is equivalent to the natural norm for error estimation of the discrete solution. The
final new feature is the incorporation of a posteriori error estimation functionality so
that a precise stopping criterion can be identified which balances the algebraic error
with the PDE approximation error. The combination of these ideas clearly shows
why considering the PDE origin of a linear system is essential in the design of efficient
algebraic solvers.

To fix notation, we write the linear system arising from mixed finite element
approximation of our test Stokes cavity flow problem as

(3.1)

[
A BT

B 0

] [
u
p

]
=

[
f
g

]
or Kx = b,

with residual and algebraic error at the kth step given by r(k) = b−Kx(k) and e(k) =
x − x(k), respectively (where x represents the exact solution to (3.1)). Now suppose
system (3.1) is preconditioned with a symmetric and positive definite preconditioner,
say M . That is, conceptually we think of solving MKx = Mb instead, choosing M
so that minres convergence is faster than for (3.1). One natural choice for a Stokes
problem is the canonical preconditioner

(3.2) M =

[
A−1 0
0 Q−1

]

(where Q represents the pressure mass matrix) that maps the dual finite element
space into the original (see [24, 28] for details). Note that the quantity minimized
at each step by standard preconditioned minres iteration, ‖r(k)‖M , is measured in a
preconditioner-dependent norm. In terms of the underlying PDE, as the discretization
error for the Stokes problem is measured in the L2 norm for the gradient of the velocity
and in the L2 norm for pressure (see [13, section 5.4]), the natural matrix norm here
is ‖e(k)‖E , where

E =

[
A 0
0 Q

]
.

Ideally, we would like to relate the quantity computed by minres to this natural
norm which arises naturally from the PDE. For the Stokes problem, we assume that
the finite element discretization used is inf-sup stable (see, e.g., [5, equation (2.29)]).
With this assumption, we can use the heuristic

(3.3) ‖e(k)‖E ≤
√
2

γ2
‖r(k)‖M ,

where γ is the so-called inf-sup constant (see [38]).

268 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

In theory, inequality (3.3) could be used as the basis for a stopping criterion for
minres iteration (by stopping when the quantity on the right-hand side of (3.3) is
less than some fixed tolerance). However, there are still two issues to be addressed
before this can be considered useful in practice. The first of these is that, for realistic
problems, an “ideal” preconditioner of the form (3.2) would usually have to be replaced
by a (cheaper) spectrally equivalent preconditioner, say M∗: the example given in [38]
replaces the action of applying A−1 by a fixed number of algebraic multigrid (AMG)
V-cycles and the action of applying Q−1 by a fixed number of Jacobi iterations with
Chebyshev acceleration. The authors show there that if the approximation of M by
M∗ is sufficiently accurate, then the impact on convergence of replacing the M -norm
in (3.3) by the M∗-norm will be minimal.

The second practical issue with (3.3) is the need to explicitly compute the inf-sup
constant γ. It turns out, however, that an accurate estimate of γ2 can be automatically
generated at every step of est minres by exploiting the connection between the
iteration and the Lanczos estimates of the eigenvalues of the preconditioned matrix.
In addition, the algorithm gives a bonus in the form of a free estimate of the accuracy
of M∗ as an approximation to M : see [38, section 4.1] for details.

The final step in producing an optimal parameter-free iterative method is to con-
nect the actual stopping tolerance with the PDE discretization error. With established
a posteriori error estimation technology, an estimate for the PDE discretization error
at each step can be computed and the iteration terminated when the appropriate mea-
sure of the absolute residual is less than this value. Denoting such an error estimate
at est minres step k by η(k), the final practical stopping criterion suggested is

(3.4)

√
2

γ2
‖r(k)‖M∗ ≤ η(k),

which, in light of (3.3), forces the algebraic error to be comparable with the estimation
of the discretization error.

Figure 3.6 shows some convergence plots for est minres applied to the regular-
ized lid-driven cavity test problem with Q2–P1 approximation on a 64 × 64 stretched
grid of square elements. In each case, the evolution of three quantities is shown: the
upper bound estimate for ‖e(k)‖E from (3.3) (dashed line), the approximation error

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

10
2

iteration number k

 √
2/γ2

k ||rk||M∗
ηk

||rk||M∗

(a) One AMG V-cycle.

0 5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

iteration number k

 √
2/γ2

k ||rk||M∗
ηk

||rk||M∗

(b) Four AMG V-cycles.

Fig. 3.6 Convergence curves.

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 269

estimate η(k) (solid line), and the preconditioned residual error (dash-dot line). The
(automatically computed) termination point associated with the stopping test (3.4)
is marked with ∗. It can be seen from Figure 3.6(a) that with one AMG V-cycle in
the preconditioner, the iteration converges in 19 iterations, whereas with four AMG
V-cycles (see Figure 3.6(b)), only 14 iterations are required. Other aspects of the per-
formance of this optimal solver can be seen using the ifiss routine stokesflowdemo.

3.4. Applications and Extensions. One immediate application of ifiss is as a
convenient source of sample matrices for testing new ideas. This is not just limited to
the development of algorithms specifically for problems in incompressible fluid flow
[1, 2]. ifiss has also been used as a source of test problems in a much more general
way, for example, in assessing the performance of new Krylov subspace solvers and
preconditioners for a wider class of saddle-point problems [42, 45, 46], and for specific
applications in optimization [7], signal processing [15], and eigenvalue computations
[19, 27, 43]. Details of how the code can be used in this way are given in the Instal-
lation and Software Guide [35]. Since its creation in 1997 (see [8]) the ifiss package
has evolved to include many additional features such as new equation models, dis-
cretization methods, preconditioning methods, and solver algorithms. Because ifiss

has been deliberately designed in a modular way, it is relatively easy for the user to
incorporate new developments and additional code, or to extract parts of ifiss to be
used in combination with other software. Examples where ifiss has been used suc-
cessfully in this way include the enhanced package pifiss [37] for solving potential flow
problems, stochastic finite element software used to study uncertainty quantification
[33, 44], and a coupled flow-orientation solver in liquid crystal modeling [39].

In this section we highlight one particular application [11] where ifiss has been
used to explore a fundamental question in mathematical modeling concerning the
stability of dynamical systems. When they arise from discretization of parameter-
dependent PDEs, these systems have the form

(3.5) Mut = f(u, ν),

where f : Rn × R → R
n is a nonlinear mapping, u = u(ν)(t) ∈ R

n is a discrete state
variable that depends on a scalar parameter ν, and (for finite elements) M is a mass

matrix. The question of interest is: given a steady solution u(ν), i.e., u
(ν)
t = 0, and a

small perturbation δ(0) at time t = 0, does δ(t) decay with time, in which case the
steady solution is stable, or does it grow? A necessary condition for stability in the
study of linear stability analysis is that all eigenvalues of the generalized eigenvalue
problem

(3.6) Jx = μMx

have negative real parts, where J = ∂f
∂u (u, ν) is the Jacobian matrix of f evaluated at

the specific parameter value ν.
In cases of Hopf bifurcation [17], the eigenvalues of interest consist of a complex

conjugate pair that, as ν varies from a stable regime to a critical value ν∗ at which
stability is lost, traces out paths moving from left to right in the complex plane until
they cross the imaginary axis. The identification of ν∗ is a difficult computational task
because of complexities associated with the eigenvalue problem (3.6). For large-scale
discretizations, J will be too large to use direct eigenvalue methods such as the QR
algorithm [16, 40]. The alternative choice, iterative methods such as Arnoldi-based
methods or subspace iteration [30, 40], can compute only a few selected eigenvalues.

270 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−1.5

−1

−0.5

0

0.5

1

1.5

−7 −6 −5 −4 −3 −2 −1 0 1
−6

−4

−2

0

2

4

6

Fig. 3.7 Eigenvalues of the Jacobian system for driven cavity flow (left) and flow over an obstacle
(right).

Without any information about the location of the important eigenvalues, iterative
methods may have difficulty finding them.

ifiss provides an easy way to generate interesting benchmark problems and to
incorporate them into the study of new algorithms. In particular, it is known that two
classic problems, driven cavity flow and flow over an obstacle, exhibit Hopf bifurca-
tions. Examples of the distributions of 300 eigenvalues closest to the origin for these
two problems are shown in Figure 3.7. The rightmost eigenvalues are highlighted with
“×”. Note that for the cavity problem (shown on the left), there are many poorly
separated eigenvalues, and an iterative method applied to M−1J will have great dif-
ficulty finding them. The alternative is to find the largest inverse eigenvalue of (3.6)
using J−1M . If there are many eigenvalues smaller in modulus than the critical ones,
as in the case of the cavity problem, this also causes problems for (inverse) iterative
methods. In [11], Elman et al. have used ifiss to explore and develop new algorithms
to address these issues.

For models of incompressible flow, the Jacobian matrix has the structure

J(ν) =

(
νL+N(ν) BT

B 0

)
,

where ν is the kinematic viscosity. If we have an estimate ν0 for the critical value ν∗,
then

J(ν∗) ≈
(
ν0L+N(ν0) BT

B 0

)
+ (ν∗−ν0)

(
L+N ′(ν0) 0

0 0

)
≡ A+ λC,

where L is a discrete Laplacian and N(ν) is a parameter-dependent matrix that
represents the effect of nonlinearity in the Navier–Stokes equations, including convec-
tion.3 When the Jacobian is of this form, (3.6) is a parameterized eigenvalue problem
(A + λC)x = μMx. It is shown in [25] that the solution to this problem can be
obtained by solving a related eigenvalue problem with a special Lyapunov structure

(3.7) AZMT +MZAT + λ (CZMT +MZCT) = 0.

The quantity sought is the smallest real parameter λ for which there is a solution Z in
(3.7). (The matrix solution Z, which is also referred to as an eigenvector, is of rank 2

3In [11], the matrix C = dJ
dν

(ν0) was approximated using a forward difference approximation.

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 271

and has the form Z = V DV T ; see [11, 25] for details.) This has the desirable feature
of requiring a small real eigenvalue, and a variant of inverse iteration can be used to
find it. Once λ is obtained, the critical parameter is estimated as ν∗ = ν0 + λ. It
is also shown in [25] that the rightmost eigenvalues of the parameterized eigenvalue
problem can also be found easily by solving the 2× 2 problem

V T (A+ λC)y = μV TMV y.

In [11], this idea was explored in detail for the benchmark problems above.
In general, it can be difficult to identify the desired (rightmost) eigenvalue using

a method such as implicitly restarted Arnoldi, especially when, as in Figure 3.7, there
are many poorly separated eigenvalues. Using the alternative approach of trying to
find the largest eigenvalue of the inverse eigenvalue problem is also difficult when the
imaginary part of the eigenvalue sought is large. The method discussed above is poten-
tially more robust than these conventional methods for identifying Hopf bifurcations.
Having access to ifiss is what made this study possible.

4. Summary and Future Developments. The ifiss package is designed to be
accessible—anyone with a basic knowledge of MATLAB can use it to gain under-
standing of the key concepts underlying the numerical modeling of PDEs. The case
studies described in this review article highlight the potential of using the ifiss pack-
age to explore the numerical analysis of the PDEs underlying incompressible flow.
The package is currently used in academic institutions around the world to support
research and teaching. Examples of extensions to ifiss that are currently being devel-
oped include the incorporation of unstructured triangular meshes and the extension
to PDE problems with random data. In the future, we also envisage extending the
capabilities of ifiss to three dimensions, making use of parallel MATLAB constructs
in order to take advantage of multicore architectures.

REFERENCES

[1] M. Benzi and X. P. Guo, A dimensional split preconditioner for Stokes and linearized Navier-
Stokes equations, Appl. Numer. Math., 61 (2011), pp. 66–76.

[2] M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners
for the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 66
(2011), pp. 486–508.

[3] D. Braess, Finite Elements, 3rd ed., Cambridge University Press, London, 2007.
[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd

ed., Springer-Verlag, New York, 2010.
[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New

York, 1991.
[6] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, DUNE–FEM: The FEM Mod-

ule of the Distributed and Unified Numerics Environment, http://dune.mathematik.uni-
freiburg.de, accessed January 1, 2014.

[7] H. S. Dollar, N. I. M. Gould, M. Stoll, and A. J. Wathen, Preconditioning saddle-point
systems with applications in optimization, SIAM J. Sci. Comput., 32 (2010), pp. 249–270.

[8] H. Elman, D. Silvester, and A. Wathen, Iterative methods for problems in computational
fluid dynamics, in Iterative Methods in Scientific Computing, R. Chan, T. Chan, and
G. Golub, eds., Springer, Singapore, 1997, pp. 271–327.

[9] H. C. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block precon-
ditioners based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–
1668.

[10] H. C. Elman, V. E. Howle, J. Shadid, D. J. Silvester, and R. Tuminaro, Least squares
preconditioners for stabilized discretizations of the Navier–Stokes equations, SIAM J. Sci.
Comput., 30 (2007), pp. 290–311.

272 HOWARD C. ELMAN, ALISON RAMAGE, AND DAVID J. SILVESTER

[11] H. C. Elman, K. Meerbergen, A. Spence, and M. Wu, Lyapunov inverse iteration for
identifying Hopf bifurcations in models of incompressible flow, SIAM J. Sci. Comput., 34
(2012), pp. A1584–A1606.

[12] H. C. Elman, A. Ramage, and D. J. Silvester, Algorithm 886: IFISS, a Matlab toolbox for
modelling incompressible flow, ACM Trans. Math. Software, 33 (2007), 14.

[13] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers
with Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford,
UK, 2005.

[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer-Verlag, Berlin, 1986.

[15] G. H. Golub, M. Stoll, and A. J. Wathen, Approximation of the scattering amplitude and
linear systems, Electron. Trans. Numer. Anal., 31 (2008), pp. 178–203.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[17] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM,
Philadelphia, 2000.

[18] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic
Press, San Diego, CA, 1989.

[19] C.-H. Guo, N. J. Higham, and F. Tisseur, An improved arc algorithm for detecting definite
Hermitian pairs, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1131–1151.

[20] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Dover, Mineola, NY, 2009.

[21] D. A. Kay, P. M. Gresho, D. F. Griffiths, and D. J. Silvester, Adaptive time-stepping for
incompressible flow. Part II: Navier–Stokes equations, SIAM J. Sci. Comput., 32 (2010),
pp. 111–128.

[22] D. Kay, D. Loghin, and A. J. Wathen, A preconditioner for the steady-state Navier–Stokes
equations, SIAM J. Sci. Comput., 24 (2002), pp. 237–256.

[23] A. Logg, K.-A. Mardal, and G. Wells, eds., Automated Solution of Differential Equations
by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, Springer, Berlin, 2012,
http://fenicsproject.org.

[24] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differ-
ential equations, Numer. Linear Algebra Appl., 18 (2010), pp. 1–40.

[25] K. Meerbergen and A. Spence, Inverse iteration for purely imaginary eigenvalues with ap-
plication to the detection of Hopf bifurcations in large-scale problems, SIAM J. Matrix
Anal. Appl., 31 (2010), pp. 1982–1999.

[26] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[27] J. Rommes, Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax =
λBx with singular B, Math. Comp., 77 (2008), pp. 995–1015.

[28] T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 887–904.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[30] Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised ed., SIAM, Philadelphia,

2011.
[31] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[32] A. Schmidt and K. G. Siebert, ALBERTA: An Adaptive Hierarchical Finite Element Toolbox,

http://www.alberta-fem.de, accessed January 1, 2014.
[33] D. J. Silvester, A. Bespalov, and C. E. Powell, A framework for the development of

implicit solvers for incompressible flow problems, Discrete Contin. Dyn. Syst. Ser. S, 5
(2012), pp. 1195–1221.

[34] D. J. Silvester, H. C. Elman, D. Kay, and A. J. Wathen, Efficient preconditioning of the
linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128
(2001), pp. 261–279.

[35] D. J. Silvester, H. C. Elman, and A. Ramage, Incompressible Flow Iterative Solution Soft-
ware (IFISS) Installation and Software Guide, Version 3.3, http://www.maths.manchester.
ac.uk/ifiss/ifiss guide 3.3.pdf, 2013.

[36] D. J. Silvester, H. C. Elman, and A. Ramage, Incompressible Flow and Iterative Solver
Software (IFISS), Version 3.3, http://www.manchester.ac.uk/ifiss/, 2013.

[37] D. J. Silvester and C. E. Powell, Potential (Incompressible) Flow and Iterative Solver
Software (PIFISS), http://www.manchester.ac.uk/ifiss/pifiss.html, 2007.

[38] D. J. Silvester and V. Simoncini, An optimal iterative solver for symmetric indefinite systems
stemming from mixed approximation, ACM Trans. Math. Software, 37 (2010), 42.

IFISS: FINITE ELEMENTS AND FAST ITERATIVE SOLVERS 273

[39] A. M. Sonnet and A. Ramage, Computational Fluid Dynamics for Nematic Liquid Crystals,
Research Report 28-07, Department of Mathematics and Statistics, University of Strath-
clyde, 2007.

[40] G. W. Stewart, Matrix Algorithms. Volume II: Eigensystems, SIAM, Philadelphia, 2001.
[41] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, 2nd ed., Wellesley–

Cambridge Press, 2008.
[42] L.-Y. Sun and J. Liu, Constraint preconditioning for nonsymmetric indefinite linear systems,

Numer. Linear Algebra, 17 (2010), pp. 677–689.
[43] D. B. Szyld and F. Xue, Efficient preconditioned inner solves for inexact Rayleigh quotient

iteration and their connections to the single-vector Jacobi–Davidson method, SIAM J.
Matrix Anal. Appl., 32 (2011), pp. 993–1018.

[44] E. Ullmann, H. C. Elman, and O. G. Ernst, Efficient iterative solvers for stochastic Galerkin
discretizations of log-transformed random diffusion problems, SIAM J. Sci. Comput., 34
(2012), pp. A659–A682.

[45] M. B. van Gijzen and P. Sonneveld, Algorithm 913: An elegant IDR(s) variant that effi-
ciently exploits biorthogonality properties, ACM Trans. Math. Software, 38 (2011), 5.

[46] J. T. Zhou and Q. A. Niu, Substructure preconditioners for a class of structured linear systems
of equations, Math. Comput. Model., 52 (2010), pp. 1547–1553.

