
Turk J Elec Eng & Comp Sci
(2019) 27: 2344 – 2360
© TÜBİTAK
doi:10.3906/elk-1806-192

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

lFIT: an unsupervised discretization method based on the
Ramer–Douglas–Peucker algorithm

Alev MUTLU∗ , Furkan GÖZ , Orhan AKBULUT
Department of Computer Engineering, Kocaeli University, Kocaeli, Turkey

Received: 26.06.2018 • Accepted/Published Online: 17.12.2019 • Final Version: 15.05.2019

Abstract: Discretization is the process of converting continuous values into discrete values. It is a preprocessing
step of several machine learning and data mining algorithms and the quality of discretization may drastically affect
the performance of these algorithms. In this study we propose a discretization algorithm, namely line fitting-based
discretization (lFIT), based on the Ramer–Douglas–Peucker algorithm. It is a static, univariate, unsupervised, splitting-
based, global, and incremental discretization method where intervals are determined based on the Ramer–Douglas–
Peucker algorithm and the quality of partitioning is assessed based on the standard error of the estimate. To evaluate
the performance of the proposed method, a set of experiments are conducted on ten benchmark datasets and the achieved
results are compared to those obtained by eight state-of-the-art discretization methods. Experimental results show that
lFIT achieves higher predictive accuracy and produces less number of inconsistency while it generates larger number
of intervals. The obtained results are also validated through Friedman’s test and Holm’s post hoc test which revealed
the fact that lFIT produces discretization schemes that statistically comply both with supervised and unsupervised
discretization methods.

Key words: Unsupervised discretization, the Ramer–Douglas–Peucker algorithm, polyline simplification, the standard
error of the estimate

1. Introduction
In computing and statistics, discretization refers to the problem of converting continuous values into discrete
values. Discretization is a crucial step of several machine learning and data mining algorithms as some algorithms
work only with discrete values [1, 2], algorithms may run faster and build more accurate models with discrete
values [3], and the performance of discretization may drastically affect the performance of the overall system [4].
Moreover, it was reported that discrete values are more informative and models built on such values are rather
shorter and more human interpretable [5, 6]. Although there are algorithms such as support vector machines,
logistic regression, and neural networks that perform better with continuous values, these methods may suffer
from difficult model interpretation and long training time [7, 8].

In this work, we present a static, univariate, unsupervised, splitting-based, global, and incremental
discretization method, namely lFIT, based on the Ramer–Douglas–Peucker (RDP) algorithm [9, 10] and the
standard error of the estimate. The RDP algorithm is a line-simplification and point-reduction algorithm that
inputs a set of continuous values representing a polyline and a tolerance value and outputs a set of values that
define starting and ending values of line segments that approximate the original polyline such that the distance
∗Correspondence: alev.mutlu@kocaeli.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
2344

https://orcid.org/0000-0003-0547-0653
https://orcid.org/0000-0002-6726-3679
https://orcid.org/0000-0003-0096-0688

MUTLU et al./Turk J Elec Eng & Comp Sci

between any two points is not less than the tolerance value. In this study, we assume that points returned by
the RDP algorithm correspond to cut-points and values that fall between two consecutive cut-points define an
interval.

Based on the tolerance value, the RDP algorithm may return different line fittings that correspond to
different discretization schemes. To find the best scheme, lFIT generates multiple schemes and calculates the
standard error of the estimate of each. lFIT returns the scheme whose standard error of the estimate is less than
some user-defined threshold such that it is generated with the highest tolerance value. To handle different value
ranges, the proposed method implements a data-normalization step where continuous values are normalized
into the [0, 1] scale.

To evaluate the performance of the proposed method, ten benchmark classification datasets are discretized
with two unsupervised discretization methods, namely equal-width (EW), equal-frequency (EF), six supervised
discretization methods, namely 1R [11], class-attribute contingency coefficient (CACC) [12], class-attribute
interdependence maximization (CAIM) [13], MODL [14], MDLP [15], Hellinger [16], and the proposed method
and the number of inconsistency and the number of cut-points the methods generated are compared. To evaluate
predictive accuracy, similar to [5, 12, 17–20], C4.5 and naive Bayes classifiers are trained with each discretized
scheme and the predictive accuracy of the methods are compared. The experimental results show that lFIT
ranks among top methods in predictive accuracy and generates schemes with low number of inconsistency and
larger number of intervals. The obtained results are also validated using Friedman’s test and the Holm’s post
hoc test which support these findings.

The rest of this paper is organized as follows. In Section 2, we introduce the generic discretization process,
provide a classification of discretization methods, and present evaluation metrics for discretization. This section
also includes a brief overview of the discretization methods we refer to while discussing the performance of the
proposed method, the RDP algorithm, and the standard error of the estimate. In Section 3, we introduce the
proposed method. Section 4 presents the experimental findings and the last section concludes the paper.

2. Background

In this section, we provide a classification of discretization methods, introduce the generic top-down discretiza-
tion process, and enumerate a number of metrics to evaluate the performance of discretization methods. This
section also briefly introduces the eight discretization methods we refer to while discussing the performance of
the proposed method, the RDP algorithm and the standard error of the estimate.

2.1. Overview of discretization methods
In the literature, there exist several discretization methods and review studies [5, 18, 21, 22] that classify
discretization methods based on certain aspects. Below we provide a brief taxonomy for discretization methods.

• Top-down (spitting) vs. bottom-up (merging): A discretization method is called top-down if it starts
with an empty set of cut-points and populates this set by finding cut-points that best split the data. A
discretization method is called bottom-up if it initially assumes each value to be discretized as a cut-point
and reduces the set of cut-points by merging adjacent intervals.

• Supervised vs. unsupervised: A method is called supervised if it considers class labels of the data during
the discretization process and unsupervised if all class labels are ignored.

2345

MUTLU et al./Turk J Elec Eng & Comp Sci

• Dynamic vs. static: A discretization method is called dynamic if the discretization scheme is generated
while a model, i.e. classification model, is being built and static if the discretization scheme is generated
beforehand.

• Local vs. global: A discretization method is called local if it needs only a portion of the data to determine
a cut-point. A discretization method is called global if it requires the entire dataset to determine a
cut-point.

• Direct vs. incremental: A discretization method is called direct if the number of intervals is determined
before the discretization process starts. A discretization method is called incremental if the number of
intervals is determined during the discretization process based on some utility function.

• Univariate vs. multivariate: A discretization method is called univariate if it discretizes one feature at a
time and multivariate if it discretizes all attributes simultaneously.

In Table 1, we list some recent discretization studies and their characteristics. In Table 1, the abbreviated
column names stand for, in the order of appearance, top-down, bottom-up, supervised, unsupervised, dynamic,
static, local, global, direct, incremental, univariate, and multivariate. A discretization method can only belong
to one of the twin categories, i.e. a discretization method may either be supervised or unsupervised, but can
carry the characteristics of several categories, i.e. a discretization method can be a supervised, splitting-based,
and multivariate.

Table 1. Some recent discretization methods and their characteristics.

Method TD BU Sup Uns Dyn Stc Lcl Glb Dir Inc Uv Mv
ur-CAIM [19] • • • • • •
IPD [23] • • • • • •
EF_Unique [24] • • • • • •
LFD [25] • • • • • •
EMD [26] • • • • • •
LAIM [27] • • • • • •
TD4C [28] • • • • • •
AEFD [20] • • • • • •
SUFDA [29] • • • • • •
MAX [30] • • • • • •

In this study, we focus on top-down discretization. As indicated in Algorithm 1, input to a top-down
discretizer is a set of continuous values and output is the set of cut-points. The first step of top-down
discretization is sorting values to be discretized either in ascending or descending order. This step can be
achieved in O(nlogn) time complexity if a sorting algorithm like Merge sort is employed. The next step consists
of determining a cut-point that best splits the data into two intervals. Measures such as binning [11], entropy [15],
dependency [19, 27], and fitness functions of genetic algorithms [26] are employed to choose cut-points. Once
a cut-point is determined, values are split into two partitions with respect to the cut-point and partitions are
recursively discretized until some stopping criteria are met. Stopping criteria such as reaching maximum number
of intervals [11], minimum description length [15, 31], and various statistical measures [30, 32] are introduced in
the literature. In Algorithm 1, Cf is a set of continuous values to be discretized and Df is a set of cut-points

2346

MUTLU et al./Turk J Elec Eng & Comp Sci

returned by the algorithm. The sort() method refers to any sorting algorithm, getBestSplittingValue() method
refers to cut-point determination, and the insert() method inserts a cut-point into the set of cut-points. The
getLeftPart() and getRightPart() methods split the data into two intervals with respect to the cut-point.

Algorithm 1 Generic top-down discretization method
1: function Discretize(Cf)
2: Df = {}
3: sort(Cf)
4: while (Stopping criteria not satisfied) do
5: t = getBestSplittingValue(Cf)
6: insert(Df , t)
7: Cl = getLeftPart(Cf , t)
8: Cr = getRightPart(Cf , t)
9: Discretize(Cl)

10: Discretize(Cr)
11: return Df

2.2. Performance evaluation measures for discretization
Arity, number of inconsistency, and predictive accuracy are the most commonly used metrics to evaluate
performance of discretization methods. In some studies, time taken for discretization is also considered a
performance metric.

• Arity: In the context of discretization, arity refers to the number of intervals. In the literature, it
is reported that methods that return less number of intervals are better. However, these studies also
emphasize a trade-off between the arity and the number inconsistency as well as a trade-off between arity
and predictive accuracy [5, 33].

• Number of inconsistency: In the context of discretization, two instances are called inconsistent if they
have the same value for every feature but belong to different classes. Assuming that a dataset contains k
class labels and n instances, and n1 patterns belong to class c1 , n2 patterns belong to class c2 , …, and nk

patterns belong to class ck , the number of inconsistency for this pattern is calculated by n - max(n1 , n2 ,
…, nk). The total number of inconsistency is calculated by summing up number of inconsistency for each
pattern. Discretization algorithms aim to become consistent by decreasing the number of inconsistency.

• Predictive accuracy: Discretization is carried out as a preprocessing step of machine learning and
data mining algorithms that require discrete values. A discretization method is expected to generate
discretization schemes that help such algorithms to build models of high quality. As an example, when
the Iris dataset is discretized using equal width discretization into two bins C4.5 classifies instances with
%75.33 accuracy while classification accuracy increases to %94.66 when the same dataset is discretized into
three bins. As the second scheme provides higher accuracy, it is preferable over the first one. Discretization
methods aim to generate schemes that increase accuracy of classification methods.

2.3. Overview of reference discretization methods
In this subsection, eight discretization methods which we refer to while discussing the performance of the
proposed method are briefly introduced.

2347

MUTLU et al./Turk J Elec Eng & Comp Sci

• Equal-width: It is a static, univariate, unsupervised, splitting-based, global, and direct discretization
method. Equal-width method inputs arity, k, and values to be discretized, D, and discretizes the values
by splitting them into k bins of almost equal size. Interval width is calculated by using Eq. (1), where
max(D) and min(D) are, respectively, the maximum and the minimum values in the dataset. Interval
boundaries are defined as [-∞ , min+w], (min+w, min+2w], ... (min+(k-1)× w, ∞].

w = (max(D)−min(D))/k (1)

• Equal-frequency: Similar to equal-width discretization, equal-frequency discretization is a static, uni-
variate, unsupervised, splitting-based, global, and direct discretization method. The method inputs values
to be discretized and arity. It aims to place approximately the same number of values into each bin. In
equal-frequency discretization, bin size is calculated by dividing the number of values to be discretized by
the number of bins.
Both for equal-width and equal-frequency discretization, the most challenging point is determining the
arity. It is usually set by trying various values, or as indicated in [18] by choosing the maximum of the
number of classes in the dataset and the value that corresponds to dividing the number of values in the
dataset by 100.

• 1R: It is a static, univariate, supervised, splitting-based, global, and direct discretization method intro-
duced in [11]. In 1R, sorted values are placed into bins such that each bin contains at least six values and
majority of the values in a bin have the same class label, which determines the class label of the bin. 1R
does not let a bin to start with a value whose class label is the same as the class label of the previous bin
but instead enforces such a value to be inserted into the previous bin. These constraints do not hold for
the last bin which groups the remaining instances.

• MDLP: It is static, univariate, supervised, splitting-based, local, and incremental discretization method
proposed in [15]. On a sorted set of continuous values, D, it selects a candidate cut-point, C, for an
attribute, A, and calculates its information entropy, E(A,C;D) based on Eq. (2).

E(A,C;D) =
|D1|
|D|

Ent(D1) +
|D2|
|D|

Ent(D2), (2)

where Ent(Di) is class entropy of partition Di defined as Eq. (3)

Ent(Di) = −
k∑

j=1

P (Cj , Di)log(P (Cj , Di)), (3)

where Cj donates a class label and P (Cj , Di) is the fraction of values in partition Di that have Cj as
their class label.
The method calculates information entropy of each possible cut-point and chooses the one with the lowest
value.

• CACC: It is a static, global, incremental, supervised, and top-down discretization algorithm based on
class-attribute contingency coefficient and is proposed in [12]. In CACC, sorted values are partitioned

2348

MUTLU et al./Turk J Elec Eng & Comp Sci

with respect to a value whose cacc value is maximum. The cacc of a value is calculated according to
Eqs. (4) and (5);

cacc =

√
y′

y′ +M ′ (4)

y′ = M [(

S∑
i=1

n∑
r=1

q2ir
Mi+M+r

)− 1]/log(n), (5)

where M is the total number values in data, n is the number of intervals, qir is the number of values with
class label ci in interval dr , Mi+ is the total number of values with class label ci , and M+r is the total
number of values in the interval dr .

• MODL: It is a supervised, merging-based, global, and incremental discretization method that is based
on the Bayesian approach and minimal description length and is introduced in [14]. It aims to maximize
Eq. (6).

P (Model|Data)

P (Model)× P (Data|Model)
. (6)

• CAIM: It is a supervised, top-down, global, and static discretization method described in [13]. CAIM aims
to generate as few intervals as possible while maintaining class-attribute interdependence as maximum
as possible. Initially, it starts with a single interval, [min(D), max(D)] and calculates class-attribute
interdependency value for each value in the interval and splits the interval with respect to value with the
highest class-attribute interdependency value. CAIM criterion between class label C and discretization
variable d for attribute F is calculated as formulated in Eq. (7)

CAIM(C,D|F) =

∑n
r=1

max2
r

M+r

n
, (7)

where n is the number of intervals, maxr is the maximum of the total number of continuous values
belonging to the ith class that are within interval (dr−1, d] , and M+r is the total number of continuous
values of F that are in interval (dr−1, d] .

• Hellinger: It is a supervised, bottom-up discretization method introduced in [16]. It aims to partition
values into intervals such that each interval provides approximately the same amount of information
content. For each cut-point, c adjacent to intervals a and b, it calculates entropy according to Eq. (8)

E(c) = E(a)− E(b) (8)

and merges the intervals with the least information difference. The entropy of an interval is calculated
according to Eq. (9)

E(I) =

√
|
∑
i

(
√

p(xi)−
√

p(xi|I))| (9)

2349

MUTLU et al./Turk J Elec Eng & Comp Sci

2.4. The Ramer–Douglas–Peucker algorithm

The RDP algorithm is a line-simplification and point-reduction algorithm initially introduced in [9] to approx-
imate two-dimensional curves and was extended in [10]. The algorithm has been applied to several problems
such as segmenting time series [34, 35], mining spatio-temporal patterns [36, 37], and robotics [38, 39].

The algorithm inputs a set of points, P, that defines a polyline and a tolerance value, ϵ , and returns
a subset of P, P ′ . P ′ represents the simplified polyline such that no two values of P ′ are less distant than ϵ

from each other. Algorithm 2 outlines the RDP algorithm. The algorithm starts with inserting the first and
the last instances of the data, say f and l, into P ′ . Next, a value of P, p, that is most distant from the straight
line connecting f and l is retrieved. If the distance of p to the line is less than ϵ , the algorithm terminates and
returns P ′ , else p is inserted into P ′ . Recursively, the algorithm is called with P[f, p] and P[(p, l)] and ϵ to find
new p values.

Algorithm 2 The Ramer–Douglas–Peucker algorithm
1: function RDP(P, ϵ)
2: P ′ .insert(P[0])
3: P ′ .insert(P[P.length])
4: dmax = 0
5: index = 0
6: for (i = 1; i < P.length; i++) do
7: d=distance(P[i], line(P[0], P[P.length]))
8: if (d > dmax) then
9: dmax = d

10: index = i
11: if (dmax > ϵ) then
12: P ′ .insert(P[index])
13: RDP(P[0 ... index], ϵ)
14: RDP(P[index ... P.length], ϵ)
15: return P ′

2.5. The standard error of the estimate
The standard error of the estimate is a measure to evaluate accuracy of predictions made with regression lines.
It is calculated by dividing the sum of the squared differences (errors) between the predicted value, Y ′ , and the
original value, Y , by number of predictions made, N . Eq. (10) formulates the standard error of the estimate.

σest =

√∑
(

#»

Y −
»

Y ′)2

N
. (10)

3. lFIT: The proposed method
In this section, we firstly present the motivation behind this study and later introduce the proposed method.

3.1. Motivation
In unsupervised discretization, values are distributed over bins such that similar values fall into the same bin
and dissimilar values are placed into different bins. In supervised discretization methods, interval boundaries
are determined with respect to class labels and values with the same class label are enforced to appear in the
same bin. These two observations encourage us to assume that when sorted values are plotted on 2D surface,

2350

MUTLU et al./Turk J Elec Eng & Comp Sci

values should form some clusters with respect to their class labels. In Figure 1, we plot the Iris dataset. In
the plot, each feature is indicated with a different marker, and class labels are indicated by different colors of a
marker. As seen in Figure 1, for features petal width and petal length markers with the same color are clustered
while markers that represent sepal width and sepal length are intertwined. In the literature, it is reported that
petal width and petal length are more important in predicting the class of a plant [40, 41]. Hence, this benchmark
dataset supports our assumption.

A further assumption we made in this study is that, when clustered with respect to class labels and
sorted, similarity between ending value of a cluster and starting value of a subsequent cluster should be more
than the similarity between two values that belong to the same cluster. As seen in Figure 1, there are sharp
skips between clusters particularly for petal width and petal length features.

In Figure 2, line segments obtained by the RDP algorithm are superimposed over the feature values. As
Figure 2 illustrates, line segments are successful in identifying class clusters particularly for petal width and
petal length.

8

7

6

5

4

3

2

1

0

petal width

petal length

sepal width

sepal length

0 50 100 150
instance

cm

8

7

6

5

4

3

2

1

0

petal width

petal length

sepal width

sepal length

0 50 100 150
instance

cm

Figure 1. Features values for the Iris dataset. Figure 2. Segment over the features.

Based on these assumptions, when applied on a set of sorted values, we expect the RDP algorithm to
return points that correspond to starting and ending values of intervals.

3.2. The proposed method
The proposed discretization method is static, univariate, unsupervised, splitting-based, global, and incremental.
Algorithm 3 illustrates the proposed method. Input to the proposed method is a set of values, D, the maximum
standard error of the estimate allowed, σmax , and tolerance update value, i. lFIT starts with initial tolerance
value e = 1 and iteratively updates it by i until the standard error of the estimate for e , σest , goes below
σmax . Output is a subset of D and that define the set of cut-points.

The proposed method consists of three main steps:

• Sorting: This step is common to several discretization methods where data is sorted in ascending order.
sortData() method in Algorithm 3 indicates this step. Time complexity of this step is O(nlogn) if Merge
sort is employed.

2351

MUTLU et al./Turk J Elec Eng & Comp Sci

Algorithm 3 The proposed method
1: function DiscretizeRDP(D, σmax , i)
2: S = sortData(D)
3: N = normalize01(S)
4: e = 1
5: do
6: P=RDP(N[0, N.length], e)
7: σest = SEE (N, P)
8: e = e - i
9: while (σest > σmax)

10: return P

• Normalization: In this step, sorted data is normalized into the [0, 1] range using Eq. (11), where di is
value to be normalized, max(D) and min(D) are minimum and maximum values in D , respectively.

d′i =
di −min(D)

max(D)−min(D)
. (11)

Normalization enables us to set tolerance update value and the standard error of the estimate to a fixed
range as normalization scales values into notionally common sense. Complexity of this step is O(n).

• Discretization: In this step data is discretized using the RDP algorithm. The discretization process is
illustrated between lines 4 and 9 in Algorithm 3. In line 6, the RDP algorithm is called with various e

values. For each e , the standard error of the estimate of the partitioning, referred as σest , is calculated.
If σest is less than the user-set maximum allowed error of the estimate, the discretization process is
terminated, otherwise e is updated and the RDP algorithm is called with a new e value.

The RDP algorithm has O(mn) complexity and O(nlogn) expected time complexity where n is the number
of values in the original dataset and m is the number of values generated by the algorithm. As the number
of points generated by the RDP algorithm is significantly less than the size of the input, average time
complexity of this step can be assumed to be O(nlogn).

In the implementation of the proposed method, e is iterated from 1 downward to 0. When e is 1, the
Ramer–Douglas–Peucker algorithm will return the smallest and largest values of D; hence, a discretization
scheme with one interval will be generated. In this case, error of the estimate value will also be at its
maximum. When e is set to 0, the RDP algorithm will return every value of D as an interval; hence,
no discretization would be done and error of the estimate will be 0. In order to enforce the method to
terminate with the possible minimum number of intervals, in the implementation of the method, we start
with error value 1 and iteratively decrease it in order to catch the largest tolerance value that satisfies the
maximum allowed error of the estimate.

4. Experiments

In this section, we firstly introduce the datasets used in experiments and present the experimental settings.
Next, we present the experimental results and compare the results obtained by lFIT to those obtained by
discretization methods mentioned in Section 2.3. The findings are also validated via statistical analysis.

2352

MUTLU et al./Turk J Elec Eng & Comp Sci

4.1. Datasets and experimental settings

Table 2 lists the properties of the datasets used in the experiments. For each dataset, its name, the number
of instances, and the number of attributes it has, the number of classes, and the maximum allowed standard
error of the estimate are shown. The standard error of the estimate values are those that obtain the best
results. As lFIT is evaluated using both C4.5 and naive Bayes classifiers, in Table 2, we report error values for
both classifiers. The datasets used in the experiments are taken from (https://sci2s.ugr.es/discretization) and
(https://sci2s.ugr.es/keel/category.php?cat=clas).

Table 2. Properties of datasets used in experiments and experimental settings.

Datasets # Inst. # Cnt. Att. # Classes e (C4.5) e (NB)
Breast 699 9 2 0.18 0.17
Bupa 345 6 2 0.11 0.14
Heart 270 13 2 0.50 0.25
Iris 150 4 3 0.10 0.10
Ion 351 34 2 0.42 0.38
Pendigit 10992 16 10 0.20 0.11
Pima 768 8 2 0.16 0.11
Sat 6435 36 7 0.10 0.05
Vehicle 846 18 4 0.14 0.05
Wine 178 13 3 0.22 0.10

In the following subsection, we discuss and statistically analyze the performance of lFIT in terms of
predictive accuracy, arity, number of inconsistency, and running time. To discretize the data ets with reference
discretization methods, KEEL tool (http://sci2s.ugr.es/keel/download.php) is used. During our literature
review, we observed that several studies report classification accuracy of their proposed methods using C4.5 and
naive Bayes classifiers [5, 12, 17–20]. For this reason, in this study, predictive accuracy of lFIT is also evaluated
using these two classifiers of the Weka tool (https://www.cs.waikato.ac.nz/ml/weka/). The experiments are
conducted on a Windows computer with i7 2.8 GHz processor and 8 GB of RAM.

To statistically analyze the results, we conducted Friedman’s test and Holm’s post hoc test on the findings.
Friedman’s test is two-way analysis by variance and its null hypothesis assumes that n repeated measures come
from populations from the same median. If the calculated probability, p, is below the selected significance
level, the null hypothesis is rejected, hence concluding that at least one method statistically differs from the
others. Although Friedman’s test can reveal if methods statistically differ, it does not tell which one does.
Holm’s post hoc test is used to figure out the methods that statistically differ and those that do not. In the
visual representation of Holm’s post hoc test, methods are placed on an axis according to their mean ranks
and the CD ruler indicates the critical difference. Methods that do not statistically differ, whose difference is
less than the critical difference, are connected via a straight line. As an example, Holm’s post hoc test results
plotted in Figure 3 can be interpreted as lFIT ranks the second best with CAIM in terms of C4.5 classification
accuracy and does not statistically differ from the other methods. The figure also shows that 1R ranks last and
statistically differs from Con. In this study, the significance level is set to 0.05.

2353

MUTLU et al./Turk J Elec Eng & Comp Sci

4.2. Experimental results

In Table 3, we present the accuracy of C4.5 classifier when trained with the discretized datasets. The Con.
column indicates results obtained by C4.5 classifier when trained with the original dataset. Values in bold
indicate the highest predictive accuracy. The last two rows indicate average accuracy and average ranks of the
methods.

Table 3. Predictive accuracy results for C4.5 classifier.

lFIT Con. CACC CAIM MODL MDLP EF EW 1R Hellinger
Breast 96.1 94.6 96 95.6 95 94.7 94.1 94 65.5 94
Bupa 64.1 68.7 69 65.5 68.4 63.2 64.6 61.4 57.4 64.1
Heart 80.7 76.7 81.5 81.1 80.7 81.9 80.7 80.4 67.8 78.9
Iris 95.3 96 94 94 95.3 94 94.7 94.7 92.7 95.3
Ion 90.9 91.5 89.5 91.5 92 89.2 89.5 87.8 92 87.5
Pendigit 92.9 96.6 94.6 88.8 88.7 88.5 88.8 90.9 94.3 92.2
Pima 76.6 74.3 76.6 75.7 75.1 74.2 75.3 74.2 74 75.4
Sat 85.6 85.8 85.5 86.1 84.7 84.4 83.5 85.5 80.7 84.6
Vehicle 70.3 73.5 69 69.1 73.4 72.5 66.3 70 66.4 69
Wine 92.8 93.8 94.4 96 95.5 92.7 83.1 84.8 86 77
A. Acc. 84.53 85.15 85.01 84.34 84.88 83.53 82.06 82.37 77.68 81.8
A. Rank. 3.4 3.2 3.2 3.4 3.7 5.6 6.1 6.2 6.8 6.1

As the results show, CACC achieves the best average rank with 3.2 and lFIT shares the second best
average rank with CAIM. The experimental results further show that the supervised discretization methods
perform far better than the unsupervised discretization methods. Recalling that lFIT is an unsupervised
discretization method, it performs much better than the supervised discretization methods, namely MODL and
MDLP.

3 4 5 6 7 8 9

CD

Con.

lFIT

CACC

CAIM

MODL

MDLP

EF

Hellinger

EW

X1R

(a) All Methods

(p = 0.0007)

2 3 4 5 6

CD

CACC

lFIT

CAIM

MODL

MDLP

Hellinger

X1R

(b) lFIT vs. Supervised M.

(p = 0.001074)

1 2 3

CD

lFIT

EF

EW

(c) lFIT vs. Unsupervised M.

(p = 0.0006505)

Figure 3. Holm’s post hoc test results for C4.5 classification performance.

2354

MUTLU et al./Turk J Elec Eng & Comp Sci

In Figure 3, we present Friedman’s test and Holm’s post hoc test results regarding accuracy results
obtained using C4.5 classifier. When all methods are considered, Friedman’s test returned a P-value of 0.0007
indicating that one method statistically differs from the others. As seen in Figure 3a, 1R statistically differs
from Con., lFIT has the second best average classification accuracy with CACC, and no method statistically
differs from any other. In Figure 3b, we illustrate Holm’s post hoc results regarding lFIT and the supervised
discretization methods. Friedman’s test returned a P-value of 0.001074 for this setting and as the plot shows,
CACC statistically differs from 1R. The Holm’s post hoc test shows that lFIT ranks second best and no
method statistically differs from lFIT. In Figure 3c, we provide statistical analysis of lFIT and the unsupervised
discretization methods. For this setting, Friedman’s test returned a P-value of 0006505. As Holm’s post hoc
test depicts, lFIT ranks best in average accuracy and performs statistically better than EW.

In Table 4, we report classification accuracy of naive Bayes classifier when trained with the discretized
datasets. Similar to Table 3, in Table 4, accuracy values in bold indicate the best classification results and
the last two rows list the average accuracy and average ranks. As the results show, MODL achieves the best
average rank with 1.3 while lFIT ranks second with average rank 3. The results indicate that MODL is superior
over the other methods. Nonetheless, MODL is a Bayes optimal discretization method. Similar to the results
of C4.5, lFIT is superior over the unsupervised discretization methods and achieves better classification results
when compared to the supervised discretization methods with a naive Bayes classifier.

Table 4. Predictive accuracy results for naive Bayes classifier.

lFIT Con. CACC CAIM MODL MDLP EF EW 1R Hellinger
Breast 97.6 96.1 96.6 97 97.3 97 97.4 97.4 65.5 97.4
Bupa 66.1 55.3 74.5 65.5 77.1 63.2 62.6 63.2 62.3 65.5
Heart 85.9 83.7 83.3 83.7 87 83.3 84.1 83.7 71.9 84.8
Iris 97.3 96 94.6 94.7 97.3 94 94 94.7 96 93.3
Ion 92 82.6 91.2 93.2 97.2 90.6 89.2 91.2 88.9 89.5
Pendigit 86.7 85.8 85.4 87.4 88.2 87.9 86.9 86.9 86.2 82.8
Pima 77.1 75.5 75.8 74 83.3 77.3 76 76.4 75.5 76.8
Sat 81.5 79.6 79.9 81.6 82.5 82.4 81.7 81 78.8 82.8
Vehicle 62.3 44.7 61.6 62.6 66.3 62.3 62.9 61.1 58.9 61.1
Wine 98.3 97.8 98.9 98.3 98.9 98.9 98.9 96.6 98.3 97.2
A. Acc. 84.48 79.71 84.18 83.8 87.51 83.69 83.37 83.22 78.23 83.12
A. Rank. 3 6.5 5 4 1.3 3.7 4.1 4.6 7.3 4.5

In Figure 4, we present Friedman’s test and Holm’s post hoc test results regarding classification accuracy
of the discretization methods trained with naive Bayes classifier. Friedman’s test returned a P-value of 0.0007
when all discretization methods are considered. As Figure 4a illustrates, MODL achieves the highest average
classification accuracy and statistically differs from CACC and 1R while there is no other statistically differing
methods. In Figure 4b, we plot Holm’s post hoc test considering lFIT and the supervised discretization methods.
For this setting, Friedman’s test P-value was 0.0000007 indicating that at least one method statistically differs
from the others. The plot indicates that MODL statistically differs from Hellinger and lFIT statistically
differs from 1R. In both settings, lFIT ranks second best in average classification accuracy. When naive
Bayes classification results of lFIT are compared against the unsupervised methods, Friedman’s test found

2355

MUTLU et al./Turk J Elec Eng & Comp Sci

1 2 3 4 5 6 7 8 9

CD

MODL

lFIT

MDLP

EF

CAIM

Hellinger

EW

CACC

Con.

X1R

(a) All Methods

(p = 0.0007)

1 2 3 4 5 6 7

CD

MODL

lFIT

MDLP

CAIM

CACC

Hellinger

X1R

(b) lFIT vs. Supervised M.

(p = 0.0000007)

1 2 3

CD

lFIT

EF

EW

(c) lFIT vs. Unsupervised M.

(p = 0.1199)

Figure 4. Holm’s post hoc test results for naive Bayes classification performance.

no statistically significant difference (P = 0.1199). However, as indicated in Figure 4c, lFIT achieves the best
classification accuracy when compared to the unsupervised discretization methods.

Arity is another dimension in comparing performance of discretization methods. In Table 5, we list
average arity over 10-fold experiments. As the results show, lFIT has higher arity when compared to the
average arity. To analyze if lFIT statistically differs from the reference discretization methods by means of
arity, in Figure 5, we plot Holm’s post hoc results. As seen in Figure 5a, lFIT is connected to every other
method with a straight line indicating that it does not statistically differ from them. As seen in Figure 5b,
Holm’s post hoc test found no statistical difference between lFIT and the supervised discretization methods.
Similarly, as indicated in Figure 5c, lFIT is not statistically different from unsupervised discretization methods
by means of average arity.

Table 5. Arity comparison of discretization methods.

Breast Bupa Heart Iris Ion Pima Vehicle Wine Pendigit Sat
lFIT 2 6.08 2.5 8.5 4.11 9.50 17.02 8.23 9.50 18.9
CACC 2 5.66 2.08 2.75 3.97 2.75 3.67 2.54 3.38 3.33
CAIM 2 2 2 3 2 2 4 3 10.1 6
MODL 3.78 9.83 5 3.5 28.47 30.38 7.56 6.15 11 12.92
MDLP 3.11 1.17 1.69 3 4.26 2.13 3.83 2.85 10.31 12.44
EF 5.78 9.83 5.46 10 9.38 9.38 9.78 10 9.31 10
EW 10 10 10 10 10 10 10 10 10 10
1R 1.11 3.83 2.77 2.75 18.32 12.5 6.11 7.69 5.69 3.72
Hellinger 10 10 6.85 10 9.62 10 10 10 10 10
Average 5.15 7.37 4.93 5.94 8.91 8.89 9.48 7.39 8.81 9.70

Another criterion to evaluate performance of a discretization method is related to number of inconsistency.
In Table 6, we report the number of inconsistency generated by lFIT and reference discretization methods. As

2356

MUTLU et al./Turk J Elec Eng & Comp Sci

2 3 4 5 6 7 8

CD

EW

Hellinger

MODL

EF

lFIT

X1R

MDLP

CAIM

CACC

(a) All Methods

(p = 0.00000007)

2 3 4 5 6

CD

MODL

Hellinger

lFIT

X1R

MDLP

CAIM

CACC

(b) lFIT vs. Supervised

(p = 0.00000003)

1 2 3

CD

EW

EF

lFIT

(c) lFIT vs. Unsupervised

(p = 0.03)

Figure 5. Holm’s post hoc test results for arity.

seen in Table 6, except for the Bupa and Heart datasets, lFIT generates discretization schemes with less number
of inconsistency compared to average number of inconsistency. The results also revealed the fact that EW and
EF discretization methods schemes with least number of inconsistency. Although this may seem unexpected,
this is indeed due to the fact that these methods generated schemes with the largest numbers of arity. 1R, on
the other hand, generated largest number of inconsistency affecting the average number of inconsistency to a
great extent. In Table 6, the last column indicates the average number of inconsistency when 1R is discarded.
In this setting, the number of inconsistency generated by lFIT is well below or close to the average number on
inconsistency except for the Heart dataset.

Table 6. Number of inconsistency comparison of discretization methods.

Breast Bupa Heart Iris Ion Pima Vehicle Wine Pendigit Sat Average
lFIT 4 51 12 2 0 17 0 0 19 1 10.6
CACC 10 38 5 5 0 92 64 0 129 146 48.9
CAIM 11 97 2 5 5 153 20 0 1 4 29.8
MODL 0 16 1 4 0 0 7 0 0 0 2.8
MDLP 2 127 12 5 0 132 56 0 0 0 33.4
EF 0 0 0 0 0 0 1 0 0 0 0.1
EW 0 10 0 1 0 1 0 0 0 0 1.2
1R 241 105 37 5 0 5 13 0 179 159 74.4
Hellinger 0 28 0 1 0 17 0 0 0 2 4.8
Average 42.60 48.5 8.5 3.11 0.83 32.08 5.66 0 28.28 26.83 19.6
Avg.(-1R) 3.375 45.875 4 2.875 0.625 51.5 18.5 0 18.625 19.125 16.45

In Figure 6, we visualize Friedman’s test and Holm’s post hoc test results regarding inconsistency.

2357

MUTLU et al./Turk J Elec Eng & Comp Sci

As Figure 6a indicates, lFIT ranks average generating larger number of inconsistency when compared to
unsupervised discretization methods, MODL, and Hellinger; and less number of inconsistency when compared
to 1R, MDLP, CAIM, and CACC. These findings also hold when lFIT is compared against only supervised
discretization methods and unsupervised discretization methods. However, Holm’s post hoc test shows that
results of lFIT do not statistically differ from reference studies.

2 3 4 5 6 7 8

CD

X1R

CAIM

CACC

MDLP

lFIT

Hellinger

MODL

EW

EF

(a) All Methods

(p = 0.0000011)

2 3 4 5 6

CD

X1R

CAIM

CACC

MDLP

lFIT

Hellinger

MODL

(b) lFIT vs. Supervised

(p = 0.0005)

1 2 3

CD

lFIT

EW

EF

(c) lFIT vs. Unsupervised

(p = 0.03)

Figure 6. Holm’s post hoc test results for inconsistency.

The last dimension in evaluating performance of a discretization method is its execution time. In Table 7,
we report time taken to discretize the datasets by lFIT. The obtained discretization times are comparable to
those reported in [12].

Table 7. Time taken to discretize datasets (in seconds).

Breast Bupa Heart Ion Iris Pendigit Sat Pima Vehicle Wine
Time (s) 1.13 0.45 0.68 2.54 0.17 27.58 34.7 1.38 2.94 0.57

5. Conclusion
In this study, we introduced an unsupervised discretization method based on the Ramer–Douglas–Peucker
algorithm and the standard error of the estimate. The Ramer–Douglas–Peucker algorithm is used to determine
intervals and the standard error of the estimate is used to determine the quality of intervals. The experimental
results show that lFIT generates discretization schemes that achieve promising accuracy results when compared
to state-of-the art methods. lFIT generates larger number of intervals and less number of inconsistency when
compared to state-of-the-art methods.

The major limitation of the proposed method is setting the tolerance value for the Ramer–Douglas–
Peucker algorithm. Future studies regarding lFIT include developing methods to automatically determine
the error value based on number of intervals, number of inconsistency, and possibly some relevant statistical
measures.

2358

MUTLU et al./Turk J Elec Eng & Comp Sci

References

[1] Kaufman KA, Michalski RS. Learning from inconsistent and noisy data: the AQ18 approach. In: Ras ZW, Kowron
A, editors. International Symposium on Methodologies for Intelligent Systems. Warsaw, Poland: Springer, 1999.
pp. 411-419.

[2] Cios KJ, Kurgan LA. CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Inf Sci
2004; 163(1-3): 37-83.

[3] Hsu CC, Huang YP, Chang KW. Extended naive Bayes classifier for mixed data. Expert Syst Appl 2008; 35(3):
1080-1083.

[4] Tillander A. Effect of data discretization on the classification accuracy in a high-dimensional framework. Int J Intell
Syst 2012; 27(4): 355-374.

[5] Liu H, Hussain F, Tan CL, Dash M. Discretization: an enabling technique. Data Min Knowl Discov 2002; 6(4):
393-423.

[6] Coussement K, Lessmann S, Verstraeten G. A comparative analysis of data preparation algorithms for customer
churn prediction: a case study in the telecommunication industry. Decision Support Systems 2017; 95: 27-36.

[7] Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: a review of classification techniques. Emerging
Artificial Intelligence Applications in Computer Engineering 2007; 160: 3-24.

[8] Han J, Pei J, Kamber M. Data Mining: Concepts and techniques. 3rd ed. Waltham, MA, USA: Morgan Kaufmann,
2011.

[9] Ramer U. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image
Processing 1972; 1(3): 244-256.

[10] Douglas DH, Peucker TK. Algorithms for the reduction of the number of points required to represent a digitized
line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization
1973; 10(2): 112-122.

[11] Holte RC. Very simple classification rules perform well on most commonly used datasets. Machine Learning 1993;
11(1): 63-90.

[12] Tsai CJ, Lee CI, Yang WP. A discretization algorithm based on class-attribute contingency coefficient. Inf Sci 2008;
178(3): 714-731.

[13] Kurgan LA, Cios KJ. CAIM discretization algorithm. IEEE Trans Knowl Data Eng 2004; 16(2): 145-153.

[14] Boulle M. MODL: a Bayes optimal discretization method for continuous attributes. Machine Learning 2006; 65(1):
131-165.

[15] Fayyad U, Irani K. Multi-interval discretization of continuous-valued attributes for classification learning. In: Bajcsy
R, editor. International Joint Conference on Artificial Intelligence. Chambery, France: Morgan Kaufmann, 1993,
pp. 1022-1029.

[16] Lee CH. A Hellinger-based discretization method for numeric attributes in classification learning. Knowl-Based Syst
2007; 20(4): 419-425.

[17] Tahan MH, Asadi S. MEMOD: a novel multivariate evolutionary multi-objective discretization. Soft Comput 2018;
22(1): 3013-3023.

[18] Garcia S, Luengo J, Sáez JA, Lopez V, Herrera F. A survey of discretization techniques: taxonomy and empirical
analysis in supervised learning. IEEE Trans Knowl Data Eng 2013; 25(4): 734-750.

[19] Cano A, Nguyen DT, Ventura S, Cios KJ. ur-CAIM: improved CAIM discretization for unbalanced and balanced
data. Soft Comput 2016; 20(1): 173-188.

[20] Jiang SY, Li X, Zheng Q, Wang LX. Approximate equal frequency discretization method. In: 2009 WRI World
Congress on Computer Science and Information Engineering; March 31–April 2 2009; Los Angeles, CL, USA. IEEE
Computer Society. pp. 514-518.

2359

MUTLU et al./Turk J Elec Eng & Comp Sci

[21] Kotsiantis S, Kanellopoulos D. Discretization techniques: a recent survey. GESTS International Transactions on
Computer Science and Engineering 2006; 32(1): 47-58.

[22] Ramirez-Gallego S, Garcia S, Mourino-Talin H, Martinez-Rego D, Bolon-Canedo V, Alonso-Betanzos A, Benitez
JM, Herrera F. Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 2016; 6(1): 5-21.

[23] Nguyen HV, Müller E, Vreeken J, Böhm K. Unsupervised interaction-preserving discretization of multivariate data.
Data Min Knowl Discov 2014; 28(5-6): 1366-1397.

[24] Hacibeyoglu M, Ibrahim MH. EF_Unique: an improved version of unsupervised equal frequency discretization
method. Arabian Journal for Science and Engineering 2018; 2018: 1-10.

[25] Rahman MG, Islam MZ. Discretization of continuous attributes through low frequency numerical values and
attribute interdependency. Expert Syst Appl 2016; 45: 410-423.

[26] Ramirez-Gallego S, Garcia S, Benitez JM, Herrera F. Multivariate discretization based on evolutionary cut points
selection for classification. IEEE Trans Cybernetics 2016; 46(3): 595-608.

[27] Cano A, Luna JM, Gibaja EL, Ventura S. LAIM discretization for multi-label data. Inf Sci 2016; 330: 370-384.

[28] Moskovitch R, Shahar Y. Classification-driven temporal discretization of multivariate time series. Data Min Knowl
Discov 2015; 29(4): 871-913.

[29] Abachi HM, Hosseini S, Maskouni MA, Kangavari M, Cheung NM. Statistical discretization of continuous attributes
using Kolmogorov-Smirnov test. In: Wang J, Chen J, Qi J, editors. Australasian Database Conference. Gold Coast,
QLD, Australia: Springer, 2018. pp. 309-315.

[30] Kurtcephe M, Güvenir HA. A discretization method based on maximizing the area under receiver operating
characteristic curve. IJPRAI 2013; 27(01):1350002.

[31] Gupta A, Mehrotra KG, Mohan C. A clustering-based discretization for supervised learning. Statistics & probability
letters 2010; 80(9-10): 816-824.

[32] Sang Y, Qi H, Li K, Jin Y, Yan D, Gao S. An effective discretization method for disposing high-dimensional data.
Inf Sci 2014; 270: 73-91.

[33] Garcia S, Lopez V, Luengo J, Carmona CJ, Herrera FA. Preliminary study on selecting the optimal cut points
in discretization by evolutionary algorithms. In: Carmona PL, Sanchez JS, editors. International Conference on
Pattern Recognition Applications and Methods. Algarve, Portugal: SciTePress, 2012. pp. 211-216.

[34] Keogh E, Chu S, Hart D, Pazzani M. Segmenting time series: a survey and novel approach. Data mining in time
series databases 2004; 57: 1-21.

[35] Fu TC. A review on time series data mining. Eng Appl of AI 2011; 24(1): 164-181.

[36] Cao H, Mamoulis N, Cheung DW. Mining frequent spatio-temporal sequential patterns. In: IEEE International
Conference on Data Mining; 27-30 November 2005; Houston, TX, USA. IEEE Computer Society. pp. 82-89.

[37] Cao H, Wolfson O, Trajcevski G. Spatio-temporal data reduction with deterministic error bounds. VLDB J 2006;
15(3): 211-228.

[38] Jiang X, Bunke H. Fast segmentation of range images into planar regions by scan line grouping. Mach Vis Appl
1994; 7(2): 115-122.

[39] Gutmann JS, Fukuchi M, Fujita M. 3D perception and environment map generation for humanoid robot navigation.
I J Robotics Res 2008; 27(10): 1117-1134.

[40] He X, Cai D, Niyogi P. Laplacian score for feature selection. In: Advances in Neural Information Processing Systems.
2006. pp. 507-514.

[41] Dash M, Choi K, Scheuermann P, Liu H. Feature selection for clustering-a filter solution. In: IEEE International
Conference on Data Mining; 9-12 December 2002; Maebashi City, Japan. IEEE Computer Society. pp. 115-122.

2360

	Introduction
	Background
	Overview of discretization methods
	Performance evaluation measures for discretization
	Overview of reference discretization methods
	The Ramer–Douglas–Peucker algorithm
	The standard error of the estimate

	lFIT: The proposed method
	Motivation
	The proposed method

	Experiments
	Datasets and experimental settings
	Experimental results

	Conclusion

