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IFN-γ and TNF-α drive a CXCL10+ CCL2+
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Abstract

Background: Immunosuppressive and anti-cytokine treatment may have a protective effect for patients with

COVID-19. Understanding the immune cell states shared between COVID-19 and other inflammatory diseases with

established therapies may help nominate immunomodulatory therapies.

Methods: To identify cellular phenotypes that may be shared across tissues affected by disparate inflammatory diseases, we

developed a meta-analysis and integration pipeline that models and removes the effects of technology, tissue of origin, and

donor that confound cell-type identification. Using this approach, we integrated > 300,000 single-cell transcriptomic profiles

from COVID-19-affected lungs and tissues from healthy subjects and patients with five inflammatory diseases: rheumatoid

arthritis (RA), Crohn’s disease (CD), ulcerative colitis (UC), systemic lupus erythematosus (SLE), and interstitial lung disease. We

tested the association of shared immune states with severe/inflamed status compared to healthy control using mixed-effects

modeling. To define environmental factors within these tissues that shape shared macrophage phenotypes, we stimulated

human blood-derived macrophages with defined combinations of inflammatory factors, emphasizing in particular antiviral

interferons IFN-beta (IFN-β) and IFN-gamma (IFN-γ), and pro-inflammatory cytokines such as TNF.

Results:We built an immune cell reference consisting of > 300,000 single-cell profiles from 125 healthy or disease-affected

donors from COVID-19 and five inflammatory diseases. We observed a CXCL10+ CCL2+ inflammatory macrophage state that

is shared and strikingly abundant in severe COVID-19 bronchoalveolar lavage samples, inflamed RA synovium, inflamed CD

ileum, and UC colon. These cells exhibited a distinct arrangement of pro-inflammatory and interferon response genes,

including elevated levels of CXCL10, CXCL9, CCL2, CCL3, GBP1, STAT1, and IL1B. Further, we found this macrophage phenotype

is induced upon co-stimulation by IFN-γ and TNF-α.
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Conclusions: Our integrative analysis identified immune cell states shared across inflamed tissues affected by inflammatory

diseases and COVID-19. Our study supports a key role for IFN-γ together with TNF-α in driving an abundant inflammatory

macrophage phenotype in severe COVID-19-affected lungs, as well as inflamed RA synovium, CD ileum, and UC colon,

which may be targeted by existing immunomodulatory therapies.

Keywords: Single-cell transcriptomics, Single-cell multi-disease tissue integration, COVID-19, Inflammatory diseases,

Macrophage stimulation, Macrophage heterogeneity

Background
Tissue inflammation is a unifying feature across dis-

parate diseases. While tissue- and disease-specific factors

shape distinct inflammatory microenvironments, seem-

ingly unrelated diseases can respond to the same ther-

apy. For example, anti-tumor necrosis factor (TNF)

therapies have revolutionized treatment for joint inflam-

mation in autoimmune rheumatoid arthritis (RA) [1],

while patients with intestinal inflammation due to

Crohn’s disease (CD) and ulcerative colitis (UC), collect-

ively known as inflammatory bowel disease (IBD), also

respond to anti-TNF medications [2]. Here, we posit

that the deconstruction of tissues to the level of indi-

vidually characterized cells and subsequent integration

of these cells from various types of inflamed tissues

could provide a platform to identify shared pathologic

features across diseases and provide rationale for repur-

posing medications in outwardly dissimilar conditions.

Recent studies have detailed features of local tissue in-

flammation and immune dysfunction in COVID-19 and

related diseases caused by SARS and MERS corona-

viruses [3]. Consensus is building that extensive un-

checked inflammation involving so-called “cytokine

storm” is a driver of severe late-stage disease. A single-

cell study of bronchoalveolar lavage fluid (BALF) in intu-

bated COVID-19 patients identified two inflammatory

macrophage subsets—one characterized by CCL2, CCL3,

and CXCL10 expression and a second by FCN1 and

S100A8—as potential mediators of pathology in this

late-stage disease [4]. The presence of these macrophage

subsets in the lung correlated with elevated circulating

cytokines and extensive damage to the lung and vascular

tissue. Reports looking at peripheral blood from large

numbers of COVID-19 patients have consistently docu-

mented lymphopenia (reduced lymphocyte frequency)

paired with increased levels of CD14+ monocytes and

inflammatory cytokines, such as IL1B, TNF-α, IFN-α,

and IFN-γ [5–7]. These factors are ineffective in lower-

ing viral load while possibly contributing to cytokine re-

lease syndrome (CRS) [7]. Together, these studies

indicate the importance of uncovering the full extent of

cell states present in COVID-19 patients including

within affected tissues, and in particular among macro-

phages. Further, the extent to which these cell states are

shared between COVID-19 and other inflammatory dis-

eases and their disease association may further clarify

disease mechanisms and precisely define therapeutic

targets.

Macrophages are pervasive throughout the body and

pivotal to tissue homeostasis, where they tailor their

function to the parenchymal functions of each tissue

type. In inflammation, tissue-resident macrophages and

infiltrating monocytes are activated not only by factors

from the unique tissue microenvironment, but also by

disease-associating factors such as byproducts of deregu-

lated tissue homeostasis, tissue damage, gene expression

differences due to genetic variants, immune reactions,

and in some cases, infecting pathogens. The unprece-

dented plasticity and robust reactivity of macrophages

and monocytes generates a spectrum of phenotypes yet

to be fully defined in human disease that mediate clear-

ance of noxious elements, but in some cases, such as in

cytokine storm, aggravate disease pathology. These phe-

notypes include a range of pro-inflammatory and anti-

microbial states that secrete key cytokines (e.g., TNF and

IL-1B) and chemokines (e.g., CXCL10 and CXCL11) and

other functional states geared towards debris clearance,

dampening inflammation, and tissue reconstruction, as

well as a variety of intermediate states [8–11]. Meta-

analysis of reactive macrophage phenotypes in inflamed

tissues across diseases may further refine our under-

standing of the complexity of human macrophage

functions, identifying subsets potentially shared across

immune disorders, and thereby providing a promising

route towards repurposing therapeutic strategies.

Single-cell RNA-seq (scRNA-seq) has provided an oppor-

tunity to interrogate inflamed tissues and identify expanded

and potentially pathogenic immune cell types [12]. We

recently defined a distinct CD14+ IL1B+ pro-inflammatory

macrophage population that is markedly expanded in RA

compared to osteoarthritis (OA), a non-inflammatory disease

[13, 14]. Likewise, scRNA-seq studies on inflamed colonic

tissues have identified inflammatory macrophage and fibro-

blast phenotypes with high levels of Oncostatin M (OSM) sig-

naling factors that are associated with resistance to anti-TNF

therapies [15]. Only very recently, developments in computa-

tional methods have made it possible to meta-analyze an ex-

pansive number of cells across various tissue states, while
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mitigating experimental and cohort-specific artifacts [16–22],

therein assessing shared and distinct cell states in disparate

inflamed tissues.

To define the key shared immune cell compartments

between inflammatory diseases with COVID-19, we

meta-analyzed and integrated tissue-level single-cell

profiles from five inflammatory diseases and COVID-19.

We created an immune cell reference consisting of

307,084 single-cell profiles from 125 donor samples from

RA synovium, systemic lupus erythematosus (SLE) kidney,

UC colon, CD ileum, interstitial lung disease, and

COVID-19 BALF. This single-cell reference represents

comprehensive immune cell types from different disease

tissues with different inflammation levels, which can be

used to investigate inflammatory diseases and their con-

nections with COVID-19 in terms of immune cell re-

sponses. Using our meta-dataset reference, we identified

major immune cell lineages including macrophages, den-

dritic cells, T cells, B cells, NK cells, plasma cells, mast

cells, and cycling lymphocytes. Among these, we found

two inflammatory CXCL10+ CCL2+ and FCN1+ macro-

phage states that are shared between COVID-19 and

several of the inflammatory diseases we analyzed. To

understand the factors driving these phenotypes, we

stimulated human blood-derived macrophages with

eight different combinations of inflammatory disease-

associated cytokines and tissue-associating stromal

cells. We demonstrated that the CXCL10+ CCL2+ macro-

phages from severe COVID-19 lungs share a transcrip-

tional phenotype with macrophages stimulated by TNF-α

plus IFN-γ. Notably, the other two conditions wherein

these macrophages are most abundant are RA and CD. As

patients with RA and CD show response to anti-TNF

therapies, this finding supports the approach of identifying

shared cellular states in unrelated inflamed tissues to

define shared responses to medications. Furthermore,

janus kinase (JAK) inhibitors have also proved effective in

RA, presumably in large part through targeting IFN-γ

responses [8, 23, 24]. Our data collectively support

the potential efficacy of JAK inhibitors and anti-TNF

therapies in inflammatory macrophage responses in

COVID-19 due to cellular phenotype associations with

select inflammatory tissue diseases already proven to

respond to these medications.

Methods
Integration of scRNA-seq profiles from multiple datasets

scRNA-seq data collection, remapping, and aggregation

To build a multi-tissue immune cell reference, we ob-

tained the raw FASTQ files and raw count matrices from

the following publicly available scRNA-seq datasets: RA

synovial cells from dbGaP (Zhang, et al, 2019;

phs001457.v1.p1) [13] and dbGaP (Stephenson, et al,

2018; phs001529.v1.p1) [25], SLE kidney cells from dbGaP

(Arazi, et al, 2019; phs001457.v1.p1) [26], UC colon cells

from Single Cell Portal (Smillie, et al, 2019; SCP259) [15],

CD ileum cells from GEO (Martin, et al, 2019;

GSE134809) [27], interstitial and pulmonary lung disease

from GEO (Reyfman, et al, 2019; GSE122960) [28], and

COVID-19 and healthy BALF cells from GEO (Liao, et al,

2020; GSE145926) [4]. We also use the datasets from

Grant et al. (GSE155249) [29] and Xue et al. (GSE47189)

[11] as additional validations.

For the FASTQs that we obtained, we used Kallisto

[30] to map the raw reads to the same kallisto index

generated from GRCh38 Ensembl v100 FASTA files. We

pseudo-aligned FASTQ files to this reference, corrected

barcodes, sorted BUS files, and counted unique molecu-

lar identifiers (UMIs) to generate UMI-count matrices.

We aggregated all the cell barcodes from 125 donor

samples into one matrix. We performed consistent QC

to remove the cells that expressed fewer than 500 genes

or with more than 20% of the number of UMIs mapping

to the mitochondrial genes, resulting in 307,084 cells in

total. The number of donor samples and cells that

passed QC for each tissue source, disease status, tech-

nology, and clinical data are shown in Additional file 1:

Table S1.

Normalization, scaling, and feature selection

We aggregated all samples on the overlapped 17,054

genes. We then normalized each cell to 10,000 reads and

log-transformed the normalized data. We then selected

the top 1,000 most highly variable genes based on dis-

persion within each donor sample and combined these

genes to form a variable gene set. Based on the pooled

highly variable genes, we then scaled the aggregated data

matrix to have mean 0 and variance 1. We normalized

the expression matrix using the L2 norm.

Dimensionality reduction and batch effect correction

To minimize the effect from multiple datasets with dif-

ferent cell numbers during an unbiased scRNA-seq data

integration, we performed weighted principal compo-

nent analysis (PCA) and used the first 20 weighted PCs

for follow-up analysis. The summation of the weights for

cells from each separate single-cell dataset is equal so

that each dataset contributed equally to the analysis. For

all cell-type integration, we corrected batch effects on

three different levels (sequencing technology, tissue

source, and donor sample) simultaneously using Har-

mony [16]. We use default parameters and also specified

theta = 2 for each batch variable, max.iter.cluster = 30,

and max.iter.harmony = 20. For Harmony batch correc-

tion, we use the same weights from the weighted PCA.

For macrophage only integration, we corrected the effect

from donors for the 10X data, and dataset for the CEL-

seq2 data since each donor generated from CEL-seq2
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data only has less than 100 cells. As outputs, we ob-

tained batch-corrected PC embeddings where the effects

from different single-cell datasets and donors are re-

moved in low-dimensional PC space.

Quantitative evaluation of batch correction and dataset

integration

Variance explained from different sources: To quantita-

tively measure the mixture of batch effects after correc-

tion, we estimated the sources of variance explained

from gene expression on the first ten principal compo-

nent embeddings. We show the proportion of variance

explained from the original pre-defined immune cell

type, tissue origin, technology, and donor sample. We

used the R package limma [31] to fit the model and

ANOVA to compute the percentage of variance

explained:

principal component∼celltypeþ tissueþ technology
þ sample:

LISI score: Meanwhile, we used a LISI (local inverse

Simpson’s Index) metric to measure the mixture levels of

batch labels based on local neighbors chosen at a specific

perplexity [16, 22]. Specifically, we built Gaussian distribu-

tion of neighborhoods and computed these local distribu-

tions of batch probabilities p(b) using perplexity 30 on the

first 20 principal components. B is the number of batches.

Then, we calculated the inverse Simpson’s index:

1=
XB

b¼1
pðbÞ:

An iLISI (integration LISI) score ranges from 1.0, which

denotes no mixing, to B (the maximum score is the total

number of levels in the categorical batch variable) where

higher scores indicate better mixing of batches. Here batch

can be tissue source, donor sample, and sequencing technol-

ogy. We also calculated the cLISI (cell-type LISI), which

measures integration accuracy of pre-defined cell-type anno-

tations instead of using the same formulation. An accurate

embedding has a cLISI close to 1 for every cell neighbor-

hood, reflecting separation of distinct cell types.

Graph-based clustering

We then applied unbiased graph-based clustering (Lou-

vain [32]) on the top 20 batch-corrected PCs at various

resolution levels (0.2, 0.4, 0.6, 0.8, 1.0). We use 0.4 as the

final resolution value to gain the biological interpreta-

tions that make most sense. Then, we furthermore per-

formed dimensionality reduction using UMAP [33].

Pseudo-bulk differential expression analysis

To identify robust single-cell cluster marker genes that

are shared between diseases, we performed pseudo-bulk

analysis by summing the raw UMI counts for each gene

across cells from the same donor sample, tissue source,

and cluster assignment. We modeled raw count as a

negative binomial (NB) distribution and fitted a general-

ized linear model (GLM) for each gene accounting for

tissue, sample, and nUMI using DESeq2 [34]. We also

computed AUC and P using the Wilcoxon rank-sum test

by comparing pseudo-bulk samples from one cluster to

the others. We use several criteria to decide statistically

significant marker genes: (1) GLM-β, (2) fold change, (3)

AUC, and (4) Wilcoxon rank-sum test and Bonferroni-

corrected P (threshold 10−5, 0.05/5,000 tested highly

variable genes). We tested all genes that were detected

in more than 100 cells with non-zero UMI counts.

Identification of major immune cell-type clusters

We carefully annotated each identified immune cell-type

cluster in two ways. First, we mapped the original pub-

lished annotation labels [4, 13, 15, 26, 27] to our UMAP

embeddings when applicable. We are able to reproduce

the original cell-type subsets in our cross-disease inte-

grative analysis. Second, we annotated the identified

clusters using cell-type lineage marker genes: T cells

(CD3D), NK cells (NCAM1), B cells (MS4A1), plasma

cells (MZB1), macrophages (FCGR3A/CD14), dendritic

cells (DCs, CD1C), mast cells (TPSAB1), and cycling

cells (MKI67).

Cell culture for human blood-derived macrophages and

synovial fibroblasts

We obtained human leukocyte-enriched whole blood

samples from 4 healthy blood donors from the New

York Blood Center and purified peripheral blood mono-

nuclear cells (PBMC) from each using Ficoll gradient

centrifugation. We isolated CD14+ monocytes from each

sample using human CD14 microbeads (Miltenyi Biotec)

and differentiated these cells into blood-derived macro-

phages for 1 day at 37 °C in Macrophage-Colony Stimu-

lating Factor (M-CSF); 10 ng/mL) (PeproTech) and

RPMI 1640 medium (Corning) supplemented with 10%

defined fetal bovine serum (FBS) (HyClone), 1%

penicillin-streptomycin (Thermo Fisher Scientific), and

1% L-glutamine (Thermo Fisher Scientific) in a 6-well

plate at a concentration of 1.2 million cells/mL.

In parallel, we obtained human synovial fibroblasts de-

rived from deidentified synovial tissues from RA patients

undergoing arthroplasty (HSS IRB 14033). Two unique

fibroblast lines were used, each paired with two distinct

blood-derived macrophage donor samples. We cultured

fibroblasts in alpha minimum essential medium (aMEM)

(Gibco) supplemented with 10% premium FBS (R&D

Systems Inc), 1% penicillin-streptomycin (Thermo Fisher

Scientific), and 1% L-glutamine (Thermo Fisher Scien-

tific) for 4 to 6 passages. To create each transwell, we
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seeded the mesh of polyester chambers with 0.4μm

pores (Corning) with either 200,000 synovial fibroblasts

or without fibroblasts for 1 day at 37 °C.

The following day, we suspended each transwell—3 with

fibroblasts and 6 without fibroblasts per donor—above

one well of cultured macrophages. Those transwells with

fibroblasts had a fibroblast-to-macrophage ratio of 1:15. In

total, we created 9 wells per donor. Next, we added IFN-β

(200 pg/mL), IL-4 (20 ng/ mL), TNF-α (20 ng/mL), and/or

IFN-γ (5 ng/mL) to each transwell and underlying plate

per donor. All plates were incubated at 37 °C for 19 h.

RNA library preparation and sequencing

We applied a modified version of the staining protocol

from CITE-seq, using only Totalseq™-A Hashing anti-

bodies from Biolegend [35]. We harvested macrophages

from each well and aliquoted one fifth of the cells, ~

750,000 cells per condition, for staining in subsequent

steps. We washed the cells in filtered labeling buffer

(PBS with 1% BSA) and resuspended in 50 μL of labeling

buffer with Human TruStain FcX™ (Biolegend Cat

#422302, 5 μL per stain) for 10 min at 4 °C. Next, we

added 50 μL of labeling buffer for a final concentration

of 1.6 ng/μL of a total-seq hashtag (1, 2, 4–9, or 12) per

condition per donor for 25 min at 4 °C. Next, we washed

all samples in 2 mL, 1 mL, and 1mL of labeling buffer,

sequentially. We counted the remaining cells using a

cellometer (Nexcelom Cellometer Auto 1000) and ali-

quoted the equivalent of 60,000 cells from each condi-

tion into one Eppendorf tube per donor. From here, we

filtered through a 40-μm mesh and resuspended in PBS

with 0.04% BSA to a concentration of 643.7 cells/μl. We

followed the Chromium Single Cell 3′ v3 kit (10x Gen-

omics) processing instructions and super-loaded 30,000

cells per lane. We used one lane per donor, with 9 con-

ditions multiplexed per donor sample. After cDNA gen-

eration, samples were shipped to the Brigham and

Women’s Hospital Single Cell Genomics Core for cDNA

amplification and sequencing. Pairs of libraries were

pooled and sequenced per lane on an Illumina NovaSeq

S2 with paired-end 150 base-pair reads.

Processing FASTQ reads into gene expression matrices

and cell hashing

We quantified mRNA and antibody UMI counts, re-

spectively. Cellranger v3.1.0 was used to process the raw

BCL files and produce a final gene by cell barcode UMI

count matrix. First, raw BCL files were demultiplexed

using cellranger mkfastq to generate FASTQ files with

default parameters. Then, these FASTQ files were

aligned to the GRCh38 human reference genome. Gene/

antibody reads were quantified simultaneously using

cellranger count. Cell barcodes and UMIs were extracted

for gene/hashtag antibodies for each run.

For quality control of the cells, we first performed

mRNA-level cell QC and then hashtag-level QC. For the

mRNA-level QC, we removed the cells that expressed

fewer than 1,000 genes or more than 10% of UMIs map-

ping to the mitochondrial genes. For the hashtag QC, we

removed the cells whose proportion of UMIs for the

most abundant hashing antibody is less than 90%, and

removed the cells whose ratio of the second most-

abundant and first most-abundant antibody is greater

than 0.10. After filtering, each cell was assigned a hash-

ing antibody and donor sample on the most abundant

hashing antibody barcode. After QC, we obtained 9,399,

8,775, 4,622, and 3,027 cells for the 4 donor samples.

We then normalized UMI counts from each cell based

on the total number of UMIs and log-transformed the

normalized counts.

Linear modeling for experimental stimulation-specific

genes from cell culture single-cell profiles

To more accurately identify gene signatures that are spe-

cific to each of the eight stimulatory conditions, we used

linear models to test each gene for differential normal-

ized gene expression across contrasts of interest. Specif-

ically, we fit the following models:

gene expression∼stimþ 1 j sampleþ nUMI;

where stim is a categorical variable that represents eight

stimuli and an untreated status, 1 ∣ sample is the ran-

dom effect of the 4 replicated donor samples, and nUMI

(number of unique molecular identifiers) represents the

technical cell-level fixed effect. We obtained the fold

change, T and P value, and Bonferroni-corrected P value

as measurements for each tested gene signature for each

applied condition. We then generated a list of differen-

tially expressed genes whose fold change is greater than

2 and P is smaller than the Bonferroni correction thresh-

old 10−7 (0.05/7,000 highly variable genes × 9 conditions)

for each stimulatory condition.

Testing integrative macrophage clusters for association

with severe/inflamed status

We tested the association of each macrophage cluster

with severe/inflamed status compared to healthy with

MASC (mixed-effects modeling of associations of single

cells) [36]. We fit a logistic regression model for each

identified cluster within one tissue and set the nUMIs

and percent MT (% MT) content as cell-level fixed ef-

fects, and donor sample as a random effect:

log
Y i;c

1−Y i;c

� �

¼ βcaseX i;case þ βtech1X i;tech1

þ βtech2X i;tech2 þ φdj dð Þ;

where Yi,c is the odds of cell i in cluster c, βcase is the
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effect log (odds ratio) for case (severe COVID-19)-con-

trol (healthy) status, βtech1 is a vector of technical cell-

level (nUMIs) covariate, βtech2 is a vector of technical

cell-level (% mitochondrial genes) covariate, Xi is the

values for cell i in technology as appropriate, and (φd| d )

is the random effect of donor d. Thus, we used this lo-

gistic regression model to test for differentially abundant

macrophage clusters associated with severe COVID-19

by correcting for the technical cell-level and donor-level

covariates. Similarly, we also tested for differentially

abundant macrophage clusters associated with inflamed

CD compared to non-inflamed CD, RA compared to

OA, and inflamed UC compared to healthy colon, ac-

counting for technical cell-level and donor-specific co-

variates. We generated log likelihood-ratio test MASC P

values and odds ratios for each tested cluster and used

Bonferroni correction to report the macrophage clusters

that are statistically significantly more abundant in se-

vere/inflamed samples compared to healthy or non-

inflamed controls.

Gene score calculation

We calculated a CXCL10+ CCL2+ gene score for each

single-cell profile from an external single-cell RNA-seq

dataset from severe COVID-19 BALF [29]. The gene

score was calculated as the sum of counts for CXCL10+

CCL2+ genes (n = ~ 70) as a percent of total gene counts

for each cell.

Pathway enrichment analysis

For pathway gene set enrichment, we use the msigdbr R

package on 4872 genesets including C5 (Gene Ontol-

ogy), C7 (immunologic signature), and H (Hallmarks)

from MSigDB [37] to calculate enriched pathways of

macrophage states for each disease tissue.

Statistical analysis

For all the analysis and plots, sample sizes and measures

of center and confidence intervals (mean ± SD or SEM),

and statistical significance are presented in the figures,

figure legends, and in the text. Results were considered

statistically significant when P < 0.05 by Bonferroni cor-

rection as is indicated in figure legends and text.

Results
A reference of > 300,000 immune single-cell profiles

across inflammatory diseases and COVID-19

To compare hematopoietic cells across inflammatory

diseases and COVID-19 in an unbiased fashion, we ag-

gregated 307,084 single-cell RNA-seq profiles from 125

healthy or inflammatory disease-affected tissues span-

ning six disorders: (1) colon from healthy individuals

and patients with inflamed or non-inflamed UC [15];

(2) terminal ileum from patients with inflamed or non-

inflamed CD [27]; (3) synovium from patients with RA

or OA [13, 25]; (4) kidney from patients with SLE or

healthy controls [26], (5) lung from patients with inter-

stitial lung disease [28], and (6) BALF from healthy in-

dividuals and those with mild or severe COVID-19 [4]

(Fig. 1a, b, Additional file 2: Figure S1a, Additional file

1: Table S1). We developed a pipeline for multi-tissue

integration and disease association at the single-cell

level (Fig. 1a, “Methods”). Where feasible, we obtained

raw reads and re-mapped them to the GRCh38 genome

assembly. We then aggregated raw counts for 17,054

shared genes across studies into a single matrix, per-

formed consistent quality control (QC), library size

normalization, and principal component analysis [38]

(PCA) (“Methods”). To account for different cell num-

bers from different datasets, we performed weighted

PCA, assigning higher weights to cells from datasets

with a relatively small number of cells and vice versa.

In the integrated PCA embedding, we modeled and re-

moved the effects of technology, tissue, and donor with

Harmony [16] to identify shared cell states across stud-

ies and diseases (“Methods”). Before Harmony, cells

grouped primarily based on tissue source (Additional

file 2: Figure S1b). After Harmony, < 1% of the variation

explained by PC1 and PC2 was attributable to tissue

source and sample, while > 60% was attributable to pre-

viously defined cell types (Fig. 1c). Importantly, rare

pathogenic cell types within tissue, such as germinal

center B cells in inflamed UC colon and age-associated

B cells in RA synovium, were identifiable in the inte-

grated space (Additional file 2: Figure S1c). We con-

firmed the degree of cross sample, tissue, technology,

and cell-type mixing with an independent measure of

single-cell integration: LISI [16, 22] (Local Inverse

Simpson’s Index). An increased iLISI (integration LISI)

score after batch correction compared to before batch

correction indicates a better mixing of batches after

correction (Fig. 1d and Additional file 2: Figure S2a).

In this integrated space, we performed graph-based

clustering [32] and visualization with UMAP (Uniform

Manifold Approximation and Projection) [33]. We iden-

tified 9 major cell-type clusters (Fig. 1e) present in all six

tissues (Fig. 1f) and diseases (Additional file 2: Figure

S2b). We labeled the clusters with canonical markers

(Fig. 1g, Additional file 3: Table S2): CD3D+ T cells,

NCAM1+ NK cells, MS4A1+ B cells, MZB1+ plasma

cells, FCGR3A+/CD14+ macrophages, CD1C+ dendritic

cells (DCs), TPSAB1+ mast cells, and MKI67+ cycling T

and B cells.

While the proportion of these immune populations dif-

fered substantially among tissues, macrophages repre-

sented a major component in each tissue (Additional file

2: Figure S2c). For example, samples obtained from lung

tissues and BALF, whether from healthy controls or
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patients with ILD and COVID-19, contained the highest

proportion of macrophages (74.8% of total hematopoietic

cells) (Fig. 1f, Additional file 2: Figure S2c). In contrast,

while RA synovium, SLE kidney, and CD ileum contained

9.4% macrophages, T lymphocytes comprised the majority

of cells in these tissues (55.7%). The UC colon samples

contained 8.3% macrophages, but had a distinctively high

abundance of plasma cells (42.4%) (Additional file 2:

Figure S2c).

Identification of shared inflammatory macrophage states

across inflammatory disease tissues and COVID-19 lungs

To resolve the heterogeneity within the macrophage

compartment, we analyzed 74,373 macrophages from

108 donors and performed weighted PCA and fine clus-

tering analysis to define shared and distinct states across

diseases (Fig. 2a, Additional file 2: Figure S3a, Add-

itional file 4: Table S3). We identified four shared

macrophage states defined by different marker sets: (1)

CXCL10+ CCL2+ cells, (2) FCN1+ cells, (3) MRC1+

FABP4+ cells, and (4) C1QA+ cells (Fig. 2a, b, Add-

itional file 2: Figure S3b). The CXCL10+ CCL2+ cells

and the FCN1+ cells expressed classic inflammatory

genes [15] including IL1B, S100A8, CCL3, CXCL11,

STAT1, IFNGR1, and NFKB1 (Fig. 2b, c). A higher pro-

portion of inflammatory macrophages in severe COVID-

19 expressed these inflammation-associated genes com-

pared to healthy BALF (Additional file 2: Figure S3c).

We detected the gene signature for the CXCL10+

CCL2+ inflammatory macrophage state in a higher pro-

portion of macrophages from severe COVID-19 BALF

than from other inflamed tissues (Fig. 2c).

Liao et al. [4] previously identified CXCL10+ CCL2+

and FCN1+ populations as inflammatory states in the

COVID-19 BALF samples used in this integrated ana-

lysis. In our multi-disease clustering, the inflammatory

macrophages from inflamed RA synovium and UC and

CD intestinal tissue largely mapped to the same two in-

flammatory macrophages seen in severe COVID-19

(Fig. 2d, Additional file 2: Figure S3d-e). In most tissue

types, we found all four states represented in all six tis-

sues, and we quantified this overlap with LISI and esti-

mated the variance explained in the PC space

(Additional file 2: Figure S3f, g). Strikingly, we observed

that the FCN1+ inflammatory macrophage state domi-

nated in SLE kidney, with few in the CXCL10+ CCL2+

macrophages (Fig. 2d), suggesting that our integrative

analysis was effective in identifying both shared inflam-

matory states while maintaining distinct patterns in a

subset of tissues.

To comprehensively define markers for the two in-

flammatory tissue macrophage states shared across

COVID-19, RA, UC, and CD, we performed a pseudo-

bulk differential expression analysis (“Methods,” Add-

itional file 5: Table S4, fold change > 2, AUC > 0.6,

Bonferroni-adjusted P < 10−5). The CXCL10+ CCL2+ in-

flammatory macrophages displayed significantly higher

expression of CXCL10, CXCL11, CCL2, CCL3, GBP1,

and IDO1 in severe COVID-19, inflamed RA, and CD

compared to the FCN1+ macrophages (Fig. 2e). In con-

trast, the FCN1+ macrophages displayed high expression

of FCN1 (Ficolin-1) and a series of alarmins such as

S100A8 and S100A9 in most of the inflamed tissues

(Fig. 2e). Both inflammatory macrophage states showed

high expression of transcription factors that promote a

pro-inflammatory macrophage phenotype, STAT1 and

IRF1, in inflamed RA, UC, CD, and COVID-19 BALF

relative to healthy or non-inflamed tissues (Fig. 2e).

Within the CXCL10+ CCL2+ state, there was notable

heterogeneity across cells in terms of IL1B expression

indicating the possibility of further delineation of this

macrophage state (Additional file 2: Figure S4a-b).

Moreover, the effect size of all genes in CXCL10+

CCL2+ and FCN1+ subsets compared with the MRC1+

FABP4+ macrophages for each tissue further highlighted

a similar set of inflammatory genes with greatest fold

changes across all diseases for each subset (Additional

file 2: Figure S5).

As validation, we assessed the macrophage phenotypes

found in a recent analysis of single cells from severe

COVID-19 BALF [29]. Notably, we observed a signifi-

cant correlation between the cross-disease shared

CXCL10+ CCL2+ macrophages and two monocyte-

derived alveolar macrophage (MoAM) inflammatory

phenotypes from this independent severe COVID-19 co-

hort (wherein they were referred to as MoAM1 and

(See figure on previous page.)

Fig. 1 Integrative analysis of > 300,000 single-cell profiles from five inflammatory disease tissues and COVID-19 BALF. a Overall study design and

single-cell analysis, including the integrative pipeline, a single-cell reference dataset, fine-grained analysis to identify shared macrophage states,

and disease association analysis. b Number of cells and donor samples from each healthy and disease tissue. c Percent of variance explained in

the gene expression data by pre-defined broad cell type, tissue, sample, and technology for the first and second principal component (PC1 and

PC2) before and after batch effect correction. d iLISI score before and after batch correction to measure the mixing levels of donor samples and

tissue sources. An iLISI (integration LISI) score of 1.0 denotes no mixing while higher scores indicate better mixing of batches. e Integrative

clustering of 307,084 cells reveals common immune cell types from different tissue sources. f Immune cells from separate tissue sources in the

same UMAP coordinates. Cells from the same cell types are projected next to each other in the integrative UMAP space. g Heatmap of cell-type

lineage marker genes. Gene signatures were selected based on AUC > 0.6 and P < 0.05 by Bonferroni correction comparing cells from one cell

type to the others
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MoAM2) [29] (Additional file 2: Figure S6a-d). We fur-

ther examined CXCL10+ CCL2+ macrophage-associated

genes with CD14+ cells from inflamed (leukocyte-rich)

RA, non-inflamed (leukocyte-poor) RA, and OA [13]; we

observed significant enrichment of CXCL10+ CCL2+

state-specific genes (CXCL10, CXCL9, CCL3, GBP1, and

IDO1), FCN1+ state-specific genes (FCN1, S100A9,

CD300E, IFITM3, and CFP), and genes (IRF1, BCL2A1,

and STAT1) associated with both states in the macro-

phages from inflamed RA compared to non-inflamed RA

and OA (Additional file 2: Figure S6e). By integrating

macrophages across multiple inflamed tissues, we show

that inflammatory subsets identified in COVID-19 may

share common phenotypes with macrophages from

other inflammatory conditions.

To elucidate cell states that were phenotypically as-

sociated, we tested the association of each state with

severe COVID-19 compared to healthy BALF using a

logistic regression model accounting for technical cell-

level and donor-specific effects [36] (“Methods”). We

observed the CXCL10+ CCL2+ and FCN1+ states are

abundant in severe COVID-19 compared to healthy

BALF (Fig. 2f). The CXCL10+ CCL2+ inflammatory

state was also expanded in inflamed CD compared to

non-inflamed CD, RA compared to non-inflammatory

OA, and inflamed UC compared to healthy colon, re-

spectively (Fig. 2f). We indeed observed significant en-

richment of the TNF-alpha signaling via nuclear

factor-κB (NF-kB) pathway and the response to inter-

feron gamma pathway in the CXCL10+ CCL2+ cells

from examined inflamed tissues (Fig. 2g). Consistent

with this result, we also observed reduced frequencies

of MRC1+ FABP4+ macrophages in each inflamed tis-

sue (Fig. 2f). Taken together, these results indicate

that the shared CXCL10+ CCL2+ inflammatory

macrophage phenotype is expanded in inflamed tis-

sues and severe COVID-19 BALF.

Tissue inflammatory conditions that drive distinct

macrophage phenotypes

To define the factors that shape disease-associated

macrophage states in affected tissues, we generated hu-

man blood-derived macrophages from four donors and

activated them with eight defined mixtures of inflamma-

tory factors, focusing particularly on the effects of anti-

viral interferons (IFN-β and IFN-γ) and pro-

inflammatory cytokines such as TNF that mediate CRS

and tissue pathology in RA and IBD [40] (Fig. 3a, Add-

itional file 2: Figure S7a, “Methods”). Co-cultured fibro-

blasts were a component in some conditions to generate

factors produced by resident stroma. To reduce con-

founding batch effects during scRNA-seq barcode label-

ing, we used a single-cell antibody-based hashing

strategy [41] to multiplex samples from different stimu-

latory conditions in one sequencing run (Additional file 6:

Table S5, Additional file 7: Table S6). We obtained 25,

823 post-QC cells after applying 10X Genomics droplet-

based single-cell assay (Additional file 2: Figure S7b-d,

“Methods”). In the UMAP space, a strong response to

IFN-γ drove much of the observed variation; cells

treated with IFN-γ clustered well apart from all other

conditions (Fig. 3b). All conditions containing IFN-γ

(Type II interferon) resulted in macrophages with high

expression levels of the transcription factor STAT1,

interferon-stimulated genes CXCL9 and CXCL10, and

inflammatory receptors such as FCGR1A [42] (Fig. 3c).

Consistent with well-established effects, macrophages

stimulated by TNF induced MMP9, IL1B, and PLAUR

expression while IL-4 stimulation increased expression

of CCL23, MRC1, and LIPA (Fig. 3c).

Using linear models, we identified the genes with the

greatest changes in expression after each stimulation and

estimated the effect sizes (“Methods”). We found that 403

genes (fold change > 2, FDR < 0.05) were significantly

enriched in the TNF-α and IFN-γ stimulation compared

(See figure on previous page.)

Fig. 2 Integrative analysis of tissue-level macrophages reveals shared CXCL10+ CCL2+ and FCN1+ inflammatory macrophage states. a Integrative

clustering of 74,373 macrophages from individuals from BALF, lung, kidney, colon, ileum, and synovium. b Density plot of cells with non-zero

expression of marker genes in UMAP. c Proportion of inflammatory macrophages that express cytokines and inflammatory genes in severe

COVID-19 compared to those in inflamed RA, CD, and UC. Orange represents CXCL10+ CCL2+ state-specific genes. d Previously defined

inflammatory macrophages from diseased tissues are clustered with the majority of the macrophages from severe COVID-19. e Z-score of the

pseudo-bulk expression of marker genes (AUC > 0.6 and Bonferroni-adjusted P < 10−5) for the CXCL10+ CCL2+ and FCN1+ macrophages. Columns

show pseudo-bulk expression. f The proportions of CXCL10+ CCL2+ macrophages of total macrophages per donor sample are shown from

healthy BALF (n = 3), mild (n = 3), and severe (n = 6) COVID-19, non-inflamed CD (n = 10) and inflamed CD (n = 12), OA (n = 2) and RA (n = 15), and

healthy colon (n = 12), non-inflamed UC (n = 18), and inflamed UC (n = 18). Box plots summarize the median, interquartile, and 75% quantile

range. P is calculated by Wilcoxon rank-sum test within each tissue. The association of each cluster with severe/inflamed compared to healthy

control was tested. 95% CI for the odds ratio (OR) is given. MASC P is calculated using one-sided F tests conducted on nested models with MASC

[36]. The clusters above the dashed line (Bonferroni correction) are statistically significant. Clusters that have fewer than 30 cells are removed. g

GSEA analysis for each tissue revealed shared enriched pathways for CXCL10+ CCL2+ macrophages: TNF-α signaling via NF-kB (Hallmark gene set),

response to interferon gamma (GO:0034341), Covid-19 SARS-CoV-2 infection calu-3 cells (GSE147507 [39]), positive regulation of cytokine

production (GO:0001819), response to tumor necrosis factor (GO:0034612), regulation of innate immune response (GO:0045088), and defense

response to virus (GO: 0051607)
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to untreated macrophages. All conditions with IFN-γ re-

sulted in similar effect sizes for induction of CCL2,

CXCL9, CXCL10, SLAMF7, and STAT1 expression—indi-

cating a robust IFN-γ driven macrophage signature (Fig. 3d

left, Additional file 2: Figure S7e). This included robust in-

duction by IFN-γ in macrophages co-treated with TNF

(Fig. 3e left). Collectively, the TNF-driven gene expression

patterns appeared more modifiable by co-stimulatory fac-

tors than IFN-γ. For example, co-cultured fibroblasts fur-

ther increased TNF-induced MMP9, PLAUR, and VCAN

expression, while co-stimulating with IFN-γ repressed

TNF induction of these genes (Fig. 3d right). Nonetheless,

Fig. 3 Human blood-derived macrophages stimulated by eight mixtures of inflammatory factors reveal heterogeneous macrophage phenotypes. a

Schematic representation of the single-cell cell hashing experiment on human blood-derived macrophages stimulated by eight mixtures of inflammatory

factors from 4 donors. A single-cell antibody-based hashing strategy was used to multiplex samples from different stimulatory conditions in one

sequencing run. Here fibro denotes fibroblasts. b The 25,823 stimulated blood-derived macrophages from 4 donors are colored and labeled in UMAP

space. c Log-normalized expression of genes that are specific to different conditions are displayed in violin plots. Mean of normalized gene expression is

marked by a line and each condition by individual coloring. CPM denotes counts per million. d Stimulation effect estimates of genes that are most

responsive to conditions with IFN-γ or TNF-α with fibroblasts comparing to untreated macrophages are obtained using linear modeling. Fold changes

with 95% CI are shown. e Fold changes in gene expression after TNF-α and IFN-γ stimulation vs. TNF-α stimulation (left), and TNF-α and IFN-γ vs. IFN-γ

stimulation (right) for each gene. Genes in red have fold change > 2, Bonferroni-adjusted P < 10−7, and a ratio of TNF-α and IFN-γ fold change to TNF-α

fold change greater than 1 (left) or a ratio of TNF-α and IFN-γ fold change to IFN-γ fold change greater than 1 (right). Genes that are most responsive to

either IFN-γ (left) or TNF-α (right) are labeled
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a portion of the TNF effect was well preserved in TNF

plus IFN-γ co-stimulated cells, including genes such as

CCL2, CCL3, IL1B, and NFKBIA (Fig. 3e right). TNF-α

and IFN-γ ultimately generated a macrophage phenotype

with increased expression of NF-kB targets such as

NFKBIA, IL1B, and HLA-DRA together with STAT1 tar-

gets such as CXCL9 and CXCL10, and GBP1 and GBP5

(Fig. 3d, e).

Identification of an IFN-γ and TNF-α synergistically driven

inflammatory macrophage phenotype expanded in

severe COVID-19 lungs and other inflamed disease tissues

Our cross-tissue integrative analysis revealed two shared

inflammatory macrophage states (Fig. 2). To further

understand these cell states and the in vivo inflamma-

tory tissue factors driving them, we integrated the

single-cell transcriptomes of both the tissue macro-

phages and our experimentally stimulated macrophages.

After combining and correcting for tissue, technology,

and donor effects, we identified 7 distinct macrophage

clusters (Fig. 4a). We evaluated the robustness of the

clustering and observed that our clusters were stable to

the choice of the variable genes used in the analysis

(Additional file 2: Figure S8a). The tissue CXCL10+

CCL2+ inflammatory macrophages from UC colon, CD

ileum, RA synovium, and COVID-19 BALF were tran-

scriptionally most similar to macrophages stimulated by

the combination of TNF-α plus IFN-γ in cluster 1

(Fig. 4b, c, Additional file 2: Figure S8b-c). The blood-

derived macrophages in cluster 1 included macrophages

stimulated by four different conditions all including

IFN-γ, of which the most abundant population (37.5%)

were macrophages stimulated by TNF-α with IFN-γ

(Fig. 4c, d). Comparing our results to a previously re-

ported macrophage spectrum with 28 unique stimula-

tory conditions [11], we observed the highest expression

of cluster 1-associated genes in their macrophages ex-

posed to conditions including both TNF and IFN-γ

(Additional file 2: Figure S9a).

We further identified a principal component (PC1)

that captures a gradient from the FCN1+ state to the

CXCL10+ CCL2+ state by applying PCA analysis to the

tissue-level inflammatory macrophages (Fig. 4e), suggest-

ing a potential continuum between the inflammatory

FCN1+ and CXCL10+ CCL2+ states. Aligning cells from

separate tissues along PC1, we found that the majority

of inflammatory macrophages in RA, UC, and CD align

more closely with the FCN1+ state (Additional file 2:

Figure S9b). In severe COVID-19, we observed a shift in

cell frequency between the FCN1+ and CXCL10+

CCL2+ macrophages (Wilcoxon rank-sum test P = 1.4e

−07, Fig. 4f). Furthermore, we mapped the experimen-

tally stimulated blood-derived macrophages to PC1

based on the top 50 genes with the largest and smallest

PC1 gene loadings. Strikingly, the TNF-α stimulated

macrophages (mean − 0.27) map to the left of the

FCN1+ tissue macrophages (mean − 0.14), while the

IFN-γ (mean 0.10), and TNF-α and IFN-γ (mean 0.23),

stimulated macrophages map to the right of the

CXCL10+ CCL2+ tissue macrophages (− 0.03) (Fig. 4f).

This suggests the importance of IFN-γ stimulation in

order to drive a phenotype most similar to the CXCL10+

CCL2+ state, with the addition of TNF stimulation

resulting in further pushing of the macrophage pheno-

type along the PC1 trajectory. We observed higher ex-

pression levels of PC1-associated genes, for example

CXCL10, STAT1, CCL2, CCL3, NFKBIA, and GBP1, in

CXCL10+ CCL2+ severe COVID-19 compared to

FCN1+ cells, and higher induced expression levels of

these same genes in TNF-α and IFN-γ stimulation com-

pared to TNF-α stimulation alone (Fig. 4g). Taken to-

gether, these results suggest we are able to recapitulate

the gradient observed in vivo across multiple diseases by

stimulating macrophages ex vivo with synergistic combi-

nations of IFN-γ and TNF-α.

Discussion
Our study demonstrates the power of a multi-disease

reference dataset to interpret cellular phenotypes and

tissue states, while placing them into a broader context

that may provide insights into disease etiology and ra-

tionale for repurposing medications. Such meta-datasets

can increase the resolution of cell states and aid under-

standing of shared cellular states found in less well-

understood diseases such as COVID-19. Amassing di-

verse tissues from > 120 donors with a wide range of dis-

eases, we built a human tissue inflammation single-cell

reference. Applying powerful computational strategies,

we integrated > 300,000 single-cell transcriptomes and

corrected for factors that interfere with resolving cell-

intrinsic expression patterns. In particular, we have iden-

tified a CXCL10+ CCL2+ inflammatory macrophage

phenotype shared between tissues affected in auto-

immune disease (RA), inflammatory diseases (CD and

UC), and infectious disease (COVID-19). We observed

that the abundance of this population is associated with

inflammation and disease severity. With integrated ana-

lysis of an ex vivo dataset, we elucidated its potential

cytokine drivers: IFN-γ together with TNF-α.

Macrophages are ideal biologic indicators for the

in vivo state of a tissue due to their dynamic nature, ro-

bust responses to local factors, and widespread presence

in most tissues. Through our cross-disease analysis, we

defined two inflammatory macrophage states that can be

found in selected groups of seemingly unrelated tissues

and diseases. Most notably, the CXCL10+ CCL2+ in-

flammatory macrophages predominate in the bronchoal-

veolar lavage of patients with severe COVID-19, and are
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also detected in synovial tissue affected by RA and in-

flamed intestine from patients with IBD. These cells are

distinguished by high levels of CXCL10 and CXCL11,

STAT1, IFNGR1, and IFNGR2, as well as CCL2 and

CCL3, NFKB1, TGFB1, and IL1B. This gene expression

pattern of the JAK/STAT and NF-kB-dependent cyto-

kines implicates induction by an intriguing combination

of both the IFN-induced JAK/STAT and TNF-induced

NF-kB pathways and, in conjunction, the overall

transcriptome program most closely aligns with macro-

phages stimulated by IFN-γ plus TNF-α. As both JAK

inhibitors and anti-TNF medications have outstanding

efficacy in treating RA and anti-TNFs are the most com-

mon medications treating inflammatory bowel disease,

including Crohn’s Disease [2], these therapies may target

the inflammatory macrophages in severe COVID-19

lung during the phase involving cytokine release syn-

drome [43].

Fig. 4 TNF-α and IFN-γ driven CXCL10+ CCL2+macrophages are expanded in severe COVID-19 and other inflamed tissues. a Integrative clustering of

stimulated blood-derived macrophages with tissue-level macrophages from COVID-19 BALF, UC colon, CD ileum, and RA synovium. b The previously identified

tissue-level CXCL10+ CCL2+ state corresponds to cluster 1 (orange), and the FCN1+ inflammatory macrophage state corresponds to cluster 2 (yellow).

Macrophages from each tissue source are displayed separately in the same UMAP coordinates as in a. c Heatmap indicates the concordance between

stimulatory conditions and integrative cluster assignments. Z-score of the number of cells from each stimulatory condition to the integrative clusters is shown. d

For the blood-derived stimulated macrophages, the proportions of CXCL10+ CCL2+macrophages of total macrophages per stimulated donor are shown. e

PCA analysis on the identified inflammatory macrophages. The first PC captures a gradient from the FCN1+ state to the CXCL10+ CCL2+ state. f Upon this,

macrophages from severe COVID-19 mapped to PC1 present a shift in cell frequency between the FCN1+ and CXCL10+ CCL2+ (Wilcoxon rank-sum test P=

1.4e−07). The TNF-α stimulated macrophages (mean − 0.27) were projected to the left of the FCN1+ tissue macrophages (mean − 0.14), while the IFN-γ (mean

0.10), and TNF-α and IFN-γ (mean 0.23), stimulated macrophages were projected to the right of the CXCL10+ CCL2+ tissue macrophages (− 0.03). g Genes

associated with CXCL10+ CCL2+ driven by PC1 show high expression levels on the severe COVID-19 macrophages and also TNF-α and IFN-γ stimulated blood-

derived macrophages. We recapitulate the gradient observed in vivo across multiple diseases by stimulating macrophages ex vivo with synergistic

combinations of TNF-α and IFN-γ
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Infection with SARS-CoV2 triggers local immune re-

sponse and inflammation in the lung compartment,

recruiting macrophages that release and respond to in-

flammatory cytokines and chemokines [6]. This response

may change with disease progression, in particular dur-

ing the transition towards the cytokine storm associated

with severe disease. Intriguingly, our cross-disease tissue

study strongly suggests that IFN-γ is an essential compo-

nent in the inflammatory macrophage phenotype in se-

vere COVID-19. Most studies on interferons and

coronaviruses have focused on Type I interferons, such

as IFN-β, due to their robust capacity to interfere with

viral replication [44]. Indeed, ongoing research into the

administration of recombinant IFN-β has shown prom-

ise in reducing the risk of severe COVID-19 disease [45].

However, other studies have indicated that targeting

IFN-γ may be an effective treatment for cytokine storm,

a driver of severe disease in COVID-19 patients [46, 47].

Additionally, several studies have indicated that targeting

IFN-γ using JAK inhibitors such as ruxolitinib, bariciti-

nib, and tofacitinib offers effective therapeutic effects in

treating severe COVID-19 patients [43, 48–51]. Clinical

trials of Type II interferon inhibitors in COVID-19 are

under way (NCT04337359, NCT04359290, and

NCT04348695) [43]. Recent research has also identified

that the synergism of TNF-α and IFN-γ can trigger in-

flammatory cell death, tissue damage, and mortality in

SARS-CoV-2 infection [52], and shown increased levels

of IFN-γ, TNF-α, CXCL10, and CCL2 in the serum of

severe COVID-19 patients [53]. In agreement with these

studies, our findings indicate that IFN-γ is an important

mediator together with TNF-α of severe disease, in part

through activating the inflammatory CXCL10+ CCL2+

macrophage subset. We hypothesize that anti-Type II

interferon (like JAK inhibitors) and anti-TNF combina-

torial treatment might prove effective at inhibiting the

cytokine storm driving acute respiratory distress syn-

drome in patients with severe COVID-19. We are aware

of the limited number of longitudinal BALFs from

COVID-19 patients involved in our across-tissue study

due to the current crisis situation, so we expect to repli-

cate our findings in a broader generalization of COVID-

19 patients in the future. Of course, the presence of an

IFN-γ and TNF phenotype is an association that may

not be causal. Whether targeting these cytokines is rea-

sonable or not will depend on additional clinical

investigation.

Conclusions
In this study, we built a single-cell immune reference

from multiple inflamed disease tissues and identified two

inflammatory macrophage states, CXCL10+ CCL2+ and

FCN1+ inflammatory macrophages, that were shared be-

tween COVID-19 and inflammatory diseases such as

RA, CD, and UC. We demonstrated that the CXCL10+

CCL2+ macrophages are transcriptionally similar to hu-

man blood-derived macrophages stimulated by IFN-γ

and TNF-α and were expanded in severe COVID-19

lungs and inflamed RA, CD, and UC tissues. This finding

indicates that Type II interferon and TNF responses

may be involved in late-stage cytokine storm-driven se-

vere COVID-19 and inhibiting these responses in the in-

flammatory macrophages may be a promising treatment.

Our cross-tissue single-cell integrative strategy along

with our disease association analysis provides a proof-of-

principle that identifying shared pathogenic features

across human inflamed tissues and COVID-19 lungs has

the potential to guide drug repurposing.

Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13073-021-00881-3.

Additional file 1: Table S1. Basic information and demography of

multiple single-cell datasets.

Additional file 2: Figure S1. Overall integration of immune cells from

multiple scRNA-seq datasets. Figure S2. Quantification of the perform-

ance of all cell type multi-disease tissue integration. Figure S3. Tissue-

level macrophage integrative analysis of multiple scRNA-seq datasets.

Figure S4. Heterogeneity of shared inflammatory macrophages from

multiple tissues. Figure S5. Single-cell differential gene expression ana-

lysis of comparing inflammatory macrophages with non-inflammatory

macrophages within each individual tissue source. Figure S6. Examin-

ation of the CXCL10+ CCL2+ macrophage marker genes in additional dis-

eased cohort studies. Figure S7. Experimental design and quality control

of human blood-derived macrophages stimulated by different conditions.

Figure S8. Integrative analysis of tissue-level macrophages and human

blood-derived macrophages. Figure S9. Assessment of previously re-

ported stimulated macrophage spectrum analysis and alignment of mac-

rophages from different disease tissues to a trajectory.

Additional file 3: Table S2. Cell type marker genes and statistics.

Additional file 4: Table S3. Number of cells per cluster, per disease

and tissue for macrophage integration analysis.

Additional file 5: Table S4. Macrophage cluster marker genes and

relative statistics.

Additional file 6: Table S5. Hashtag antibodies for the 10X single-cell

cell hashing experiment.

Additional file 7: Table S6. Details for the 10X single-cell cell hashing

experiment.

Acknowledgements

We thank the Brigham and Women’s Hospital Single Cell Genomics Core for

assistance in the single-cell hashing experiment. We thank members of the

Raychaudhuri Laboratory for discussions.

Accelerating Medicines Partnership Rheumatoid Arthritis & Systemic Lupus

Erythematosus (AMP RA/SLE) Consortium:

Jennifer Albrecht9, Jennifer H. Anolik9, William Apruzzese5, Brendan F. Boyce9,

Christopher D. Buckley10, David L. Boyle11, Michael B. Brenner5, S. Louis

Bridges Jr12, Jane H. Buckner13, Vivian P. Bykerk7, Edward DiCarlo14, James

Dolan15, Andrew Filer10, Thomas M. Eisenhaure4, Gary S. Firestein10, Susan M.

Goodman7, Ellen M. Gravallese5, Peter K. Gregersen16, Joel M. Guthridge17, Nir

Hacohen4, V. Michael Holers18, Laura B. Hughes12, Lionel B. Ivashkiv19,20, Eddie

A. James13, Judith A. James17, A. Helena Jonsson5, Josh Keegan15, Stephen

Kelly21, Yvonne C. Lee22, James A. Lederer15, David J. Lieb4, Arthur M.

Mandelin II22, Mandy J. McGeachy23, Michael A. McNamara7, Nida Meednu9,

Larry Moreland23, Jennifer P. Nguyen15, Akiko Noma4, Dana E. Orange24,

Harris Perlman22, Costantino Pitzalis25, Javier Rangel-Moreno9, Deepak A.

Zhang et al. Genome Medicine           (2021) 13:64 Page 14 of 17

https://doi.org/10.1186/s13073-021-00881-3
https://doi.org/10.1186/s13073-021-00881-3


Rao5, Mina Ohani-Pichavant26,27, Christopher Ritchlin9, William H. Robin-

son26,27, Karen Salomon-Escoto28, Anupamaa Seshadri15, Jennifer Seifert18,

Darren Tabechian9, Jason D. Turner10, Paul J. Utz26,27, Kevin Wei5.
9Division of Allergy, Immunology and Rheumatology, Department of

Medicine, University of Rochester Medical Center, Rochester, NY, USA.
10Rheumatology Research Group, Institute for Inflammation and Aging, NIHR

Birmingham Biomedical Research Center and Clinical Research Facility,

University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK.
11Department of Medicine, Division of Rheumatology, Allergy and

Immunology, University of California, San Diego, La Jolla, CA, USA.
12Division of Clinical Immunology and Rheumatology, Department of

Medicine, Translational Research University of Alabama at Birmingham,

Birmingham, AL, USA.

13Translational Research Program, Benaroya Research Institute at Virginia

Mason, Seattle, WA, USA.
14Department of Pathology and Laboratory Medicine, Hospital for Special

Surgery, New York, NY, USA.
15Department of Surgery, Brigham and Women’s Hospital and Harvard

Medical School,

Feinstein Boston, MA, USA.
16Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY,

USA.
17Department of Arthritis & Clinical Immunology, Oklahoma Medical

Research Foundation, Oklahoma City, OK, USA.
18Division of Rheumatology, University of Colorado School of Medicine,

Aurora, CO, USA.
19Graduate Program in Immunology and Microbial Pathogenesis, Weill

Cornell Graduate School of Medical Sciences, New York, NY, USA.
20David Z. Rosensweig Genomics Research Center, Hospital for Special

Surgery, New York, NY, USA.
21Department of Rheumatology, Barts Health NHS Trust, London, UK.
22Division of Rheumatology, Department of Medicine, Northwestern

University Feinberg School of Medicine, Chicago, IL, USA.
23Division of Rheumatology and Clinical Immunology, University of

Pittsburgh School of Medicine, Pittsburgh, PA, USA.
24The Rockefeller University, New York, NY, USA.
25Centre for Experimental Medicine & Rheumatology, William Harvey

Research Institute, Queen Mary University of London, London, UK.
26Division of Immunology and Rheumatology, Department of Medicine,

Stanford University School of Medicine, Palo Alto, CA, USA.
27Immunity, Transplantation, and Infection, Stanford University School of

Medicine, Stanford, CA, USA.
28Division of Rheumatology, Department of Medicine, University of

Massachusetts Medical School, Worcester, MA, USA.

Authors’ contributions

F.Z. and S.R. conceptualized the study and designed the statistical strategy.

F.Z. and J.R.M performed the analyses. J.R.M. collected public single-cell data-

sets. F.Z., J.R.M., and S.R. wrote the initial manuscript. L.T.D., A.N., I.K., J.I.B., L.S.,

and S.S. edited the draft. L.T.D obtained blood samples from human subjects.

L.T.D, L.S., J.I.B., and S.S. organized processing, transportation, and experiment

of the blood samples. S.R. and L.T.D. supervised the work. All authors read

and approved the final manuscript.

Funding

This work is supported in part by funding from the National Institutes of

Health (NIH) Grants UH2AR067677, U01HG009379, and R01AR063759 (to S.R.)

and NIH R01AI148435, UH2 AR067691, Carson Family Trust, and Leon

Lowenstein Foundation (to L.T.D.).

Availability of data and materials

The single-cell RNA-seq data for blood-derived macrophages are available in

the Gene Expression Omnibus database with accession number GSE168710,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168710 [54]. Source

code repository to reproduce analyses is located at https://github.com/

immunogenomics/inflamedtissue_covid19_reference [55].

The publicly available datasets analyzed during the study are available from

the GEO repository:

GSE134809 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134

809) [27]

GSE122960 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960)

[28]

GSE145926 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145926)

[4]

GSE155249 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155249)

[29]

GSE47189 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47189)

[11]

dbGap repository:

phs001457.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs001457.v1.p1) [13]

phs001529.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs001529.v1.p1) [25]

phs001457.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs001457.v1.p1) [26]

Single Cell Portal:

SCP259 (https://singlecell.broadinstitute.org/single_cell/study/SCP259/intra-

and-inter-cellular-rewiring-of-the-human-colon-during-ulcerative-colitis) [15]

Declarations

Ethics approval and consent to participate

Healthy blood samples were purchased from the New York Blood Center

(NYBC), provided by volunteer donors who consented for the blood to be

used in biomedical research and other uses at the discretion of NYBC. The

samples are deidentified by the NYBC, the research study investigators had

no access to identifiable private information. As per the NIH guidelines, this

does not constitute Human Subjects research. For the stimulated blood-

derived macrophage experiment, co-cultures with synovial fibroblast in-

volved synovial fibroblast lines generated from patients with RA undergoing

arthroplasty (HSS IRB 14-033). Patients provided informed consent and all ap-

propriate measures were taken for compliance with the Helsinki Declaration.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA

02115, USA. 2Division of Genetics, Department of Medicine, Brigham and

Women’s Hospital, Boston, MA 02115, USA. 3Department of Biomedical

Informatics, Harvard Medical School, Boston, MA 02115, USA. 4Broad Institute

of MIT and Harvard, Cambridge, MA 02142, USA. 5Division of Rheumatology,

Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard

Medical School, Boston, MA 02115, USA. 6Graduate Program in Physiology,

Biophysics and Systems Biology, Weill Cornell Graduate School of Medical

Sciences, New York, NY 10065, USA. 7Arthritis and Tissue Degeneration,

Hospital for Special Surgery, New York, NY, USA. 8Arthritis Research UK

Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The

University of Manchester, Manchester, UK.

Received: 19 August 2020 Accepted: 29 March 2021

References

1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J

Med. 2011;365(23):2205–19. https://doi.org/10.1056/NEJMra1004965.

2. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol.

2014;14(5):329–42. https://doi.org/10.1038/nri3661.

3. Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U,

Yang D. Overlapping and discrete aspects of the pathology and

pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV,

MERS-CoV, and 2019-nCoV. J Med Virol. 2020;92(5):491–4. https://doi.org/1

0.1002/jmv.25709.

4. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F,

Liu L, Amit I, Zhang S, Zhang Z. Single-cell landscape of bronchoalveolar

immune cells in patients with COVID-19. Nat Med. 2020;26(6):842–4. https://

doi.org/10.1038/s41591-020-0901-9.

Zhang et al. Genome Medicine           (2021) 13:64 Page 15 of 17

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168710
https://github.com/immunogenomics/inflamedtissue_covid19_reference
https://github.com/immunogenomics/inflamedtissue_covid19_reference
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134809
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134809
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145926
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155249
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47189
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001529.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001529.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001457.v1.p1
https://singlecell.broadinstitute.org/single_cell/study/SCP259/intra-and-inter-cellular-rewiring-of-the-human-colon-during-ulcerative-colitis
https://singlecell.broadinstitute.org/single_cell/study/SCP259/intra-and-inter-cellular-rewiring-of-the-human-colon-during-ulcerative-colitis
https://doi.org/10.1056/NEJMra1004965
https://doi.org/10.1038/nri3661
https://doi.org/10.1002/jmv.25709
https://doi.org/10.1002/jmv.25709
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1038/s41591-020-0901-9


5. Wen W, Su W, Tang H, le W, Zhang X, Zheng Y, Liu X, Xie L, Li J, Ye J, Dong

L, Cui X, Miao Y, Wang D, Dong J, Xiao C, Chen W, Wang H. Immune cell

profiling of COVID-19 patients in the recovery stage by single-cell

sequencing. Cell Discov. 2020;6(1):31. https://doi.org/10.1038/s41421-020-01

68-9.

6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X,

Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H,

Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features

of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.

2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

7. Lucas C, et al. Longitudinal analyses reveal immunological misfiring in

severe COVID-19. Nature. 2020;584(7821):463–9. https://doi.org/10.1038/s41

586-020-2588-y.

8. He W, Kapate N, Shields CW 4th, Mitragotri S. Drug delivery to

macrophages: a review of targeting drugs and drug carriers to

macrophages for inflammatory diseases. Adv Drug Deliv Rev. 2019;165-166:

15–40. https://doi.org/10.1016/j.addr.2019.12.001.

9. Kinne RW, Bräuer R, Stuhlmüller B, Palombo-Kinne E, Burmester GR.

Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2(3):189–202.

https://doi.org/10.1186/ar86.

10. Ma W-T, Gao F, Gu K, Chen D-K. The role of monocytes and macrophages

in autoimmune diseases: a comprehensive review. Front Immunol. 2019;10:

1140. https://doi.org/10.3389/fimmu.2019.01140.

11. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, de Nardo D,

Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann

MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze

JL. Transcriptome-based network analysis reveals a spectrum model of

human macrophage activation. Immunity. 2014;40(2):274–88. https://doi.

org/10.1016/j.immuni.2014.01.006.

12. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell

heterogeneity. Nat Rev Immunol. 2018;18(1):35–45. https://doi.org/10.1038/

nri.2017.76.

13. Zhang F, et al. Defining inflammatory cell states in rheumatoid arthritis joint

synovial tissues by integrating single-cell transcriptomics and mass

cytometry. Nat Immunol. 2019;20(7):928–42. https://doi.org/10.1038/s41590-

019-0378-1.

14. Kuo D, Ding J, Cohn IS, Zhang F, Wei K, Rao DA, Rozo C, Sokhi UK, Shanaj S,

Oliver DJ, Echeverria AP, DiCarlo EF, Brenner MB, Bykerk VP, Goodman SM,

Raychaudhuri S, Rätsch G, Ivashkiv LB, Donlin LT. HBEGF+ macrophages in

rheumatoid arthritis induce fibroblast invasiveness. Sci Transl Med. 2019;

11(491):eaau8587. https://doi.org/10.1126/scitranslmed.aau8587.

15. Smillie CS, et al. Intra- and inter-cellular rewiring of the human colon during

ulcerative colitis. Cell. 2019;178:714–730.e22.

16. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y,

Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration

of single-cell data with harmony. Nat Methods. 2019;16(12):1289–96. https://

doi.org/10.1038/s41592-019-0619-0.

17. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):

257–72. https://doi.org/10.1038/s41576-019-0093-7.

18. Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell

transcriptomes using Scanorama. Nat Biotechnol. 2019;37(6):685–91. https://

doi.org/10.1038/s41587-019-0113-3.

19. Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell

RNA-sequencing data are corrected by matching mutual nearest neighbors.

Nat Biotechnol. 2018;36(5):421–7. https://doi.org/10.1038/nbt.4091.

20. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell

transcriptomic data across different conditions, technologies, and species.

Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1038/nbt.4096.

21. Polański K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE. BBKNN:

fast batch alignment of single cell transcriptomes. Bioinformatics. 2020;36(3):

964–5. https://doi.org/10.1093/bioinformatics/btz625.

22. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. A

benchmark of batch-effect correction methods for single-cell RNA

sequencing data. Genome Biol. 2020;21(1):12. https://doi.org/10.1186/s13

059-019-1850-9.

23. Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism,

disease and cancer immunotherapy. Nat Rev Immunol. 2018;18(9):545–58.

https://doi.org/10.1038/s41577-018-0029-z.

24. Barrat FJ, Crow MK, Ivashkiv LB. Interferon target-gene expression and

epigenomic signatures in health and disease. Nat Immunol. 2019;20(12):

1574–83. https://doi.org/10.1038/s41590-019-0466-2.

25. Stephenson W, Donlin LT, Butler A, Rozo C, Bracken B, Rashidfarrokhi A,

Goodman SM, Ivashkiv LB, Bykerk VP, Orange DE, Darnell RB, Swerdlow HP,

Satija R. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using

low-cost microfluidic instrumentation. Nat Commun. 2018;9(1):791. https://

doi.org/10.1038/s41467-017-02659-x.

26. Arazi A, et al. The immune cell landscape in kidneys of patients with lupus

nephritis. Nat Immunol. 2019;20(7):902–14. https://doi.org/10.1038/s41590-01

9-0398-x.

27. Martin JC, et al. Single-cell analysis of Crohn’s disease lesions identifies a

pathogenic cellular module associated with resistance to anti-TNF therapy.

Cell. 2019;178:1493–1508.e20.

28. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu

S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H,

Nam K, Chi M, Han SH, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S,

Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M,

Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu

GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H,

Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge

KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.

Single-cell transcriptomic analysis of human lung provides insights into the

pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2018;

199(12):1517–36. https://doi.org/10.1164/rccm.201712-2410OC.

29. Grant RA, et al. Circuits between infected macrophages and T cells in SARS-

CoV-2 pneumonia. Nature. 2021;590(7847):635–41. https://doi.org/10.1038/

s41586-020-03148-w.

30. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-

seq quantification. Nat Biotechnol. 2016;34(5):525–7. https://doi.org/10.1038/

nbt.3519.

31. Ritchie ME, et al. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

32. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of

communities in large networks. arXiv [physics.soc-ph]. 2008;(10):P10008.

https://arxiv.org/abs/0803.0476.

33. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and

projection for dimension reduction. arXiv preprint arXiv:1802.03426. 2018.

https://arxiv.org/abs/1802.03426.

34. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

https://doi.org/10.1186/s13059-014-0550-8.

35. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay

PK, Swerdlow H, Satija R, Smibert P. Simultaneous epitope and

transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8.

https://doi.org/10.1038/nmeth.4380.

36. Fonseka CY, Rao DA, Teslovich NC, Korsunsky I, Hannes SK, Slowikowski K,

Gurish MF, Donlin LT, Lederer JA, Weinblatt ME, Massarotti EM, Coblyn JS,

Helfgott SM, Todd DJ, Bykerk VP, Karlson EW, Ermann J, Lee YC, Brenner MB,

Raychaudhuri S. Mixed-effects association of single cells identifies an

expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci Transl

Med. 2018;10(463):eaaq0305. https://doi.org/10.1126/scitranslmed.aaq0305.

37. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.

The molecular signatures database (MSigDB) hallmark gene set collection.

Cell Syst. 2015;1(6):417–25. https://doi.org/10.1016/j.cels.2015.12.004.

38. Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to

summarize microarray experiments: application to sporulation time series.

Pac Symp Biocomput. 2000:455–66. https://pubmed.ncbi.nlm.nih.gov/1

0902193/.

39. Blanco-Melo D, et al. Imbalanced Host Response to SARS-CoV-2 Drives

Development of COVID-19. Cell. 2020;181:1036–1045.e9.

40. Robinson PC, Liew DFL, Liew JW, Monaco C, Richards D, Shivakumar S,

Tanner HL, Feldmann M. The Potential for Repurposing Anti-TNF as a

Therapy for the Treatment of COVID-19. Med. 2020;1(1):90–102. https://doi.

org/10.1016/j.medj.2020.11.005.

41. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM III,

Smibert P, Satija R. Cell Hashing with barcoded antibodies enables

multiplexing and doublet detection for single cell genomics. Genome Biol.

2018;19(1):224. https://doi.org/10.1186/s13059-018-1603-1.

42. Dallagi A, Girouard J, Hamelin-Morrissette J, Dadzie R, Laurent L, Vaillancourt

C, Lafond J, Carrier C, Reyes-Moreno C. The activating effect of IFN-γ on

monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via

Stat1 inhibition and Stat3 activation. Cell Mol Immunol. 2015;12(3):326–41.

https://doi.org/10.1038/cmi.2014.50.

Zhang et al. Genome Medicine           (2021) 13:64 Page 16 of 17

https://doi.org/10.1038/s41421-020-0168-9
https://doi.org/10.1038/s41421-020-0168-9
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1016/j.addr.2019.12.001
https://doi.org/10.1186/ar86
https://doi.org/10.3389/fimmu.2019.01140
https://doi.org/10.1016/j.immuni.2014.01.006
https://doi.org/10.1016/j.immuni.2014.01.006
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/s41590-019-0378-1
https://doi.org/10.1038/s41590-019-0378-1
https://doi.org/10.1126/scitranslmed.aau8587
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41587-019-0113-3
https://doi.org/10.1038/s41587-019-0113-3
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1093/bioinformatics/btz625
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1186/s13059-019-1850-9
https://doi.org/10.1038/s41577-018-0029-z
https://doi.org/10.1038/s41590-019-0466-2
https://doi.org/10.1038/s41467-017-02659-x
https://doi.org/10.1038/s41467-017-02659-x
https://doi.org/10.1038/s41590-019-0398-x
https://doi.org/10.1038/s41590-019-0398-x
https://doi.org/10.1164/rccm.201712-2410OC
https://doi.org/10.1038/s41586-020-03148-w
https://doi.org/10.1038/s41586-020-03148-w
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://arxiv.org/abs/0803.0476
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1126/scitranslmed.aaq0305
https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/10902193/
https://pubmed.ncbi.nlm.nih.gov/10902193/
https://doi.org/10.1016/j.medj.2020.11.005
https://doi.org/10.1016/j.medj.2020.11.005
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1038/cmi.2014.50


43. Luo W, Li YX, Jiang LJ, Chen Q, Wang T, Ye DW. Targeting JAK-STAT

signaling to control cytokine release syndrome in COVID-19. Trends

Pharmacol Sci. 2020;41(8):531–43. https://doi.org/10.1016/j.tips.2020.06.007.

44. Wang BX, Fish EN. Global virus outbreaks: Interferons as 1st responders. Semin

Immunol. 2019;43:101300. https://doi.org/10.1016/j.smim.2019.101300.

45. Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M,

Abbasian L, Kazemzadeh H, Yekaninejad MS. Efficacy and safety of

interferon β-1a in treatment of severe COVID-19: A randomized clinical trial.

Antimicrobial Agents and Chemotherapy. 2020. https://aac.asm.org/content/

64/9/e01061-20.

46. Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine

storm and therapeutic potential of interferons. Cytokine Growth Factor Rev.

2020;53:66–70. https://doi.org/10.1016/j.cytogfr.2020.05.002.

47. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `cytokine

storm’ in COVID-19. J Inf Secur. 2020;80:607–13.

48. Cao Y, et al. Ruxolitinib in treatment of severe coronavirus disease 2019

(COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy

Clin Immunol. 2020;146:137–146.e3.

49. Ahmed A, Merrill SA, Alsawah F, Bockenstedt P, Campagnaro E, Devata S,

Gitlin SD, Kaminski M, Cusick A, Phillips T, Sood S, Talpaz M, Quiery A,

Boonstra PS, Wilcox RA. Ruxolitinib in adult patients with secondary

haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot

trial. Lancet Haematol. 2019;6(12):e630–7. https://doi.org/10.1016/S2352-302

6(19)30156-5.

50. Zizzo G, Cohen PL. Imperfect storm: is interleukin-33 the Achilles heel of

COVID-19? Lancet Rheumatol. 2020;2(12):e779–90. https://doi.org/10.1016/S2

665-9913(20)30340-4.

51. Kalil AC, Patterson TF, Mehta AK. Baricitinib plus remdesivir for hospitalized

adults with COVID-19. N Engl J Med. 2021;384(9):795–807. https://doi.org/1

0.1056/NEJMoa2031994.

52. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M,

Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby

R, Jonsson CB, Kanneganti TD. Synergism of TNF-α and IFN-γ triggers

inflammatory cell death, tissue damage, and mortality in SARS-CoV-2

infection and cytokine shock syndromes. Cell. 2021;184(1):149–68.

53. Garcia-Beltran WF, et al. COVID-19-neutralizing antibodies predict disease

severity and survival. Cell. 2021;184:476–488.e11.

54. Zhang F, Mears JR, Shakib L, Beynor JI, Shanaj S, Korsunsky I, Nathan A,

Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic

Lupus Erythematosus (AMP RA/SLE) Consortium, Donlin LT, Raychaudhuri S.

IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype

expanded in severe COVID-19 lungs and inflammatory diseases with tissue

inflammation. GSE168710, Gene Expression Omnibus, https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE168710 (2021).

55. Zhang F, Mears JR, Shakib L, Beynor JI, Shanaj S, Korsunsky I, Nathan A,

Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic

Lupus Erythematosus (AMP RA/SLE) Consortium, Donlin LT, Raychaudhuri S.

IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype

expanded in severe COVID-19 lungs and inflammatory diseases with tissue

inflammation. Github, https://github.com/immunogenomics/inflamedtissue_

covid19_reference (2021).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Zhang et al. Genome Medicine           (2021) 13:64 Page 17 of 17

https://doi.org/10.1016/j.tips.2020.06.007
https://doi.org/10.1016/j.smim.2019.101300
https://aac.asm.org/content/64/9/e01061-20
https://aac.asm.org/content/64/9/e01061-20
https://doi.org/10.1016/j.cytogfr.2020.05.002
https://doi.org/10.1016/S2352-3026(19)30156-5
https://doi.org/10.1016/S2352-3026(19)30156-5
https://doi.org/10.1016/S2665-9913(20)30340-4
https://doi.org/10.1016/S2665-9913(20)30340-4
https://doi.org/10.1056/NEJMoa2031994
https://doi.org/10.1056/NEJMoa2031994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168710
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE168710
https://github.com/immunogenomics/inflamedtissue_covid19_reference
https://github.com/immunogenomics/inflamedtissue_covid19_reference

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Integration of scRNA-seq profiles from multiple datasets
	scRNA-seq data collection, remapping, and aggregation
	Normalization, scaling, and feature selection
	Dimensionality reduction and batch effect correction
	Quantitative evaluation of batch correction and dataset integration
	Graph-based clustering
	Pseudo-bulk differential expression analysis
	Identification of major immune cell-type clusters

	Cell culture for human blood-derived macrophages and synovial fibroblasts
	RNA library preparation and sequencing
	Processing FASTQ reads into gene expression matrices and cell hashing
	Linear modeling for experimental stimulation-specific genes from cell culture single-cell profiles
	Testing integrative macrophage clusters for association with severe/inflamed status
	Gene score calculation
	Pathway enrichment analysis
	Statistical analysis

	Results
	A reference of >&thinsp;300,000 immune single-cell profiles across inflammatory diseases and COVID-19
	Identification of shared inflammatory macrophage states across inflammatory disease tissues and COVID-19 lungs
	Tissue inflammatory conditions that drive distinct macrophage phenotypes
	Identification of an IFN-γ and TNF-α synergistically driven inflammatory macrophage phenotype expanded in severe COVID-19 lungs and other inflamed disease tissues

	Discussion
	Conclusions
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

