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Abstract

Macrophages can be niches for bacterial pathogens or antibacterial effector cells depend-

ing on the pathogen and signals from the immune system. Here we show that type I and II

IFNs are master regulators of gene expression during Legionella pneumophila infection,

and activators of an alveolar macrophage-intrinsic immune response that restricts bacterial

growth during pneumonia. Quantitative mass spectrometry revealed that both IFNs sub-

stantially modify Legionella-containing vacuoles, and comparative analyses reveal distinct

subsets of transcriptionally and spatially IFN-regulated proteins. Immune-responsive gene

(IRG)1 is induced by IFNs in mitochondria that closely associate with Legionella-containing

vacuoles, and mediates production of itaconic acid. This metabolite is bactericidal against

intravacuolar L. pneumophila as well as extracellular multidrug-resistant Gram-positive and

-negative bacteria. Our study explores the overall role IFNs play in inducing substantial

remodeling of bacterial vacuoles and in stimulating production of IRG1-derived itaconic acid

which targets intravacuolar pathogens. IRG1 or its product itaconic acid might be therapeu-

tically targetable to fight intracellular and drug-resistant bacteria.
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Author Summary

Numerous intracellular bacterial pathogens replicate in specialized vacuoles within macro-

phages. We systematically study the molecular mechanism and the impact of macro-

phage-intrinsic antibacterial defense. Using L. pneumophila, an important cause of

pneumonia and model organism for intracellular bacteria, we found that type I and II

interferons critically modify the proteome of bacterial vacuoles to restrict infection. We

identify IRG1 and demonstrate a bactericidal activity of its metabolite itaconic acid on bac-

teria in their vacuole. Moreover, our study provides evidence for the impact of this cell-

autonomous defense pathway in alveolar macrophages to restrict lung infection. We spec-

ulate that vacuolar IRG1 or its product itaconic acid could serve as future therapeutic tar-

gets to fight intracellular and drug-resistant bacteria.

Introduction

Intracellular bacteria are major causes of morbidity andmortality. Upon infection, many intracellu-

lar pathogens establish intracellular membrane-bound compartments, where they resist lysosomal

degradation and humoral immune responses [1]. As a result of co-evolution, host cells have in turn

developed strategies to target the vacuoles or the bacteria inside in order to control infections [2,3].

Interferons (IFNs), which are classified into type I, II and III IFNs [4], are potent inducers of intra-

cellular immunity in vertebrates [2]. They fulfill this function by activating transcription of partly

overlapping sets of so-called IFN-stimulated genes (ISGs), several of which with antiviral or anti-

bacterial activities. However, the exact functions of many ISGs remain unknown [2].

Legionella pneumophila is a frequent cause of severe pneumonia in humans and a model for

investigating immune responses to intravacuolar bacteria. Upon infection, L. pneumophila is

phagocytosed by alveolar macrophages, where L. pneumophila establishes a specialized replication

vacuole, named the Legionella-containing vacuole (LCV). This process requires the Dot/Icm type

IV secretion system (T4SS) which injects around 300 bacterial effector molecules into the host

cytosol [5]. In replication-permissive cells, the LCV escapes fusion with lysosomes and instead

recruits secretory vesicles from the endoplasmic reticulum (ER) as well as mitochondria [5–8].

In macrophages of C57BL/6 mice (and most other inbred strains), however, wild-type (wt)

L. pneumophila is restricted by the NAIP5 inflammasome which detects bacterial flagellin and

stimulates cell death as well as phagolysosomal maturation [9–13]. In contrast to wt bacteria, L.

pneumophila lacking flagellin are not recognized by NAIP5 and are thus able to replicate in

mouse macrophages. We and others recently demonstrated that L. pneumophila is additionally

controlled by a cell-autonomous defense pathway that is activated by auto-/paracrine type I

IFN signaling [14–19]. This defense pathway restricts the bacteria in their vacuole without pre-

venting LCV formation or triggering lysosomal fusion [15].

In the present study, we systematically examined the antibacterial innate immune response

to L. pneumophila infection and demonstrate that type I and II IFNs substantially alter the

composition of bacterial vacuoles, induce production of bactericidal itaconic acid via IRG1,

and restrict L. pneumophila replication in alveolar macrophages and lungs.

Results

IFNs are master regulators of gene expression upon L. pneumophila
infection

In order to identify master regulators of the innate immune response to intracellular bacteria,

we compared gene expression in the lungs of L. pneumophila-infected and sham-treated
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C57BL/6 WTmice. We identified 1526 genes (S1 Dataset) that were induced upon infection.

Upstream regulator analysis was performed with Ingenuity Pathway Analysis (IPA) (Fig 1A)

and revealed that type I and II IFNs and their related transcription factors (e.g. STAT1, IRF3,

IRF7) play a predominant role in controlling gene transcription in response to L. pneumophila

infection (Fig 1B). This in silico prediction was confirmed by transcriptome analysis of L. pneu-

mophila-infected Ifnar-/-, Ifngr-/-, Ifnar/Ifngr-/- mice, all of which showed a severely impaired

transcriptional response compared to WT animals (Fig 1C, S1 Dataset).

To investigate the functional relevance of the type I and II IFNs for the antibacterial defense

against L. pneumophila, we analyzed bacterial clearance following infection of WT, Ifnar-/-,

Ifngr-/- and Ifnar/Ifngr-/- mice. Whereas WT, Ifnar-/- and Ifngr-/- mice were able to clear or

Fig 1. Type I and II IFNs are main regulators of gene expression during L. pneumophila infection. (A)
Workflow for upstream regulator analysis. (B, C) WT (B) or WT, Ifnar-/-, Ifngr-/- and Ifnar/Ifngr-/- mice (C) were
infected with L. pneumophila or treated with PBS. Mice were sacrificed 2 d p.i., and microarray analysis
performed from lung RNA. Up-regulated genes in L. pneumophila-infectedWTmice compared to controls
were analyzed for their predicted upstream regulators (B). Heat map of microarray analysis of infected versus
PBS-treated mice for wild-type and respective knock-out strains (C). 5 mice per group, pooled for RNA
extraction and subsequent analysis. (D) Bacterial loads in the lungs of L. pneumophila infectedWT, Ifnar-/-,
Ifngr-/- and Ifnar/Ifngr-/- mice are depicted. Data represent mean + s.e.m. of 5–6 mice per group. Dotted line
indicates lower detection limit, * p<0.05, ** p<0.01 (Kruskal-Wallis analysis of variance followed by Mann-
Whitney U test with Bonferroni correction for multiple comparisons).

doi:10.1371/journal.ppat.1005408.g001
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strongly reduce bacterial burdens by day 6 post infection (p.i.), bacterial loads remained high

in Ifnar/Ifngr-/- mice (Fig 1D). This is in line with our previously published results from infec-

tions with L. pneumophila ΔflaA [15]. Together, these data indicate that type I and type II IFNs

are critical regulators of early gene expression and the antibacterial innate immune response

during L. pneumophila infection.

IFNs restrict L. pneumophila in vivo via a CD11c+ cell-intrinsic
mechanism

Alveolar macrophages, but not dendritic cells (DCs), are the primary cell type supporting L.

pneumophila infection in vivo [20–22]. Therefore, we questioned whether an IFN-mediated

alveolar macrophage-intrinsic defense pathway is relevant during L. pneumophila infection in

vivo. To this end, we constructed a chimeric mouse model in which IFN signaling was selec-

tively abrogated in CD11c+ cells, whereas at least 50% of all other hematopoietic cell types

express the IFN receptors (Fig 2A). In the lung>90% of CD11c+ cells are alveolar macrophages

and only a minority of pulmonary CD11c+ cells in steady state are DCs. CD45.1+mice were

Fig 2. Type I and II IFNs restrict L. pneumophila infection through an alveolar macrophage-intrinsic mechanism. (A) Overview of generation of
CD11c-DTR-GFP / Ifnar/Ifngr-/- mixed bone marrow chimeric mice followed by DTXmediated depletion of CD11c-DTR-GFP+ cells. (B) Frequency of
remaining CD11c+ GFP+ wild-type cells was correlated to bacterial load in the lungs of CD11c-DTR-GFP / Ifnar/Ifngr-/- + DTX chimeras including all DTX-
treated mice (13 mice) at 6 d p.i.. (C) Only mice with <10%GFP+ (of all CD11c+ cells) were considered for analysis and bacterial loads in the lungs of L.
pneumophila infected mixed bone marrow-chimeric mice at indicated time points are shown. (D, E) Alveolar macrophages of WT, Ifnar-/-, Ifngr-/- and Ifnar/

Ifngr-/- mice were left untreated (E) or were treated with 50 U/ml IFNβ or IFNγ (D) 16–18 h prior to and during infection with L. pneumophila ΔflaA (D) or
wt (E). Bacterial growth was determined by CFU counting after 72 h. Data represent 3 independent experiments done in triplicates. * p<0.05, ** p<0.01,
*** p<0.001 (Pearson correlation (B), Kruskal-Wallis analysis of variance, Dunn’s multiple comparison (C) or Mann-Whitney U test (D, E)). # No bacteria
were detected.

doi:10.1371/journal.ppat.1005408.g002
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irradiated and reconstituted with a 1:1 mixture of CD45.2+ bone-marrow cells from Ifnar/

Ifngr-/- or WT and CD11c-DTR-GFP mice (expressing the diphtheria toxin receptor (DTR)

under the control of the CD11c promoter). Repopulation was assessed to be>90% after 10

weeks (S1A Fig) and mice were subsequently infected with L. pneumophila wt. First, we ana-

lyzed all L. pneumophila-infected mice repopulated with Ifnar/Ifngr-/- and CD11c-DTR-GFP

cells including those showing a weak depletion of CD11c+ GFP+ cells by diphtheria toxin

(DTX) in the lung (S1B Fig). We observed a significant negative correlation between remaining

CD11c+ GFP+ cells (expressing IFN receptors) and pulmonary bacterial load (Fig 2B). This

correlation indicates that the number of IFN-responsive CD11c+ cells has a direct positive

impact on bacterial clearance.

Second, we examined bacterial loads only in the bone-marrow-chimeric mice which showed

a highly efficient DTX-mediated depletion of CD11c+ DTR-expressing GFP+ cells (with<10%

remaining, S1 Fig). Strikingly, chimeric mice lacking the IFN receptors in CD11c+ cells

(CD11c-DTR / Ifnar/Ifngr-/- + DTX) were unable to clear L. pneumophila wt infection (Fig

2C), and were thus comparable to Ifnar/Ifngr-/- mice (Fig 1D). In contrast, chimeric mice with-

out depletion of IFNAR/IFNGR-expressing CD11c+ cells (CD11c-DTR / Ifnar/Ifngr-/- + PBS)

showed a significant reduction of bacterial burdens (Fig 2C). Chimeric mice reconstituted with

solely IFN-responsive cells (CD11c-DTR / WT + DTX) finally were able to clear the infection

almost completely. Given that DCs do not support L. pneumophila growth [20,21], our data

strongly suggest that IFNs induce alveolar macrophage-intrinsic effects to restrict intracellular

infection.

In line with this conclusion, L. pneumophila ΔflaA, which is able to replicate in WT alveolar

macrophages due to evasion of the NAIP5 inflammasome [9–12], is partially inhibited by IFNβ

and completely blocked by IFNγ treatment (Fig 2D). Conversely, Ifnar-/- and Ifnar/Ifngr-/- alve-

olar macrophages supported replication of otherwise growth-restricted L. pneumophila wt (Fig

2E). These data indicate that endogenously produced type I IFNs control bacterial growth,

whereas type II IFN is not relevant in this ex vivomodel since alveolar macrophages produce

no or only negligible levels of IFNγ [23]. Collectively, our data indicate that L. pneumophila

lung infection is controlled by an IFN-dependent alveolar macrophage-intrinsic mechanism.

IFNs restrict L. pneumophila in a largely iNOS- and cell death-
independent fashion

To determine the molecular basis of how macrophages restrict L. pneumophila upon activation

by IFNs, we made use of bone marrow-derived macrophages (BMMs), an easily available and

frequently used cell model to study L. pneumophila infection [9–12,14,15]. As shown in alveo-

lar macrophages (Fig 2D), treatment of BMMs with IFNβ or IFNγ restricted the growth of L.

pneumophila ΔflaA (S2A and S2B Fig), which is in line with previous reports [14–16]. Impor-

tantly, treatment of BMMs with suboptimal doses of both cytokines alone or in combination

resulted in comparable growth inhibition (S2C Fig) suggesting that type I and II IFNs might

activate an identical intracellular restriction mechanism. Moreover, lack of responsiveness to

endogenous IFNβ in Ifnar-/- BMMs resulted in replication of otherwise growth-restricted L.

pneumophila wt, and further enhanced the growth of L. pneumophila ΔflaA (S2D Fig).

Type I IFNs have previously been reported to induce cell death via e.g. caspase-11-depen-

dent pyroptosis or RIP3-dependent necroptosis [24,25]. In order to detect pyroptosis and

necroptosis of infected BMMs, we measured cell viability by flow cytometry as a general read-

out for both types of cell death. The use of GFP-expessing Legionella allowed us to exclusively

consider bacteria-harboring cells (S3A Fig). As expected, infection with L. pneumophila wt

enhanced cell death compared to L. pneumophila ΔflaA as a consequence of NAIP5/
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NLRC4-dependent pyroptosis [10–12] (S3B, S3C and S3E Fig). However, cell death in L. pneu-

mophila wt infected cells was not affected by the lack of IFNAR (S3B and S3C Fig), and was

only marginally affected by IFNs upon L. pneumophila ΔflaA infection (S3B–S3D Fig). This

indicates that IFNs can slightly enhance cell death in L. pneumophila-infected cells indepen-

dently of the NAIP5 pathway. Moreover, cell death was completely independent of RIP3 (S3E

Fig), and RIP3 as well as caspase-11 deficiency did not influence bacterial growth or its restric-

tion by IFNs (S4A, S4B, S4D and S4E Fig). Another important restriction mechanism against

intracellular bacteria is the production of nitric oxide (NO) via inducible NO synthase (iNOS)

[26]. However, L. pneumophila wt and ΔflaA replication and IFN-mediated bacterial restriction

were comparable in WT and iNOS-deficient macrophages (S4C and S4F Fig). Thus, neither

cell death nor production of reactive nitrogen species by iNOS appear to be of critical impor-

tance for the IFN-mediated control of L. pneumophila infection.

Subcellular quantitative proteomics reveal that type I and II IFNs
substantially modify vacuolar protein composition

IFNs induce the expression of hundreds of ISGs, several of which possess antimicrobial activi-

ties. Since some antimicrobial ISGs have been associated with microbial vacuoles [2], we

hypothesized that IFNs target antibacterial effector proteins to the LCV to restrict infection. In

order to test this hypothesis in an unbiased and systematic fashion, we examined the proteome

of Legionella-containing vacuoles (LCVs) in resting and IFN-activated macrophages 2 h post

infection. First, resting macrophages were infected, LCVs were purified as previously described

[27], and LCVs were analyzed by quantitative mass spectrometry. We identified 2307 proteins

from the host and 547 from the bacterium in 6 of 6 samples of LCVs from untreated cells (Fig

3A, S2 Dataset). In order to determine the cellular origin of the identified proteins, we per-

formed gene ontology (GO) enrichment analysis of the identified host proteins for cellular

components (CC). This analysis revealed the highest significance values for the GO terms

‘membrane-bounded organelle’ and ‘intracellular membrane-bounded organelle’ as predicted

cellular source of the identified proteins (S2 Dataset). Highest significance values were found

for ‘mitochondrion’, and ‘endoplasmic reticulum’ as predicted child terms of ‘intracellular mem-

brane-bounded organelle’ (Fig 3B, S2 Dataset), reflecting both the ER-derived nature of the

LCV as well as the previously reported close association of LCVs with mitochondria [5–8].

Additional GO enrichment analyses of biological processes (BP) indicated an enrichment of

proteins involved in metabolic as well as transport and localization processes (S5 Fig, S2

Dataset).

Macrophage activation by type I or II IFNs did not change the abundance of LCV marker

proteins like ARF1 and SEC22b, or ER marker proteins, nor did it lead to an enrichment of

endosomal or lysosomal proteins (Table 1), indicating that neither the LCV establishment is

inhibited by IFNs nor do they trigger endo-lysosomal fusion. However, IFNβ or IFNγ treat-

ment led to a significant (>2-fold) vacuolar enrichment of 260 or 321 proteins, respectively,

and to a decreased vacuolar abundance of 60 or 67 proteins (Figs 3C, 3D, S6A–S6F, S6B, S6D,

S6E and S3 Dataset). The direct comparison of LCV proteomes from IFNβ- or IFNγ-activated

cells revealed rather minor differences with only a few proteins being differentially regulated

(Figs 3E, S6C and S6F). Although we cannot exclude the possibility that some of the ISG prod-

uct found on the vacuole could potentially only be a contaminant due to the massive up-regula-

tion of ISGs in the cell, the data clearly show that IFNs substantially modify the LCV proteome.

Computational analysis of all IFN-directed proteins at the LCV using the STRING database of

known and predicted protein-protein interactions (http://string-db.org) generated a dense net-

work of protein interactions, with many proteins being involved in immune response processes

IRG1 Restricts Legionella in Their Vacuoles
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(Fig 4). These proteins included molecules contributing to microbial nucleic acid detection

(e.g. TMEM173, also known as STING), ubiquitinylation/ISGylation (e.g. ISG15, TRIM25),

antimicrobial defense (e.g. IRGM1, GBPs), and antigen processing/presentation. The compari-

son of the IFN-dependently LCV-enriched proteins with our transcriptome data (S1 Dataset)

as well as the INTERFEROME database of ISGs [28] revealed distinct subsets of IFN-regulated

proteins (Fig 4). Whereas several LCV-enriched proteins are also transcriptionally induced by

IFNs and thus represent bona fide ISGs, others such as kinases Syk and Lyn or proteins of the

proteasomal complex are not directly transcriptionally regulated but appear spatially affected

by IFNs.

IRG1 is a major L. pneumophila restricting factor

In order to identify new IFN-regulated proteins possessing antibacterial activity against L.

pneumophila we decided to examine proteins that were most strongly targeted to the LCV by

Fig 3. Type I and II IFNs alter the protein composition of LCVs. (A) Proteomic analysis of LCVs isolated 2 h p.i. from untreated BMMs infected with L.
pneumophila ΔflaA detected 2854 proteins in all six replicates of which 2307 were identified as host- and 547 as L. pneumophila-derived. (B) GO enrichment
analysis for overrepresented cellular components of the host proteins was done and overrepresented child terms of GO:0043231 ‘intracellular membrane-

bounded organelle’ were extracted. Depicted are p-values for the indicated GO terms as well as the number of identified proteins annotated with each term; #
no p-value for GO term ‘nucleus’ was computed. (C-E) Quantitative proteomic analysis of LCVs isolated 2 h p.i. with L. pneumophila ΔflaA from BMMs left
untreated or treated with 50 U/ml IFNβ or IFNγ 16–18 h prior to and during infection. Volcano plots show unchanged proteins (grey) and proteins with a
significant higher (red) or lower (green) abundance at LCVs from IFNβ- (C) or IFNγ- (D) treated BMMs compared to untreated cells, and direct comparison of
IFNβ- versus IFNγ-treated samples (E). See also S6 Fig for detailed list of top 20 proteins for each condition. Proteomic analysis was done from 6
(untreated), 5 (IFNγ) and 4 (IFNβ) individual LCV isolations.

doi:10.1371/journal.ppat.1005408.g003

IRG1 Restricts Legionella in Their Vacuoles

PLOS Pathogens | DOI:10.1371/journal.ppat.1005408 February 1, 2016 7 / 27



both IFNs (Fig 3C and 3D) for their roles in restricting L. pneumophila growth. BMMs were

first transfected with a pool of two siRNAs for each of our candidate molecules as well as

IFNAR as a control, and efficient gene silencing was verified (Fig 5A). We found that silencing

the expression of IRG1 enhanced replication of L. pneumophila to a similar extent as silencing

of IFNAR, whereas knock-down of THEMIS2, GBP3, and GBP7 only slightly increased bacte-

rial growth (Fig 5B). We thus decided to focus on IRG1.

Each IRG1-siRNA sequence was also effective in inhibiting their target gene expression (Fig

6A) and in increasing bacterial replication when used individually (Fig 6B). To demonstrate

that the IRG1-mediated bacterial restriction is also relevant in primary alveolar macrophages

we silenced IRG1 expression by siRNA (Fig 6C), which led to a significantly increased L. pneu-

mophila growth in these cells compared to control cells (Fig 6D).

We found that IRG1 was strongly induced in BMMs by IFNβ and IFNγ treatment (S7 Fig),

confirming its status as a bona fide ISG. Moreover, IRG1 expression was induced upon L. pneu-

mophila infection at both transcriptional and protein levels, which strongly relied on the

endogenous type I IFN signaling (Fig 6E and 6F). Strikingly, overexpression of IRG1 in Ifnar-/-

cells restricted intravacuolar growth of L. pneumophila, while the percentage of infected cells

was not influenced (Fig 6G–6I). Thus, IRG1 is regulated by IFNs, and restricts replication of L.

pneumophila within the LCV.

IRG1 localizes to mitochondria, which closely associate with the LCV

In agreement with previous studies in RAW264.7 macrophages [29], IRG1 showed a mito-

chondrial localization (Fig 7A and 7B). Moreover, super-resolution fluorescence microscopy

Table 1. Fold change in abundance of selected host proteins upon IFN-treatment identified by mass
spectrometry on purified LCVs.

IFNβ/untreated IFNγ/untreated

LCV marker

ARF1 1,7 1,7

RAB1a 1,3 1,1

RAB1a 1,0 1,1

SEC22b 1,1 1,0

ER marker

Calreticulin 1,0 1,1

Calnexin 1,2 1,2

endosome marker

RAB5a 1,8 1,8

RAB5b 1,5 1,7

RAB5c 1,6 1,7

RAB7a 1,2 1,2

RAB7b 1,2 1,1

endosome/lysosome

vATPase subunit A 1,0 1,1

vATPase subunit C1 0,9 1,0

vATPase subunit G1 1,0 1,2

lysosome marker

LAMP1 0,7 0,7

Cathepsin B 0,4 0,4

Myeloperoxidase 0,6 0,7

doi:10.1371/journal.ppat.1005408.t001
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demonstrated that mitochondria were distributed throughout the cell and closely associated

with LCVs (Fig 7C). As viewed by time-lapse fluorescence microscopy, mitochondria moved

very dynamically within living cells, although single mitochondria appeared to stay in close

proximity to intracellular L. pneumophila for at least 1 h, most likely attached to the LCVmem-

brane (S8 Fig and S1 Video). In order to directly evaluate whether the mitochondria-localized

IRG1 associates with the LCV, we visualized homogenized Legionella-infected IRG1-GFP-

overexpressing cells by fluorescence microscopy, and found that LCVs are surrounded by

IRG1 (Fig 7D). In summary, these data confirm that overexpressed IRG1 localizes to mito-

chondria and that the latter are in close contact with LCVs. In absence of a specific antibody

we could not obtain sufficient staining of endogenous IRG1. Nevertheless, our data strongly

suggest that IFN signaling stimulates up-regulation of endogenous IRG1 within mitochondria,

which results in its close association of IRG1 with LCV.

IRG1 mediates production of the metabolite itaconic acid, which is
broadly bactericidal

IRG1 has recently been described as an enzyme catalyzing the production of itaconic acid,

which was found to exert bacteriostatic effects onMycobacteria and Salmonella in liquid cul-

tures [30], but the mechanisms that regulate this pathway and its relevance for infections

remained incompletely understood. Subsequently, another study found that IRG1 mediates

production of mitochondrial ROS (mROS) [31]. We found that mROS is produced in Legio-

nella-infected macrophages by a largely IRG1- and IFNAR-independent mechanism (S9A and

S9B Fig). In contrast, metabolic analyses of BMMs via gas chromatography-mass spectrometry

(GC-MS) revealed that IFNs as well as L. pneumophila stimulate the production of itaconic

acid (Fig 8A and 8B), whereas gene-silencing of IRG1 strongly reduced its production (Fig 8C).

Fig 4. Integrated network analysis of IFN-regulated proteins of the LCVs. Proteins with higher abundance at LCVs from IFNβ- and/or IFNγ-treated
compared to untreated cells were analyzed with the STRING database. The proteome data were further compared with the whole genomemicroarray data
(S1 Dataset; genes > 2-fold higher expressed and p < 0.05 in infectedWT vs. Ifnar/Ifngr-/- mice) and the INTERFEROME database to indicate molecules
which are also transcriptionally regulated by IFNs. A GO enrichment analysis was performed for extracting significant subnetworks of a complex network
composed of 335 nodes and 2,612 edges. Shown are subnetworks positively affected by IFNβ and/or IFNγ activation such as ‘immune response’, ‘antigen

processing and presentation’ and the ‘proteasome complex’.

doi:10.1371/journal.ppat.1005408.g004

Fig 5. RNAi screen identifies IRG1 as crucial L. pneumophila restricting factor. (A, B) BMMs were transfected with control siRNA or a pool of two
siRNAs per gene 24 h prior to infection and infected with L. pneumophila. Expression of targeted genes was assessed 24 h p.i. by qRT-PCR (A), and CFUs
were counted 72 h p.i. (B). Data are mean + s.e.m. of 2 (A) or 4 (B) independent experiments done in triplicates. * p<0.05, ** p<0.01, *** p<0.001, no
indication if not significant (Mann-Whitney U test).

doi:10.1371/journal.ppat.1005408.g005
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Fig 6. IRG1 is regulated by IFNs and restricts L. pneumophilawithin their vacuoles. (A-D) BMMs (A, B)
or alveolar macrophages (C, D) were transfected with control or two IRG1 siRNAs separately (A, B) or pooled
(C, D), infected with L. pneumophila, Irg1 expression was assessed 24 h p.i. (A, C), and CFUs were counted
72 h p.i. (B, D). (E, F) Irg1 gene and IRG1 protein expression in WT and Ifnar-/- BMMs upon infection with L.
pneumophila was determined at indicated time points by qRT-PCR (E) and western blot (F). Cells
overexpressing IRG1-Myc-DDK (pIRG1) were loaded as a positive control (F). (G-I) Ifnar-/- BMMs
overexpressing IRG1-GFP or GFP only were infected with DsRed-expressing L. pneumophila (red). Cells
were fixed 24 h p.i., representative images taken (G), and overall infection rate (H) as well as number of
intracellular bacteria per cell determined by manual counting (I). (G) Scale bars indicate 5 μm. Data are mean
+ s.e.m. of 2 (A, B) or 4 (E) independent experiments done in triplicates or 3 independent experiments done in
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In line with the robust expression of IRG1 upon L. pneumophila infection in vivo (Fig 8D),

GC-MS measurements revealed a strong production of itaconic acid also in L. pneumophila-

infected mouse lungs (Fig 8E). Notably, IRG1 expression as well as itaconic acid production in

vivo were largely dependent on functional IFN signaling (Fig 8D and 8E).

quadruplicates (C, D). * p<0.05, ** p<0.01, *** p<0.001, no indication if not significant (Mann-Whitney U
test). (F) Representative blot of 3 independent experiments. (H, I) > 100 GFP- / IRG1-GFP-expressing cells
were counted manually for intracellular bacterial numbers, data represent mean + s.e.m. of 2 independent
experiments done in duplicates * p<0.05, no indication if not significant (Mann-Whitney U test).

doi:10.1371/journal.ppat.1005408.g006

Fig 7. Mitochondrial IRG1 closely associates with LCVs. (A, B) Ifnar-/- BMMs overexpressing IRG1-GFP
(green) were stained with mitotracker (red), fixed and nuclei were visualized by DAPI (blue) staining. Images
represent maximum intensity projections of z-stacks of 10 individual 1.4 μm thick sections. (B) Fluorescence
intensity profiles of IRG1-GFP and mitotracker along the dotted line in (A) are depicted. (C) Super-resolution
fluorescent image generated by structured illumination microscopy of BMMs stained with mitotracker (red)
and subsequently infected with L. pneumophila for 2 h. Bacteria and LCVs were visualized in fixed cells by L.
pneumophila (green) and SidC (LCV-located L. pneumophila-protein; cyan) staining, respectively. Large
overview image represents maximum intensity projection of a z-stack of 30 individual 0.126 μm thick
sections. Enlarged sections in the left panel depict one single confocal plane for each selected LCV
according to numbers in the overview image. White arrowheads point towards close associations of
mitochondria with the LCVmembrane. (D) Ifnar-/- BMMs overexpressing IRG1-GFP were infected with
DsRed-expressing L. pneumophila wt (red). 2 h p.i. cells were homogenized and LCVs and nuclei were
visualized by SidC (LCV-located L. pneumophila-protein; cyan) and DAPI (blue) staining. Framed area from
the upper left overview image is shown as orthogonal view of a z-stack of 8 individual 0.68 μm thick sections
and as single channels for depicted section. (A, C, D) Scale bars indicate 5 μm.

doi:10.1371/journal.ppat.1005408.g007
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Next, we assessed the antibacterial potential of itaconic acid on L. pneumophila. In line with

previous findings forM. tuberculosis and S. enterica [30], we found itaconic acid had an inhibi-

tory effect on L. pneumophila growth in liquid culture (Fig 8F), however, at concentrations pre-

viously found insufficient to restrict bacterial growth. Importantly, itaconic acid, but not

related organic acids, was capable of killing L. pneumophila as well as multidrug-resistant

Gram-positive and -negative isolates (Fig 8G–8J) at concentrations that have recently been

measured in activated RAW264.7 macrophages [30]. We thus conclude that IRG1 restricts L.

pneumophila in their LCVs in macrophages through catalyzing the production of the broadly

bactericidal metabolite itaconic acid.

Discussion

IFNs execute antimicrobial functions by stimulating the expression of hundreds of ISGs.

Recent large-scale examinations of ISGs have shed light on their antiviral activities [32–38],

and individual ISGs, including immunity-related GTPases and GBPs, are known to localize to

microbial vacuoles and to restrict bacterial infection [39–44]. However, the function of IFNs

and ISGs during bacterial infections have not been systematically examined, and the molecular

mechanism of IFN-mediated restriction of many bacterial infections remains unknown.

We therefore globally profiled the effects of type I and II IFNs on the transcriptome and

subcellular proteome during L. pneumophila infection, thereby providing an important

resource for IFN-mediated effects on basic cellular functions during infection. We demonstrate

that both IFNs are master regulators of gene expression. Within macrophages, IFNs induce

extensive remodeling of bacterial vacuoles, thereby altering their permissiveness for bacterial

growth (Fig 9). Neither types of IFNs disturbed the establishment of the LCV but targeted sev-

eral proteins involved in nucleic acid detection, antigen presentation and antibacterial defense

to bacterial vacuoles. Furthermore, we demonstrate that IFN-dependent activation of CD11c+

cells (most likely alveolar macrophages) is critical for restricting infection in vivo.

Interestingly, the comparison of our proteomic data with the INTERFEROME database as

well as our transcriptomic data indicates that a large subset of IFN-dependently LCV-enriched

proteins is not transcriptionally regulated. This reveals a hitherto unknown mode of action of

IFNs, and suggests that IFNs are able to control the spatial distribution of a subset of proteins,

potentially via the activation of signaling molecules that control protein recruitment.

Mitochondrial proteins account for almost one third of identified LCV proteins, whereas

the previously reported proteome of latex bead-phagosomes contained only 3–4% mitochon-

drial proteins [45]. Mitochondria have long been known to attach to LCVs as well as to other

microbe-containing vacuoles [6,46,47]. The mechanisms underlying mitochondrial attach-

ment, and most importantly, their biological function at the LCV remain, however, largely

unknown. L. pneumophila secretes a mitochondrial carrier protein (LncP) through its T4SS

[48] and might thereby actively recruit the organelles as a source of energy or nutritional

metabolites. Alternatively, mitochondria are actively recruited to phagosomes that contain bac-

teria by a Toll-like receptor (TLR)-dependent mechanism [49]. The TLR-mediated recruitment

Fig 8. IRG1mediates production of itaconic acid, which is bactericidal against L. pneumophila as well as multidrug-resistant Gram-positive and
-negative bacteria. (A-C) Intracellular levels of itaconic acid were measured by GC-MS in BMMs after stimulation with 50 U/ml IFNβ or IFNγ for 16–18 h (A),
infection with L. pneumophila for 24 h (B), and in BMMs transfected with siRNAs 24 h prior infection and infected with L. pneumophila for 24 h (C). (D, E) Irg1
expression (D) and itaconic acid levels (E) in lungs of L. pneumophila-infected or control mice measured by qRT-PCR or GC-MS, respectively, 2 d p.i.. (F)
Itaconic acid was added to L. pneumophila in liquid culture and bacterial growth was assessed. (G-J) L. pneumophila, S. aureus (MRSA) and A. baumannii

(MDR) were incubated in PBS containing itaconic acid or related acids, and numbers of viable bacteria were determined by CFU counting. (A-C) Data
represent mean + s.e.m. of 3 (A) or 4 (B, C) experiments, done in sextuplicates pooled for GC-MS analysis. (D, E) Data represent mean + s.e.m. of 4 (E) or 5
(D) mice per group. (F) Representative graph of 3 independent experiments. (E, F) Data represent mean + s.e.m. of 2 (G) or 3 (H-J) experiments done in
triplicates. # No viable bacteria were detected.

doi:10.1371/journal.ppat.1005408.g008
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Fig 9. Overview of the type I and II IFN-driven, alveolar macrophage-intrinsic defense pathway that restricts L. pneumophila during lung infection
(as discussed in the text).

doi:10.1371/journal.ppat.1005408.g009
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of mitochondria and the concomitant IFN-dependent up-regulation of antimicrobial proteins

within this organelle might thus represent a combined strategy of the immune system to coun-

teract intravacuolar pathogens.

We demonstrate for the first time that the mitochondrial protein IRG1 localizes in close

association with a microbial vacuole, and indicate that IRG1 activity is able to restrict Legio-

nella inside their LCVs. As discussed above, this IRG1 accumulation on LCVs is most likely

dependent on IFN-mediated upregulation of IRG1 within mitochondria and Legionella- and/

or TLR-dependent recruitment of those organelles to LCVs.

IRG1 has recently been identified as an enzyme catalysing the production of itaconic acid

following decarboxylation of the tricarboxylic acid cycle metabolite cis-aconitate [30]. Itaconic

acid was found to exert bacteriostatic effects onMycobacteria and Salmonella in liquid bacterial

cultures [30]. We demonstrate that itaconic acid production in vivo is entirely dependent on

IFN signals. In addition, we report for the first time a directly bactericidal effect of itaconic acid

on different bacterial pathogens, which contrasts to the merely bacteriostatic activity recently

reported [30]. Such different effects might be reflective of metabolic differences amongst these

bacterial species. InM. tuberculosis, itaconic acid is thought to inhibit bacterial growth by

inhibiting the glyoxylate shunt [30,50]. However, this pathway is believed to be absent in L.

pneumophila [51]. We speculate that the bactericidal activity of itaconic acid on L. pneumo-

phila involves the accumulation of toxic propionyl-CoA concentrations following inhibition of

isocitrate lyase or methylisocitrate lyase [30,52], or the blocking of other pathways. We further

assume that the IRG1/itaconic acid pathway acts in concert with established antibacterial fac-

tors such as IRGM1 and GBPs to completely eliminate L. pneumophila in IFN-activated mac-

rophages and mice [15,53].

Type II IFN is well-known for its activation of antibacterial immunity to most intravacuolar

bacteria, whereas type I IFNs have been shown to either enhance or inhibit those responses

[54]. Using an unbiased, quantitative approach we show here that, in principle, both types of

IFNs are able to induce most known antibacterial ISGs (e.g. GBPs, immunity-regulated

GTPases, IRG1). One could speculate that the differential roles of type I IFNs in various bacte-

rial infections might be explained by differences in the architecture of the bacterial vacuoles,

and the relative contribution of IFN-dependent defense systems versus other intracellular or

extracellular immune mechanisms.

In conclusion, our study provides for the first time comprehensive insight into the tran-

scriptional and spatial regulations induced by type I and II IFNs that lead to critical modifica-

tions in the proteome of bacterial vacuoles, and it identifies a novel IFN-controlled defense

pathway against L. pneumophila infection. In the future, therapeutic stimulation of IRG1 or

delivery of encapsulated itaconic acid might be useful to fight intracellular and multidrug-resis-

tant bacteria.

Materials and Methods

Bacteria

The L. pneumophila serogroup 1 strain JR32, the ΔflaAmutant, JR32 expressing eGFP or

DsRed and the culture conditions have been described previously [11,55]. ΔflaAmutants

expressing eGFP or DsRed have been generated in this study using plasmids published recently

[55]. A clinical isolate of methicillin resistant Staphylococcus aureus (MRSA) has been obtained

from the Charité microbiology department, the multidrug-resistant Acinetobacter baumannii

isolate A9703 was kindly provided by Harald Seifert, University Cologne, Germany. S. aureaus

and A. baumannii were cultured on LB agar.
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Ethics statement

All animal experiments were approved by institutional (Charité –Universitätsmedizin Berlin)

and governmental animal welfare committees (LAGeSo Berlin; approval IDs G0446/08,

G0278/11, G0440/12).

Mice

Casp11-/-, Ifnar-/-, Ifngr-/-, Rip3-/-, Ifnar/Ifngr-/- and Nos2-/- mice were on a C57BL/6 back-

ground [15,56,57]. C57BL/6 CD45.1 mice and transgenic CD11c-DTR-GFP [58] mice were

bred and maintained at the University of Melbourne.

In vivo infection

All mice used were on C57BL/6J background, 8–10 weeks old and female. Anaesthetized mice

were intranasally infected with 1 × 106 L. pneumophila in 40 μl of PBS [15].

RNA extraction, microarray analysis and upstream regulator analysis

Lungs were flushed via the pulmonary artery with sterile saline and homogenized in Trizol

(Life Technologies) [59]. Homogenized lungs were pooled (5 mice per group) and RNA extrac-

tion was carried out according to manufacturer’s instructions. RNA amounts were estimated

with a NanoDrop 1000 UV-Vis spectrophotometer (Kisker) and RNA integrity was confirmed

using an Agilent 2100 Bioanalyzer with a RNA Nano 6000 microfluidics kit (Agilent Technolo-

gies). Microarray analysis was performed as dual-color hybridizations. In order to compensate

dye-specific effects and to ensure statistically relevant data, color-swap dye-reversal hybridiza-

tions were performed [60]. RNA labeling was done with a two-color Quick Amp Labeling Kit

according the supplier’s recommendations (Agilent Technologies). In brief, mRNA was reverse

transcribed and amplified using an oligo-dT-T7 promoter primer, and labeled with Cyanine

3-CTP or Cyanine 5-CTP. After precipitation, purification, and quantification, 1.25 μg of each

labeled cRNA was fragmented and hybridized to whole mouse genome 4x44K multipack

microarrays (Design ID 014868) according to the manufacturer’s protocol (Agilent Technolo-

gies). Scanning of microarrays was performed with 5 μm resolution using a G2565CA high-

resolution laser microarray scanner (Agilent Technologies) with XDR extended range. Micro-

array image data were analyzed and extracted with the Image Analysis/Feature Extraction soft-

ware G2567AA v. A.10.10.1.1 (Agilent Technologies) using default settings and the protocol

GE2_1010_Sep10. The extracted MAGE-ML files were subsequently analyzed with the Rosetta

Resolver, Build 7.2.2 SP1.31 (Rosetta Biosoftware). Ratio profiles comprising single hybridiza-

tions were combined in an error-weighted fashion to create ratio experiments. A 1.5-fold

change expression cut-off for ratio experiments was applied together with anti-correlation of

ratio profiles, rendering the microarray analysis highly significant (p< 0.01), robust, and

reproducible. The data discussed in this publication have been deposited in NCBI's Gene

Expression Omnibus and are accessible through GEO Series accession number GSE60085.

Genes identified to be significantly up-regulated upon L. pneumophila infection (> 2-fold

increase, p< 0.05 in infected versus PBS treated WTmice; S3 Dataset) were analyzed for their

predicted upstream regulators using the Ingenuity Pathway Analysis (IPA) software (Ingenuity

System). Only upstream regulators with an activation z-score> 2 (predicted activators) were

considered and further categorized in respective groups.
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Bone marrow chimeric mice

Chimeras were generated as described recently [61] (Fig 2A). Briefly, CD45.1+ mice were

lethally irradiated twice with 550 cGy and reconstituted with a 1:1 mix of 1.5 × 106 bone mar-

row cells from C57BL/6 WT or Ifnar/Ifngr-/- and transgenic CD11c-DTR-GFP mice (all

CD45.2+). Chimeric mice were allowed to reconstitute for at least 10 weeks. Only those mice

that contained< 10% host cells were included in experiments. Depletion of CD11c+ cells was

achieved by injection of CD11c-DTR-GFP chimeric mice intraperitoneally three times with

100 ng diphtheria toxin (Sigma-Aldrich) on days -2, +1 and +4 prior to and during infection.

Flow cytometry

Preparation of lung cells for the determination of cell exchange in chimeric mice has been

described [62]. The lung cell suspension was labelled with anti-panCD45 (30-F11, eBioscience),

anti-CD45.1 (A20, BD Pharmingen), anti-CD45.2 (104, BD Pharmingen), anti-Ly6G (1A8, BD

Pharmingen), anti-CD11c (N418, eBioscience) anti-MHC-II (M5/114.15.2, eBioscience), anti-

Siglec-F, (E50-2440, BD Pharmingen) and anti-CD64 (X54-5/7.1, BD Pharmingen). Cells were

analyzed on a Becton Dickinson LSRFortessa flow cytometer using FACSDIVA software (BD

Biosciences).

Cell isolation

Bone marrow-derived macrophages (BMMs) were prepared from femurs and tibiae. Alveolar

macrophages (AMs) were isolated by extensive bronchoalveolar lavage and purity was checked

by flow cytometry.

Cell transfection and infection

BMMs and AMs were transfected with control non-silencing or a mix of two gene-specific siR-

NAs (S1 Table) 24 h prior to infection (Life Technologies) using HiPerfect (Qiagen), and with

EGFP (pEGFP-N1, Clontech) or full-length murine IRG1 (NM_008392) with a carboxy-termi-

nal TurboGFP (pCMV6-AC-GFP, OriGene) or Myc-DDK (pCMV6-Entry, OriGene) tag 48 h

prior to infection using ViaFect (Promega). BMMs and AMs were infected with L. pneumo-

phila wt or ΔflaA, centrifuged at 200 g for 5 min and incubated for the indicated time intervals.

Where indicated, cells were incubated either with IFNβ, IFNγ or both 16–18 h prior to and

during infection at a concentration of 50 U/ml unless stated otherwise. For intracellular repli-

cation assays, cell death and mitochondrial ROS assays, BMMs or AMs were infected with L.

pneumophila, centrifuged at 200 g for 5 min and incubated at 37°C for 30 min. Cells were

washed with PBS and were further incubated with RPMI with 15% L cell supernatant and 10%

FCS (BMMs) or 10% FCS (AMs) containing 50 μg/ml gentamicin for 1 h in order to kill extra-

cellular bacteria.

Quantitative RT-PCR

Total RNA was isolated from BMMs or lung homogenates using the PerfectPure RNA purifica-

tion system (5 Prime) or Trizol (Life Technologies), respectively, reverse-transcribed using

high capacity reverse transcription kit (Applied Biosystems), and quantitative PCR was per-

formed using TaqMan assays (Life Technologies) or self-designed primer sets, respectively (S2

Table), on an ABI 7300 instrument. The input was normalized to the average expression of

GAPDH and relative expression (relative quantity, RQ) of the respective gene in untreated

cells or PBS-treated mice was set as 1.
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Cell death and mitochondrial ROSmeasurement

Cells were detached using ice cold PBS containing 2 mM EDTA and stained for mitochondrial

ROS (MitoSOX Red, Life Technologies) or cell death (7-AAD, eBioscience or LIVE/DEAD fix-

able red dead cell stain, Life Technologies). Proportions of mitochondrial ROS producing

(MitoSOX+) or dead (7AAD+ or LIVE/DEAD+) cells were determined in infected (GFP+) and

uninfected (GFP-) cell populations by flow cytometry (FACScan, BD or MACSQuant, Miltenyi

Biotec). Data analysis was done using FlowJo software (Tree Star).

Immunoblotting

For immunoblotting cells were lysed in SDS- and 1% NP40-containing lysis buffer, cleared

extracts were separated by SDS-PAGE and SDS-gels were blotted onto Hybond nitrocellulose

membranes. Antibodies against IRG1 (HPA040143, Sigma-Aldrich) and actin (sc-1616, Santa

Cruz) followed by respective fluorophore-linked secondary antibodies (Rockland) were used

and blots analyzed using an Odyssey infrared imaging system (Li-Cor).

Confocal laser scanning, structured illumination and time-lapse
microscopy

BMMs were seeded onto glass coverslips or high precision glass coverslips for structured illumi-

nation microscopy. Where indicated, cells were stained with MitoTracker Orange (Life Technol-

ogies) approximately 2 h prior infection. Cells were fixed with 3% PFA or aceton/methanol if

MitoTracker was used. For homogenization, cells were seeded in 6 well plates, infected and 2 h

p.i. washed with PBS, scraped in homogenization buffer (20 mMHepes, 250 mM sucrose,

0.5 mM EGTA, pH 7.2) and homogenized using a ball homogenizer (Isobiotec). Homogenates

were centrifuged onto glass coverslips and fixed with 3% PFA. For intracellular staining, cells

were permeabilized with 0.1% triton x-100 and blocked with 5% FCS. Where indicated cells were

stained with an affinity purified rabbit anti-SidC [63] and a mouse anti-Legionella pneumophila

(ab69239, Abcam) antibody followed by the respective anti-rabbit Alexa Fluor 633-conjugated

(Molecular Probes) and anti-mouse DyLight 405-conjugated (Thermo Scientific) secondary anti-

body. Samples were mounted on slides using PermaFluor (Thermo Scientific) containing DAPI

or Mowiol (Sigma-Aldrich). For confocal laser scanning microscopy samples were examined

using a LSM 780 microscope (objective: Plan Apochromat 63×/1.40 oil DICM27, Carl-Zeiss).

Structured illumination microscopy was performed on an ELYRA PS.1 microscope (objective:

Plan Apochromat 63×/1.40 oil DICM27, Carl-Zeiss). Data sets were acquired with five grating

phases and three rotations, post-processed in ZEN (Carl-Zeiss) using automatically determined

parameters, and colour channels were subsequently aligned based on parameters determined

from control measurements with multispectral beads performed with identical instrument set-

tings. For time-lapse confocal microscopy cells were seeded in 8 well μ-slides (Ibidi) and stained

with MitoTracker Orange (Life Technologies) approximately 2 h prior infection. Images were

acquired on a LSM 780 microscope (objective: Plan Apochromat 63×/1.40 oil DICM27, Carl-

Zeiss) at 37°C/5% CO2. All images were processed using ZEN (Carl-Zeiss) and ImageJ software

(http://imagej.nih.gov/ij/).

LCV isolation

BMMs were left untreated or treated with 50 U/ml IFNβ or IFNγ for 16–18 h prior to and dur-

ing infection and subsequently infected with L. pneumophila ΔflaA for 2 h at a m.o.i of 50.

LCVs from BMMs were isolated as described previously for RAW264.7 cells and amoeba

[27,64]. Briefly, cells were washed with PBS, scraped in homogenization buffer (20 mMHepes,
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250 mM sucrose, 0.5 mM EGTA, pH 7.2), homogenized using a ball homogenizer (Isobiotec),

and incubated with an anti-SidC antibody [63] followed by a secondary anti-rabbit antibody

coupled to magnetic beads (Miltenyi Biotec). The LCVs were separated in a magnetic field and

further purified by a Histodenz density gradient centrifugation step.

Proteomic analysis

Isolated LCV from 4 IFNβ, 5 IFNγ, and 6 untreated biological replicates were analyzed. LCV

samples were solubilized in 1% RapiGest (Waters) in 50 mM Tris pH 8.0, reduced with 10 mM

tris (2-carboxyethyl)phosphine (TCEP) (Pierce), and heated at 70°C for 10 min. After cooling,

proteins were alkylated in 10 mM iodoacetamide (Sigma-Aldrich), and alkylation was

quenched in 20 mM DTT. Protein concentrations were measured by the EZQ assay (Life Tech-

nologies), and 8 μg of protein was digested by trypsin overnight at 30°C, after diluting the Rapi-

gest concentration to 0.1%. Rapigest was removed from the sample by acidification to 2%

trifluoroacetic acid (TFA) and incubation at 37°C for 1 h, followed by centrifugation at 14k g

for 30 min. Peptides were then desalted with Microspin C18 solid phase extraction columns

(The Nest Group). After drying down, peptides were redissolved in 1% TFA.

For each sample, 2 μg of peptides were analyzed on an Orbitrap Velos Pro mass spectrome-

ter coupled to an Ultimate 3000 UHPLC system with a 50 cm EasySpray analytical column

(75 μm ID, 3 μm C18) in conjunction with a Pepmap trapping column (100 μm x 2 cm, 5 μm

C18) (Thermo-Fisher Scientific). Acquisition settings were: lockmass of 445.120024, MS1 with

60,000 resolution, top 20 CIDMS/MS using Rapid Scan, monoisotopic precursor selection,

unassigned charge states and z = 1 rejected, dynamic exclusion of 60s with repeat count 1. 6 h

linear gradients were performed from 3% solvent B to 35% solvent B (solvent A: 0.1% formic

acid, solvent B: 80% acetonitrile 0.08% formic acid) with a 30 min washing and re-equilibration

step [65].

Protein identification and quantification were performed using MaxQuant Version 1.4.1.2

[66] with the following parameters: stable modification carbamidomethyl (C); variable modifi-

cations of methionine oxidation, and protein N-terminal acetylation, and 2 missed cleavages.

Searches were conducted using a Uniprot-TremblMus musculus database downloaded May 1,

2013, Legionella pneumophila strain Philadelphia 1 downloaded December 4, 2013, and com-

mon contaminants. Identifications were filtered at a 1% false-discovery rate (FDR) at the pro-

tein level, accepting a minimum peptide length of 7. Quantification used only razor and unique

peptides, and required a minimum ratio count of 2. “Re-quantify” and “match between runs”

were enabled.

Gene Ontology (GO) analysis

The host proteins identified in all six LCV samples from untreated macrophages (S1 Dataset)

were analyzed for overrepresented cellular components using g:Profiler (http://biit.cs.ut.ee/

gprofiler/) [67] with default settings including g:SCS algorithm for multiple testing correction.

All overrepresented child terms of the GO term intracellular membrane-bounded organelle

(GO:0043231, p = 3.55 × 10−300) were extracted. The total result of GO enrichment analysis for

cellular components (CC) can be found in S1 Dataset. To identify and visualize biological pro-

cesses that are overrepresented at LCVs of untreated cells, the same list of proteins was ana-

lyzed with BiNGO [68] for Cytoscape [69] using default settings including hypergeometric

testing and Benjamini & Hochberg FDR correction. Significance level cut-off was set

to< 10−10 (terms with p-values> 10−10 are depicted if p-value of final child term was< 10−10).

The total result of GO enrichment analysis for biological process (BP) can be found in S1

Dataset.

IRG1 Restricts Legionella in Their Vacuoles

PLOS Pathogens | DOI:10.1371/journal.ppat.1005408 February 1, 2016 20 / 27

http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/


Integrated STRING network analysis

Proteins identified in IFN-treated (in 4 of 4 IFNβ or 5 of 5 IFNγ treated samples) but not in

untreated samples (� 1 of 6 samples; hereafter called “qualitative changers”) and proteins with

significant higher abundance in IFN-treated versus untreated samples (log2 LFQ intensity

ratio� 1, p< 0.05; hereafter called “quantitative changers”) (S2 Dataset) were combined and ana-

lyzed for protein-protein interaction networks using STRING database (http://string-db.org/).

The identified network was extracted and loaded into Cytoscape [69] for visualization; only inter-

actions with a minimum STRING combined score of 0.400, which represents the default medium

confidence level in STRING, were kept. For identification of subnetworks of overrepresented bio-

logical functions, the combined protein list was analyzed by g:Profiler (http://biit.cs.ut.ee/

gprofiler/) [67]. Protein lists of overrepresented GO terms were extracted and subnetworks were

built using STRING and Cytoscape. To identify proteins within the networks that were also tran-

scriptionally induced by IFNs upon in vivo L. pneumophila infection, the combined list of qualita-

tive and quantitative changing proteins was compared to genes with a>2-fold change (p< 0.05)

in L. pneumophila infected Ifnar/Ifngr-/- versusWTmice (S3 Dataset). To cross-reference gene

names from transcriptome analysis and Uniprot identifier from proteome analysis, both lists were

uploaded to STRING and respective output lists were compared against each other. For identifica-

tion of ISGs the protein list was also compared against the INTERFEROME database [28].

Gas chromatography-mass spectrometry (GC-MS) analysis of itaconic
acid production

106 BMMs per well were left untreated, were incubated either with 50 U/ml IFNβ or IFNγ for

16–18 h or were infected with L. pneumophila for 24 h. Where indicated cells were transfected

with control non-silencing or a mix of two gene-specific siRNAs as described above 24 h prior to

infection. After washing with PBS, metabolism was stopped adding 200 μl cooled 50%MeOH

(-20°C) and cells were collected by scraping in the MeOH solution. Cells from 6 wells were

pooled, 240 μl chloroform were added, samples centrifuged for 10 min at 10k g and supernatant

containing polar metabolites was dried under vacuum overnight. For in vivo experiments mice

were infected with L. pneumophila wt or left untreated. 2 d p.i. lungs were flushed with sterile

PBS, shock frozen in liquid nitrogen and stored at -80°C. Lung tissue was homogenized using a

Precellys24 bead homogenizer in chloroform (6 mL/g), methanol (6 mL/g), and distilled water

(4 mL/g). Samples were centrifuged for 10 min at 10k g and supernatant containing polar metab-

olites was dried under vacuum overnight. For GC/MS analysis samples were processed using pro-

tocols and machine settings described elsewhere [70]. Data were analyzed using ChromaTOF

(Leco) and the custom software MetMax [71]. Data were normalized on mean of total area of all

analyzed metabolites (in vitro samples) or on internal standard (in vivo samples) and average

amount of itaconic acid in untreated cells or control mice was set as 1.

Itaconic acid growth inhibition and killing assay

For growth inhibition bacteria were grown in AYE broth containing indicated amounts of ita-

conic acid. OD600 was determined over time. For killing assays bacteria were resuspended in

PBS and respective amounts of itaconic acid, acetic acid or citric acid were added. Bacteria

were incubated at 37°C and plated at indicated time points to assess viability.

Statistical analysis

Data were statistically analyzed using GraphPad Prism software. Groups were compared with

two-tailed Mann-Whitney U test or, for multiple-group comparisons with Kruskal-Wallis
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analysis of variance followed by Dunn’s multiple comparison test. Differences with p< 0.05

were considered statistically significant.

Accession code

GEO: GSE60085.

Supporting Information

S1 Fig. Proportions of CD11c+ GFP+ (undepleted) cells in DTX treated chimeric mice.

CD45.1 recipient mice were lethally irradiated and repopulated with a 1:1 mixture of bone-

marrow cells from CD45.2 transgenic CD11c-DTR-GFP and Ifnar/Ifngr-/- or WT donor mice.

(A) Repopulation with CD45.2 donor cells within CD45.1 recipient mice was assessed by flow

cytometry of whole lung cells (representative dot plot). (B) Cell proportions were determined

in total lung homogenates from CD11c-DTR-GFP / WT + DTX and CD11c-DTR-GFP / Ifnar/

Ifngr-/- + DTX mice by flow cytometry and gating on CD45+ CD11c+ (all CD11c+ cells),

CD45+ CD11c+ CD64+ / SiglecF+ (macrophages / monocytes) or CD45+ CD11c+ CD64-

SiglecF-MHC-IIhi (dendritic cells). Only mice with<10% GFP+ (of all CD11c+) cells were con-

sidered for analysis depicted in Fig 2C. No cut-off was applied for analysis depicted in Fig 2B.

(PDF)

S2 Fig. Macrophage activation by IFNs restricts intracellular growth of L. pneumophila.

(A-C) Intracellular growth of L. pneumophila ΔflaA in WT BMMs left untreated or treated

with IFNβ, IFNγ or both 16–18 h prior to and during infection. (D) Intracellular growth of L.

pneumophila wt and ΔflaA in WT and Ifnar-/- BMMs. Data represent mean + s.e.m. of 2 (B), 4

(C) or 5 (A, D) experiments done in triplicates. � p<0.05, �� p<0.01, ��� p<0.001, no indica-

tion if not significant (two-tailed Mann-Whitey U test), significance was tested against

untreated control (A-C) or between wild-type and knock-out cells for each condition (D).

(PDF)

S3 Fig. L. pneumophila restriction in macrophages is largely independent of IFN-driven

cell death. Cell death of infected (GFP+) cells (A; gating strategy) in WT BMMs left untreated

or treated with 50 U/ml IFNβ or IFNγ 16–18 h prior to and during infection (D), Ifnar-/- (B,

C), and Rip3-/- (E) BMMs infected with L. pneumophila wt or ΔflaA expressing eGFP was

determined by flow cytometry. Data represent mean + s.e.m. of 2 (E) or 4 (C, D) experiments

done in triplicates. � p<0.05, �� p<0.01, no indication if not significant (two-tailed Mann-

Whitey U test), significance was tested against untreated control (D) or between wild-type and

knock-out cells for each condition (C, E). (B) Representative blots of 4 independent experi-

ments done in triplicates (summarized in C) are shown.

(PDF)

S4 Fig. L. pneumophila restriction in macrophages is largely independent of RIP3, caspase-

11 and iNOS. Intracellular growth of L. pneumophila wt and ΔflaA in WT, Rip3-/- (A, D),

Casp11-/- (B, E) and Nos2-/- (C, F) BMMs left untreated (D-F) or treated with IFNβ or IFNγ

16–18 h prior and during infection (A-C). Data represent mean + s.e.m. of 2 (A, B, D, E) or 3

(C, F) experiments done in triplicates. No significant differences between wild-type and knock-

out cells were found for any condition (two-tailed Mann-Whitey U test).

(PDF)

S5 Fig. Proteins involved in metabolic processes and transport and localization are strongly

enriched at LCVs. GO enrichment analysis for biological processes (BP) of the 2307 host pro-

teins identified in untreated LCV samples using BiNGO (Cytoscape). Hierarchical structure,
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read from inside (first node, blue encircled) to outside (final nodes, pink encircled). Subnet-

works of highly enriched biological processes are highlighted (metabolic process, transport/

localization, biological regulation, immune system process). Significance cut-off value for visu-

alization was set to 10−10, ancestor terms with p> 10−10 are depicted if final child term had p-

value< 10−10. Tabular outline of whole analysis including exact p-values and full lists of pro-

teins for each GO term can be found in S2 Dataset.

(PDF)

S6 Fig. Proteins differentially targeted to the LCV upon IFNβ or IFNγ treatment. Quantita-

tive proteomic analysis of LCVs isolated 2 h p.i. with L. pneumophila ΔflaA from BMMs left

untreated or treated with 50 U/ml IFNβ or IFNγ 16–18 h prior to and during infection. Bar

graphs show top 20 proteins with a significant higher (red) or lower (green) abundance at

LCVs from IFNβ- (A, B) or IFNγ- (D, E) treated BMMs compared to untreated cells, and direct

comparison of IFNβ- versus IFNγ-treated samples (C, F). Bar graphs correspond with volcano

blots depicted in Fig 3C–3E. Proteomic analysis was done from 6 (untreated), 5 (IFNγ) and 4

(IFNβ) individual LCV isolations.

(PDF)

S7 Fig. IRG1 is transcriptionally regulated by type I and type II IFNs. Irg1 gene expression

in WT BMMs left untreated or treated with 50 U/ml IFNβ or IFNγ for 16–18 h was determined

by qRT-PCR. Data are mean + s.e.m. of 2 independent experiments done in triplicates.

(PDF)

S8 Fig. Mitochondria stay in close proximity to intracellular L. pneumophila. Representative

frames from time-lapse confocal imaging of mitotracker stained (red) WT BMMs infected with

L. pneumophila ΔflaA expressing eGFP (green). Imaging starts approximately 2 h p.i.. White

arrow points toward a single mitochondrion staying in close proximity of the intracellular L.

pneumophila, while other mitochondria move dynamically within the cell (open white arrow-

head). The full sequence of frames with a 1-minute-time resolution can be found in S1 Video.

(PDF)

S9 Fig. Mitochondrial ROS production in L. pneumophila-infected cells is largely indepen-

dent of type I IFN signalling and IRG1.WT BMMs transfected with siRNAs 24 h prior to

infection (A), or WT and Ifnar-/- BMMs (B) were infected with eGFP-expressing L. pneumo-

phila wt and proportions of mitochondrial ROS producing (MitoSOX+) cells were determined

by flow cytometry in infected (GFP+) and uninfected (GFP-) populations, respectively. Data

represent mean + s.e.m. of 2 (B) or 4 (A) experiments done in triplicates.

(PDF)

S1 Dataset. In vivo transcriptome data of L. pneumophila-infected wild-type and IFN-

receptor knock-out mice. Tabular outline of all genes significantly up- or down-regulated in

WTmice upon L. pneumophila infection and their regulation in Ifnar-/-, Ifngr-/- and Ifnar/

Ifngr-/- mice upon infection.

(XLSX)

S2 Dataset. LCV proteome data of L. pneumophila-infected untreated BMMs. All host- and

Legionella-derived proteins identified in samples of LCVs isolated from L. pneumophila-

infected resting BMMs are listed. Tabular outline of total results of GO analyses of all identified

host proteins for cellular component (CC; as depicted in Fig 3B), and biological process (BP; as

depicted in S5 Fig) computed using G-profiler and BiNGO for Cytoscape, respectively.

(XLSX)
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S3 Dataset. LCV proteome data untreated compared to IFN-treated BMMs. Quantification

of host-derived proteins identified in samples of LCVs from resting BMMs against LCVs from

IFN-treated BMMs as well as quantification of proteins from LCVs of IFNβ against IFNγ

treated BMMs.

(XLSX)

S1 Video. Mitochondria stay in close proximity to intracellular L. pneumophila. Time-lapse

confocal imaging of mitotracker stained (red) WT BMMs infected with L. pneumophila ΔflaA

expressing eGFP (green). Imaging starts approximately 2 h p.i. and single frames were taken

every minute. See also S8 Fig.

(AVI)

S1 Table. Oligonucleotides used for RNAi in this study.

(DOCX)

S2 Table. TaqMan assays and primer sets used for quantitative real-time PCR in this study.

(DOCX)
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