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Abstract Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and

motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-

tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from

the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse

back into the cell body. In contrast to this ‘open’ system, IFT-B proteins from retrograde trains

reenter the pool and a portion is reused directly in anterograde trains indicating a ‘semi-open’

system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells.

FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to

the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We

conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive

release into the cilium upon completion.

DOI: 10.7554/eLife.26609.001

Introduction
The assembly of most cilia and flagella (terms used interchangeably) depends on bidirectional intra-

flagellar transport (IFT) (Rosenbaum and Witman, 2002). Anterograde IFT trains move from the cili-

ary base to the tip powered by kinesin-2; in retrograde IFT, the trains return to the cell body

employing IFT dynein. The IFT trains transport proteins in and out of cilia to support ciliary assembly,

maintenance, and signaling (for review: [Lechtreck, 2015]). They are composed of IFT motors and

IFT particles, the latter consisting of 22 conserved IFT proteins organized into biochemically stable

IFT-A, IFT-B1 and IFT-B2 subcomplexes each consisting of equimolar amounts of 6, 10 and 6 pro-

teins, respectively (Cole et al., 1998; Katoh et al., 2016; Taschner et al., 2012, 2016). At the ultra-

structural level, the trains possess a periodic substructure presumably resulting from the 22-subunit

IFT particles (Pigino et al., 2009; Stepanek and Pigino, 2016; Vannuccini et al., 2016). Numerous

protein-protein interactions within the IFT particle have been identified and a 15-subunit IFT-B
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complex has been assembled from recombinant proteins (Hirano et al., 2017; Taschner et al.,

2016). The oligomerization of purified IFT complexes to the size of trains observed in vivo under cell

free conditions has not yet been reported. In summary, our knowledge on how trains assemble is

limited.

Western blot analyses showed that 90% or more of the IFT proteins reside in the cell body, a por-

tion of which is concentrated around the basal bodies forming an IFT pool (Ahmed et al., 2008;

Deane et al., 2001; Richey and Qin, 2012). The IFT trains emerge from the basal body pool (bb-

pool) and enter the cilia in a kinesin-2 dependent manner (Kozminski et al., 1995). In contrast to

the discrete IFT trains observed inside cilia, the IFT bb-pool appears to be amorphous at the ultra-

structural level, i.e., bona fide IFT trains with their characteristic zigzag structure are visible only near

the distal end of the basal bodies (Rogowski et al., 2013). IFT-B loss-of-function mutants often fail

to assemble cilia presumably due to impaired IFT train formation. In such mutants, the stability of

the remaining IFT proteins and their spatial distribution in the bb-pool are altered (see for example:

[Hou et al., 2007; Lv et al., 2017; Richey and Qin, 2012]). Studies on such mutants clarify the inter-

dependence among IFT proteins during subcomplex assembly and recruitment into the bb-pool.

They are, however, less suited to determine the dynamics of IFT proteins in the bb-pool during the

assembly of functional IFT trains. In a pioneering study, Buisson and colleagues used GFP-tagged

IFT52 and fluorescence recovery after photobleaching (FRAP) to study the assembly of IFT trains in

Trypanosoma brucei (Buisson et al., 2013). After photobleaching of the bb-pool, anterograde traffic

of fluorescent IFT trains was transiently interrupted, indicative of bleached trains exiting the bb-pool.

The pool signal recovered partially and anterograde IFT traffic resumed albeit with reduced signal

strength suggesting that photobleached proteins in the bb-pool mix with unbleached IFT proteins

supposedly derived from retrograde trains. This led to the proposal of a closed IFT system in which

the IFT proteins perpetually cycle between the flagellum and the bb-pool with limited exchange of

proteins between the flagellum-basal body entity and the rest of the cell body.

Here, we used a collection of eight fluorescent protein (FP)-tagged IFT proteins to study the

assembly of IFT trains in C. reinhardtii, which allows for high quality imaging of protein traffic inside

flagella by total internal reflection fluorescence (TIRF) microscopy (Engel et al., 2009;

Lechtreck, 2013a, Lechtreck, 2016). Our analysis revealed a largely open IFT system in which pro-

teins are continuously recruited from the cell body to the basal bodies, assembled into trains, and

released back into the cell body after traveling through the cilium. Bleaching of the bb-pool was fol-

lowed by a temporal gap in fluorescence anterograde IFT traffic of several seconds before

unbleached trains reentered the cilium. Notably, the duration of this gap differed among the IFT

proteins analyzed suggesting that IFT-A, IFT-B, and finally the motor proteins are sequentially

recruited into assembling trains. Our data indicate a high temporospatial organization of the IFT bb-

pool with IFT trains in various stages of assembly queuing near the basal bodies for sequential

release into the cilium.

Results

IFT proteins occupy distinct regions of the basal body pool
To analyze the dynamics of IFT proteins in the pool surrounding each of the two flagella-bearing

basal bodies of Chlamydomonas reinhardtii, we employed strains expressing fluorescent protein

(FP)-tagged IFT particle and motor proteins (Figure 1A). IFT27 was expressed in a wild-type strain

and KAP-GFP was expressed in fla3, which has a mutant KAP of reduced function (Mueller et al.,

2005; Qin et al., 2007). The other proteins were expressed in loss-of-function mutants and rescued

the corresponding flagella assembly phenotypes (Figure 1A,B). The transgenic strains had normal or

nearly normal length flagella and displayed IFT traffic with mostly wild-type IFT velocities and antero-

grade frequencies (~1/s); retrograde frequencies were more variable which we attribute mostly to

the weaker signals of retrograde trains (Figure 1A–D; Video 1). Trajectories representing retrograde

traffic of KAP-GFP, which in C. reinhardtii mostly dissociates from IFT trains at the tip, were faint and

infrequent. For our experiments, we selected cells displaying frequent IFT traffic avoiding cells with

stationary IFT proteins accumulated inside the flagella (Stepanek and Pigino, 2016). To image IFT

proteins in the basal body pool, the incident angle of the laser beam was increased to allow for a

deeper penetration of the light into the specimen. The various FP-tagged IFT proteins were present
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Figure 1. IFT proteins are concentrated at the flagellar base. (A) top: Still images from live cells showing the distribution of FP-tagged IFT proteins in

the basal body pool. Arrowheads: IFT proteins along the microtubular roots. To enhance clarity, 10-frame image averages are shown. Bar = 1 mm.

bottom: Kymograms showing the trajectories of IFT trains inside flagella. Anterograde traffic results in trajectories running from the bottom left to the

top right; retrograde traffic is presented by lines running from the top left to the bottom right. The genetic background of the strains is indicated.

Bars = 1 mm 1 s. (B) Flagellar length of the strains expressing FP-tagged IFT proteins. The standard deviation and the number of measurements are

indicated. Strain CC-620 was used as a control. (C) Velocity of anterograde and retrograde IFT traffic in the rescue strains. Note the reduction in

retrograde velocity of IFT20-NG. Dashed lines indicate the velocities of anterograde and retrograde trains as determined by DIC microscopy based of

Reck et al. (2016). (D) Frequency of IFT traffic. While the anterograde frequency was close to one train/s for all strains, retrograde frequencies were

lower and more variable than reported for IFT in C. reinhardtii. The usage of fast bleaching fluorescent proteins (i.e., YFP) and the low laser intensity

used here to allow for long-term imaging could have prevented the detection of weaker trains. The standard deviation is indicated.

DOI: 10.7554/eLife.26609.002
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in dot-, colon-, or dumbbell-shaped regions near

each basal body; most of them also showed weak

X-shaped signals representing the microtubular

flagellar roots (Figure 1A). Focal series from the

flagella down into the cell body revealed that

most of KAP-GFP was close to the distal end of

the basal bodies followed by accumulations of

the tagged IFT-B proteins; the IFT-A proteins and

D1bLIC were concentrated deeper in the cell (not

shown; [Brown et al., 2015]). The IFT140-sfGFP

signals were more peripheral than those of most

IFT-B proteins. Within the limitations of the tech-

nique used, live cell imaging confirms and

extends pervious observations on fixed cells indi-

cating that different IFT proteins inhabit non-

identical spatial domains within the bb-pool

(Hou et al., 2007).

IFT proteins in the basal body pool exchange at different rates
A focused laser beam in epi-illumination was used to photobleach one of the two IFT pools at the

flagellar base (Figure 2A, Figure 2—figure supplement 1A–C). The IFT bb-pool signals of all eight

FP-tagged IFT particle and motor proteins recovered on average within 3 to 10 s (Figure 2B;

Video 2). To quantify the degree and rate of recovery, we normalized the signal intensity of the

bleached experimental bb-pool for fluorescence loss encountered by the unbleached control bb-

pool due to the continuous TIRF illumination (Figure 2C,D). Signal recovery typically exceeded 60%

of the prebleach strength and often complete recovery to the level of the control bb-pool was

observed (Figure 2C). Recovery of the signal was also observed after repeated bleaching of the bb-

pool indicating that the size of one IFT bb-pool is small as compared to the total cellular supply of

IFT proteins (Figure 2D, Figure 2—figure supplement 1D,E). While the KAP-GFP signal recovered

in less than 4 s, IFT43-YFP, IFT20-FP and NG-IFT54 required ~9s to reach maximum recovery

(Figure 2E). In conclusion, IFT proteins in the bb-pool exchange at different rates.

The dispatched IFT-A and motor proteins do not return to the basal
body pool
The unbleached proteins causing the recovery of a bleached bb-pool could either be derived from

retrograde IFT or newly recruited from the cell body (referred to here as the ‘cell body pool’ or cb-

pool). To determine which source resupplies the IFT bb-pool, we used a fluorescence loss in photo-

bleaching (FLIP) approach by placing a focused laser beam near the tip of one flagellum preventing

the return of unbleached IFT proteins to the basal body via retrograde IFT (Figure 3A). The duty

ratio of the bleaching laser was set to 100–200 ms on and 400–900 ms off and in many experiments,

images were only recorded while the bleaching laser was off to eliminate over-exposed frames (com-

pare Figure 3B,C,F and Figure 3—figure supplement 1A). TIRF imaging at the flagella level identi-

fied fluorescent retrograde IFT trains in the control flagellum but not in the experimental flagellum

(Figure 3B, Figure 3—figure supplement 1A). Focusing onto the basal bodies, the fluorescence

intensity of the bb-pool attached to the experimental flagellum was determined and normalized for

general fluorescence loss using the control basal body. For the IFT-B proteins IFT20-NG, IFT46-YFP,

and NG-IFT54 the signal intensity of the experimental basal body decreased significantly during FLIP

illumination (Figure 3C,D,F,G). The fluorescence loss was substantially lower for the tagged IFT27,

motor protein subunits, and in particular IFT-A proteins (Figure 3E–G, Figure 3—figure supplement

1D; Video 3). A pronounced fluorescence loss occurred predominately during the first 10–20 s of

FLIP and some unbleached IFT-B proteins were present in the experimental bb-pool even in pro-

longed FLIP experiments (>30 s; Figure 3C,D, Figure 3—figure supplement 1B). For the NG-IFT54

bb-pool, this plateau was reached after ~15 s (STD 4.4 s, n = 14; Figure 3—figure supplement 1F)

of FLIP illumination when the normalized signal strength of the experimental basal body was

reduced to ~52% (STD 9.2%, n = 14; Figure 3—figure supplement 1G) of its initial level. After

Video 1. TIRF microscopy of NG-IFT54.

Chlamydomonas cells tend to adhere with their two

flagella to smooth surfaces including cover glass

allowing for TIRF imaging of fluorescently labeled

proteins inside the flagella. The approximate positions

of the flagellar tips (tip1 and tip2) and of the cell body

(CB) are indicated. Images were acquired at 10 fps and

the video is displayed in real time. The timer counts

mm:ss.

DOI: 10.7554/eLife.26609.003
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Figure 2. IFT proteins in the pool are exchanged at distinct rates. (A) Series of still images showing a cell expressing KAP-GFP before (pre) and

immediately after bleaching of one of the two IFT bb-pools surrounding the flagellar basal bodies (arrowhead; T0), and during recovery (in s). Bar = 2

mm. (B) Kymograms from FRAP experiments after bleaching of one IFT bb-pool followed by signal recovery; repeated bleaching was used in some

experiments (arrows, bottom). The experimental (E) and control (C) pool are indicated. Bar = 1 mm. (C,D) Quantitative analysis of FRAP for KAP-GFP (C)

and IFT43-YFP (D) after bleaching of the experimental basal body; data are normalized for the unbleached basal body. The time needed for recovery

was determined manually by determining the point of interception of lines along the slope during recovery and the plateau of the recovered signal (red

Figure 2 continued on next page
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switching off the FLIP laser, the basal body signal recovered and retrograde IFT recommenced (Fig-

ure 3—figure supplement 1A,C). We conclude that most of IFT27 and the tested IFT-A and motor

subunits do not reenter the bb-pool whereas IFT20/46/54 re-enter the bb-pool after returning from

the cilium.

Anterograde trains are largely assembled from proteins freshly
recruited to the basal bodies
The above experiments raise the question whether the IFT-B proteins returning via retrograde IFT

into the bb-pool will be released with a delay into the cb-pool or reused directly in subsequent

anterograde IFT trains without first cycling through the cb-pool. In the latter scenario, the signal

strength of anterograde traffic should decrease progressively as the return of unbleached protein

from the flagellum to the bb-pool is prevented. However, anterograde IFT trains containing

unbleached IFT20/46/54 continued to enter the experimental flagella even after prolonged (>60s)

FLIP illumination with a frequency comparable to anterograde IFT in the control flagellum

(Figure 3C, Figure 3—figure supplement 1A). The signal strength of such trains, however, was gen-

erally below those in the control flagellum indicating that these trains contain both bleached pro-

teins derived from retrograde trains and unbleached proteins recruited from the cell body. The

signal strength of such trains could provide a measure of how much bleached and unbleached IFT-B

protein was used for their assembly. A precise quantification is impeded because signal strength is

affected by the absence of retrograde traffic and progressive loss of signal from stationary IFT in the

experimental flagellum. To adjust for these shortcomings, we first analyzed the IFT-A protein IFT43-

YFP, whose bb-pool signal is not affected in the FLIP assay (Figure 3F,G, Figure 3—figure supple-

ment 1D). The signal strength of trains exiting the experimental bb-pool under FLIP illumination

was ~10% below those in the control flagellum (n = 8, 4–7 IFT trains were measured in each cilium).

A similar comparison for NG-IFT54 showed a 40% intensity decrease of trains in the experimental fla-

gellum compared to trains in the control flagellum (n = 11; 4–8 measurements per cilium). The data

indicate that a portion of the IFT-B protein NG-IFT54 in anterograde IFT trains is directly derived

from retrograde IFT trains. With the qualification that IFT20/46/54 are partly salvaged, we conclude

that C. reinhardtii possess a largely open IFT sys-

tem, in which proteins are recruited from the cb-

pool to the basal bodies, assembled into trains,

and travel once through the flagellum before

being disassembled and released back into the

cell body pool.

When FLIP bleaching at one ciliary tip of a

given cell was continued for several minutes the

signal of IFT trains progressively diminished in

both cilia (Figure 3—figure supplement 2).

After ~6–9 min of FLIP, fluorescent IFT traffic

diminished indicating that the entire cellular IFT-

FP pool was near exhaustion. Sporadic residual

NG-IFT54 traffic allowed for the observation of

individual trains presumably containing only one

or a few copies of unbleached NG-IFT54 (Fig-

ure 3—figure supplement 2C). Unbleached

NG-IFT54 was evenly distributed between the

Figure 2 continued

dashed lines). (E) Box plot comparing FRAP times for the FP-tagged IFT proteins. The individual measurements, the median, and the quadrants are

indicated. The number of measurements (n) and the result of a paired T-test are indicated. ns, not significant (p>0.05); *p�0.05; **p�0.01; ***p�0.001.

DOI: 10.7554/eLife.26609.004

The following figure supplement is available for figure 2:

Figure supplement 1. Rapid and local photobleaching using a focused laser beam.

DOI: 10.7554/eLife.26609.005

Video 2. FRAP analysis of the basal body-associated

IFT pool. TIRF videos of cells expressing KAP-GFP (left)

or the IFT particle protein NG-IFT54 (right) showing the

IFT pools at the basal bodies. The pool facing to the

right in each pair was bleached using brief illumination

with a focused laser beam. Note fast recovery of the

KAP-GFP signal and slower recovery of NG-IFT54.

Images were acquired at 10 fps and playback is set at

20 fps (2 � speed). The timer counts mm:ss.

DOI: 10.7554/eLife.26609.006

Wingfield et al. eLife 2017;6:e26609. DOI: 10.7554/eLife.26609 6 of 27

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.26609.004
http://dx.doi.org/10.7554/eLife.26609.005
http://dx.doi.org/10.7554/eLife.26609.006
http://dx.doi.org/10.7554/eLife.26609


0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

time (s)

NG-IFT54

KAP-GFP

IFT20-NG

IFT140-sfGFP

D1bLIC-GFP

IFT46-YFP

NG-IFT54

IFT43-YFP

IFT27-GFP

F

brightness increased 

A B

E

C

D

0

20

40

60

80

100

120

140

160

0 5 10 15 20

time (s)

E

C

IFT140-sfGFP

b
le

a
c
h C

NG-IFT54 bleach

E
C

E

IFT46-YFP

0

10

20

30

40

50

in
te

n
s
it
y
 l
o

s
s
 (

%
 /
1

0
 s

)

9 16 11 9 8

(n)

18 2011

K
A

P
-G

F
P

IF
T

2
0
-N

G

IF
T

1
4
0
-s

fG
F

P

D
1
b
L
IC

-G
F

P

IF
T

4
6
-Y

F
P

N
G

-I
F

T
5
4

IF
T

4
3
-Y

F
P

IF
T

2
7
-G

F
P

2 4 6 8 10 12 14 16 18 200 (time in s)

E

C

E

C

E

C

E

C

E

C

E

C

E

C

E

C

G

%
 p

re
b

le
a

c
h

 i
n

te
n

s
it
y

  
  
  
 (

n
o
rm

a
liz

e
d
)

%
 p

re
b

le
a

c
h

 i
n

te
n

s
it
y

  
  
  
 (

n
o
rm

a
liz

e
d
)

Figure 3. IFT-B, but not IFT-A or motor proteins, return to the basal body pool. (A) Schematic presentation of the FLIP assay to analyze the return of

IFT proteins from the flagella to the bb-pool. The star indicates the laser beam positioned at the tip of the experimental (E) flagellum. (B) FLIP

bleaching at the tip of the E flagellum prevented the return of unbleached IFT46-YFP via retrograde IFT; note retrograde tracks in the control (C)

flagellum (full arrowheads). See Figure 3—figure supplement 1A for a more detailed analysis of IFT traffic under FLIP illumination. Bar = 1 mm 1 s. (C)

Kymogram of a FLIP experiment of a NG-IFT54 cell. FLIP illumination decreased the signal of the E basal body. Unbleached anterograde trains (open

arrowheads) continue to enter the E cilium in the absence of fluorescent retrograde traffic. To better visualize IFT traffic the focus level was changed

during part of the recording (dashed square). Bar = 2 mm 2 s. (D,E) Quantitative analysis of FLIP of the E basal body of a NG-IFT54 and an IFT140-sfGFP

cell; the data are normalized for the control (C) basal body. (F) Kymograms of FLIP experiments using the IFT-FP strains. The experimental (E; top) and

control (C) pool are indicated. Bars = 2 mm 2 s. (G) Bar graph showing the average loss of signal of the E basal body during the first 10 s of FLIP

illumination. The standard deviation and the number of cells analyzed are indicated. See Figure 3—figure supplement 1E for a box plot presentation

of the data.

DOI: 10.7554/eLife.26609.007

The following figure supplements are available for figure 3:

Figure 3 continued on next page
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two flagella. In control cells imaged for similar periods of time without being directly hit by the FLIP

laser, dense IFT traffic albeit of reduced intensity persisted (Figure 3—figure supplement 2D). The

data suggest that NG-IFT54 returning to the cb-pool will eventually be reused and that bleached

and unbleached proteins mix in the cb-pool and are stochastically recruited to the basal body pools.

Half of the NG-IFT54 pool is derived from retrograde trains
The above data indicate that the bb-pool consists in parts of disassembling IFT-B complexes. The

approach of bleaching trains only at the tip still allows unbleached retrograde trains en route and

IFT proteins transiently stationary along the length of the cilium to return to the bb-pool. To deter-

mine the dynamics of the disassembling IFT-B bb-pool, we moved the focused laser beam from the

flagellar tip to the base bleaching almost the entire NG-IFT54 population in the experimental flagel-

lum (Figure 3—figure supplement 3A). This approach offers a clear onset and an extended period

during which only bleached trains return to the bb-pool. After the bleaching step, the signal strength

of the experimental bb-pool declined by 52% (STD 8.5%, n = 6) over a period of 5.8 s (STD 0.9 s,

n = 6) before reaching a plateau (Figure 3—figure supplement 3B–D). Thus, ~50% of the NG-IFT54

in the bb-pool is derived from retrograde trains. The first unbleached retrograde train returned after

10.9 s (STD 1.8 s, n = 22) to the experimental basal body (Figure 3—figure supplement 3B,C). Con-

comitantly with the return of unbleached NG-IFT54 via retrograde traffic, the bb-pool recovered in

strength on average in 16.6 s after the bleaching step (STD 2.4s, n = 6) to levels of the control basal

body (Figure 3—figure supplement 3B–D). The data suggest that NG-IFT54 entering the bb-pool

by retrograde traffic remains for ~6 s in the pool before its release into the cell body or reuse in

anterograde trains. In similar experiments using

KAP-GFP or the IFT-A protein IFT43-YFP, the

signal strength of the bb-pool attached to the

experimental flagellum remained essentially

unaltered indicating that these proteins are

released into the cb-pool upon return from the

cilium (n = 4 and 5, respectively; Figure 3—fig-

ure supplement 3E–H).

Mammalian IMCD3 cells and
Tetrahymena thermophila have
open IFT systems
In contrast to our data on C. reinhardtii, observa-

tions made in Trypanosoma brucei indicated a

closed IFT system in which proteins move back

and forth between the bb-pool and flagellum

with negligible exchange with the cb-pool during

the duration of the experiment (Buisson et al.,

2013). To determine the prevalence of open and

closed systems, primary cilia of IMCD cells

expressing IFT88-YFP and motile cilia of the cili-

ate Tetrahymena thermophila expressing GFP-

Dyf-1 (IFT70) were analyzed (Figure 4).

In primary cilia of IMCD cells, IFT88-YFP

moved in typical anterograde IFT trains but was

Figure 3 continued

Figure supplement 1. FLIP illumination prevents return of unbleached proteins to the cilary base.

DOI: 10.7554/eLife.26609.008

Figure supplement 2. Bleaching of the entire NG-IFT54 protein pool.

DOI: 10.7554/eLife.26609.009

Figure supplement 3. A portion of the pool consists of disassembling IFT-B complexes.

DOI: 10.7554/eLife.26609.010

Video 3. FLIP analysis of the basal body-associated IFT

pool. Shown are the IFT pools for NG-IFT54 (left) and

IFT43-YFP (right) during FLIP illumination. The tip of the

flagellum attached to the upper basal body in each

pair was illuminated with a blinking laser beam to

prevent the return of unbleached IFT proteins via

retrograde IFT to the attached basal body. The flagella

are out of focus and the flashing laser beam is out of

the field of view. Note progressive loss of fluorescence

for NG-IFT54 in the experimental bb-pool until it

reaches a plateau; IFT43-YFP levels in the experimental

bb-pool are not affected by FLIP illumination when

compared to the control pool but a general loss of

signal strength occurs due to the low photostability of

YFP and the prolonged illumination. Images were

acquired at 10 fps and playback is set at 30 fps (3 �

speed). The timer counts mm:ss.

DOI: 10.7554/eLife.26609.011
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also present in stationary aggregates resulting in a high background (Figure 4A,B). After photo-

bleaching of the entire cilium including its bb-pool, the basal body signal recovered to 60–95% within

16.8 s (STD 7.2 s, n = 11, normalized using the cilium of a neighboring unbleached cell; Figure 4A,C);

the first unbleached IFT trains entered the cilia after an average of 18.1 s (STD 9.5 s, n = 39, Figure 4B;
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Figure 4. IMCD cells and T. thermophila have open IFT systems. (A) Still images of an IMCD cell expressing IFT88-

YFP before (pre), immediately after photobleaching of the entire cilium plus basal body (post), and during

recovery. The dotted line marks the cell bounderies. Bar = 1 mm. (B) Corresponding kymogram (Bar = 2 mm 5s)

and (C) quantitative analysis of the signal at the basal body. (D) Still images showing a detail of the cortex of a T.

thermophila cell expressing GFP-Dyf-1 before (pre), immediately after photobleaching of the entire cilium plus

basal body (post), and during recovery. Bar = 1 mm. (E) Corresponding kymogram (Bar = 2 mm 5s) and (F)

quantitative analysis of the signal at the basal body.

DOI: 10.7554/eLife.26609.012
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Video 4). The data reveal that IFT88-YFP in IMCD

cells is continuously recruited from the cell body

to the basal bodies and assembled into IFT trains.

T. thermophila possesses ~800 cilia; these

mobile cells were immobilized by compression

between the cover glass and slide allowing us to

image IFT as visualized by the expression of GFP-

Dyf-1 (IFT70) in a null background (Dave et al.,

2009; Jiang et al., 2015). After bleaching of a sin-

gle cilium with its bb-pool, the recovery of the

basal body signal became quickly apparent and

reached a maximum of 74% (STD 25%, n = 10) of

the prebleach value in 29 s (STD 8s, n = 10,

Figure 4D–F); unbleached anterograde trains

were observed after 17.1 s (STD 8 s, n = 20;

Video 5) and the ciliary signal recovered partially

indicating a continuous recruitment of cell body

GFP-Dyf-1 to the basal bodies for assembly into

IFT trains. In summary, FRAP analysis indicates

open and semi-open IFT systems in all three cell

types.

IFT trains exit the pool from distinct sites
To determine the size of the IFT bb-pool in C. reinhardtii, we focused on NG-IFT54 and KAP-GFP,

which due to their distal position on the basal body often allowed for simultaneous imaging of the

bb-pool and departing trains (Figure 5). The departure of an IFT train resulted in a transient reduc-

tion of signal strength at the bb-pool of ~16.1% (STD 7.2%, n = 18) for KAP-GFP, and 12.7% (STD

5.8, n = 20) for NG-IFT54 (Figure 5A–C). Similarly, the arrival of a train increased the NG-IFT54 bb-

pool signal by up to 25% (Figure 5C). In this analysis we focused on bright trains allowing for a clear

correlation between train trajectories and fluorescence loss in the bb-pool. Bright trains alternated

with dimmer trains (Ludington et al., 2013), which changed the bb-pool signal by an estimated 5–

10%. The data reveal that the departure (or arrival) of a single IFT train appreciably affects the

strength of the bb-pool suggesting that the amount of IFT protein in the bb-pool is equivalent to a

number of IFT trains in the upper single or lower double digits. NG-IFT54 trains, which could be

best studied due to their bright and stable signal, exited the bb-pool at distinct sites resulting in a

local depletion of the bb-pool (Figure 5D, Video 6). Kymograms obtained by scanning along two or

three distinct lines parallel to the basal body-fla-

gellum axis of a given cell were merged to visu-

alize the exit of trains from distinct sites of the

bb-pool and their journey along the flagellum

(Figure 5E–I). While no particular pattern was

observed, the data nevertheless indicate that

consecutive trains are often released from dis-

tinct sites of the bb-pool.

IFT proteins are recruited and
assembled sequentially into
anterograde trains
To determine the time required for the assembly

of an anterograde IFT train, we measured the

interval between the bleaching of one bb-pool

and the departure of the first unbleached train

into the attached flagellum (Figure 6A). The

untreated basal body and its flagellum served as

a crucial control because exceedingly strong or

Video 4. FRAP analysis of IFT88-YFP in primary cilia of

IMCD3 cells. The ciliary base of the photobleached

cilium is marked by an arrow. Note that the recovered

signal strength of the experimental cell is similar to

those of the unbleached control cells. Still images of

this movie are shown in Figure 4A. Images were

acquired at 5 fps and playback is set at 40 fps (8 �

speed). The timer counts mm:ss.

DOI: 10.7554/eLife.26609.013

Video 5. FRAP analysis of GFP-Dyf-1 (IFT70) in T.

thermophila cilia. The basal body of the bleached

cilium is marked by an arrow. For clarity, most of the

over-exposed frames of the bleaching step were

deleted. Still images of this movie are shown in

Figure 4D. Images were acquired at 10 fps and

playback is set at 80 fps (8 � speed). The timer counts

mm:ss.

DOI: 10.7554/eLife.26609.014
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Figure 5. The basal body pool contains IFT proteins equivalent to several IFT trains. (A) Series of still images from

a cell expressing KAP-GFP showing the departure of an IFT train (red arrowhead). The intensity of the bb-pool

decreases concomitantly with the departure of the train. Bar = 1 mm; the time points in ms are indicated. (B)

Kymogram showing the bb-pool and proximal regions of one flagellum of a cell expressing KAP-GFP. Intensity

profiles (in percent of the maximum intensity) for the bb-pool (blue) and flagellum (red) depict the correlation

between the exit of IFT trains (red arrows) and a transient decrease of fluorescence in the pool (blue arrows); the

positions of the lines used to generate the intensity profiles are indicated. Bars = 1 s 1 mm. (C) Kymogram and its

analysis as described in B but for NG-IFT54. Bar = 1 mm. (D) Series of still images from a cell expressing NG-IFT54

showing two IFT trains departing from the upper basal body (bb1; arrowheads). The first train departs from the left

(T400) side of the bb-pool while the second train exits the pool at the right side causing a local loss of

fluorescence in the pool. The red arrow near bb2 serves as a fiduciary marker. Bar = 1 mm. (E) Schematic

presentation of the position of the lines used to generate the kymograms shown in F–I. (F,G) Merged kymograms

Figure 5 continued on next page
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long laser pluses disturbed IFT traffic in both flagella (not shown). Typically, bleaching of the bb-

pool was followed by an interruption in the traffic of fluorescent anterograde IFT in the experimental

flagellum; we refer to this period as the gap. After the gap anterograde traffic recommenced with

prebleach or almost prebleach intensity and frequency (Figure 6B). Infrequent ‘early bird’ IFT trains

could result from incomplete bleaching of the bb-pool; a limited replacement of bleached protein in

the assembling trains with unbleached proteins from the surroundings is also possible. Occasionally,

we also observed retrograde trains apparently making a U-turn near the ciliary base (not shown).

The presence of a distinct gap after bleaching of the bb-pool suggests that IFT trains containing

the bleached proteins exit the bb-pool before new trains assembled from unbleached proteins

emerge. The duration of the gap varied considerably for the different IFT proteins analyzed and

ranged from ~7 s for IFT140-sfGFP to ~2.5 s for D1bLIC-GFP (Figure 6C; Video 7). The differences

in the duration of the gap between each of the two IFT-A, -B1, and -B2 proteins as well as those

between the IFT-A and -B2 proteins were not significant while those between IFT-A and -B1 and the

motors were. The observation suggests that distinct IFT proteins need different time spans to transi-

tion through the bb-pool from recruitment to release via anterograde IFT.

To substantiate this observation, we generated a strain expressing KAP-GFP and IFT140-mCherry

in the corresponding fla3 ift140 double mutant background (Figure 7A). We then analyzed the dura-

tion of the gap between bleaching of the bb-pool and release of the first unbleached KAP-GFP and

IFT140-mC trains into the attached flagellum (Figure 7B). In most experiments (42 of 49), trains

labeled only with KAP-GFP reappeared before trains marked by both KAP-GFP and IFT140-mCherry;

in the remaining experiments both markers were present in the first postbleach train (Video 8). In

the two-color experiments, the average duration of the gaps between bleaching of the bb-pool and

the discharge of the first unbleached KAP or IFT140 trains were similar to those determined in the

single-tag strains (Figure 7C). The distinct prop-

erties of the two proteins were also apparent in

two-color FRAP analysis of the bb-pool: The

KAP-GFP signal was restored significantly before

that of IFT140-mCherry (n = 3, Figure 7D,E).

The data indicate that IFT140-sfGFP is recruited

early during the assembly of a given IFT train

while KAP-GFP is added later (Figure 7—figure

supplement 1). In a similar analysis using a strain

expressing NG-IFT54 (IFT-B1) and IFT140-

mCherry (IFT-A), the post-bleach trains mostly

contained both fluorescent IFT-proteins (13 of

15 experiments; in two experiments the first

train contained NG-IFT54 but not IFT140-mC;

not shown). We propose that IFT trains are

assembled by sequential addition of distinct IFT

proteins/subcomplexes and that trains in differ-

ent states of assembly are lined up in the bb-

pool to be successively dispatched into the fla-

gellum upon completion.

Figure 5 continued

showing the two sides of the bb-pool and cilium in red and green. Note the alternation of predominantly red and

green trains (small arrows) and red and green areas (open arrowheads) in the bb-pool indicative for a transient

reduction of NG-IFT54 in one side of the pool. Bars = 2 s 2 mm. (H,I) as in F and G, but showing the left, middle,

and right positions of the pool and cilium in red, green, and blue respectively. Bars = 2 s 2 mm.

DOI: 10.7554/eLife.26609.015

Video 6. Spatial analysis of IFT proteins in the pool

and flagellum. IFT in NG-IFT54 cells was monitored at

the focus level of the basal bodies (top) or of the

flagellum (bottom). Top) The two basal body-

associated IFT pools are positioned in the center. Note

the fluctuation in the signal intensity in the pools as

trains exit and arrive. Often, only a part of the pool

signal is bleached indicative for the exit of trains from a

particular region of the pool. Bottom) IFT trains moving

inside a flagellum. Some trains move closer to the top,

other closer to the bottom of the flagellum. Images

were acquired at 10 fps and the video is displayed at

20 fps (2 � speed). The timer counts mm:ss.

DOI: 10.7554/eLife.26609.016
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Figure 6. Bleaching of the basal body pool is followed by a gap in IFT traffic. (A) Schematic presentation of the

gap assay to determine the interval between bleaching of the bb-pool (bleach, indicated by the star) and

recommencement of fluorescent anterograde IFT traffic (first train). (B) Representative gap analysis for the eight

FP-tagged IFT proteins. Arrowheads mark the bleaching steps; the red bars indicate the gap between the bleach

Figure 6 continued on next page
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Tubulin binds briefly before the departure of IFT trains into the cilium
IFT trains transport axonemal proteins into flagella but it remains unclear when and where cargo pro-

teins attach to the trains (Craft et al., 2015; Qin et al., 2004; Wren et al., 2013). Axonemal cargoes

could already bind to IFT complexes in the cb-pool (e.g., on post-Golgi vesicles) or later during train

assembly in the bb-pool (Wood and Rosenbaum, 2014). The above described approach of deter-

mining the duration of the gap in anterograde traffic after bleaching of the bb-pool has the potential

to discriminate between these possibilities: If a cargo binds to IFT already prior to the recruitment to

the bb-pool the gap should be in the range of that determined for the IFT proteins; shorter gaps

would indicate loading at a later stage of train assembly. A prerequisite for this approach is a dense

and regular cargo traffic as it has been reported for sfGFP-tubulin, which during flagellar regenera-

tion enters cilia with an anterograde frequency of ~20/minute and even higher frequencies during

early regeneration (Craft et al., 2015). Cells expressing sfGFP-a-tubulin at ~10% of the endogenous

a-tubulin were first deflagellated by a pH shock and allowed to initiate flagellar regeneration

for >20 min. sfGFP-tubulin already incorporated into the flagella was photobleached until IFT traffic

of sfGFP-tubulin became visible (Figure 8A). Then, one basal body region was photobleached using

the microtubular roots to position the beam (Figure 8B). sfGFP-tubulin traffic into the attached fla-

gellum resumed almost immediately (Figure 8C,D). In detail, the gap between the bleach and the

first sfGFP-tubulin trajectory was 1.9 s (STD 1.7 s, n = 25) for the experimental flagellum and 2.1 s

(STD 1.6 s, n = 25) for the control flagellum; the difference was not significant (2-tailed t-test

p=0.74). To ensure proper bleaching of sfGFP-tubulin near the flagellar base, we used an extended

laser beam with a diameter of ~2 mm. sfGFP-

tubulin traffic into the flagella resumed after on

average 2.5 s (STD 1.5 s, n = 22). Notably, a sim-

ilar short gap was also observed for D1bLIC, a

subunit of IFT dynein, which is transported as a

cargo on anterograde trains. Based on these

data, we propose that sfGFP-tubulin and IFT

dynein associate to IFT trains at the flagellar

base and briefly before departure into the

cilium.

Discussion
We used in vivo imaging in C. reinhardtii to

study the assembly of IFT trains. IFT trains were

first observed using DIC microscopy as birefrin-

gent particles moving up and down the flagella

(Kozminski et al., 1993). Using GFP-tagged pro-

teins, discrete IFT trains traveling inside cilia

were observed in various organisms

(Besschetnova et al., 2009; Mueller et al.,

2005; Orozco et al., 1999; Williams et al.,

2014). Correlative light-electron microscopy

identified IFT trains at as electron opaque arrays

with a repetitive ultrastructural moving between

the ciliary membrane and the axoneme

(Kozminski et al., 1995; Stepanek and Pigino,

2016). The pool of IFT proteins surrounding the

basal bodies apparently lacks the well-defined

Figure 6 continued

and the dispatch of the first unbleached IFT train. Bars = 2 s 2 mm. (C) Quantitative analysis of the gap data. The

standard deviation, number of gaps analyzed, and the results of a paired T-test are indicated. ns, not significant

(p>0.05); *p�0.05; **p�0.01; ***p�0.001.

DOI: 10.7554/eLife.26609.017

Video 7. Photobleaching of the IFT pool is followed by

a gap in anterograde IFT of fluorescent protein. One of

the two basal bodies of a KAP-GFP (A, top) and a NG-

IFT54 cell (B, bottom) was bleached. This results in an

interruption of anterograde IFT of fluorescent protein.

The gap is short for KAP-GFP and longer for NG-IFT54.

This can be best viewed by first focusing on the KAP-

GFP flagellum pointing to the right. Once the first

unbleached KAP-GFP trains re-appear after the

bleaching step, the viewer should focus on the right

NG-IFT54 flagellum: At this time point only retrograde

but no fluorescent anterograde trains are visible in the

NG-IFT54 flagellum. Anterograde IFT of NG-IFT54 will

resume a few seconds later. Images were acquired at

10 fps and the video is displayed at 20 fps (2 � speed).

The timer counts mm:ss.

DOI: 10.7554/eLife.26609.018
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Figure 7. IFT140 is recruited early, KAP is recruited late during IFT train assembly. (A) Western blot analysis of the flagellar ‘membrane + matrix’

fraction of a control (G1), the KAP-GFP, the IFT140-mC, and the KAP-GFP IFT140-mC strains; note that KAP-GFP was expressed in the fla3 which has a

mutated endogenous KAP of reduced function. Two membranes (M1 and M2) loaded with the same amount of sample were stained with a mix of anti-

KAP and anti-IFT140 (M1) or of IFT81 and IFT57 as loading controls (M2), the latter membrane was subsequently stained with anti-GFP. Molecular

weight markers are indicated (in kD). (B) Two examples showing the recommencement of IFT traffic after photobleaching of the basal body in cells

expressing KAP-GFP and IFT140-mCherry. Trains containing only unbleached KAP-GFP (filled arrowheads) appeared before trains containing both

unbleached IFT140-mCherry and unbleached KAP-GFP (open arrowheads). Bars = 2 s 2 mm. (C) Histogram comparing the duration of the gap after

Figure 7 continued on next page
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ultrastructure of the trains moving inside cilia (Rogowski et al., 2013). Based on the brightness of

signals representing immunostained or FP-tagged IFT proteins, the bb-pool is several times the size

of a single train. Due to this crowded situation, imaging of individual IFT trains from their inception

to release into the cilium has not been achieved. Here, we used in vivo imaging and photobleaching

to study the assembly of IFT trains. Our two main conclusions are that the IFT system is largely open

with proteins constantly exchanging between the basal body-flagellum compartment and the cell

body and that the bb-pool consists of a queue of IFT trains in different stages of construction.

The IFT system is open
IFT trains perpetually enter and exit the flagellum but the source of IFT proteins in the bb-pool and

the fate of the IFT proteins returning to the pool are less clear. Two not mutually exclusive models

have been proposed: A closed IFT system in which retrograde trains are remodeled in the bb-pool

and reused in anterograde traffic and an open IFT system in which proteins are recruited to the bb-

pool, move as trains through the cilium, and disperse back into the cb-pool (Buisson et al., 2013).

Photobleaching of FP-tagged IFT proteins allows us to distinguish between these models. In a

closed system, fluorescent anterograde traffic should quickly cease when the return of unbleached

proteins to the flagellar base is prevented by photobleaching. In contrast, fluorescent anterograde

traffic will continue in an open system until the entire cellular pool of the protein in question is

bleached. Our data in C. reinhardtii revealed a

largely open system for the IFT-B protein IFT27-

GFP and the tested IFT-A and motor subunits

and semi-open systems for the IFT-B proteins

IFT20/46/54, where portions of the retrograde

trains are reused in the assembly of anterograde

trains (Figure 8E). FRAP analysis of one IFT-B

protein each indicates that open or semi-open

IFT systems are also in place in T. thermophila

and IMCD cells.

In contrast, a closed IFT system was proposed

for the IFT-B protein IFT52 in T. brucei

(Buisson et al., 2013). Similar to our observa-

tions on C. reinhardtii IFT-B proteins, bleaching

of the IFT52-GFP bb-pool in T. brucei was fol-

lowed by a gap in anterograde traffic and IFT52-

GFP from retrograde trains reentered the bb-

pool. However, when anterograde IFT resumed

the signal intensity of the trains was markedly

below that of trains prior to the bleaching step

and the total recovery of the bb-pool reached

only ~50% of the prebleach intensity suggesting

that the bleached proteins continue to cycle

within the flagellum-basal body domain while an

exchange with the cb-pool is negligible within

the time span of the experiment. Possible rea-

sons for the disparities between C. reinhardtii

Figure 7 continued

bleaching of the bb-pool for strains expressing KAP-GFP, IFT140-sfGFP, or KAP-GFP and IFT140-mCherry. (D) FRAP analysis of the bb-pool in a cell

expressing KAP-GFP and IFT140-mCherry. Note that the KAP-GFP signal recovered before the IFT140-mCherry signal. CP, chloroplast. (E)

Quantification of the KAP-GFP and the IFT140-mCherry signals of the experiment depicted in C. Data are normalized for the signal strength of the

control basal body pool.

DOI: 10.7554/eLife.26609.019

The following figure supplement is available for figure 7:

Figure supplement 1. Model of the temporal and spatial organization of IFT proteins in the basal body pool.

DOI: 10.7554/eLife.26609.020

Video 8. Gap analysis of a cell expressing KAP-GFP

and IFT140-mCherry. Follow the viewing instruction

described for Video 7. Note brief (~2 s) gap between

the first post-bleach KAP-GFP train and the first

postbleach IFT140-mC train. Images were acquired at

10 fps and the video is displayed at 20 fps (2 � speed).

The timer counts mm:ss.

DOI: 10.7554/eLife.26609.021
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Figure 8. Tubulin is loaded briefly before IFT trains enter the cilium. (A) Schematic presentation of the experimental design used to determine the gap

in anterograde traffic of sfGFP-tubulin after photobleaching of the basal body. Cells were deflagellated by a pH shock, allowed to initiate regeneration,

and mounted for TIRF analysis. Then, the two flagella were partially bleached, followed by spot bleaching of either one or both basal body pools (for

the latter the size of the laser beam was extended to ~2 mm), and TIRF analysis of tubulin traffic. (B) Two images from a focal series showing the flagella

and the microtubular roots; the latter were used to position the cells with respect to the laser beam. The two images are displayed in red and green in

the merged image. Bar = 2 mm. (C) Gallery of kymograms from experiments in which one of the two basal body pools was bleached. The bleached

basal bodies are oriented to the top. Bars = 2 s 2 mm (in d for a, c, d; in b for b). (D) Gallery of kymograms in which both basal body pools were

bleached. In C and D, trajectories indicating IFT of tubulin are indicated by arrowheads. Bars = 2 s 2 mm. (E) Schematic presentation of the open IFT

system. IFT-A proteins (and IFT27 and the motors) are recruited to the pool, cycle once through the flagellum, and return into the cell body pool. IFT-B

proteins return to the bb-pool to be either reused in subsequent IFT trains or released into the cell body pool. IFT proteins mix in the cb-pool and are

randomly re-deployed into IFT trains. (F) Model of the temporal-spatial organization of IFT proteins in the basal body pool. We propose that IFT trains

assemble in distinct positions near the basal body from which they are sequentially released into the cilium upon completion. Assembly commences

with the arrival of IFT-A complexes which then combine with the other IFT-subcomplexes and motors as they move toward the distal end of the basal

body. For simplicity, only IFT-A and kinesin-2 are depicted. See also Figure 7—figure supplement 1.

DOI: 10.7554/eLife.26609.022
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and T. brucei range from differences in the experimental set-up to fundamental differences in IFT.

For example, in a semi-open system as described for the IFT-B proteins, the ratio between new

recruitment from the cb-pool and reusage of proteins derived from retrograde trains could be differ-

ent between species with T. brucei favoring reusage. To study IFT52 dynamics in T. brucei, the bb-

pool was photobleached. This technique cannot distinguish whether the unbleached proteins in

postbleach trains are derived from retrograde trains or recruited from the cb-pool. In contrast, the

observation of stable fluorescent IFT traffic after prolonged bleaching of retrograde IFT clearly indi-

cates that unbleached proteins are continuously recruited from the cell body for incorporation into

IFT trains. Single molecule imaging showed that kinesin-2 and IFT dynein returning from cilia in C.

elegans diffuse briefly near the base to turn around and re-enter the cilium supporting a closed IFT

system (Mijalkovic et al., 2017; Prevo et al., 2015). While our data do not exclude that some

motors remain in the basal body-cilium compartment for several rounds of IFT, the bulk of the motor

subunits KAP-GFP and D1bLIC-GFP in anterograde trains of C. reinhardtii is recruited from the cb-

pool (see Figure 3—figure supplement 3G,H for KAP-GFP). In their mature state, C. elegans cilia

possess altered basal bodies and lack the transitional fibers (TFs), two structures that are likely to be

critical for the recruitment of IFT proteins from the cb-pool to the ciliary base; these changes in

could favor a more closed IFT system (Nechipurenko et al., 2017). Future studies using a range of

imaging approaches and organisms are needed to evaluate the prevalence of closed and open IFT

systems.

Temporal and spatial organization of the IFT pool
Comparison of the in vivo signals of eight FP-tagged proteins revealed differences with respect to

their distribution along the basal body axis and their distance to the basal bodies confirming previ-

ous observations based on antibody staining (Brown et al., 2015; Hou et al., 2007; Richey and

Qin, 2012). It appears that different IFT proteins occupy distinct territories indicating that the bb-

pool contains IFT subcomplexes or individual proteins rather than entire IFT particles. Super-resolu-

tion imaging is likely to provide a clearer image of IFT protein territories within the bb-pool. Our

data also indicate a functional compartmentalization of the bb-pool into assembling anterograde

trains and disassembling IFT-B complexes.

The FRAP pattern of anterograde traffic after bleaching of the IFT bb-pool further informs on the

assembly of IFT trains. Bleaching of the bb-pool is typically followed by a marked gap in IFT traffic

during which no visible or only a few dim anterograde IFT trains enter the flagellum. A distinct gap

in IFT traffic was also observed for IFT52-GFP in T. brucei (Buisson et al., 2013). The presence of a

gap indicates that bleached trains exit the bb-pool ahead of trains assembled later from unbleached

proteins. Based on these data, we propose that the IFT trains queue in the bb-pool to be released in

order with newly assembling trains added to the end of the queue.

The length of the postbleach gap varied between the IFT proteins analyzed. A short gap, as it

was observed for the KAP and D1bLIC, indicates recruitment of a given subunit shortly before the

train exits the bb-pool; conversely, a long gap as observed for the IFT-A and IFT-B2 subunits, indi-

cates that a protein was recruited early during train assembly. The data imply that the bb-pool

should contain more IFT-A proteins (in equivalents of IFT trains) than KAP. The use of different FPs,

the distinct spatial distribution of IFT protein in the bb-pool, and the expected small scale of the

expected differences prevented us from comparing the amounts of the different IFT proteins in the

pool. The post-bleach gaps were similar for proteins within each subcomplex suggesting that IFT

proteins at the flagellar base are organized into subcomplexes, rather than entire IFT particles. In

detail, the data suggest that during the assembly of a given train IFT-A and B2 are recruited first, fol-

lowed by addition of B1, and finally binding of the anterograde motor as visualized by KAP-GFP.

The sequential arrival of IFT subcomplexes in the bb-pool does not necessarily indicate that the

recruitment of a late arriving subcomplexes depends on the presence of the earlier arriving ones.

Knock-out of the IFT-A core protein IFT144, for example, prevents the assembly of functional IFT-A

complexes but IFT-B proteins still enter cilia and accumulate at the tip due to the lack of retrograde

traffic (Hirano et al., 2017). Thus, the sequential recruitment of IFT subcomplexes into the pool

does not automatically reflect the interdependence during train assembly. We consider it more likely

that IFT subcomplexes are recruited independently of each other and line up in (spatially) separated

queues to be then combined into trains. To summarize, our data indicate a functional, spatial, and

temporal organization of the IFT basal body pool.
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Tubulin is loaded briefly before the IFT trains enter the cilium
It has been suggested that axonemal proteins including tubulin and radial spoke subunits already

associate to IFT proteins on IFT-coated post-Golgi vesicles and remain in this association during the

arrival at the ciliary base, vesicle fusion with the plasma membrane, train formation, and transport

into the cilium (Wood and Rosenbaum, 2014). To gain insights into the timing and location of cargo

loading, we used sfGFP-tubulin, which due to its high frequency of transport by IFT is well suited for

our photobleaching approach (Craft et al., 2015). The calponin-homology (CH) domain of IFT81

and the N-terminal domain of IFT74 bind tubulin in vitro, and cilia assembly is impaired in C. rein-

hardtii strains carrying mutations in both domains indicating that the IFT81/74 module is the domi-

nant tubulin binding site of IFT (Bhogaraju et al., 2013; Kubo et al., 2016; Taschner et al., 2016;

Zhu et al., 2017b). While these two proteins were not analyzed here, we consider it unlikely that

pre-formed IFT81/74/tubulin complexes are incorporated into trains shortly before departure

because IFT81 and IFT74 are core structural components of the IFT-B1 complex (Lucker et al.,

2005; Taschner et al., 2014). If IFT-B1 proteins were already bound to tubulin at the time of their

recruitment and incorporation into the trains, the gap in tubulin traffic after bleaching of the bb-pool

should correspond in duration to that of the IFT-B1 proteins. However, the gap in sfGFP-tubulin traf-

fic was actually shorter than that of KAP or any IFT particle protein studied here. The data indicate

that tubulin loading occurs in the basal bodies pool and briefly before the trains move into the cil-

ium. Axonemal cargoes are mostly released from IFT trains at the ciliary tip where IFT trains partially

disassemble to reorganize for retrograde traffic (Bower et al., 2013; Craft et al., 2015;

Johnson and Rosenbaum, 1992; Lechtreck et al., 2013b; Wren et al., 2013). We speculate that

cargo binding and unloading could be linked to train assembly and disassembly.

A model for the stepwise assembly of IFT trains
A critical role in train assembly can be attributed to the transitional fibers (TFs), which link the basal

body triplets to the plasma membrane. C. elegans mutants in the TF protein Dyf-19 have severely

reduced amounts of IFT proteins and IFT traffic inside cilia (Wei et al., 2013). The IFT-B1 protein

IFT52 is associated with the TFs and the TFs are required to recruit kinesin-2, but not the IFT particle

proteins, into the bb-pool (Cole et al., 1998; Deane et al., 2001). The entry of IFT proteins into the

cilium depends on kinesin-2 (Kozminski et al., 1995), the binding of kinesin-2 to IFT is regulated by

phosphorylation (Liang et al., 2014), and we show here that the addition of kinesin-2 is a late step

of train assembly.

The longest average gap in IFT traffic was ~9s for the IFT-A/B2 proteins. In C. reinhardtii, IFT

trains exit the bb-pool with a frequency of ~1/s suggesting that one train is completed each second

and that ~9 trains in different stages of assembly are in the pool at a given time. This value fits with

our estimates of the bb-pool size based on the fluorescence loss or gain upon departure/arrival of a

single train. In a speculative model, each of the nine basal body triplets with its associated structures

could assist to assemble one IFT train. The nascent trains move upwards along the triplet blades

combining with additional IFT subcomplexes. Then, they will associate with kinesin-2 at the TFs,

which will pull the nascent train upwards and into the cilium, compressing and concentrating the IFT

material between the microtubules and the membrane. Once a position is vacated by a departing

train, the assembly of a new train is initiated near the proximal end of the basal body (Figure 8F).

Materials and methods

Strains and culture conditions
The IFT20-FP (sfGFP or NG), IFT27-GFP, IFT43-YFP, KAP-GFP (CC-4296), and D1bLIC-GFP (CC-

4488) strains were previously described; the corresponding strain numbers of the Chlamydomonas

Resource Center (RRID:SCR_014960) are added in brackets when available. (Lechtreck et al., 2009;

Lv et al., 2017; Mueller et al., 2005; Qin et al., 2007; Reck et al., 2016; Zhu et al., 2017a2017).

KAP-GFP was expressed in the hypomorphic mutant fla3 and IFT27-GFP was expressed in wild-type

cells. The bald ift46-1 mutant (CC-4375) has been previously described and was rescued by express-

ing IFT46-YFP (Hou et al., 2007; Lv et al., 2017). The novel ift54 and ift140 C. reinhardtii mutants

lacked flagella and were obtained by insertional mutagenesis using aph7, and NIA1, respectively, as

selectable markers. PCR was used to confirm the insertions and specific antibodies confirmed the
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loss of the wild-type proteins; details of the mutant strains will be reported in upcoming publications

from the Lechtreck and Witman laboratories, respectively. A DNA fragment encompassing the cod-

ing region of IFT54 was amplified from genomic DNA and cloned downstream of NG into pBR25,

which allows for selection on zeocin; the construct rescued the flagella-less phenotype of ift54-2.

The ift140 mutant was rescued using a construct consisting of the aphVIII selectable marker gene

and the genomic region of IFT140 fused at its C-terminus to either sfGFP or mCherry codon-

adapted for C. reinhardtii. The IFT140-sfGFP and –mCherry strains were grown in TAP medium, all

other strains were maintained in modified M medium with a light/dark cycle of 14:10 hr. The fla3

KAP-GFP ift140 IFT140-mCherry strain was obtained by mating the fla3 KAP-GFP and the ift140

IFT140-mCherry strains. Motile progeny was analyzed by TIRF microcopy and the strains expressing

KAP-GFP and IFT140-mC were analyzed by Western blotting using antibodies to C. reinhardtii KAP

(Invitrogen, Carlsbad, CA) and IFT140 (Picariello et al., 2017). Tetrahymena thermophila expressing

GFP-Dyf1p/IFT70 have been previously described (Dave et al., 2009). Briefly, the GFP-Dyf1 cassette

was inserted into the nonessential BTU1 locus of a correspond knock-out strain; the cells were grown

in SPP medium. A mIMCD3 cell line (RRID:CVCL_0429) stably expressing IFT88::YFP was a gift from

Dr. Jagesh Shah (Harvard Medical School); cells were cultured as described (Besschetnova et al.,

2009).

TIRF microscopy
For TIRF imaging, we used Eclipse Ti-U microscope (Nikon) equipped with 60� NA1.49 TIRF objec-

tive and through-the-objective TIRF illumination provided by a 40 mW 488 nm and a 75 mW 561 nm

diode laser (Spectraphysics) as previously described (Lechtreck, 2013a). The excitation lasers were

cleaned up with a Nikon GFP/mCherry TIRF filter and the emission was separated using an Image

Splitting Device (Photometrics DualView2 with filter cube 11-EM). Images were mostly recorded at

10 fps using an iXON3 (Andor) and the NIS-Elements Advanced Research software (Nikon);

mManager (https://micro-manager.org/) was used to record some FLIP experiments.

To obtain a focused laser beam, the 488 nm laser beam was split using a 488 nm zero-order half-

wave plate and a broad band polarized beam splitter; one of the beams was used for TIRF illumina-

tion. The other beam was expanded using a 3x beam expander, focused using 200 mm plano-con-

vex lens and a 35 mm plano-convex lens and recombined with the TIRF laser beam using polarized

beam splitter (all parts from Thorlabs Inc.). A motorized mirror connected to a joystick (Newfocus)

was used to move the bleaching laser and the size of the laser spot was altered manually by moving

the 35 mm lens. For FLIP experiments, the shutter and shutter driver (Uniblitz) for the bleaching laser

were controlled via an Arduino Uno device and a custom-written macro for m-Manager (see Supple-

mentary methods). The FLIP experiments were recorded using either m-Manger, which allowed us to

prevent the acquisition of frames while the shutter was open or Nikon Elements; in the latter, the

camera continued to record while the bleaching laser shutter was open resulting in over-exposed

frames. FIJI (National Institutes of Health) was used to generate kymograms and quantify signals.

Excel was used for statistical analysis; the kinetics of fluorescence recovery was determined manually

based on the Excel scatter plots (see Figure 2C as an example). Adobe Photoshop was used to

adjust image contrast and brightness, and figures were prepared in Adobe Illustrator. SigmaPlot in

Tukey setting was used to prepare the box plots.

Observation chambers for C. reinhardtii were constructed by applying a ring of vacuum grease or

petroleum jelly to a 24 � 60 mm No. 1.5 coverslip; 10 ml of cell suspension were applied and allowed

to settle for ~1 min. Then, the chamber was closed by inverting a 22 � 22 mm no. 1.5 cover glass

with ~5–10 ml of 5 mM Hepes, pH 7.3, 5 mM EGTA onto the larger coverslip. Cells were imaged

through the large cover glass at room temperature.

TIRF microscopy of T. thermophila was performed as previously described (Jiang et al., 2015)

with following modifications: Cells were washed and resuspended in Tris HCL buffer, pH 7.5, mixed

in a 10:1 ratio with 20 mM NiCl2 and applied to a 22 � 22 mm No. 1.5 cover glass. Nickel inhibits

axonemal dyneins facilitating imaging of IFT (Jiang et al., 2015). A thin coat of petroleum jelly

matching the outline of the cover glass was applied to a glass slide and inverted onto the cover

glass. For in vivo imaging of IMCD cells expressing IFT88-YFP, the cells were grown under a trans-

well cup (Corning, Corning NY), switched to phenol red-free CO2 independent medium with 25 mM

HEPES (Gibco), and placed directly on a 22 � 60 mm No. 1.5 cover glass (Ott and Lippincott-

Schwartz, 2012).
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FRAP and FLIP analysis of the basal body pool, IFT traffic, and tubulin
transport
For FRAP analysis of the IFT bb-pool, kymograms were generated from videos showing the cells

before, during and after the application of a brief laser pulse to bleach the experimental basal body.

Grayscale profiles were plotted along lines covering the basal body signals, the data were converted

to an Excel sheet, and the fluorescence of the experimental basal body was calculated in % of the

intensity of the control basal body in a frame-by-frame manner. The recovery time and intensity

were determined manually as shown in Figure 2C. In IMCD cells and T. thermophila, basal bodies

with the attached cilium were bleached completely by moving the focused laser beam along the

length of the cilium. To determine the rate of signal loss in FLIP experiments, we used the slope of a

trendline added in Excel to the frames representing the initial 10–25 s of the experiment. For the

gap analysis, a fiduciary mark on the monitor was used to position the cell so that one basal body

was targeted by the laser spot; the focus level was adjusted to the level of the flagella, the recording

was started, and a laser pulse of <100 ms to ~600 ms was applied. Cells which moved prior to the

bleaching step or which did not resume regular IFT traffic after the bleaching step were ignored.

To analyze tubulin transport, cells expressing sfGFP-a-tubulin were washed and resuspended in

M media, deflagellated by pH shock, transferred to fresh M medium, and allowed to regrow cilia

under constant light with agitation [Craft et al., 2015; Lefebvre, 1995]). To delay the onset on

regeneration, cells were kept on ice until needed. In stored cells, regeneration was initiated by dilut-

ing the cells with room temperature M media and incubation as above. For photobleaching of

sfGFP-a-tubulin already present in the axoneme, the intensity of the 488 nm laser was increased

from <1% to ~10% for 4–12 s.

To analyze the signal intensity of IFT trains, a line partially covering the trajectory was placed on

kymograms in ImageJ and the grey value was obtained.

Program used to control the laser shutter in mManager via an Arduino
device

/* LaserGateLoop3.bsh

* This program will take a series of images after exposing a laser gate for a set

duration

* There is a pause or a user set amount of time in beween two loops.

* The first image is before the gate pulse

* The shutter trigger is Arduino pin 13 which should be connected to the Pulse Input

of

* the Uniblitz shutter. The shutter should be set to N.O. and Remote

* Heather Bomberger Summer 2014 University of Georgia

*/

gui.clearMessageWindow();

//USER INPUT

float ImageDuration = 800; //Time beween flashes (ms)

GatePulse = 100; //Time laser is on (ms)

int LoopOne = 35; //Number of flashes before the pause int LoopTwo = 35; //Number of

flashes after the pause

Pause = 10; //Duration of pause (ms) (The ImageDuration will be added to this

pause)

EMgain = 151; //Gain

Exposure = 100; //Exposure (ms)

//User Inerface (Delete "/*" and "*/" to use)

/* import ij.gui.GenericDialog;

GenericDialog gd = new GenericDialog("LaserGateLoop");

gd.addNumericField("Exposure", Exposure, 0);

gd.addNumericField("EM Gain", EMgain, 0);

gd.addNumericField("Gate Pulse", GatePulse, 0);

gd.addNumericField("Image Duration", ImageDuration, 0);

gd.addNumericField("Loop One", LoopOne, 0);
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gd.addNumericField("Loop Two", LoopTwo, 0);

gd.addNumericField("Pause", Pause, 0);

gd.showDialog();

Exp = (int) gd.getNextNumber();

Gain = (int) gd.getNextNumber();

GatePulse = (int) gd.getNextNumber();

ImageDuration = (int) gd.getNextNumber();

LoopOne = (int) gd.getNextNumber();

LoopTwo = (int) gd.getNextNumber();

Pause = (int) gd.getNextNumber();

print (Exp); print (Gain);

print (GatePulse); print (ImageDuration);

print (LoopOne); print (LoopTwo);

print (Pause);

*/

//Check Statements

if (Exposure >1000|| Exposure <10) {

gui.message("Exposure not in range.");

break;

}

if (EMgain >300|| EMgain <0) {

gui.message("EMgain not in range.");

break;

} if (ImageDuration >5000 || ImageDuration <0) {

gui.message("Image Duration not in range.");

break;

} if (GatePulse > 500 || GatePulse < 0) {

gui.message("Gate Pulse not in range.");

break;

} if (LoopOne >100 || LoopOne <0) {

gui.message("Loop One not in range.");

break;

} if (LoopTwo > 100 || LoopTwo < 0) {

gui.message("Loop Two not in range.");

break;

} if (Pause >5000 || Pause <0) {

gui.message("Pause not in range.");

break;

}

Camera = mmc.getCameraDevice();

mmc.setProperty(Camera, "Exposure", Exposure);

mmc.setProperty(Camera, "Gain", EMgain);

Interval = mmc.getProperty(Camera, "ActualInterval-ms");

FloatInterval = Float.valueOf(Interval);

int PauseFrames = (int) (Pause/FloatInterval);

print("Interval: " +FloatInterval); print(ImageDuration / FloatInterval);

mmc.setProperty("Arduino-Switch", "State", 32);

mmc.setProperty("Arduino-Shutter", "OnOff", 0);

mmc.setAutoShutter(false);

//auto shutter off gui.enableLiveMode(false);

//live mode off int nrFrames = (int) (ImageDuration / FloatInterval);

int frame = 0;

int nrImages = nrFrames*(LoopOne+LoopTwo)+1 + PauseFrames;

int imgcnt = 0; acqName = "Test";

rootDirName = "C:/Users/Lechtreck Lab/Documents/Heather-MM";

nrChannels = 1;
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nrSlices = 1;

int channel = 0;

int slice = 0;

width = mmc.getImageWidth();

height = mmc.getImageHeight();

bytes = mmc.getBytesPerPixel();

depth = mmc.getImageBitDepth();

print ("width: " +width);

print ("height: " +height);

print ("depth: " +depth);

print ("bytes: " +bytes);

print ("Frames: " +nrFrames);

gui.closeAllAcquisitions();

gui.openAcquisition(acqName, rootDirName, nrImages, nrChannels, nrSlices);

gui.initializeAcquisition(acqName, (int) width, (int) height, (int) bytes,

(int) depth);

//gui.setAcquisitionProperty(acqName, "Pixel width", "2.0000");

//mmc.setProperty("Properties", "Pixel width", 2);

now = System.currentTimeMillis();

// Acquire a pre-bleaching image and add it to the acquisition at the beginning

mmc.snapImage();

PreImage = mmc.getImage();

gui.addImage(acqName, PreImage, frame, channel, slice);

imgcnt++; //the acquisition will start on frame 2

gui.setContrastBasedOnFrame(acqName, frame, slice �1);

//laser gate for loop One

for (n = 0; n<LoopOne; n++){

frame = 0;

mmc.setProperty("Arduino-Shutter", "OnOff", 1);

mmc.sleep(GatePulse);

mmc.setProperty("Arduino-Shutter", "OnOff", 0);

mmc.startSequenceAcquisition(nrFrames, 0, false);

while (mmc.getRemainingImageCount()>0 || mmc.isSequenceRunning(mmc.getCa-

meraDevice()))

{

if (mmc.getRemainingImageCount()>0) {

img = mmc.popNextImage();

if (frame<nrFrames) {//take designated amount of images

gui.addImage(acqName, img, imgcnt, channel, slice);

frame++;

imgcnt++;

}

}

}

}

//Pause while camera recording

frame = 0;

mmc.startSequenceAcquisition(PauseFrames, 0, false);

while (mmc.getRemainingImageCount()>0 || mmc.isSequenceRunning(mmc.getCa-

meraDevice()))

{

if (mmc.getRemainingImageCount()>0) {

img = mmc.popNextImage();

if (frame<PauseFrames) {//take designated amount of images

gui.addImage(acqName, img, imgcnt, channel, slice);

frame++;
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imgcnt++;

}

}

}

//Loop Two

for (n = 0; n<LoopTwo; n++){

frame = 0;

mmc.setProperty("Arduino-Shutter", "OnOff", 1);

mmc.sleep(GatePulse);

mmc.setProperty("Arduino-Shutter", "OnOff", 0);

mmc.startSequenceAcquisition(nrFrames, 0, false);

while (mmc.getRemainingImageCount()>0 || mmc.isSequenceRunning(mmc.getCa-

meraDevice()))

{

if (mmc.getRemainingImageCount()>0) {

img = mmc.popNextImage();

if (frame<nrFrames) {//take designated amount of images

gui.addImage(acqName, img, imgcnt, channel, slice);

frame++;

imgcnt++;

}

}

}

}

duration = (System.currentTimeMillis() - now);

gui.setContrastBasedOnFrame(acqName, frame, slice �1);

mmc.stopSequenceAcquisition();

gui.promptToSaveAcquisition(acqName,false);

gui.closeAcquisition(acqName);

print ("Duration = " +duration +" ms");

mmc.setProperty("Arduino-Shutter", "OnOff", 0);
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