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Abstract Isogeometric analysis (IGA) is a recently intro-

duced technique that employs the Computer Aided Design

(CAD) concept of Non-uniform Rational B-splines

(NURBS) tool to bridge the substantial bottleneck between

the CAD and finite element analysis (FEA) fields. The

simplified transition of exact CAD models into the analysis

alleviates the issues originating from geometrical discon-

tinuities and thus, significantly reduces the design-to-

analysis time in comparison to traditional FEA technique.

Since its origination, the research in the field of IGA is

accelerating and has been applied to various problems.

However, the employment of CAD tools in the area of FEA

invokes the need of adapting the existing implementation

procedure for the framework of IGA. Also, the usage of

IGA requires the in-depth knowledge of both the CAD and

FEA fields. This can be overwhelming for a beginner in

IGA. Hence, in this paper, a simplified introduction and

implementation details for the incorporation of NURBS

based IGA technique within the existing FEA code is

presented. It is shown that with little modifications, the

available standard code structure of FEA can be adapted

for IGA. For the clear and concise explanation of these

modifications, step-by-step implementation of a benchmark

plate with a circular hole under the action of in-plane

tension is included.

Keywords Linear elasticity � Finite element analysis �
Isogeometric analysis � NURBS

List of symbols
�/ Total number of nodes in a finite element e
�n; �g;

�f Coordinate points of the master space

N;H Knot vectors consisting the parametric

coordinate points along the n and g directions

X;
~X;

�X Domain of an element in the physical,

parametric, and master spaces, respectively

P Array of control points
~/ Mapping function transforming a NURBS

element from the physical to the master space

n; g; f Coordinate points of the parametric space

Bi;p nð Þ An ith Bernstein basis function of order p

defined at parametric point n

Li;p �n
� �

An ith Lagrangian polynomial of order p defined

at the integration point �n

n;m; l Total numbers of basis functions along the n, g,

and f parametric directions

ne Total number of nodes in a finite element e

necp Total number of control points associated to an

element e

Ni;p nð Þ An ith B-spline basis function of order p defined

at parametric point n

nel Total number of elements

p; q; r Order of one-dimensional basis functions along

the n, g, and f directions

Ri;p nð Þ An ith NURBS basis function of order p defined

at the parametric point n

/ Mapping function transforming an element from

the physical to the master space
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Introduction

State of the Art in IGA

Finite element analysis is considered to be one of the most

popular numerical methods which are used to find the

approximate solution of partial differential equations

(PDEs). It has extensive applications in the fields of fluid

mechanics, structural mechanics, contact mechanics and in

many other scientific problems [1]. This technique utilizes

the approximate form of the CAD geometries by dis-

cretizing them into a smaller sub-geometry called elements

in FE community. Such geometrical approximations,

which are inherent in the traditional FE, seriously affect the

accuracy of the solution and lead to the various numerical

errors during the analysis, e.g.,

• In the field of contact mechanics, FE based analysis of

contact problems results in the faceted representation of

the contact surface which leads to high jumps and

artificial oscillations in the value of contact tractions

[2].

• In the field of fluid mechanics, FE based representation

of the geometry of aerodynamic bodies results in the

non-physical entropy layers about the geometry shape

which leads to the poor computation of the heat flux

and pressure quantities [3].

• The thin shell problems are considered to be highly

sensitive to the geometry approximations. It has been

observed that the buckling load reduces by a consid-

erable amount on increasing the magnitude of geomet-

rical imperfections (see Fig. 1.3 in Ref. [4]).

• Higher order p-method based analysis of structural

vibration problems causes significant errors in the

frequency spectrum which diverge further on increas-

ing the order of the FE polynomial [5].

• In the field of optimization, a tight coupling between

the CAD-generated design model and the FE approx-

imated analysis model is needed. However, FE based

discretization of the design model, which differs much

from the analysis model from the geometrical repre-

sentation point of view, leads to the unrealistic optimal

design model [6].

To minimize the geometrical discretization errors, var-

ious attempts have been made in the past. Kagan et al. [7]

introduced a B-spline based FE approach that combines the

geometrical design and the analysis systems into a common

framework. Later, based on the subdivision of surface

scheme Cirak et al. [8] presented a different paradigm for

describing and modelling of the thin shells geometries in

the FEA framework. Based on the motivation of combining

the long available CAD systems with the simulation

approaches, Hughes et al. [3] introduced a new numerical

method, popularly known as Isogeometric analysis (IGA).

In this technique, CAD-based NURBS described geome-

tries are directly employed in the analysis framework

without making any geometrical approximations like in FE.

The fundamental concept of IGA is to utilize the NURBS

basis functions not only for the construction or as a handler

of the exact form of CAD geometries, but also as a tool that

can be used for their mathematical analysis. This feature of

IGA sets it apart from the traditional FEA technique. The

coupling of CAD and analysis solvers into a unified

framework reduces the burden of mesh regeneration and

thus, minimizes the computational cost to a great extent

(see Fig. 1.2 in Ref. [4]). Since the introduction of IGA

technique [3], it has drawn the attention of many

researchers and has been applied to a wide variety of

problems, e.g.,

• Isogeometric based analysis of contact problems yields

a smooth representation of the contact surfaces due to

the inherent higher-order continuity of NURBS basis

functions. With this, much more accurate results are

obtained in comparison to the traditional FE approach

[2, 9].

• Due to the inherent higher order continuity and exact

representation of geometrical features in IGA, this

technique has been shown to be advantageous in fluids

[10] and fluid-structure interaction [11] problems.

• In comparison to the FE approach, IGA has proven to

be extremely useful for the analysis of plate and shell

problems [12].

• NURBS based IGA of structural vibration problems are

shown to be advantageous than traditional FE higher

order FE method. With this, the k� refinement

approach provides the robust and accurate frequency

spectra in the wave propagation problems [5].

• In the case of optimization problems, a tight coupling

between the design model and the analysis model is

achieved as the design model is directly utilized in the

analysis with IGA technique [6].

Besides the application of the IGA technology to the

above-mentioned fields, this technique can also be applied

to specific problems which have been solved with FE

technology to attain the improved solution, e.g., see

[13–15].

Apart from the inclusion of NURBS basis function for

the modelling and analysis in IGA, other CAD tools such

as T-spline [10], Polynomials splines over Hierarchical T-

meshes (PHT-spline) [16], Locally Refined (LR) splines

[17] and Hierarchical spline [18] have also been employed

for the advancement of this technique. A technique based

on Bézier extraction operator that transforms the isogeo-

metric element in standard C0-continuous element through
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their projection into Bézier element is devised in [19],

which employs the IGA elements into finite element (FE)

structure. However, the discussion in this paper is only

limited to the NURBS basis functions for the sake of

clarity. The reason for selecting this function as a basis is

due to its widespread popularity in CAD field.

Current Status of IGA in Commercial Softwares

Due to the widespread application of IGA technology in

different fields, few efforts have been made to integrate this

technology (as a plug-in) with the commercial FEA soft-

ware packages. Hartmann et al. [20] combined the

NURBS-based isogeometric elements within the LS-

DYNA package. In this, isogeometric NURBS elements

are defined in the input data by declaring the necessary

details for their generation. Later, Elguedj et al. [21] have

provided a plug-in package ‘AbqNURBS’ that introduces

the NURBS-based isogeometric element into a commercial

software namely Abaqus. This package enables the inte-

gration of arbitrary isogeometric elements with the analysis

framework of Abaqus using the user-defined material

models. Recently, in Ref. [22], user elements within the

software package Abaqus have been used for solving the

one and two-dimensional higher-order gradient elasticity

boundary value problems. However, in case of the usage of

these commercial FEA packages for IGA of PDEs, the

generation and visualization of NURBS defined geometries

is neither user-friendly or direct nor fully-available. With

these packages, other computing environments have to be

additionally accessed for pre- and post-processing of

geometries. For more details, the reader may refer to the

above references.

Available Implementation Procedures of IGA

and Their Shortcomings

For providing the implementation details of IGA technol-

ogy in different computing environments various articles,

as tutorial papers, have been presented. A monograph by

Cottrell et al. [4] covers the in-detailed theory to thor-

oughly understand the transition procedure of NURBS

described CAD geometries into the FEA technique and the

basic concepts of this technology. However, the absence of

isogeometric NURBS modelling toolbox with this mono-

graph invokes the need to write the implementation codes

from scratch, which might not be an easy-to-do task for a

beginner in this technology. A tutorial Matlab� code,

ISOGAT, for the NURBS based IGA is available in Ref.

[23]. However, it is restricted to solving the two-dimen-

sional elliptic diffusion-type problems. A procedure to

integrate the IGA technology with an existing object-ori-

ented finite element code architecture (written in C??

environment) is presented in Ref. [24]. Similarly, an

object-oriented open-source C?? library based modules

for the generation of geometry and simulation using the

IGA of PDEs with a number of different CAD basis

functions are developed in Ref. [25]. However, the incor-

poration of object-oriented code structure in [24, 25] makes

the understanding of the computational procedure of pri-

mary variable less transparent to the user, which might

complicate the debugging of the code. An excellent open

source Matlab� implementation code for the IGA of one,

two, and three-dimensional structural mechanics problems

have been provided in [26]. The detailed application of

B-spline based isogeometric analysis to one- and two-di-

mensional static structural and vibrational problems along

with the implementation procedure is reported in [27]. A

suite of free and open source research tool GeoPDEs,

which serves as a starting tool for IGA users and is com-

patible with Octave, Matlab� programming languages, for

the NURBS based isogeometric analysis of PDEs, have

been included in Ref. [28]. However, this tool utilizes a

different code-architecture than that used in the traditional

FE codes, and the data is stored in the structured format.

Hence, the tool might not be readily comprehensible by an

FE user accustomed to traditional FE code architecture.

Recently, a code framework PetIGA based on PETSc

(Portable Extensible Toolkit for Scientific Computation), to

achieve the high-performance with the IGA of PDEs is

presented in [29]. However, for the utilization of any of

these available implementation procedures (irrespective of

their computational environment), it is assumed that the

user should be well aware of the fundamentals of IGA and

must be able to follow a large number of function libraries

of available execution subroutines. Moreover, the usage of

Bézier extraction operator technique, which combines the

IGA technology with the traditional FEA framework,

increases the computational cost substantially as an addi-

tional number of system equations has to be solved in

comparison to traditional FEA approach.

Outline of Present Work

Based on the literature review presented above, it is found that

not many papers are available which can quickly explain the

IGA technology to a traditional FE user. Hence, the objective

of this work is to present a simplified introduction and

implementation procedure of IGA in the spirit of the tradi-

tional FE code architecture. In this presentation, it is shown

that an existing code structure of FEA technique can be

directly utilized for the implementation of IGA technology

after making a few modifications. This eliminates the need to

develop anewcodearchitecture and eases the learningprocess

of this technology. For the construction and handling of CAD

geometries a free and open sourceNURBSmodelling toolbox
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is used. The reasons behind choosing this toolbox are: (a) due

to its wide accessibility as it can be used with the most com-

mon programming languages, e.g., Matlab� and Octave, and

(b) it prevents the need for writing the NURBS modelling

codes from scratch. The description of the presented imple-

mentation procedure is provided in a such amanner that an FE

user can quickly know as to which subroutines or sections of

traditional FE code structure has to bemodified. To the best of

the author’s knowledge, no such implementation process has

been covered in any literature. It might bear some similarity

with the procedures reported in Refs. [26, 28]. However, as

stated earlier, the code architecture that is used for the

implementation of IGA technology with these procedures

might not be an easily accomplished task for a traditional FE

user, and a vast NURBSmodelling functions libraries have to

be handled. A simplified introduction, as well as the imple-

mentation of IGA technology in the existing framework of

FEA technique,makes the present discussion distinct from the

available approaches.

The paper is organized as follows: first, in ‘‘Prelimi-

naries’’ section, a brief introduction to the FE and the IGA

basis functions is provided. Then, in ‘‘Weak Formulation’’

section, the weak formulation of the linear elastic problem

and the corresponding IGA based discretization is briefly

discussed. Next, in ‘‘Structural difference between FEA

and IGA codes’’ section, the flowchart of FEA and its

modified form for IGA is presented in ‘‘Structural differ-

ence between FEA and IGA codes’’ section. In ‘‘A detailed

stepwise implementation procedure for IGA’’ section, the

stepwise implementation procedure of IGA based on the

modification of FEA code structure is illustrated. Finally,

‘‘Conclusion’’ section, summerizes the paper. To outline

the key points of the proposed implementation procedure a

brief summary of each section is also included at their end.

Preliminaries

In FEA community, Lagrangian basis functions are par-

ticularly popular and are defined either in the physical

space (space of x, y and z coordinates) or in the master

space (space of �n; �g and �f coordinates) [1, 30]. In IGA,

Bernstein, B-spline, and NURBS basis functions are

commonly employed for the modelling and discretization

of CAD geometries and are defined in the parametric space

directly [3, 4]. A short description of these functions is

presented next.

Lagrangian Basis Function

A pth order one-dimensional Lagrangian function, Li;p �n
� �

,

which passes through pþ 1 number of points is given by

the following expression [1]:

Li;p �n
� �

¼
Ypþ1

k¼1;k 6¼i

�n� nk

ni � nk
; 1� k� pþ 1 and � 1� �n� 1

ð1Þ

These functions posses the non-negativity:

�1� Li;p �n
� �

� 1, Kronecker’s delta: Li;p �nj
� �

¼ dij,

partition of unity:
Pn

i¼1 Li ¼ 1, and linear independence:Pn
i¼1 aiLi ¼ 0 if a1 ¼ a2 ¼ . . . ¼ an ¼ 0 properties. The

major issues that are associated with the use of Lagrangian

polynomial is due to its inability to satisfy the variation

diminishing property and its inherited �1� Li;p �n
� �

� 1

nature of the basis function. Due to these issues, the result

obtained becomes highly sensitive to the order of the

Lagrangian basis functions. This leads to oscillatory results

or provides the non-smooth representation of the resulting

fitting curves. This problem becomes even more prominent

in case of higher order (i.e., p C 3) Lagrangian basis

functions [3]. Additionally, these basis functions are

restricted to only C0-continuity across the inter-element

boundary, which results in the non-smooth representation

of the different derivative quantities, e.g., strains and

stresses.

Bernstein Basis Functions

A pth order univariate (single variable) Bernstein polyno-

mial, Bi;p
�n

� �
1� i� pþ 1ð Þ is defined by the following

recursive relation [19]:

Bi;p
�n

� �
¼

1

2
1� �n
� �

Bi;p�1
�n

� �
þ
1

2
1þ �n
� �

Bi�1;p�1
�n

� �
;

�n 2 �1; 1½ �
ð2Þ

where B1;0
�n

� �
¼ 1, and Bi;p

�n
� �

� 0 if i\1 or i[ pþ 1.

These basis functions posses following properties: partition

of unity
Pi¼pþ1

i¼1 Bi;p
�n

� �
¼ 1, Kronecker’s delta property

Bi;p nj
� �

¼ dij, and are restricted to the C0 inter-element

continuity. However, unlike the Lagrangian polynomials

these functions are always non-negative, i.e. Bi;p
�n

� �
� 08�n.

Moreover, these functions satisfy the variation diminishing

property which leads to the monotonic improvement in the

stability of results on increasing the order of the Bernstein

basis functions [19].

Multi-variate Bernstein basis functions are defined by

the tensor product of univariate functions. Let Bj;q �gð Þ and
Bk;r

�f
� �

are the qth and rth order univariate Bernstein basis

functions which are defined in the �g and �f directions,

respectively. Then, bi-variate and tri-variate Bernstein

basis functions are defined as [19]

B
p;q
i;j

�n; �g
� �

¼ Bi;p
�n

� �
Bj;q �gð Þ; ð3Þ

B
p;q;r
i;j;k

�n; �g;

�f
� �

¼ Bi;p
�n

� �
Bj;q �gð ÞBk;r

�f
� �

ð4Þ
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Bézier described multi-dimensional geometries are

constructed by the linear mapping of Bernstein basis

functions from parametric to the physical space. A pth

order Bézier curve is defined as:

C �n
� �

¼
Xpþ1

i¼1

Bi;p
�n

� � xi
yi
zi

2
4

3
5
T

¼
Xpþ1

i¼1

Bi;p
�n

� �
Pi ð5Þ

where Pi is a control point vector. Similarly, Bézier

surfaces and solids are given through the tensor product of

univariate basis functions and control points as [19]:

S �n; �g
� �

¼
Xpþ1

i¼1

Xqþ1

j¼1

B
p;q
i;j

�n; �g
� �

Pi;j ð6Þ

V �n; �g;

�f
� �

¼
Xpþ1

i¼1

Xqþ1

j¼1

Xrþ1

k¼1

B
p;q;r
i;j;k

�n; �g;

�f
� �

Pi;j;k ð7Þ

where Pi;j ¼ PiPj and Pi;j;k ¼ PiPjPk are the control point

net and control point volume arrays, respectively.

B-splines

B-splines are defined over a knot vector N and are the

linear combination of piecewise smooth basis functions. A

knot vector N is considered as the increasing arrangement

of parametric space coordinates as [31]

N ¼ n1; n2; . . .; nnþpþ1

� �
ð8Þ

where each knot entry,ni, is a real number (i.e., ni 2 R).

The symbols p and n denotes the order and the total number

of B-spline basis functions, respectively. Based on the

difference between any two consecutive knots, a knot

vector can be categorized either as a uniform or as a non-

uniform vector. If the difference between any two

consecutive knots remains fixed, it is said to be a

uniform vector, otherwise a non-uniform vector. In CAD

parlance a knot vector is also termed as a patch. If the first

and the last knot entries of a knot vector are repeated by

pþ 1 times, it is said to be an open knot vector, which is

standard terminology in IGA. B-spline basis functions of

order p are defined by the Cox-de Boor recursive relations

as [31]:

for p ¼ 0; Ni;0 nð Þ¼
1; if ni � n\niþ1;

0; Otherwise:

�

for p[ 0; Ni;p nð Þ¼
n� ni

niþp � ni
Ni;p�1 þ

niþpþ1 � n

niþpþ1 � niþ1

Niþ1;p�1

ð9Þ

As is with the Bernstein basis functions, the B-spline

basis functions also exhibit: non-negativity Ni;p � 08n,
partition of unity

Ppþ1
i¼1 Ni;p nð Þ ¼ 1, linear independence,

Kronecker’s delta, and the variational diminishing

properties. However, unlike the Bernstein basis, these

functions are not restricted to the C0 inter-element

continuity as a pth order B-spline function Ni;p nð Þ

delivers the Cp�1 continuity at the knot point n, if it is

not repeated in the knot vector N. The continuity can also

be decreased to Cp�1�k if a knot is repeated by k times in

the knot vector. The B-spline basis functions show the C0-

continuity at the boundary of a patch in an open knot vector

as the end knot points (n1 and nnþpþ1) are repeated by pþ 1

times. However, apart from the versatility of these bases

over Lagrangian and Bernstein functions, one of the major

limitation associated with the use of B-splines is its

inability to accurately represent the circle, sphere and

cylinder shaped geometries. On the other hand, NURBS,

which are the rationale of these functions, overcome this

limitation inherently and are described in the next

subsection.

Multivariate B-spline basis functions are defined by the

tensor product of the univariate functions. For example, the

bivariate B-spline basis functions are defined as [31]:

N
p;q
i;j n; gð Þ ¼ Ni;p nð ÞMj;q gð Þ ð10Þ

and tri-variate functions as:

N
p;q;r
i;j;k n; g; fð Þ ¼ Ni;p nð ÞMj;q gð ÞLk;r fð Þ ð11Þ

where Mj;q and Lk;r are the qth and rth order B-spline basis

functions that are defined in the g and f parametric

directions, respectively. A pth order B-spline curve is

defined as [31]

C nð Þ ¼
Xn

i¼1

Ni;p nð ÞPi ð12Þ

For a given control point net Pi;j and control point

volume array Pi;j;k, B-spline surfaces and solids are defined

through the tensor product of univariate B-spline basis

functions in the following manner [31]

S n; gð Þ ¼
Xn

i¼1

Xm

j¼1

N
p;q
i;j n; gð ÞPi;j ð13Þ

V n; g; fð Þ ¼
Xn

i¼1

Xm

j¼1

Xl

k¼1

N
p;q;r
i;j;k n; g; fð ÞPi;j;k ð14Þ

where m and l represent the total number of basis functions

defined along the g and f parametric directions,

respectively.

NURBS

NURBS are frequently employed in CAD and Computer

Aided Manufacturing (CAM) industries as they offer great

flexibility and accuracy in generation and representation of

CAD geometries [3]. NURBS are considered as the
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generalization of B-splines. A univariate NURBS basis is

defined by the rationale of weighted B-spline basis func-

tions as [31]:

Ri;p nð Þ ¼
wiNi;p nð Þ

W nð Þ
1� i� pþ 1 ð15Þ

where wi � 0 denotes the weight value associated with

control point vector Pi, and weighted function W nð Þ ¼Pncp
i¼1 wiNi;p nð Þ is the weighted linear combination of B-

spline basis functions. Here, ncp denotes the total number

of NURBS control points. Since, NURBS are the rationale

of B-spline basis function, they share the same properties

of B-spline basis functions. Although, unlike the B-spline,

NURBS are more flexible in nature and can represent the

exact form of conic sections, e.g. circles, due to their

association with the weight points.

Bi-variate and tri-variate NURBS basis are defined

through the tensor product of univariate NURBS functions.

Let Pi;j, and wi;j are the known control point net and weight

point arrays over the domain X n; gð Þ, respectively where

i ¼ 1; 2; . . .; n and j ¼ 1; 2; . . .;m. The knot vectors along

the n; and g directions are N ¼ n1; n2; . . .; nnþpþ1

� �
and

H ¼ g1; g2; . . .; gmþqþ1

� �
, respectively. Here, p and q

represent the order of univariate basis functions while n

and m denote the total number of control points along each

direction, respectively. The bivariate NURBS functions are

given by [31]

R
p;q
i;j n; gð Þ ¼ Ri;p nð ÞRj;q gð Þ ¼

Ni;p nð ÞMj;q gð Þwi;jPn
i¼1

Pm
j¼1 Ni;p nð ÞMj;q gð Þwi;j

ð16Þ

Similarly, tri-variate NURBS functions are defined

analogously and are given as [31]

R
p;q;r
i;j;k n; g; fð Þ ¼ Ri;p nð ÞRj;q gð ÞRk;r fð Þ

¼
Ni;p nð ÞMj;qLk;r fð Þwi;j;kPn

i¼1

Pm
j¼1

Pl
k¼1 Ni;p nð ÞMj;q gð ÞLk;r fð Þwi;j;k

ð17Þ

It should be noted that these multivariate basis functions

inherit all the properties of their ingredient univariate

originators. The multi-dimensional NURBS defined

geometries are constructed in the same fashion to the B-

spline based geometry formation procedure. A NURBS

curve is defined by the linear combination of univariate

NURBS basis function Ri;p nð Þ and Pi control points by the

following expression:

C nð Þ ¼
Xncp

i¼1

Ri;p nð ÞPi ð18Þ

NURBS surfaces and solids are constructed through the

tensor product of the univariate basis functions as [31]

NURBS surface: S n; gð Þ ¼
Xn

i¼1

Xm

j¼1

R
p;q
i;j n; gð ÞPi;j ð19Þ

NURBS solids: V n; g; fð Þ ¼
Xn

i¼1

Xm

j¼1

Xl

k¼1

R
p;q;r
i;j;k n; g; fð ÞPi;j;k

ð20Þ

Summary

The properties of the above-mentioned basis functions are

summarized in Table 1 to showcase their properties in a

concise manner. Additionally, from the comparative point

of view, a plot for the second order p ¼ 2ð Þ Lagrangian,

Bernstein, B-spline, NURBS basis functions over the knot

span n 2 �1; 1½ � is shown in Fig. 1 to visualize the

arrangement and variation of these functions. It can be

observed that all the basis functions except the Lagrangian

are non-negative. B-spline basis functions seem identical to

the Bernstein functions although they offer the tailorable

Cp�1�k continuity across the boundary. Moreover, due to

the grouping of NURBS with the additional weight points,

they appear to be more flexible in comparison to B-spline.

This explains the reason for choosing the NURBS as the

tool for forming the basis in IGA.

Weak Formulation

Consider the domain X bounded by prescribed displace-

ment, Cu, and tractions boundaries, Ct, such that the

domain boundary C ¼ Cu [ Ct and Cu \ Ct ¼ /. The

governing equilibrium equation is given by the following

mathematical expression [1, 4]:

rij;j þ fi ¼ 0 in X; ð21Þ

u ¼ u0 on Cu; ð22Þ

rijnj ¼ �ti on Ct; ð23Þ

where rij is the Cauchy stress tensor, nj is the unit normal

to the surface, and fi is the body force, respectively. From

the Hooke’s law, the stress tensor is given by [1]

rij ¼ Cijklekl ð24Þ

where Cijkl is a fourth order material constitutive tensor,

and ekl is the index notation of strain tensor, which is

defined as

ekl ¼
1

2
uk;l þ ul;k
� �

ð25Þ

To determine the unique numerical solution out of a

large set of solutions of governing equation of motion the

displacement field u must satisfy the Eqs. (21) and (22). It

is considered that S and oS are the trial and virtual solution
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spaces, respectively, such that u 2 S and du 2 oS. The

weak form is obtained by multiplying the Eq. (23) by the

test function du and then integrating by parts the stress

term and using Eq. (24) as

Peq ¼

Z

X

eijðuÞCijkleklðduÞdX�

Z

Ct

�tiduidC�

Z

X

fiduidX

ð26Þ

Here, the virtual displacement du represent the test or

weight function. The solution of the weak form, Eq. (26),

cannot often be evaluated directly through the analytical

approaches. Thus, a numerical technique is followed in

practice to find the approximate solution field. IGA

incorporates the CAD modelling basis functions for the

analysis and fetches results better than traditional FEA [4],

but before outlining the details of IGA formulation, it is,

first, instructive to consider the usual FE approach that will

Table 1 Comparison of different properties of FEA and IGA basis functions

Property Basis functions

Lagrangian Bernstein B-spline NURBS

Non-negativity Any sign C 0 C 0 C 0

Inter element continuity C0 C0 Cp�1�k Cp�1�k

Partition of unity Yes Yes Yes Yes

Linear independence Yes Yes Yes Yes

Kronecker delta satisfied at the Element boundary Element boundary Patch boundary Patch boundary

Variation diminishing No Yes Yes Yes

Fig. 1 Variation of quadratic: a Lagrangian, b Bernstein, c B-spline,

and d NURBS basis functions over space n ranging from - 1 to 1.

The knot vector for B-spline and NURBS is

N ¼ �1; �1; �1; 1; 1; 1½ �, and NURBS functions are

associated with w1 ¼ 0:5, w2 ¼ 0:6 and w3 ¼ 0:3 weights. It should

be noted that the variation of the NURBS functions will be identical

to the variation of the B-spline basis functions for w1 ¼ w2 ¼ w3 ¼ 1
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ease the understanding of variational formulation for IGA

technique.

Finite Element Formulation

In general, finite element discretization technique is used to

convert the weak form, Eq. (26), into a set of algebraic

equations. The domain X is discretized into nel number of

sub-domains Xe as: X ¼
Pnel

e¼1 X
e. The weak form given

by Eq. (26) can be written as summation over the sub-

domains as [1]

dPeq �
Xnel

e¼1

dPe
eq

¼
Xnel

e¼1

Z

Xe

eij u
eð ÞCijklekl du

eð ÞdX�

Z

Ce
t

tidu
e
i dC�

Z

Xe

fidu
e
i dX�

2
64

ð27Þ

The geometry for a Lagrangian basis function described

finite element is given as [1]

xe ¼
Xne

i¼1

Lixi ð28Þ

where xi ¼ ½xi yi zi�
T
, and Li represents the nodal variables

and its corresponding Lagrangian basis, respectively and ne

is the number of nodes per element e. For the purpose of

simplification, a shorter notation of multivariate FEA and

IGA basis functions, L
p;q;r
i;j;k

�n; �g;

�f
� �

! Li, is used in the

remainder of this paper. Using the Galerkin formulation,

the solution fields u and du over a finite element is written

[1]

ue ¼
Xne

i¼1

Liui; due ¼
Xne

i¼1

Lidui ð29Þ

The strain-displacement matrix B for a three-

dimensional Lagrangian element is given by [1]

B ¼

L1;x 0 0 L2;x 0 0 � � � Lne;x 0 0

0 L1;y 0 0 L2;y 0 � � � 0 Lne;y 0

0 0 L1;z 0 0 L2;z � � � 0 0 Lne;z
L1;y L1;x 0 L2;y L2;x 0 � � � Lne;y Lne;x 0

0 L1;z L1;y 0 L2;z L2;y � � � 0 Lne;z Lne;y
L1;z 0 L1;x L2;z 0 L2;x � � � Lne;z 0 Lne;x

2
6666664

3
7777775

ð30Þ

By substituting Eqs. (29) and (30) in Eq. (26), and from

the arbitrariness of virtual displacement du, the discretized

weak form is obtained as

Xnel

e¼1

Z

Xe

BTCBdX

0
@

1
Au ¼

Z

Ce
t

L � tdCþ

Z

Xe

L � fdX

2
64

3
75 ð31Þ

where L is the matrix of the Lagrangian basis functions.

The definition of this matrix is given in ‘‘Appendix A.2’’.

Based on the standard FEA notations, Eq. (31) can be cast

into the following global matrix form

KU ¼ F ð32Þ

where K, F, and U are the FE discretized global tangent

matrix, external force vector, and displacement vector,

respectively. This system of equation is solved for U after

applying the essential boundary conditions. Stresses can

then be determined using Eqs. (24) and (25).

IGA Formulation

The key feature of IGA which makes it distinct from tra-

ditional FEA is its manner of basis function incorporation

and its ability to represent the exact form of geometries.

The basis functions which are employed for modelling and

discretization of CAD geometries are utilized in the

numerical analysis. The space domain X, like in FEA, is

discretized into a number of sub-domains Xe but with the

CAD basis functions. The procedure of the discretization of

the domain and the solution field can be understood from

the following illustration. Let R
p;q;r
i;j;k n; g; fð Þ ! Ri be the

multidimensional NURBS basis function used for the

representation of an element Xe. The geometry of the

NURBS discretized element Xe is given by the combina-

tion of the basis function Ri and the control points variables

Pi as [4]

xe ¼
Xnecp

i¼1

RiPi ð33Þ

where necp denotes the total number of control points in an

element Xe. Using the Galerkin approach, the solution field

is given by [4]

ue ¼
Xnecp

i¼1

Riui; due ¼
Xnecp

i¼1

Ridui ð34Þ

where ui and dui are the displacement and virtual

displacement values at ith control point. The strain-

displacement matrix B for a three-dimensional

isogeometric element is given by [4]

B ¼

R1;x 0 0 R2;x 0 0 � � � Rnecp;x 0 0

0 R1;y 0 0 R2;y 0 � � � 0 Rnecp;y 0

0 0 R1;z 0 0 R2;z � � � 0 0 Rnecp;z

R1;y R1;x 0 R2;y R2;x 0 � � � Rnecp;y Rnecp;x 0

0 R1;z R1;y 0 R2;z R2;y � � � 0 Rnecp;z Rnecp;y

R1;z 0 R1;x R2;z 0 R2;x � � � Rnecp;z 0 Rnecp;x

2
6666664

3
7777775

ð35Þ

Substituting Eqs. (34) and (35) into Eq. (26), and from

the arbitrariness of virtual displacement du the discretized

weak form is obtained as:
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Xnel

e¼1

Z

Xe

BTCB dX

0
@

1
Au ¼

Z

Ce
t

R � t dCþ

Z

Xe

R � f dX

2
64

3
75

ð36Þ

where R is defined:

(a) for the boundary Ce as

R ¼
R1 n; gð Þ 0 R2 n; gð Þ 0 . . . Rnecp

n; gð Þ 0

0 R1 n; gð Þ 0 R2 n; gð Þ . . . 0 Rnecp
n; gð Þ

	 
T

ð37Þ

(b) and for the bulk Xe as

R ¼

R1 n; g; fð Þ 0 R2 n; g; fð Þ 0 . . . Rnecp
n; g; fð Þ 0

0 R1 n; g; fð Þ 0 R2 n; g; fð Þ . . . 0 Rnecp
n; g; fð Þ

" #T

ð38Þ

As is for FEA, IGA discretized weak form, Eq. (36), can

also be cast into the standard matrix form as

Xnel

e¼1

KeUe ¼ Fe½ � ð39Þ

which in global form can be written as

KU ¼ F ð40Þ

where Ke, Fe, and Ue denote the NURBS described iso-

geometric element’s stiffness matrix, external force vector,

and displacement vector, respectively. It is important to

note that for the case of IGA U corresponds to the dis-

placement of the control points unlike in FEA where U

corresponds to the nodal displacements. For the assembly

of these locally computed quantities to their respective

global part, i.e. Ke ! K and Fe ! F, IGA follows the

same FEA assembly procedure but utilizes the control

point assembly array instead of nodal connectivity matrix.

This assembly procedure is discussed in detail in

‘‘Assembly arrays’’ section.

Summary

From the above two formulations, it can be seen that the

IGA based formulation of a boundary value problem yields

the similar set of standard algebraic equations except for

the change in the basis functions (from Lagrangian to

NURBS).

Structural Difference Between FEA and IGA

Codes

In this section, first, the code-architecture of a traditional

FE code is presented. Then, based on the modifications

within the FE code structure, a revised flow chart for the

IGA technique is presented.

A standard flow chart of a typical FE code is divided

into the three stages, e.g. pre-processor (I), processor (II),

and post-processor (III) as shown in Fig. 2. The subrouti-

nes or sections of this chart, which need to be rewritten for

the IGA, is also highlighted. A stepwise detailed descrip-

tion of modifications along with their respective imple-

mentations will be presented in the subsequent ‘‘A detailed

stepwise implementation procedure for IGA’’ section. A

revised flowchart, based on the modifications of featured

subroutines in Fig. 2, for IGA is presented in Fig. 3.

Summary

In this section, it is illustrated that instead of building a new

code structure for IGA the standard code architecture of

FEA can directly be utilized by modifying a few subrou-

tines, which are highlighted in Fig. 2.

A Detailed Stepwise Implementation Procedure

for IGA

In this section, a step-by-step implementation procedure for

IGA based on the modifications of the existing FE code

structure, shown in Fig. 2, is presented. A collection of

adaptable subroutines, which have been developed by

Spink [32] and Spink et al. [33] based on the algorithms

presented in Pigel and tiller [31], to solve general problems

using IGA are utilized for the formation and handling of

NURBS discretized geometries and basis functions. These

subroutines can be used within any interpreted program-

ming language, e.g., Matlab� and Octave. The overall

modification and implementation procedure are sub-di-

vided into the pre-processing, processing, and post-pro-

cessing stages for the sake of simplicity. First, in ‘‘Changes

within the preprocessing stage of analysis’’ section, the

necessary modifications to be made in preprocessing stage

of FE are discussed. Then, in ‘‘Changes within the pro-

cessing stage’’ section, the highlighted subroutines, see

Fig. 2, within the processing stage are revised for the set-

ting of IGA. Finally, in ‘‘Post-processing in IGA’’ section,

the necessary changes in post-processing stage of FEA are

revised for the IGA. The reader may refer to [27] for

understanding the IGA based implementation of one-di-

mensional structural bar problem. In this presentation, a

standard infinite plate with the circular hole problem in
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tension, shown in Fig. 4, is taken for demonstrating the

stepwise explanation of the proposed implementation pro-

cedure. The detailed description of the problem is provided

in ‘‘Appendix A.1’’.

Changes Within the Preprocessing Stage of Analysis

In this section, subroutines accounting for the construction

of geometry, connectivity arrays, and the boundary iden-

tification strategies for prescribed Dirichlet and Neumann

conditions are revised within the framework of IGA.

Construction of NURBS Discretized Geometries

In IGA, apart from the geometrical details, e.g. height,

length, width etc. of a CAD model, its parametric details

such as knot vectors, the order of NURBS basis functions,

and the control points are also needed to construct the exact

form of a discretized geometry (as shown in ‘‘Preliminar-

ies’’ section). This procedure can be understood as follows:

Let for the given physical details of the geometry its

parametric values such as the order of the NURBS basis

functions, knot vectors, and control points are defined in

each parametric directions such that the geometry retains

its

original shape. Based on these input values, a subroutine

‘nrbmak’ [34] is incorporated in place of the FEA geom-

etry constructing subroutines to get the discretized form of

the NURBS geometry. The format of this subroutine is

V n; g; fð Þ ¼ nrbmak Control Points Array; knot Vector Arraysf gð Þ

ð41Þ

where V n; g; fð Þ represents the NURBS described solid.

For describing the application of this subroutine, let us

consider the construction of geometry shown in Fig. 4. If

the parametric details of a geometry are known it can be

Fig. 2 A stage-wise standard

flow chart of a typical FE code.

Boxes titled 1, 2 and 3 represent

the three stages of FE analysis,

respectively. The highlighted

boxes within each stage needs to

be modified for IGA
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created in many different ways. A commercial CAD

modelling software Rhino (www.rhino3d.com) can also be

used for the construction of geometries. Although, for

illustration, its simplest case, i.e., its coarsest form which

incorporates two rational quadratic segments to ensure the

C1 continuity throughout the interior of a domain, is con-

sidered. Parametric quantities of quarter plate along the n

and g directions are [3]:

(a) Order of univariate NURBS basis function:

p ¼ 2 and; q ¼ 2

(b) Open knot vectors that divide the plate into two

segments are

N ¼ 0; 0; 0; 0:5 1; 1; 1f g and;

H ¼ 0; 0; 0; 1; 1; 1;f g

Fig. 3 A flow chart for IGA.

Boxed titled 1, 2 and 3 represent

the three stages of analysis in

the framework of IGA,

respectively

Fig. 4 Quarter model of an infinite plate with a circular hole that

includes uy ¼ 0 (side ED), ux ¼ 0 (side BC), tT ¼ rxx (side AE) and

tT ¼ ryy (side AB)
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Here, the first and last knot entries are repeated by pþ 1

and qþ 1 times in N and H knot vector, respectively to

form an open knot vector.

(c) The control points array P along with the respective

weight values are given in ‘‘Appendix B.1’’.

Based on these input information, the required geometry

S n; gð Þ is constructed in the following fashion:

S n; gð Þ ¼ nrbmak P; N;Hf gð Þ ð42Þ

Then, subsequently, the ‘nrbsctrlplot’ and ‘nrbsctrlplot’

subroutines [34] are incorporated in the code structure for

the visualization of required geometry S n; gð Þ by executing

the following commands

nrbsctrlplot S n; gð Þð Þ

nrbsctrlplot S n; gð Þð Þ

The resulting plots from above commands are shown in

Fig. 5a and b, respectively.

Assembly Arrays

In FEA technique, the domain X is first divided into a

number of sub-domains Xe. Then, the elemental stiffness

matrix Ke and the elemental force vector Fe are computed

for each element Xe. These quantities are utilized to obtain

the global stiffness matrix K and the global force vector F,

respectively with the help of local-to-global assembly

arrays, e.g., nodal connectivity array. IGA follows the

similar local-to-global assembly procedure to obtain a

global set of algebraic equations but in a slightly different

way. Two arrays: (1) control point assembly array and, (2)

knot spans connectivity array is utilized for this purpose.

These are discussed next

(1) Control point assembly array is built similar to the

nodal assembly array in traditional FE procedure. It

contains the global identity of the control points for

all the elements in a row-wise manner, where each

row stores the identity of control points participating

in an element Xe. The total number of the control

points participating in a three-dimensional element Xe

is determined by the following relation:

necp ¼ pþ 1ð Þ qþ 1ð Þ r þ 1ð Þ ð43Þ

For the problem considered, a control point connectivity

matrix is provided in ‘‘Appendix B.2’’. One may also

utilize a generalized control point assembly array

formation code, which is adapted from [4] and is

presented in Listing 2 of ‘‘Appendix C’’. Further, to

illustrate the assembly process within the framework of

IGA, a code that shows the formation of global stiffness

matrix using the assembly operation is also included in

Listing 3 of ‘‘Appendix C’’.

(2) In IGA, apart from the control points connectivity

matrix, an additional array called the knot vector

connectivity is also needed to evaluate the NURBS

basis functions and their respective derivatives in an

element-wise manner. For this, the knot vector range

of an element over which it is defined is needed. An

example image of an element Xe which is defined

over the nei ; n
e
iþ1

� �
and gej ; g

e
jþ1

h i
knot range along n

and g direction is shown in Fig. 6. The procedure for

defining the knot connectivity matrix for the plate

problem is demonstrated in ‘‘Appendix B.2’’ based on

which a generalized knot connectivity matrix can also

be generated.

Boundary Conditions

In IGA, control points defining the boundaries Cu and Ct of

the geometry V n; g; fð Þ must be known for the enforcement

of the Dirichlet and the Neumann boundary conditions. The

control points defining these boundaries are detected in the

same manner as in traditional FEA. The enforcement

procedure of these conditions over the boundary control

points is explained in the ‘‘Enforcement of the BCs in

IGA’’ section.

Summary

In this section, it is illustrated that the preprocessing stage

of FE code can be utilized directly for IGA if the geometry

construction and connectivity arrays formation procedures

are rewritten for the parametric details of NURBS basis

functions, e.g., order of function, knot vector, and control

point array along each parametric direction.

Changes Within the Processing Stage

In traditional FE procedure, the processing stage involves

the computation of the elemental stiffness matrix, the

external force vector, and the assembly of these arrays for

the determination of solution field. The formation of these

arrays requires the evaluation of FE basis function and its

derivatives. The Gauss–Legendre quadrature rule is usually

employed for the integration in Eq. (31), which involves

the mapping of an element Xe from physical to master

space. The processing stage of the FEA can be utilized for

IGA in a straightforward manner if the evaluation proce-

dure of FE basis function and its derivatives are replaced

by their NURBS counterpart. Due to the incorporation of

the NURBS basis functions, conventional mapping process

572 J. Inst. Eng. India Ser. C (June 2019) 100(3):561–585

123



of FEA has to be redefined for IGA to compute the

appropriate numerical integration of the NURBS dis-

cretized weak formulation.

The evaluation of NURBS basis functions and their

respective derivatives, along with their corresponding

mappings are first presented in ‘‘Evaluation of NURBS

basis functions and their mapping in IGA’’ section. After

that, the enforcement procedures for different boundary

conditions (BCs) for NURBS defined geometry are inclu-

ded in the subsequent ‘‘Enforcement of the BCs in IGA’’

section.

Evaluation of NURBS Basis Functions and Their Mapping

in IGA

In FEA, the Lagrangian basis functions Li are defined

either in the physical or the master space. The domain ‘X’

of the geometry is divided into a finite number elements Xe

in the physical space. Then, each of these elements Xe are

mapped to a regular shaped master element Xe through

their isoparametric mappings to facilitate the numerical

integration. This procedure of mapping for a standard finite

element, Xe, is shown in Fig. 7.

However, in the case of IGA, the NURBS basis func-

tions are defined in the parametric space, see Eq. (15). The

presence of the parametric space introduces the concept of

an additional mapping which requires the transformation of

NURBS described elements from the physical to the

parametric space such that ~/ : Xe ! fXe . For the employ-

ment of the numerical integrations these elements are then

mapped to regular shaped master element Xe in the master

space such that ~/ : fXe ! Xe. The procedure of overall

mapping for a NURBS defined element from physical to

the master space is shown in Fig. 8.

For illustrating the implementation of the evaluation of

NURBS basis functions and above explained mapping

procedures, consider that an element is defined in the

parametric space such that fXe ¼ ni; niþ1 	� ½gj; gjþ1

� �
, see

Fig. 6. In this regard, first, the NURBS basis functions and

their respective derivatives are to be evaluated at n and g

coordinates of element fXe . These coordinate values are

calculated through the linear mapping from the master

space to the parametric space by the following expressions:

n ¼
1

2
niþ1 � nið Þ�nþ niþ1 þ nið Þ

� �
ð44Þ

g ¼
1

2
gjþ1 � gj
� �

�gþ gjþ1 þ gj
� �� �

ð45Þ

where �n and �g are the known integration points in the

master space and are obtained based on the integration rule,

e.g., Gauss–Legendre quadrature rule.

Then, at these n and g coordinates of an element fXe
; the

NURBS basis functions and their first order derivatives are

calculated with the help of the following subroutines [34]:

Fig. 5 Plot of NURBS discretized geometry a with ncp ¼ 12 number of control points, and b for nel ¼ 2 number of elements. In (a) the dark

(red) circles represent the control points whereas the shaded region is the modelled geometry

Fig. 6 Representation of the two-dimensional element Xe along with

its knot spans

J. Inst. Eng. India Ser. C (June 2019) 100(3):561–585 573

123



�R ¼ nrbbasisfun n; gf g; S n; gð Þð Þ ð46Þ

o �R

on
;

o �R

og

	 

¼ nrbbasisfunder n; gf g; S n; gð Þð Þ ð47Þ

where the matrix �R consists of necp number of non-zero

NURBS basis functions, Ri n; gð Þ, at the n and g coordinate

points of an element fXe
: The description of NURBS

function matrix �R is provided in ‘‘Appendix A.3’’ and the

determinant of Jacobian matrix J2 which is required for the

linear mapping is defined as

J2 ¼
on

o�n

og

o�g
ð48Þ

J2j j ¼
1

4
niþ1 � nið Þ gjþ1 � gj

� �����
���� ð49Þ

Thereafter, the Jacobian matrix J1 that enables the

mapping of an element from the physical to the parametric

space ~/ : Xe ! fXe is computed as:

J1 ¼

ox

on

ox

og
oy

on

oy

og

2
664

3
775 ð50Þ

The components of J1 are calculated from Eq. (33) as

ox

on
¼

Xnecp

k¼1

oRk

on
xi ð51Þ

ox

og
¼

Xnecp

k¼1

oRk

og
xi ð52Þ

The mapping from the physical space to the master

space / : ~/ [ �/
� 

sets up the evaluation of NURBS basis

functions and their respective derivatives. The procedure of

overall mapping explained above can also be understood

with the help of the following example in which the

numerical integration of an arbitrary elemental quantity,

e.g., F x; yð Þ, is computed over the physical space. To

perform the numerical integration, the Gauss–Legendre

integration rule is employed.

Z

X

F x; yð ÞdX ¼
Xnel

e¼1

Z

Xe

F x; yð ÞdX

¼
Xnel

e¼1

Z

eXe

F n; gð Þ J1j jdndg;

~/ : Xe ! fXe
� 

¼
Xnel

e¼1

Z

�Xe

F �n; �g
� �

J1j j J2j jd�nd�g;

�/ : fXe ! Xe
� 

¼
Xnel

e¼1

Z1

�1

Z1

�1

F �n; �g
� �

J1j j J2j jd�nd�g

¼
Xnel

e¼1

Xnegp

i¼1

F �ni; �gi
� �

wpi J1j j J2j j

" #

where negp and wpi denote the number of Gauss points and

their weights, respectively in an element Xe. Once the

Fig. 7 Transformation of a finite element from the physical to the master space for the numerical integration in traditional FE

Fig. 8 Transformation of a physical element, Xe, to a master

element, Xe, in IGA
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global stiffness matrix and force vector are formed, the

boundary conditions are applied to the global set of system

equations, shown in the matrix form in Eq. (40), to deter-

mine the solution field. The procedure for enforcing the

different BCs is presented next.

Enforcement of the BCs in IGA

In FEA, FE basis functions interpolate to all the nodes of

the geometry due to their inherited C0 continuity. This

enables the FE basis functions to exhibit the Kronecker

delta property at any of its boundary nodes. With this

feature, the homogeneous, as well as non-homogeneous

Dirichlet boundary conditions, are enforced directly at the

nodes defining the boundaries. In IGA, the homogeneous

Dirichlet and the Neumann boundary conditions are

applied at the control points exactly as in the traditional FE

approach as the NURBS basis functions also show C0-

continuity at the end of the open knot vector. However, in

IGA, a particular treatment procedure for the imposition of

inhomogeneous boundary condition is required, since the

NURBS basis functions do not usually interpolate to all the

boundary defining control points of the geometry due to

their higher Cp�1 continuity. The enforcement procedure

for inhomogeneous Dirichlet boundary conditions (BCs)

changes marginally for IGA. In this paper, the least square

minimization method, which is adapted from [35], is used

to explain the implementation procedure of the inhomo-

geneous boundary condition.

Let the displacement value �u nð Þ be prescribed at n

number of ni arbitrary points, which are scattered over the

known displacement boundary Cu. The objective of least

square method is to find the displacement quantity u nð Þ that

may be suitable for nbcp number of control points Pk over

the boundary Cu such that it minimizes the following error

quantity:

E ¼
Xn

i¼1

1

2
u nið Þ � �u nið Þk k2

¼
Xn

i¼1

1

2

Xnbcp

k¼1

Rk nið ÞPk � �u nið Þ

������

������

2 ð53Þ

where Rk nið Þ is univariate NURBS basis function evaluated

at ni; i ¼ 1; 2; . . .; n number of arbitrary control points,

with the help of Eq. (15). The solution of Eq. (53) provides

the u nið Þ displacement for nbcp number of the boundary

defining control points, which are then applied to adjust the

global system of equations in the same manner as in the

traditional FEA to incorporate the inhomogeneous BCs.

Other treatment methods can also be followed, see for Ref.

[36]. It should be noted that apart from the above-explained

modifications, the remaining code structure of the analysis

stage of FEA is utilized in its original form for the

implementation of IGA.

Summary

In this section, calculation of multi-variate NURBS basis

functions and their corresponding derivatives within the

framework of IGA along with the mappings is presented.

Also, the enforcement procedures over the control points of

NURBS defined boundaries is provided. The combinations

of these modifications complete the processing stage for

the proposed implementation of IGA within the FEA

structure.

Post-processing in IGA

In FEA, post-processing is usually done for the visualiza-

tion of the evaluated displacements, strains and stress

fields. For this, the field is first computed is first computed

at all the nodes of the discretized geometry. After that, the

resulting values are plotted over either the undeformed or

the deformed geometry for the visualization of the

respective field. In IGA, this aspect does not differ much

from the usual FEA’s post-processing procedures [4]. The

subroutines of the FEA stage, which need to be modified

for the implementation of IGA are explained in this sec-

tion. First, in ‘‘Visualization of the deformed geometry’’

section the implementation aspects for the visualization of

deformed geometry are included, then in the ‘‘Plotting the

displacement and the stress fields’’ section, the procedure

of plotting the displacement and the stress fields is

illustrated.

Visualization of the Deformed Geometry

In FEA, the nodal coordinates the deformed geometry are

obtained by adding the nodal displacement field, U, to the

nodal coordinates of the original geometry. These updated

nodal values are then employed to plot the deformed shape.

In IGA, an identical procedure is followed to determine the

updated values of the control points, Pnew½ �, of the

deformed geometry. Then, the updated values of the con-

trol points, Pnew½ �, is used to construct the deformed

NURBS geometry. This is explained next. Let U½ � be the

control point displacement vector and P½ � ¼

½P1;P2; . . .;Pncp �
T
be the control points array which con-

tains the initial coordinates of ncp numbers of control

points. The updated coordinates of the control points Pnew½ �

for the deformed geometry are obtained as

Pnew½ � ¼ P½ � þ U½ � ð54Þ

Then, the deformed configuration of the NURBS

geometry is constructed by using the same ‘nrbmak’
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subroutine, which has been used to construct the initial

NURBS geometry. The plot of deformed geometry along

with its control points is obtained through ‘nrbctrlplot’

subroutine as

nrbctrlplot S n; gð Þð Þ

and the plot of the discretized deformed geometry is

obtained by

nrbctrlplot S n; gð Þð Þ

Based on these two subroutines, plots of the deformed

configuration of the quarter plate with the circular hole

along with the control points and the elements are shown in

Fig. 9a and b, respectively. For the sake of visualization of

deformation, the displacements are multiplied by a factor

1500.

Plotting the Displacement and the Stress Fields

In FEA, the values of the stains and stresses are obtained at

the Gauss integration points of each element which are then

interpolated at the element’s nodes through various stress

recovery methods, e.g., nodal averaging, least square and

nodal projection method [1]. However, IGA incorporates

the NURBS defined meshes that include the information of

knots and control points of each element, which is not the

case in standard FEA. In IGA, a NURBS mesh is first

represented as a standard four-noded quadrilateral

Lagrangian element (Q1) of FEA,1 as shown in Fig. 10.

The coordinates values of the nodes of projected NURBS

element Q1 are assigned based on the ni; niþ1½ � and

gi; giþ1

� �
knot spans of an actual NURBS element, which is

shown in Fig. 6.

To illustrate the procedure of forming the projected Q1

mesh from an implementation point of view, a code, which

is written in the Matlab� environment, that can also be

utilized with Octave or with similar programming lan-

guages, is included in Listing 4 of ‘‘Appendix C’’. Based

on the computed value of displacements, as in Eq. (34),

first, the strain is determined by substituting the values of

displacement in Eq. (25). Then, using Eq. (24) the corre-

sponding stresses at the nodes of the projected Q1 meshes

are determined. It should be noted that in IGA the nodal

averaging or stress recovery techniques are not necessary

to obtain the continuous field due to the higher continuity

of the NURBS basis functions. The computed stress along

the nodal information of Q1 elements can either be

exported to any commercial visualization programs, e.g.,

Paraview, HyperMesh or to a standard visualization Mat-

lab� or Octave based subroutines for obtaining the plots of

Fig. 9 Representation of deformed geometry: a with control points, b discretized form. Initial or the undeformed configuration is shown with

bold dashed lines

Fig. 10 Representation of the projection of NURBS elements (Q1)

into the FEA like four noded quadrilateral elements, and the node

coordinates are defined based on the unique value of knots in N and H

knot vectors

1 Herein, the procedure of projecting a NURBS mesh into a four-

noded quadrilateral element is adopted from [26].
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respective fields. In this work, Matlab� generated plots of

the displacement and the stress fields along the x-direction

are shown in Fig. 11a and b, respectively. However, it

should be noted that the current discretization, as shown in

Fig. 10, is too coarse to obtain the smooth displacement

and stress fields. For this, a refined NURBS geometry that

has a total of (128 = 16 9 8) elements is utilized to obtain

the continuous plot of the displacement and stress fields.

This is shown in Fig. 12a and b, respectively. It can be

observed that the stress field, shown in Fig. 12b, matches

well with the stress field obtained using the analytical

solution shown in Fig. 12c. The expressions for the ana-

lytical stresses are given in ‘‘Appendix A.1’’.

Summary

It is shown that for post-processing the NURBS defined

elements are first projected to the quadrilateral four-noded

Fig. 11 The contour plot of

(a) the displacement in mm and,

b the IGA stress field in N/mm2

along the x-direction over the

projected Q1 meshes.

a Displacement along the x-

direction. b Stress along the x-

direction

Fig. 12 The plot of the

(a) displacement in mm, and

b stress fields in N/mm2 along

the x-direction over refined Q1

meshes. In (c), the analytical

stress field in N/mm2 along the

x-direction is shown
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FE elements. Then, the plot of the deformed geometry,

displacement field, and the stress field can be obtained

easily with the help of available NURBS subroutine

functions.

Conclusion

In the present manuscript, a simplified tutorial for the

implementation of NURBS based IGA within the existing FE

code architecture is presented. A step-by-step explanation of

the proposed tutorial is provided in clear and concise manner

specifically for new IGA users or researchers who want to

learn the implementation procedure of this technique. In this

presentation, it is shown that the existing code structure of

FEA can be adapted for the implementation of IGA by

rewriting only few FE subroutines. It is, however, emphasized

that the presented procedure avoids the need to write the

application subroutines for IGA from scratch and thus, saves a

considerable amount of time. To aid the understanding of the

practical implementation of IGA, a plate with the circular

hole under the action of in-plane tension is included. Com-

parison between the IGA and the FE techniques are made

throughout this paper, and the major differences between

these two techniques are summarized in Table 2 of ‘‘Ap-

pendix D’’. The inclusion of T-spline basis functions in the

current framework, which are robust and the generalized form

of NURBS basis functions, will be considered in the future

work.
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Appendix A

A.1 Problem Description

An infinite plate (L = 8 mm and W = 8 mm) with a cir-

cular hole subjected to in-plane traction is shown in

Fig. 13. Due to the symmetries of the geometric boundary

conditions and the loading about the origin only a quarter

of the problem is considered, see Fig. 4. The material

properties are taken as: Young’s modulus E = 103 N/mm2

and Poisson’s ratio m ¼ 0:3. The plane stress conditions are

assumed. The exact solution for the in-plane stresses are

given by [26]:

rxx r; hð Þ ¼ 1�
R2

r2
3

2
cos2hþ cos4h

� �
þ
3

2

R4

r4
cos4h

ryy r; hð Þ ¼ �
R2

r2
1

2
cos2h� cos4h

� �
�
3

2

R4

r4
cos4h

rxy r; hð Þ ¼ �
R2

r2
1

2
sin2hþ sin4h

� �
þ
3

2

R4

r4
sin4h

where r and h are shown in Fig. 13.

A.2 Form of the Lagrangian Basis Function Matrix

The Lagrangian basis function matrix L, in Eq. (31) is

defined for the boundary Ce as

L ¼
L1 �n; �g
� �

0 L2 �n; �g
� �

0 . . . Lnen
�n; �g

� �
0

0 L1 �n; �g
� �

0 L2 �n; �g
� �

. . . 0 L
nen

�n;�gð Þ

" #T

and for the bulk Xe as

L ¼

L1 �n; �g;

�f
� �

0 L2 �n; �g;

�f
� �

0 . . . Lne �n; �g;

�f
� �

0

0 L1 �n; �g;

�f
� �

0 L2 �n; �g;

�f
� �

. . . 0 Lne �n; �g;

�f
� �

" #T

where nen, and ne denote the number of nodes on the

boundary, and within the bulk of the element Xe.

A.3 Form of the Matrices Employed in IGA

The NURBS basis function matrix �R, shown in Eqs. (46)

and (47), is defined as:

�R ¼ R1 n; g; fð Þ R2 n; g; fð Þ . . . Rnecp
n; g; fð Þ

� �
ð55Þ

where, Ri n; g; fð Þ represents the tensor product of

univariate NURBS basis function at ith control point. For

the plate with a circular hole problem considered in this

work, the order of the basis function is chosen as p = 2 and

q = 2. Therefore, the total number of active control points

and the basis functions in an element are

¼ pþ 1ð Þ 
 qþ 1ð Þ ¼ 9. The NURBS basis functions’

matrix and the strain-displacement matrix for an element
~X
e are given by:

�R ¼ R1 n; gð Þ R2 n; gð Þ . . . R9 n; gð Þ½ �;

and

B ¼
R1;x n; gð Þ 0 R2;x n; gð Þ 0 . . . R9;x n; gð Þ 0

0 R1;y n; gð Þ 0 R2;y n; gð Þ . . . 0 R9;y n; gð Þ
R1;y n; gð Þ R1;x n; gð Þ R2;y n; gð Þ R2;x n; gð Þ . . . R9;y n; gð Þ R9;x n; gð Þ

2
4

3
5

ð56Þ

Fig. 13 An infinite plate a circular hole under the application of in-

plane tractions
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The matrix R, which includes the boundary defining

univariate basis functions for the plate problem is given by

R ¼
R1 n; gð Þ 0 R2 n; gð Þ 0 . . . R9 n; gð Þ 0

0 R1 n; gð Þ 0 R2 n; gð Þ . . . 0 R9 n; gð Þ

	 
T

ð57Þ

Appendix B

B.1 Parametric Details for the Plate Problem

The control points and weight values for the quarter of

plate can be defined as follows. The number of control

points along the n direction is given by [31]: ncp nð Þ ¼ total

number of knots in N� pþ 1ð Þ ¼ 7� 2þ 1ð Þ ¼ 4. Simi-

larly, the number of control points along the g direction is

given by [31]: mcp gð Þ ¼ total number of knots in

H� qþ 1ð Þ ¼ 6� 2þ 1ð Þ ¼ 3. Thus, a total number of

control points ncp for the coarse mesh shown in Fig. 5a is

given by ncp ¼ ncp nð Þ 
 mcp gð Þ ¼ 4
 3 ¼ 12. The coor-

dinate and the weight values of a control point are stored in

vector Pi ¼ ½ xi yi zi wi �
T
, where i ¼ 1; 2; . . .; ncp.

Since, the plate with a hole geometry has ncp nð Þ ¼ 4, and

mcp gð Þ ¼ 3 number of control points along the n, and g

directions, hence, the control point array P for the geom-

etry shown in Fig. 5, is given by

P :; :; 1ð Þ ¼

�1 �0:853553 �0:353553 0

0 0:353553 0:853553 1

0 0 0 0

1 0:853553 0:853553 1

2
664

3
775

P :; :; 2ð Þ ¼

�2:5 �2:5 �0:75 0

0 0:75 2:5 2:5

0 0 0 0

1 1 1 1

2
664

3
775

P :; :; 3ð Þ ¼

�4 �4 �4 0

0 4 4 4

0 0 0 0

1 1 1 1

2
664

3
775

ð58Þ

B.2 Formation of the Assembly Arrays

B.2.1 Formation of the Control Point Assembly Array

The control points that participate in an element for the

plate geometry, Eq. (43), is given by

necp ¼ pþ 1ð Þ qþ 1ð Þ ¼ 9. The control point connectivity

array, denoted by ConnectivityCP, for the coarse mesh,

which includes two elements as shown in Fig. 5b, is given

by

ConnectivityCP ¼
1 2 3 5 6 7 9 10 11

2 3 4 6 7 8 10 11 12

	 


ð59Þ

A generalized code for forming the control point

connectivity matrix for any two-dimensional geometry,

which can be used within Matlab�, Octave, or with any

other similar programming platform, is included in Listing

2. Using this code, the assembly array, given by Eq. (59), is

formed.

B.2.2 Formation of the Knot Vector Connectivity Matrix

The knot vector connectivity matrix consists of the knot

spans for all the elements in a row-wise manner. The knot

span ranges along the n, g, and f directions which are

associated with an element are stored in the columns of that

element’s respective row. Therefore, before forming the

knot vector connectivity matrix for a NURBS discretized

geometry, first, the knot span arrays for all the elements

along each parametric direction need to be defined. To

understand this, let us consider the knot vector connectivity

matrix forming procedure for the plate with a circular hole

problem. This geometry is discretized with 2 elements

along the n and 1 element along g direction. Therefore, the

total number of elements nel is 2
 1 ¼ 2. Hence, the knot

span array along the n direction, denoted by SpanRangU,

has rows equal to the total number of elements along the n

direction, i.e., 2. The explicit form for SpanRangU is given

by

SpanRangU ¼
0 0:5

0:5 1

	 

ð60Þ

Similarly, the knot span array along g direction, denoted

by SpanRangV, has rows equal to the total number of

elements along the g direction, i.e., 1. The explicit form for

SpanRangV is given by

SpanRangV ¼ 0 1½ � ð61Þ

The knot vector connectivity matrix, denoted by

knotConnectivity, for the plate with the circular hole

problem is given by

knotConnectivity ¼
1 1

2 1

	 

ð62Þ

where the first and second columns of the array store the

global number of knot span ranges (or the row number of

SpanRangeU and SpanRangeV arrays) of each element

along the n and g directions respectively. A generalized

code for forming the knot vector connectivity matrix for

any two-dimensional geometry is included in Listing 2.
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Appendix C

Listing 1 Construction of the geometry for the plate with a hole problem
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Listing 2: Construction of the assembly arrays
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Listing 3: Generation of the global stiffness matrix
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Listing 4: Generation of the projected Q1 element shown in Fig. 10 (adopted from [26])
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Appendix D

See Table 2.
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