
IGaaS: An IoT Gateway-as-a-Service for

On-demand Provisioning of IoT Gateways
Mohammad Aminul Hoque

Dept. of Computer Science

University of Alabama at Birmingham

Birmingham, AL 35294, USA

mahoque@uab.edu

Mahmud Hossain

Dept. of Computer Science

University of Alabama at Birmingham

Birmingham, AL 35294, USA

mahmud@uab.edu

Ragib Hasan

Dept. of Computer Science

University of Alabama at Birmingham

Birmingham, AL 35294, USA

ragib@uab.edu

Abstract—The widespread adoption of the Internet of Things
(IoT) devices has increased its popularity and usage in diverse
dimensions, including smart city, home, healthcare, and vehicles.
The pervasiveness of the number of IoT devices that operate
in low power and lossy network leads to performance issues.
An excessive amount of IoT devices that operate with a fixed
number of gateways reduce the quality of service (QoS) due to
the increased latency of routing messages between the source and
destination sensors. In this paper, we propose an IoT Gateway
as a Service (IGaaS) that enables on-demand provisioning of
IoT Gateways to maintain and improve QoS in an IoT system
with a significant number of sensors. The IGaaS allows both the
stationary and mobile gateways to be provisioned on-demand.
The mobile devices, such as smartphones and drones, provide
gateway services in exchange for incentives. The IGaaS supports
both the upscale and downscale of IoT gateways depending on
various metrics and requirements. The experimental results show
that the IGaaS improves the QoS in terms of latency and power
consumption.

Index Terms—internet of things, gateways, provisioning, down-
scaling, 6LoWPAN

I. INTRODUCTION

The Internet of Things (IoT) is a technology paradigm that is

envisioned as a global network of machines and devices capable

of interacting with each other. It is anticipated that there will

be more than 50 billion IoT devices by 2020 [1]. In the concept

of IoT, billions of physical devices are connected through the

internet, and they are capable of collecting and sharing data. IoT

devices have gained huge popularity in numerous systems, such

as smart homes, smart healthcare [2] [3], and connected vehicles

[4] where these devices can communicate and interact among

themselves as a cyber-physical system. In the IoT network, the

IoT devices form a Directed Acyclic Graph (DAG) to route

the packets. A gateway acts as the root of the DAG which is

responsible for sending the sensor data from IoT devices to the

cloud and vice verca. The number of IoT devices can vary from

time to time in the IoT environment as the mobile IoT devices

can join or leave the network anytime. With the increase of IoT

nodes, the size of the DAG will increase. A larger graph may

increase communication overhead and security vulnerabilities

in the IoT network. Breaking down a larger graph into several

smaller ones by dynamically provisioning gateways will help to

operate the IoT network with optimized performance. Hence,

we need a framework that provisions gateway devices on-

demand by considering various properties of the IoT network.

There are several challenges with provisioning IoT gateways

on-demand. First, we need to identify when such a kind of

IoT gateway provisioning is required. Moreover, we also need

to determine when the service is no longer required after

identifying an over-provisioned scenario. Second, for static

network architecture, we need to decide which gateways should

be turned off to downgrade the network and merge multiple

smaller DAGs into a single one. Third, the IoT gateways are

required to be provided on demand. Fourth, there will have

to be an incentive model for service providers (owners of

the smartphones and drones) who will rent out their devices

to serve as IoT gateways. All these unique issues make this

problem interesting and hard to solve.

In this paper, we propose an IoT Gateway as a Service

(IGaaS) that provides on-demand gateway service using smart

mobile devices, such as smartphones or drones. The mobile

gateways (M-Gateway) have a dual network interface: WLAN

(IEEE 802.11) and IoT (IEEE 802.15.4). An M-Gateway

communicates with IoT nodes and clouds using its IoT and

WLAN interfaces, respectively. The owners of smartphones

and drones can rent out their devices as an M-Gateway in

exchange for incentives. We propose a rating based incentive

mechanism to encourage smartphone and drone owners to

rent out their devices through the IGaaS. We demonstrate

the feasibility of our proposed framework through a proof-of-

concept implementation of the IGaaS on Contiki powered IoT

devices. We provide an experimental evaluation of IGaaS that

shows IGaaS can reduce communication latency and power

consumption in IoT devices when an IoT network inundates

with numerous IoT nodes.

Contribution: The contribution of this paper is summarized

as follows:

1) We have presented IoT Gateway as a Service (IGaaS) to

provide on-demand gateway provisioning for different

crowd-sourced environment.

2) We have proposed an incentive model for the devices

that serve as the gateways.

Organization: The rest of the paper is organized as follows:

Section II and III provide details on the motivation and

proposed framework. The operational model and experimental

results are presented in Section IV and V. Finally, we conclude

in section VI.

978-1-7281-5503-6/20/$31.00 ©2020 IEEE
1

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND MOTIVATION

The operation of IoT devices are conducted in a constrained

low powered and lossy network. The devices can use multiple

protocols for communications such as Zigbee [5], 6LoWPAN

[6], ZWave [7], and BLE [8]. An IPv6 routing protocol named

RPL [9] is used to route the packets over the network. The

6LoWPAN nodes communicate over a wireless network defined

by IEEE 802.15.4 standard [10]. 6LoWPAN network has three

type of nodes: root node, intermediate node, and leaf node. The

root node is responsible for maintaining the communication

with other networks. The intermediate nodes forward packets

to the root node and leaf nodes. Construction of the network

topology is based on the DAG concept where every node selects

a neighbour as its parent based on an objective function. RPL

organises the 6LoWPAN nodes as Destination Oriented DAGs

(DODAG) [11] for point-to-point communication. Here, a root

node is responsible for starting the construction of the network

and every node chooses its parent through the RPL. A set of

control messages are defined by RPL for DODAG formation.

A RPL node broadcasts a DODAG Information Solicitation

(DIS) message to request DODAG Information Object (DIO)

messages from nearby RPL nodes. Upon receiving reply from

RPL nodes, the new node uses the DIOs for selecting its

parent(s). Finally, the node sends a Destination Advertisement

Object (DAO) to the root so that the intermediate nodes can

update their routing table.

DODAG root (Gateway)

Intermediate nodes (IoT device)

Leaf node (IoT device)

P2P communication

MP2P communication

P2MP communication

Fig. 1: 6LoWPAN traffic

In DODAG, a gateway works as the root node of the DAG

and the IoT nodes work as the intermediate and leaf nodes.

There are three type of routing in 6LoWPAN: 1) point to point

(P2P), 2) point to multipoint (P2MP), and 3) multipoint to

point (MP2P). In P2MP communications, traffic flows from

a DODAG root to a subset of 6LoWPAN devices. Traffic

flows from 6LoWPAN devices to a DODAG root in MP2P

communications. In P2P communications, traffic flows between

two 6LoWPAN devices. Figure 1 shows different types of

6LoWPAN traffic. The routing scheme in 6LoWPAN can be

divided into two categories: mesh-under and route-over [12].

In mesh-under routing, the node does not contain any routing

table to forward packets, rather packets are forwarded to a

neighbor node to deliver the packet to the destination over

multiple radio hops. On the other hand, in route-over routing,

the node holds a routing table and acts as an IP router. In this

paper, we are mainly focusing on mesh-under routing.

Problem statement: IoT devices form DAG and use RPL

routing to forward packets. An IoT gateway is the root of the

DAG and it works as the communication bridge between IoT

network and internet. The size (height and width) of the DAG

increases as more number of nodes join the IoT network. As

a result, the communication latency for exchanging messages

and the CPU and memory utilization for routing packets are

increased. Hence, the quality of service in an IoT network

decreases with the increase of smart nodes in the network.

DODAG root (Gateway) Intermediate and leaf

nodes (IoT device)

Node 1Node 2

(a) P2P communicationCloud Service

Cloud Service

(b) P2MP communication
Node 1

Node 1

Node 2

Node 1

Fig. 2: Example scenarios for P2P and P2MP communication

where on-demand gateway provisioning can improve QoS

However, in the existing IoT systems, IoT Gateways are not

provided on-demand. The total number of IoT Gateways are

fixed for an IoT system regardless of the number of nodes

present in the IoT network at a given time. Few gateways with

a huge number of IoT devices in the network may degrade

the quality of service. Moreover, the over-provisioning of IoT

Gateways increases power consumption, which contributes to

the increase in the electricity cost or reduces the gateway

devices’ battery life. Previous research works implemented

virtualization technology for IoT gateways. They set up an edge

server nearby the IoT devices and implemented container-based

virtualization of gateway functionality [13] [14] [15]. These

research works require an edge server and proper hardware and

software installation for gateway virtualization. To eliminate

these requirements, we propose to provision IoT Gateways on-

demand through drones for improving the quality of service of

an IoT system. We also provide the solution to downscale the

number of gateways to reduce unnecessary energy consumption

when multiple gateways are not required to maintain the QoS.

Figure 2 shows two scenarios where additional gateways can

provide better service. Figure 2(a) shows a P2P communication

scenario where node 1 wants to send a packet to node 2. In

2
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

this case, the packet will route through the gateway and finally

delivered to node 2. Incorporation of additional gateway can

reduce the height of the DAG to ensure faster delivery of

the message. Figure 2(b) shows a P2MP scenario where the

cloud service wants to send a message to node 1. Delivering

the message may cause significant delay if the graph depth

is large. Incorporating additional gateway can improve the

service in this scenario. We can show similar scenario for

MP2P communication where multiple IoT nodes may want

to send data to the cloud. For all type of communication, our

target is to send the traffic from source to destination as quickly

as possible. Hence, we need to identify when to break down

the DAG by incorporating new gateway(s). For this purpose,

we need to consider several aspects, such as:

Number of nodes: Total number of nodes are an important

metric to figure out the current condition of the IoT network.

Huge number of nodes are likely to cause more latency and

power consumption.

Depth of the DAG: With the increase of tree depth, a packet

will have to travel more nodes to reach the destination. We

need to optimize the tree depth and number of new gateways to

incorporate for achieving the best advantage from on-demand

gateway provisioning.

Breadth of the DAG: If the breadth of the DAG becomes too

large, then the gateway will consume more power, CPU cycle,

and memory. Moreover, it will have to route more packets due

to presence of more IoT nodes which may incur latency issues.

CPU utilization: CPU utilization refers to different utilization

metrics of IoT devices such as RAM, storage, bandwidth, CPU

cycles etc.

Power consumption: Power consumption by the IoT nodes in

a certain period of time is also a important metric to consider

for deciding about gateway provisioning.

III. PROPOSED SYSTEM FRAMEWORK

Our proposed system framework has several modules. Each

module has some components to perform specific tasks. Figure

3 shows the overview of the proposed system framework. The

modules of our proposed framework are as follows:

A. Management portal

The internal components of the proposed framework commu-

nicate with users or service providers through the management

portal. The users can use the management portal through a web

interface for various purposes, such as creating and maintaining

service provider profile, registering devices, bidding to a new

service advertisement, receive instructions about service, etc.

B. Controller module

The controller module is responsible for the core function-

alities of IGaaS. The module sends the advertisement to the

registered gateway providers about the requirements of dynamic

gateways in a certain IoT network. Moreover, it receives the

requirements of new gateways from the gateway of the network.

Additionally, the controller also informs the service providers

whether the service is no longer required or not. The controller

module has the following components:

Device Registration

Hardware Spec.

Analysis

Software Spec.

Analysis
SID

New

Service

SDB

Resource Manager

Service Requirements

Advertiser

Incentive Management

Score and

Rating

Management

Payment

Calculator

Resource Monitoring Engine

Latency

Tracker

Decision Engine

New Service Request /

Provision
End Service Request

/ Down Scale

. R
eq

u
irem

en
t u

p
d
ate

Report

Management Portal

Device Specification Upload Advertise Requirements

Web Interface

Gateway

Manager

Service

Monitor

Requirement

Analysis

RDB

IoT Node

Power

Consumption

Reporter

Resource Reporting Engine

Latency

Reporter

CPU

Utilization

Reporter

Controller

Module

DAG Depth

Reporter

DAG Breadth

Reporter

DAG Depth

Tracker
DAG Breadth

Tracker

Power Consumption

Tracker

CPU Utilization

Tracker

Bidding Monitor

Fig. 3: System framework of IGaaS

Device registration component: The device registration com-

ponent handles new device registration requests from the users.

New devices are registered after exploring the software and

hardware specifications to ensure its capabilities to serve as an

IoT network gateway. Then details of the resources are stored

in the Resource DataBase (RDB) with a unique device id. The

device is related to the service provider’s profile.

Resource manager: The resource manager receives a new

requirement of gateways through requirement status monitor.

Upon receiving a new gateway request, the controller broadcasts

the advertisement of new gateway requirements. After a bidding

procedure, the winner is instructed to provide the service to the

intended IoT network. When the service is no longer required,

the requirement status monitor informs the service providing

party about the end of the service. Service related metrics are

updated in the service database (SDB) and the service id (SID)

is provided to the incentive management component.

Incentive management component: The incentive manage-

ment component is responsible for calculating the performance

point after the completion of service and thereby calculates

the new rating point of the device. The payment calculator

module receives the Service ID (SID) from service monitor and

retrieves all the details of the service from SDB to calculate

new rating. Later, the incentive is calculated using the service

details by the payment calculator component.

C. Gateway manager

The gateway manager is responsible for keeping track of

the current status of the network and inform the requirements

about new mobile gateways to the controller. There are two

engines in the gateway component:

Resource monitoring engine: Resource monitoring engine

keeps track of the current status of the resources and scenario

3
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

of the network such as latency, CPU utilization, power

consumption, graph depth, and breadth. These trackers report

their data to the decision engine. After analyzing the reports

provided by the trackers, the decision engine decides provision

or downscale the gateways in the network. The latency monitor

gets the latency by probing a packet to the IoT nodes and

calculating the round trip time. Additionally, The IoT nodes

may also inform the gateway about the required time to receive

the response after sending a request. CPU utilization tracker

receives reports from each IoT device about the usage of

RAM, storage, network bandwidth, and CPU speed. The power

consumption tracker tracks the power consumption by each

node in the network. The depth of the graph can be tracked by

finding the maximum rank reported by the nodes. Finally, the

breadth can be tracked by tracking the count of similar ranks

reported by the IoT nodes.

Decision engine: The decision engine is responsible for

deciding whether new mobile gateways are required or not. It

also decides the amount of provisioning or downscaling of IoT

gateways for optimized performance in the IoT network.

D. IoT node module

The IoT nodes have a resource reporting engine. The resource

reporting engine includes a latency reporter, CPU utilization

reporter, power consumption reporter, DAG depth reporter,

and DAG breadth reporter. The nodes can report the gateway

manager about the delay of receiving a response after sending

a request. For all other metrics, the IoT devices can send a

periodic update about their CPU utilization, power consumption,

rank, etc. to the resource tracking engine.

IV. OPERATION MODEL

A. Profile creation and device registration

1. Create Profile

Management

Portal
Users Controller

Module

2. Profile Details

3. Verify
v

4. Success/ Failure
5. Success/ Failure

6. Device registration
7. Device Specification

v
8. Verify

9. Store in RDB

10. Success/ Failure11. Success/ Failure

Fig. 4: Profile creation and device registration

Before providing a service, the service provider needs to

create a profile and register the devices. A user registers her

devices through the management portal by providing hardware

and software specifications. We are assuming that the service

will be provided by drones or smartphones. All the devices

have both the network interface of WLAN (IEEE 802.11) and

IoT (IEEE 802.15.4). Figure 4 shows the steps of the profile

creation and device registration phase.

Step 1: The service provider creates a profile through the

management portal. Step 2: The management portal sends

the details of the profile to the controller module. Step 3-

5: The controller module verifies the profile and sends back

success/failure message. Step 6-7: If the profile is successfully

created, the service provider can add the device specifications

and the controller module receives the software and hardware

specifications of the devices through the management portal.

Step 8-11: The controller module verifies the devices and

decides whether to add them into the RDB using a unique

device id and user id. Finally, the controller module sends the

success/failure response to the service provider.

B. Dynamic and stationary gateway provisioning

We have considered dynamic gateway provisioning and

downscaling for both stationary and mobile IoT network

architecture. Figure 5 shows the operation model of the

procedure.

Step 1: The IoT nodes send the report about themselves

collected by resource reporting engine to gateway manager.

Step 2: The resource monitoring engine collects reports from

all the IoT nodes and sends it to the decision engine. Step

3: The decision engine examines the reports and decides

whether a new gateway provisioning service is required or the

current services are no longer required. Step 4: The controller

module receives the resource request update from the gateway

manager and initializes a new resource allocation procedure

or service termination procedure. For stationary gateways,

the controller module informs about up-scaling or down-

scaling the gateways. Step 5: For new resource request, the

controller module retrieves the available service providers. Step

6: The controller node advertises the resource requirements

to the available service providers. Step 7: Interested service

providers responses by bidding a price considering the cost and

service requirements. Step 8: The controller node selects the

service providers. Algorithm 1 presents the provider selection

procedure. Step 9: The controller module informs the selected

service providers and provides details about the requested

service. Step 10: The service provider provides service by

provisioning gateways through drones or smartphones. Step

11-13: When the service is no longer required, the gateway

manager informs the controller module, and it is propagated to

the service provider. For a stationary network, proper scaling

instructions are sent to static gateways. Step 14: The service

details are provided to the controller module and stored in

the service database (SDB). Step 15: Rating and incentive are

calculated from the quality of the provided service. Step 16:

Finally, the incentive is paid to the service provider.

C. Score and rating calculation

We denote each device as Dj , 1 ≤ j ≤ |D|. The framework

maintains a corresponding score sj and rating point rj for each

device Dj . The maximum and minimum rating point can be

100 and 0 which are denoted by rmax and rmin respectively.

Initially, each device is assigned score sj = 0 and rating

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

Service

Provider
Controller Module Gateway Manager IoT Node

6. Advertise

5. Get available
providers/ scale

stationary

gateways

4.Resource
requirement update

2.Resource
Monitoring

7.Bidding

1.Resource reporting

3.Decision

8. Select provider
list

9. Inform providers

10. Provide service

11. End of service

13. Stop service
14. Service details

15. Calculate rating
and incentive

16. Provide incentive

12. Scale stationary
gateways

Fig. 5: Resource requirement analysis and gateway provisioning

rj = 0. After completing each service, each participating

device receives a performance point pj after completing a

service. Depending on the performance point, the framework

updates the score of each participating device and calculates

the corresponding rating points. The score and rating point

calculation depend on the number of services χ each device

has provided. The score is also dependent on rating coefficient

µ which is calculated as: µ =
rmax−rtj
rmax

where the rating

coefficient µ is actually a weight function which makes it

harder to increase the score and rating if those are already

high. The purpose behind this weight function is to put more

responsibility to a well functioning device which has already

gained trust of the users. The framework computes the new

score of a device as follows:

st+1

j =

stj if the device does not provide service

stj + ((1 + µ)× χ× pj)
if the device provides ser-

vice and rt+1

j < rmax

rtj × χ
if the device provides service and

rt+1

j >= rmax

where st+1

j and stj denote the scores for two consecutive exper-

iments, χ is the number of services the device has participated,

and µ is the rating coefficient of that device. Initially the score

and rating are calculated assuming rt+1

j < rmax. If that is not

the case, then the rating point of a device gets updated if the

corresponding score of that device is updated. The framework

computes the new rating point as rt+1

j =
s
t+1

j

χ
where rt+1

j and

rtj denote the value of the rating point of a participating device

for two consecutive services.

The rating of a service provider depends on the average

of rating points of their devices. If a service provider has n

devices and rating point of each device is denoted as ri, then

the rating point of that service provider will be rsp =
∑

n
i=1

ri
n

.

Algorithm 1: Dynamic Gateway Provider Selection

Input: gateway requirement Greq , rating requirement Pavg ,
cost requirement costc

Output: List < selectedprovider >
1: resources = getResources()
2: var compatibleResourceProviders = new

List < ResourceProvider > ()
3: interestedResourceProviders = advertise(resources)
4: for T in interestedResourceProviders do
5: if T.proposedCost <= costc and T.rating >= Pavg

then
6: compatibleResourceProviders.push(T)
7: end if
8: end for
9: var targetedResourceProviderList = new

List < ResourceProvider > ()
10: var totalGateways = 0
11: while compatibleResourceProviders not EMPTY do
12: /*One or multiple available provider should be returned*/
13: find lm from the compatibleResourceProviders list such

that lk.cost =
min(compatibleResourceProviders.getElement.cost)

14: if totalGateways + lm.resources >= Greq then
15: targetedResourceProviderList.Push(lm)
16: return targetedResourceProviderList
17: else
18: targetedResourceProviderList.Push(lm)
19: totalGateways += lm.resources
20: compatibleResourceProviders.Remove(lm)
21: end if
22: end while
23: /*No provider is available to provide the service*/
24: return noCompatibleProviderFoundError

D. Payment calculation:

Let us consider that a provider provides d number of devices

for providing a service. If each device uses rj amount of

resources per unite time and total service time is t, then the

total resource used by all the devices from that service provider

is M =
∑d

j=1
rj ∗ t, such that rj = CPU speed, RAM, storage,

bandwidth. If the service provider bids c as the cost for per

unit resource usage, then the total payment P for the service

is: P = M ∗ c.

V. EXPERIMENT AND EVALUATION

A. Experimental setup

We implemented a prototype of IGaaS for the Contiki

operating system [16]. The graph shown in Figure 2 was

used for simulation on Cooja simulator [17]. We considered

that the IoT network performs mesh-under routing, and hence

the intermediate nodes hold no routing information. For P2P

communication, we calculated the time and energy consumption

for different size of packets to reach from node 1 to node 2.

Similarly, for P2MP communication, we considered that the

packet in sent from cloud to node 1.

B. Evaluation

We conducted our experiments for different message sizes

varying from 64 bytes to 1024 bytes. For both P2P and P2MP

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

Packet Size (Bytes)

M
es

sa
ge

 D
el

iv
er

y
La

te
nc

y
(m

s)

0

10000

20000

30000

40000

64 128 256 512 1024

P2P Communication P2P Communication IGaaS

Fig. 6: Comparison of delay in P2P communication

Packet Size (Bytes)

M
es

sa
ge

 D
el

iv
er

y
La

te
nc

y
(m

s)

0

5000

10000

15000

20000

64 128 256 512 1024

P2MP Communication P2MP Communication IGaaS

Fig. 7: Comparison of delay in P2MP communication

communication, we calculated end to end communication delay

and energy consumption. Figure 6 and figure 7 shows the com-

munication time comparison for P2P and P2MP communication

respectively. We observe that the IGaaS framework reduces the

communication delay. The communication delay was reduced

by 43.2% for 32 bytes in P2P communication. For packet size

1024 bytes, we have found the reduction was 48%. For P2MP

communication, we have seen a similar amount of improvement

regarding communication latency with an average improvement

of 41.82%. We have also performed a comparison of energy

consumption. Figure 8 and figure 9 present the comparison

of energy consumption for P2P and P2MP communications.

We observed an average of 50.45% and 48.78% less energy

consumption in P2P and P2MP communication, respectively.

It is also possible to show similar kinds of improvements in

MP2P communication. We can conclude, IGaaS framework

can reduce the communication time and energy consumption.

VI. CONCLUSION

IoT devices are becoming popular in many different critical

applications. The presence of numerous IoT devices in the

RPL network with a fixed number of gateways may reduce the

quality of service. Moreover, a relatively low number of IoT

devices with an excessive number of gateways may lead to

unnecessary power consumption. In this paper, we presented

IGaaS - a service that achieves optimization in quality of

service by on-demand gateway provisioning through drones

or smartphones as well as reducing the number of gateways

for both stationary and mobile scenarios. Our proof of concept

implementation on the Contiki platform and simulation on

Cooja shows the feasibility of the framework.

ACKNOWLEDGEMENT

This research was supported by the National Science

Foundation through awards DGE-1723768, ACI-1642078, and

CNS-1351038, and by the National Institute of Health grant

1R21HD095270-01.

Packet Size (Bytes)

E
ne

rg
y

co
ns

um
pt

io
n

(m
j)

0

1000

2000

3000

4000

5000

64 128 256 512 1024

P2P energy P2P energy IGaaS

Fig. 8: Energy consumption comparison in P2P communication

Packet Size (Bytes)

E
ne

rg
y

co
ns

um
pt

io
n

(m
j)

0

500

1000

1500

2000

2500

64 128 256 512 1024

P2MP energy P2MP energy IGaaS

Fig. 9: Energy consumption comparison in P2MP communication

REFERENCES

[1] H. R. Schindler, J. Cave, N. Robinson, V. Horvath, P. Hackett, S. Gu-
nashekar, M. Botterman, S. Forge, and H. Graux, “Examining europe’s
policy options to foster development of the’internet of things’,” 2012.

[2] M. S. Hossain, M. A. Rahman, and G. Muhammad, “Towards energy-
aware cloud-oriented cyber-physical therapy system,” Future Generation

Computer Systems, 2017.
[3] M. Alhussein, “Monitoring parkinson’s disease in smart cities,” IEEE

Access, vol. 5, pp. 19 835–19 841, 2017.
[4] S. Bitam and A. Mellouk, Bio-inspired Routing Protocols for Vehicular

Ad-hoc Networks. Wiley Online Library, 2014.
[5] Zigbee, “An ieee 802.15.4-based high-level communication protocols

for personal area networks,” 2016, last accessed: 25-February-2020.
[Online]. Available: https://zigbee.org/

[6] N. Kushalnagar, G. Montenegro, C. Schumacher et al., “Ipv6 over low-
power wireless personal area networks (6lowpans): overview, assumptions,
problem statement, and goals,” 2007.

[7] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes automation
using z-wave protocol,” in 2016 International Conference on Engineering

& MIS (ICEMIS). IEEE, 2016, pp. 1–6.
[8] Z.-M. Lin, C.-H. Chang, N.-K. Chou, and Y.-H. Lin, “Bluetooth low

energy (ble) based blood pressure monitoring system,” in 2014 Int. Conf.

on Intelligent Green Building and Smart Grid. IEEE, 2014, pp. 1–4.
[9] O. Gaddour and A. Koubâa, “Rpl in a nutshell: A survey,” Computer

Networks, vol. 56, no. 14, pp. 3163–3178, 2012.
[10] J. T. Adams, “An introduction to ieee std 802.15. 4,” in 2006 IEEE

Aerospace Conference. IEEE, 2006, pp. 8–pp.
[11] T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy networks,”

2012.
[12] A. H. Chowdhury, M. Ikram, and H.-S. Cha, “Route-over vs mesh-under

routing in 6lowpan,” in Proc. of the 2009 international conf. on wireless

communications and mobile computing. ACM, 2009, pp. 1208–1212.
[13] P. Karhula, J. Mäkelä, H. Rivas, and M. Valta, “Internet of things

connectivity with gateway functionality virtualization,” in 2017 Global

Internet of Things Summit (GIoTS). IEEE, 2017, pp. 1–6.
[14] J. S. de Puga, C. E. P. Salvador, and A. B. Pellicer, “Architecture and

use case for an iot deployment with sdn at the edge and dual physical
and virtual gateway,” in ICCCN. IEEE, 2019, pp. 1–6.

[15] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Legiot: A lightweight
edge gateway for the internet of things,” Future Generation Computer

Systems, vol. 81, pp. 1–15, 2018.
[16] Contiki, “An open source operating system for the internet of

things,” 2019, last accessed: 25-February-2020. [Online]. Available:
http://www.contiki-os.org/

[17] Cooja, “An introduction to cooja,” 2019, last accessed: 25-February-
2020. [Online]. Available: https://github.com/contiki-os/contiki/wiki/
An-Introduction-to-Cooja

6
Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:33:50 UTC from IEEE Xplore. Restrictions apply.

