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Abstract Osteoarthritis is characterized by articular cartilage breakdown, and emerging

evidence suggests that dysregulated innate immunity is likely involved. Here, we performed

proteomic, transcriptomic, and electron microscopic analyses to demonstrate that mast cells are

aberrantly activated in human and murine osteoarthritic joint tissues. Using genetic models of mast

cell deficiency, we demonstrate that lack of mast cells attenuates osteoarthritis in mice. Using

genetic and pharmacologic approaches, we show that the IgE/FceRI/Syk signaling axis is critical for

the development of osteoarthritis. We find that mast cell-derived tryptase induces inflammation,

chondrocyte apoptosis, and cartilage breakdown. Our findings demonstrate a central role for IgE-

dependent mast cell activation in the pathogenesis of osteoarthritis, suggesting that targeting

mast cells could provide therapeutic benefit in human osteoarthritis.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39905.001

Introduction
Osteoarthritis, characterized by progressive degeneration of articular cartilage in the joints, is a

major cause of disability and the most common form of arthritis (Felson, 2006). Current treatment

approaches are limited to pain reduction and joint replacement, highlighting the importance of

understanding the mechanisms underlying the pathogenesis (Chevalier et al., 2013; Wieland et al.,

2005). While low-grade synovial inflammation is a widely recognized feature of osteoarthritis

(Atukorala et al., 2016; Hill et al., 2007; Robinson and Mao, 2016; Sellam and Berenbaum,

2010), the underlying cellular and molecular mechanisms are not fully defined. Emerging evidence
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suggests that dysregulated activation of innate immunity involving macrophages and mast cells are

likely involved in the pathogenesis of this disorder (de Lange-Brokaar et al., 2016; Kraus et al.,

2016; Liu-Bryan and Terkeltaub, 2015; Raghu et al., 2017).

Mast cells are sentinels of the innate immune system, poised to rapidly respond to exogenous

pathogens and to endogenous danger signals (Bischoff, 2007). A wide variety of stimuli (e.g., aller-

gens that cross-link IgE-bound high affinity IgE receptor (FceRI) or antibodies that directly cross-link

FceRI, cytokines such as IL-33, complement anaphylatoxins, immune complexes, neuropeptides, TLR

ligands, etc.) can influence mast cell degranulation and release of pre-formed mediators including

histamine, tryptases, pro-inflammatory lipids, cytokines and chemokines (Theoharides et al., 2012;

Yu et al., 2016). Importantly, different activation stimuli are capable of inducing distinct mast cell

responses in both physiological and pathological settings (Enoksson et al., 2011; Gaudenzio et al.,

2016). In allergic disease—a setting in which mast cells have been most extensively studied—these

mediators promote chronic allergic inflammation which, if sustained, results in long-term tissue dam-

age, fibrosis, and remodeling (Galli and Tsai, 2012). Similar to the tissue remodeling in allergic dis-

eases, human osteoarthritis and experimental osteoarthritis in rodents are characterized by

abnormal and progressive bone and other tissue remodeling (Remst et al., 2014).

Several studies have documented the presence of mast cells and their mediators in the synovium

and synovial fluids of individuals with osteoarthritis (Buckley et al., 1997; Dean et al., 1993;

Lee et al., 2013). Recently, it was reported that synovial mast cell numbers and degranulation status

correlate positively with increased synovitis and cartilage damage in patients with knee osteoarthri-

tis, suggesting that mast cells might contribute to the pathogenesis of osteoarthritis (de Lange-Bro-

kaar et al., 2016). Nevertheless, the precise role of mast cells in the pathogenesis of osteoarthritis

has not been defined. Here, we provide evidence that demonstrates a pathogenic role for IgE-

dependent mast cell activation and the mast cell mediator tryptase in osteoarthritis.

Results

Enhanced mast cell tryptase release, degranulation, and activation in
osteoarthritis
Guided by knowledge that mast cells are present in osteoarthritic synovium (Buckley et al., 1998;

de Lange-Brokaar et al., 2016; Lee et al., 2013), we analyzed synovial fluids for the mast cell-spe-

cific product, tryptase. We compared tryptase levels in the synovial fluids from individuals with oste-

oarthritis with those from non-osteoarthritis controls with prior joint trauma >6 months prior to

sample collection but no radiographic osteoarthritis. Using Tosyl-Gly-Pro-Lys-pNA-based quantifica-

tion, we found significantly elevated levels of catalytically active tryptase in synovial fluids from indi-

viduals with osteoarthritis as compared to non-osteoarthritis controls (Figure 1a). We also directly

visualized mast cell degranulation in osteoarthritis by performing immuno-electron microscopy on

synovial tissue sections stained with gold particle-labeled anti-tryptase antibody. Mast cells exhibit-

ing features including tryptase-containing granule matrices located outside of the plasma membrane

and/or fusion of granule and plasma membranes were identified as actively degranulating or degra-

nulated (Figure 1b). We found significantly increased percentages of degranulated mast cells in

osteoarthritic synovial linings compared to those from non-osteoarthritic joints (Figure 1c). Immuno-

electron microscopy of these sections with a gold-labeled isotype-matched control antibody did not

result in positive staining of mast cells (Figure 1—figure supplement 1), confirming the specificity of

the anti-tryptase staining of mast cells. Nevertheless, anti-tryptase staining of osteoarthritic and non-

osteoarthritic synovial linings revealed no significant differences between the numbers of mast cells

present in these samples (Figure 1—figure supplement 2). Together, these findings demonstrate

that mast cells are actively degranulating to release tryptase in osteoarthritic joints.

We also analyzed the gene expression of mast cell-related surface receptors, chemoattractants,

and degranulation products in synovial membranes from individuals with early- or end-stage osteoar-

thritis and from healthy synovium. Unsupervised clustering of genes involved in mast cell survival,

function or activation revealed two main clusters – osteoarthritis and healthy comparator synovium –

with a statistically-significant broad upregulation of mast cell-related genes in the osteoarthritic rela-

tive to healthy synovium (Figure 1—figure supplement 2a). Supervised clustering of genes grouped

based on their known function and segregated by disease stage of osteoarthritis revealed that genes
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Figure 1. Increased mast cell degranulation and tryptase release in osteoarthritis. (a) Tosyl-Gly-Pro-Lys-pNA-based quantification of active tryptase in

synovial fluids from individuals with osteoarthritis (OA; n = 35) and from individuals with prior joint trauma but no radiographic osteoarthritis (PT non-

OA; n = 16). Bars represent mean ± s.d. **p�0.01 by Mann-Whitney test, and results are representative of the results of three independent experiments

performed using two independent sample sets. (b) Representative transmission electron microscopy images of osteoarthritic and non-osteoarthritic

Figure 1 continued on next page
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involved in mast cell proliferation and survival (e.g., KIT and IL3RA), protease processing and/or sta-

bilization (e.g., SRGN and CTSB), and Fc receptor subunits (e.g., FCER1A and FCER1G) were signifi-

cantly upregulated in the synovium of both early- and end-stage osteoarthritis compared to the

healthy synovium (Figure 1—figure supplement 2b). Further, the expression of genes encoding

pre-formed mediators such as proteases (e.g., tryptase-encoding genes TPSAB1, TPSB2 and TPSD1)

were likewise upregulated in osteoarthritic as compared to healthy synovial membranes (Figure 1—

figure supplement 2b). These findings suggest that mast cells are transcriptionally active in osteoar-

thritic synovial tissues.

Genetic elimination or pharmacologic inhibition of mast cells attenuates
osteoarthritis
To evaluate whether mast cells directly participate in the pathogenesis of osteoarthritis, we surgically

induced osteoarthritis through destabilization of the medial meniscus (DMM) (Glasson et al., 2007;

Loeser et al., 2013) in mice lacking mast cells. We used two distinct mouse models of mast cell defi-

ciency: 1) C57BL/6J-KitW-sh/W-sh (KitW-sh/W-sh) mice (Grimbaldeston et al., 2005), which have a large

gene inversion that results in reduced expression of c-kit, the receptor for the major mast cell growth

factor stem cell factor, and 2) Cpa3-Cre;Mcl-1fl/fl (Hello Kitty) mice, a c-kit-independent model of

mast cell deficiency (Reber et al., 2012). Deficiency of mast cells in either model conferred signifi-

cant protection against osteoarthritis-related pathologies (Figure 2a–d, Figure 2—figure supple-

ment 1, and Figure 2—figure supplement 2). Twenty weeks after DMM surgery, cartilage loss,

osteophyte formation, and synovitis were significantly reduced in KitW-sh/W-sh mice compared to their

age-matched, mast cell-sufficient littermate controls (C57BL/6J mice) (Figure 2a–d, Figure 2—fig-

ure supplement 2). We validated this observation in the Cpa3-Cre;Mcl-1fl/fl mice, which also devel-

oped less severe cartilage loss, osteophyte formation, and synovitis 20 weeks after DMM surgery

(Figure 2—figure supplement 1).

Mast cell-deficient KitW-sh/W-sh and Cpa3-Cre;Mcl-1fl/fl mice have phenotypic abnormalities in

addition to their mast cell deficiencies. For example, KitW-sh/W-sh mice have increased levels of circu-

lating neutrophils and basophils, while Cpa3-Cre;Mcl-1fl/fl mice have reduced numbers of basophils

(Lilla et al., 2011; Reber et al., 2012; Tsai et al., 2005). To ascertain whether the reduction in oste-

oarthritis-related pathology in KitW-sh/W-sh and Cpa3-Cre;Mcl-1fl/fl mice was in fact due to the

absence of mast cells, we engrafted bone marrow-derived mast cells into KitW-sh/W-sh and Cpa3-Cre;

Mcl-1fl/fl mice to generate mast cell-sufficient mice. Toluidine blue staining confirmed the presence

of mast cells within synovium derived from C57BL/6J and Cpa3-Cre;Mcl-1+/+control mice and within

the synovium of mast cell-engrafted mice, whereas no mast cells were detected in most mast cell-

deficient mice (Figure 2—figure supplement 3a and c). Quantification of toluidine blue-stained

mast cells in the synovium derived from these mice demonstrated significant reductions in mast cell

numbers in the synovium of KitW-sh/W-sh and Cpa3-Cre;Mcl-1fl/fl mice as compared to the C57BL/6J

Figure 1 continued

synovial tissue sections immuno-labeled with a gold-conjugated anti-tryptase antibody. Left panels: A quiescent mast cell with many cytoplasmic

granules exhibiting strong immunoreactivity for tryptase and an intact plasma membrane (black arrowheads) in non-osteoarthritic synovial lining (Non-

OA). Right panels: A degranulated mast cell exhibiting an exteriorized granule matrix with tryptase immunoreactivity (red arrowhead) in an

osteoarthritic synovial lining (OA). There is also some other tryptase immunoreactivity apparent outside of this cell (blue arrowheads), likely derived

from exteriorized granule matrices. Lower panels are higher magnification (8000�) images of area shown in blue box in the corresponding upper panels

(1500�). (c) Percentage of degranulated mast cells in synovial tissues obtained from individuals with osteoarthritis (n = 5) and non-osteoarthritis (n = 5).

Intact and degranulated mast cells were counted by an examiner blinded to sample group assignment. Data are mean ± s.d. **p<0.01 by Student’s t-

test, and are representative of three independent experiments using independent sample sets.

DOI: https://doi.org/10.7554/eLife.39905.002

The following figure supplements are available for figure 1:

Figure supplement 1. Transmission electron microscopy (TEM) isotype control immuno-labelling analysis.

DOI: https://doi.org/10.7554/eLife.39905.003

Figure supplement 2. Mast cells are present in human osteoarthritis and post-trauma non-osteoarthritis synovial tissue.

DOI: https://doi.org/10.7554/eLife.39905.004

Figure supplement 3. Expression of mast cell mediators in osteoarthritic synovial membranes.

DOI: https://doi.org/10.7554/eLife.39905.005
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Figure 2. Genetic deficiency or pharmacologic inhibition of mast cells protects against the development of osteoarthritis in mice. (a–d) Cartilage

degradation in medial regions of stifle joints from C57BL/6J mast cell-sufficient mice (Wild-type +PBS; n = 7), mast cell-deficient mice (KitW-sh/W-sh +

PBS; n = 5), and mast cell-deficient mice engrafted with BMCMCs (KitW-sh/W-sh + BMCMCs; n = 5) 20 weeks after DMM surgery. Representative Safranin-

O-stained sections of medial regions of stifle joints from these mice are shown (a); arrowheads show severe cartilage loss. Cartilage degradation (b),

Figure 2 continued on next page
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and Cpa3-Cre;Mcl-1+/+control mice and the mast cell-engrafted mice (Figure 2—figure supplement

3b and d). Mast cell engraftment reversed the relative protection conferred by mast cell deficiency;

that is, there was no overt difference in the degree of cartilage degradation (Figure 2a and b, Fig-

ure 2—figure supplement 1a and b), osteophyte formation (Figure 2c, Figure 2—figure supple-

ment 1c, and Figure 2—figure supplement 2), or synovitis (Figure 2d, Figure 2—figure

supplement 1d, and Figure 2—figure supplement 2) between mast cell-sufficient control mice and

the corresponding mast cell-engrafted genetically mast cell-deficient mice 20 weeks after DMM.

Given that several of the Cpa3-Cre;Mcl-1fl/fl mice developed osteoarthritis (Figure 2—figure supple-

ment 1b) and the Cpa3-Cre;Mcl-1fl/fl mast cell deficiency is known to be incompletely penetrant with

the presence of residual mast cells observed in certain organs and mice (Lilla et al., 2011;

Reber et al., 2012; Tsai et al., 2005), we performed additional anti-tryptase immunostaining of the

joint tissues from the Cpa3-Cre;Mcl-1fl/fl mice that developed osteoarthritis following DMM to more

comprehensively characterize these mice and their stifle joints for mast cell deficiency. In the Cpa3-

Cre;Mcl-1fl/fl mice that developed osteoarthritis, we observed peri-articular tryptase-positive mast

cells suggesting that incomplete mast cell deficiency contributed to their development of osteoar-

thritis (Figure 2—figure supplement 3e). Together, these findings demonstrate that mast cells pro-

mote inflammation and cartilage damage in this mouse model of osteoarthritis.

To complement the genetic studies we determined whether pharmacological inhibition with ima-

tinib mesylate (imatinib), a drug that potently inhibits several receptor tyrosine kinases, including

c-kit (Juurikivi et al., 2005), a crucial factor for mast cell growth and survival, would be effective in

limiting the development of osteoarthritis in wild-type mice. Compared with vehicle-treated mice,

treatment with imatinib for 12 weeks following DMM significantly attenuated cartilage degradation

(Figure 2e and f), osteophyte formation (Figure 2g, Figure 2—figure supplement 4a), and synovitis

(Figure 2h, Figure 2—figure supplement 4a) associated with DMM-induced murine osteoarthritis.

Furthermore, immunostaining with anti-tryptase revealed that the total number of mast cells in joints

of imatinib-treated mice was significantly less than that in vehicle-treated mice (Figure 2—figure

supplement 4b and c).

Mast cell-derived tryptases promote osteoarthritis-associated
pathology
Having established a pathogenic role for mast cells in osteoarthritis and because levels of the acti-

vated form of mast cell-derived tryptase are significantly elevated in the synovial fluids of individuals

with osteoarthritis, a finding in agreement with previous reports (Nakano et al., 2007), we next

investigated mechanisms by which tryptase might promote the pathogenesis of osteoarthritis. We

first tested whether selectively inhibiting the protease activity of tryptase with APC366 (Cairns, 2005)

Figure 2 continued

osteophyte formation (c), and synovitis (d) in medial regions of stifle joints from these mice are quantified. (e–h) Cartilage degradation in medial regions

of stifle joints from C57BL/6J mice subjected to DMM surgery and then treated by oral gavage with vehicle (n = 8) or imatinib 100 mg/kg/d (n = 6) for

12 weeks. Representative Safranin-O stained medial stifle joint sections from these mice are shown (e); arrowheads show severe cartilage loss. Cartilage

degeneration (f), osteophyte formation (g), and synovitis (h) in medial regions of stifle joints from these mice are quantified. Symbols represent scores

from individual mice. Bars denote mean ± s.d. *p�0.05, **p�0.01, by multiple comparisons one-way ANOVA. Scale bars, 200 mm. Scoring of joint

pathologies was done by an investigator blinded to the experimental groups. Results are representative of three independent experiments for imatinib

treatment, and two independent experiments for KitW-sh/W-sh deficient mice. PBS, phosphate-buffered saline; BMCMCs, bone marrow-derived cultured

mast cells; DMM, destabilization of the medical meniscus.

DOI: https://doi.org/10.7554/eLife.39905.006

The following figure supplements are available for figure 2:

Figure supplement 1. Genetic elimination of mast cells in a c-kit independent mouse model attenuates osteoarthritic development and severity.

DOI: https://doi.org/10.7554/eLife.39905.007

Figure supplement 2. Genetic deficiency of mast cells reduces synovitis and osteophyte formation following DMM.

DOI: https://doi.org/10.7554/eLife.39905.008

Figure supplement 3. Staining of mast cells in the synovium of mast cell-deficient and mast cell-engrafted mice following DMM.

DOI: https://doi.org/10.7554/eLife.39905.009

Figure supplement 4. Pharmacologic inhibition of mast cells by imatinib reduces synovitis and osteophyte formation following DMM.

DOI: https://doi.org/10.7554/eLife.39905.010
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– an oral, selective tryptase small-molecule inhibitor previously used to alleviate allergic, inflamma-

tory and fibrotic responses in multiple mouse models (Lu et al., 2014; Matos et al., 2013;

Sevigny et al., 2011) - could effectively attenuate the progression and/or severity of osteoarthritis in

mice. We found that following DMM, treatment with APC366 for 12 weeks significantly reduced car-

tilage damage (Figure 3a and b), osteophyte formation (Figure 3c, Figure 3—figure supplement

1) and synovitis (Figure 3d, Figure 3—figure supplement 1) compared to control mice treated with

vehicle, suggesting that tryptase inhibition can prevent the development of osteoarthritis in mice.

We, additionally, measured the expression of pro-inflammatory and degradative mediators known

to be produced by mast cells in DMM joints following treatment with the tryptase inhibitor APC366.

Six-weeks after DMM, transcriptional expression of multiple mediators including IL-1b, IL-6, IL-8,

CCL2, CCL5, ADAMTS4 and MMP3 was significantly reduced in DMM synovial tissues derived from

APC366-treated as compared to vehicle-treated mice (Figure 3e).

As tryptase has been shown to promote pathogenic properties in human rheumatoid arthritis-

derived synovial fibroblasts (Xue et al., 2012), we examined whether tryptase could also induce pro-

inflammatory and proliferative responses in primary synovial fibroblasts derived from remnant oste-

oarthritic joint tissue. Indeed, tryptase significantly increased the expression of the pro-inflammatory

cytokine IL-1b and degradative enzymes MMP3 and ADAMTS4 (Figure 3f), increased the secretion

of cytokines IL-1b (Figure 3g), IFNg (Figure 3h), and increased synovial fibroblast proliferation in

vitro, as demonstrated by increased expression of the activation marker Ki-67 by fibroblasts

(Figure 3i). In vitro treatment of synovial fibroblasts with tryptase also promoted phosphorylation of

Erk1/2, indicating that tryptase can activate pro-inflammatory signaling pathways in synovial fibro-

blasts (Figure 3j and k). Further, in vitro inhibition of tryptase activity with APC366 abrogated the

pro-inflammatory and proliferative responses of synovial fibroblasts (Figure 3f–i).

IgE deficiency attenuates osteoarthritis-associated pathology in mice
While mast cells can be activated by a wide range of stimuli, IgE mediates mast cell degranulation

and release of biologically active mediators through cross-linking of the high affinity IgE receptor,

FceRI (Galli and Tsai, 2012; Gilfillan and Tkaczyk, 2006). We hypothesized that IgE might mediate

mast cell activation in osteoarthritis. To determine the potential role of IgE in the pathogenesis of

osteoarthritis, we subjected IgE-deficient (Igh7-/-) mice and IgE-sufficient littermate controls (Igh7+/+)

to DMM. Twenty weeks after DMM surgery, IgE-deficient mice exhibited markedly diminished carti-

lage damage (Figure 4a and b), osteophyte formation (Figure 4c, Figure 4—figure supplement

1a), and synovitis (Figure 4d, Figure 4—figure supplement 1a).

To extend this observation, we treated mice with an anti-IgE neutralizing antibody that prevented

IgE binding to FceRI for 12 weeks following DMM surgery. Compared with isotype control-treated

mice, treatment with anti-IgE antibody significantly attenuated cartilage degradation (Figure 4e and

f), osteophyte formation (Figure 4g, Figure 4—figure supplement 1b), and synovitis (Figure 4h,

Figure 4—figure supplement 1b). Together, these studies demonstrate that IgE plays a crucial role

in promoting the pathogenesis of murine osteoarthritis.

IgE signaling through FceRI promotes pathogenesis of osteoarthritis
FceRI, which is highly expressed on mast cells and basophils, is a tetrameric receptor comprising one

a-chain that binds IgE, one b-chain that is a signal amplifier, and two g-chains that initiate signaling

via the spleen tyrosine kinase (Syk). To further define a role for FceRI in the pathogenesis of osteoar-

thritis, we performed DMM surgeries in mice deficient in FceRIa (Fcer1a-/-). We found that mice defi-

cient in FceRIa, which as a consequence cannot transduce IgE signals, were significantly protected

against osteoarthritic development as compared to wild-type controls (Figure 5a). Twenty weeks

after DMM, FceRIa-deficient mice developed significantly less cartilage damage (Figure 5b), osteo-

phyte formation (Figure 5c, Figure 5—figure supplement 1a), and synovitis (Figure 5d, Figure 5—

figure supplement 1a).

Given the central role for the tyrosine kinase Syk in FceRI-mediated signaling, we evaluated

whether pharmacologic inhibition of Syk using the potent and selective small molecule inhibitor

PRT062607 (Coffey et al., 2017; Spurgeon et al., 2013) could ameliorate development of murine

osteoarthritis. Treatment of mice with PRT062607 for 12 weeks following DMM markedly reduced

the development and/or severity of osteoarthritis compared to vehicle-treated mice (Figure 5e).
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Figure 3. Mast cell-derived tryptases promote osteoarthritis pathology in vitro and in vivo. (a–e) Cartilage degradation in medial regions of stifle joints

from C57BL/6J mice subjected to DMM surgery and then treated orally with the tryptase inhibitor APC366 5 mg/kg/d (n = 5) or vehicle (n = 7) for 12

weeks. Representative safranin-O stained medial stifle joint sections from these mice are shown (a); arrowheads show severe cartilage loss. Cartilage

degeneration (b), osteophyte formation (c), and synovitis (d) in medial regions of stifle joints from these mice are quantified. Scoring of joint

Figure 3 continued on next page
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Inhibition of Syk by PRT062607 resulted in decreased cartilage damage (Figure 5f), osteophyte for-

mation (Figure 5g, Figure 5—figure supplement 1b), and synovitis (Figure 5h and Figure 5—fig-

ure supplement 1b) relative to vehicle treatment. We used qPCR to analyze the levels of mRNAs

encoding pro-inflammatory cytokines and degradative enzymes known to be produced by mast

cells. Six-weeks following DMM, transcriptional expression of multiple pro-inflammatory cytokines

and proteases including IL-1b, IL-6, CCL2, ADAMTS4 and MMP13 were significantly reduced in

DMM joint tissues derived from mice treated with the Syk-inhibitor PRT062607 as compared to vehi-

cle (Figure 5i). Together, these data suggest that the IgE/FceRI/Syk axis mediates mast cell activa-

tion and degranulation and is a key pathogenic mechanism of osteoarthritis.

Discussion
A major hurdle in the development of disease-modifying therapeutics for osteoarthritis is insufficient

understanding of the cellular and molecular mechanisms underlying the pathogenesis of osteoarthri-

tis. Mast cells have been implicated in the pathogenesis of various non-allergic, chronic, inflamma-

tory diseases (Theoharides et al., 2012) including the etiologically-distinct inflammatory arthritides,

including rheumatoid arthritis (Lee et al., 2002) and gouty arthritis (Reber et al., 2014). While it has

been shown that mast cells and their mediators (e.g., histamine and tryptases) are present in oste-

oarthritic synovial tissue and fluids (Buckley et al., 1998; Dean et al., 1993; Lee et al., 2013;

Nakano et al., 2007) and that their numbers in osteoarthritic synovial tissue correlate with structural

damage in knee osteoarthritis (de Lange-Brokaar et al., 2016), their direct participation, mode of

activation, and mechanisms by which they contribute to pathogenesis have not previously been

shown. Here, we show that the activation and degranulation of mast cells via the IgE/FceRI/Syk axis

mediates inflammation and tissue damage in osteoarthritis, at least in part through mast cell-derived

tryptase. Further, we demonstrate that pharmacologic interventions targeting mast cells at multiple

levels reduce the severity of osteoarthritis in mice, including inhibition of (i) the mast cell growth fac-

tor receptor c-kit using imatinib (ii) mast cell-derived tryptases using APC366, (iii) IgE-mediated

FceRI-engagement through depletion of IgE, and (iv) FceRI signaling by inhibiting its downstream

signaling molecule Syk.

We demonstrate that the IgE/FceRI/Syk signaling axis contributes to inflammation and cartilage

damage in murine osteoarthritis. Given previous reports have shown that mast cells obtained from

osteoarthritic synovial tissues express activating FcRs (e.g., FcgRI) as well as FceRI at levels similar to

those seen in rheumatoid arthritis (Lee et al., 2013), we propose a model wherein the IgE/FceRI/Syk

signaling axis in mast cells potentiates chronic inflammation in osteoarthritis.

While it is well documented that IgE is critical for initiating and sustaining chronic allergic inflam-

mation, emerging evidence suggests that IgE-mediated cellular activation directly contributes to tis-

sue remodeling (Galli and Tsai, 2012; Roth et al., 2015). Indeed, therapeutic strategies targeting

IgE, such as omalizumab, reduce airway and tissue remodeling in allergic inflammatory conditions

including as asthma and atopic dermatitis (Oettgen, 2016; Strunk and Bloomberg, 2006). Similar

to the tissue remodeling in allergic diseases, human and murine osteoarthritis are characterized by

Figure 3 continued

pathologies were done by two investigators blinded to experimental groups. Data are representative of three independent experiments. Symbols

represent scores from individual mice. Bars are the mean ± s.d. for each group. *p�0.05, **p�0.01, by Mann Whitney test. Scale bars, 200 mm. (e)

Relative mRNA expression of pro-inflammatory/degradative enzyme genes in mouse stifle joints. (f) Relative mRNA expression of inflammatory/

degradative enzyme genes in osteoarthritic synovial fibroblasts treated for 24 hr with 0.2 mg/ml tryptase with or without 100 mM APC366. (g–h)

Quantification of IL1b (g) and IFNg (h) secretion by synovial fibroblasts stimulated for 24 hr. (i) Flow cytometric quantification of Ki-67 +synovial

fibroblasts treated with media or 0.2 mg/ml tryptase with or without 100 mM APC366 for 72 hr. (j) Western blot analysis of total ERK1/2, phosphorylated

ERK1/2 (p-ERK1/2), and b-actin in primary osteoarthritic synovial fibroblasts treated with media or 0.2 mg/ml tryptase for 72 hr. (k) Ratio of densitometry

of p-ERK1/2:ERK1/2 bands from western blot in (j) Data in (f–i) are mean ± s.d. of triplicate values. *p�0.05, **p�0.01 by Student’s t test. Results are

representative of three independent experiments using samples from independent donors.

DOI: https://doi.org/10.7554/eLife.39905.011

The following figure supplement is available for figure 3:

Figure supplement 1. Representative images of osteophyte formation and synovitis in mice treated with the tryptase inhibitor APC366 following DMM.

DOI: https://doi.org/10.7554/eLife.39905.012
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Figure 4. Genetic deficiency or pharmacologic depletion of IgE protects against the development of osteoarthritis in mice. (a–d) Cartilage degradation

in medial regions of stifle joints from C57BL/6J IgE-deficient (Igh7-/-, n = 7) and IgE-sufficient (Igh7+/+, n = 6) mice 20 weeks after DMM surgery.

Representative safranin-O stained medial stifle joint sections from these mice are shown (a); arrowheads show severe cartilage loss. Quantification of

cartilage degradation (b), osteophyte formation (c), and synovitis (d). (e–h) Cartilage degradation in medial regions of stifle joints from C57BL/6J mice

Figure 4 continued on next page
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abnormal and progressive bone and other tissue remodeling (Remst et al., 2014) which result in

altered joint biomechanics that further promote development of osteoarthritis. Phosphorylation of

Syk is a critical downstream signaling event for the transmission of IgE/FceRI signals. Here, we dem-

onstrate that pharmacologic depletion of IgE, or blockade of IgE-mediated FceRI signaling using a

Syk inhibitor, reduce bone remodeling (as measured by osteophyte formation) and disease severity

in the DMM murine model of osteoarthritis. Together, these findings strongly implicate IgE-medi-

ated mast cell activation in bone and synovial tissue remodeling in osteoarthritis.

Previous reports found that IgE levels are not elevated in the synovial fluids of osteoarthritic joints

(Hunder and Gleich, 1974), and in preliminary studies we observed only trends towards an associa-

tion of increased total IgE in serum with osteoarthritis in humans. It remains possible that antigen-

specific IgE contributes to mast cell activation in osteoarthritis, and future studies will be needed to

further investigate the relative contributions of antigen-specific IgE-dependent and other mecha-

nisms of mast cell activation in the pathogenesis of osteoarthritis.

While many classical IgE-mediated allergic diseases including asthma, allergic rhinitis and eczema

exhibit comorbidities (Pedersen and Weeke, 1983), we are not aware of evidence of a clear link

between osteoarthritis and allergic diseases. There is significant evidence that these classic allergic

diseases are caused by antigen-specific IgE-dependent activation of mast cells (Galli and Tsai, 2012;

Hamelmann et al., 1997; Oettgen and Geha, 2001; van der Heijden et al., 1993). If the role of

mast cells in osteoarthritis pathogenesis is dependent on antigen-specific IgE, the target antigens

could potentially be exogenous allergens. Another possibility is that in osteoarthritis the IgE target

antigens are bone or cartilage breakdown products that give rise to neoantigens following joint

injury or instability. Although we are not aware of evidence that osteoarthritis is associated with clas-

sic allergic and/or IgE-dependent diseases, an epidemiological analysis that addresses this important

question is warranted. Antigen-specific antibody responses can also be generated in autoimmune

responses, however osteoarthritic synovial linings do not exhibit histologic features consistent with

an adaptive autoimmune response and we do not believe our findings suggest the presence of an

classical adaptive autoimmune response. Future studies are needed to determine if IgE targets spe-

cific antigens, and to further characterize the role of IgE in osteoarthritis.

Mechanical instability and stresses likely contribute to the pathogenesis of osteoarthritis in a sig-

nificant subset of patients. We do not believe that a role for mechanical stresses is inconsistent with

a role for IgE and mast cells, and it is possible that mechanical stresses produce cartilage breakdown

products and/or cellular responses that promote IgE-dependent mast cell activation.

In addition to IgE-mediated activation of mast cells, a wide range of physical, biological, and

chemical triggers can contribute to mast cell activation, including products of complement activa-

tion, platelet-activating factor, damage-associated molecular patterns (DAMPs), and a number of

endogenous peptides (e.g., vasoactive intestinal polypeptide [VIP], and substance P [SP]) (Galli and

Tsai, 2012; Gaudenzio et al., 2016). We previously demonstrated that complement plays a critical

role in the pathogenesis of osteoarthritis (Lepus et al., 2014; Wang et al., 2011). Activation of the

complement system results in the production of C3a and C5a which serve as anaphylatoxins and

activators of mast cells (Erdei et al., 2004; Gaudenzio et al., 2016). It is therefore possible that

complement, in addition to Fc(e)RI, regulates the recruitment and activation of mast cells in the syno-

vium to promote the pathogenesis of osteoarthritis. We previously demonstrated that the cartilage

Figure 4 continued

subjected to DMM surgery and then treated i.p. with anti-IgE antibody (n = 6) or isotype-matched control antibody (n = 7) 2.5 mg/kg twice per week for

12 weeks. Representative Safranin-O stained medial stifle joint sections from these mice are shown (e); arrowheads show severe cartilage loss. Cartilage

degeneration (f), osteophyte formation (g), and synovitis (h) in medial regions of stifle joints from these mice are quantified. Symbols represent scores

from individual mice. Bars denote mean ± s.d. *p�0.05, **p�0.01, by Mann Whitney test. Scale bars, 200 mm. Scoring of joint pathologies was

performed by an investigator blinded to experimental groups. Data are representative of two independent experiments with similar results.

DOI: https://doi.org/10.7554/eLife.39905.013

The following figure supplements are available for figure 4:

Figure supplement 1. Deficiency of IgE reduces synovitis and osteophyte formation in mice subjected to DMM.

DOI: https://doi.org/10.7554/eLife.39905.014

Figure supplement 2. Mast cell numbers in DMM joint tissue in IgE deficient and wild-type mice following DMM.

DOI: https://doi.org/10.7554/eLife.39905.015
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Figure 5. A critical role for IgE-mediated signaling through FceRI and Syk in osteoarthritis. (a–d) Cartilage degradation in medial regions of stifle joints

from C57BL/6J FceRIa-sufficient (Fcer1a+/+,n = 8) and FceRIa-deficient (Fcer1a-/-,n = 8) mice 20 weeks after DMM surgery. Representative safranin-O

stained medial stifle joint sections from these mice are shown; arrowheads show severe cartilage loss. Cartilage degradation (b), osteophyte formation

(c), and synovitis (d) in medial regions of stifle joints from these mice are quantified. Symbols represent scores from individual mice. Bars denote

Figure 5 continued on next page
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breakdown product, fibromodulin, can activate the complement system (Wang et al., 2011), and it

is possible that mast cell tryptase-mediated cartilage degeneration produces fibromodulin and other

cartilage breakdown products that reciprocally activate complement in the synovia in osteoarthritis.

It will be important to define the temporal relationship between mast cell activation/degranulation

and complement activation in the development and progression of osteoarthritis, including how acti-

vation of one affects the other and vice versa. Further, complement is capable of stimulating mast

cells alone, and can also enhance IgE-dependent mast cell activation and degranulation

(Schäfer et al., 2013). Future studies will be needed to further define the roles and relationships of

complement activation, IgE, and mast cell activation/degranulation in the development and progres-

sion of osteoarthritis.

The development and survival of mast cells is critically dependent on signaling via the stem cell

factor (SCF) receptor c-kit (CD117), a member of the receptor tyrosine kinase family. While c-kit is

widely expressed by hematopoietic progenitor and germ cells, in the context of the mature immune

system only mast cells robustly express c-kit, and in the synovial compartment c-kit is predominantly

expressed by mast cells (Ceponis et al., 1998; Galli et al., 1993). Imatinib mesylate, an orally avail-

able small molecule with potent and selective inhibitory activity against several tyrosine kinases,

including Abl, c-kit and platelet-derived growth factor receptor, has been shown to inhibit pro-

inflammatory cytokine production from mast cells (Paniagua et al., 2006) and to promote apoptosis

of mast cells (Juurikivi et al., 2005). Furthermore, long-term treatment with imatinib induced severe

mast cell deficiency and reduced serum tryptase levels without inducing adverse effects in patients

with chronic myeloid leukemia (Cerny-Reiterer et al., 2015), suggesting that imatinib suppresses

mast cell production and/or survival. Treatment of severe asthmatics with imatinib for 6 months also

reduced mast cell numbers, bronchial hyperresponsiveness, and tryptase levels (Cahill et al., 2017).

Further, it has been previously reported that imatinib reduces the development and severity of

arthritis in two distinct mouse models of rheumatoid arthritis (Koyama et al., 2007; Paniagua et al.,

2006). Here, we show that treatment with imatinib, reduces numbers of synovial tryptase-expressing

mast cells in mouse knees and attenuates murine osteoarthritis. Indeed, imatinib may play a broader

role in mitigating the pathogenesis of osteoarthritis as it can influence pro-inflammatory responses

via receptor tyrosine kinase inhibition on cell types including macrophages, B cells, and T cells

(Paniagua et al., 2006; Zitvogel et al., 2016). However, as shown here, attenuation of mast cell

responses is likely responsible, at least in part, for the effectiveness of imatinib in preventing the

development of osteoarthritis in mice.

Mast cells could participate in osteoarthritis through multiple mechanisms, including release of

pre-formed mediators such as tryptases and de novo synthesis of cytokines that could further propa-

gate inflammation, promoting a vicious cycle of inflammation and tissue damage. Because we found

high levels of active tryptase in osteoarthritic synovial fluids and previous studies have shown tryp-

tases can induce cartilage aggrecanolysis in vitro (Magarinos et al., 2013), and promote inflamma-

tory responses in mouse models of autoimmune arthritis (McNeil et al., 2008; Shin et al., 2009), we

investigated the mechanisms by which tryptases could directly influence osteoarthritis-associated

pathogenic processes. Our data suggest that mast cell-derived tryptases promote cartilage

Figure 5 continued

mean ± s.d. *p�0.05, **p�0.01, by Mann Whitney test. Scale bars, 200 mm. Scoring of joint pathologies was done by two investigators blinded to

experimental groups. Data are representative of two independent experiments with similar results. DMM, destabilization of the medical meniscus. (e–h)

Cartilage degradation in medial regions of stifle joints from C57BL/6J mice subjected to DMM surgery and then orally with vehicle (n = 6) or 75 mg/Kg/

day of the Syk inhibitor PRT062607 (n = 7), for 12 weeks. Representative Safranin-O stained medial stifle joint sections from these mice are shown (e);

arrowheads show severe cartilage loss. Cartilage degeneration (f), osteophyte formation (g), and synovitis (h) in medial regions of stifle joints from these

mice are quantified. Symbols represent scores from individual mice. Bars denote mean ± s.d., **p�0.01, by Mann Whitney test. Scale bars, 200 mm.

Scoring of joint pathologies was done by two investigators blinded to experimental groups. (i) Relative mRNA expression of pro-inflammatory/

degradative enzyme genes in mouse stifle joints. Data are representative of two independent experiments with similar results. DMM, destabilization of

the medical meniscus.

DOI: https://doi.org/10.7554/eLife.39905.016

The following figure supplement is available for figure 5:

Figure supplement 1. Deficiency in FceR1a or blockade of FceRIa signaling in mice reduces synovitis and osteophyte formation following DMM.

DOI: https://doi.org/10.7554/eLife.39905.017
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degeneration, support synovial fibroblast proliferation and release of pro-inflammatory and degra-

dative mediators from joint tissues. Importantly, we demonstrate that inhibition of tryptase activity

using the tryptase-specific inhibitor APC366 attenuates osteoarthritis in mice. Tryptases are natural

agonists of proteinase activated receptor-2 (PAR2), which is expressed by a wide variety of cells

including osteoarthritis synovial fibroblasts. Importantly, PAR2 deficiency significantly attenuates the

development and severity of osteoarthritis in mice (Huesa et al., 2016; Jackson et al., 2014). There-

fore, it is conceivable but remains to be formally tested that tryptase signaling via PAR2 promotes

inflammatory and degradative responses in osteoarthritis.

Although we have not formally demonstrated that mast cells are the source of tryptases that pro-

mote the pathogenesis of osteoarthritis, our data demonstrate that: (i) mast cells comprise 1–3% of

synovial cells in synovial linings from both osteoarthritic joints and joints with prior injury but no

radiographic osteoarthritis, (ii) mast cells are actively degranulating to release tryptase in human

osteoarthritic synovial linings, and (iii) pharmacologic inhibition of typtase prevents the development

of osteoarthritis in mice. However, mast cells are the predominant producer of tryptases, and to a

much lesser extent basophils (Schwartz, 2006). Together, these data suggest that mast cells are the

predominant cellular source of tryptase in human and murine osteoarthritis.

There are multiple potential limitations to this study. First, it was previously shown that mast cells

are associated with joint pain in murine osteoarthritis (Sousa-Valente et al., 2018) and that synovial

mast cell numbers are associated with the degree of synovitis in human osteoarthritis (de Lange-Bro-

kaar et al., 2016). We and others previously demonstrated that following DMM in mice develop-

ment of histologic osteoarthritis is associated with poor functional outcomes including pain and

abnormal gait (Huesa et al., 2016; Wang et al., 2011). The studies presented in this manuscript

demonstrate that mast cells and dysregulated mast cell activation contribute to cartilage and joint

degeneration following DMM, and based on this prior work (Huesa et al., 2016; Wang et al., 2011)

such pathologic changes are anticipated to result in pain and abnormal gait. Future studies will be

needed to further characterize the role of mast cells in osteoarthritis-associated pain and joint dys-

function. Second, while our findings demonstrate a critical role for mast cells, mast cell activation

pathways, and the mast cell product tryptase in the development of osteoarthritis following DMM,

further investigation is needed to characterize the relationship between IgE-mediated mast cell acti-

vation and the presence of pro-inflammatory cytokines and proteases implicated in synovitis and car-

tilage degradation in osteoarthritis. Additionally, demonstration in vivo that IgE/Syk signaling is

associated with increased tryptase production would further strengthen our findings.

Together, our results demonstrate that IgE/FceRI/Syk axis-activated mast cells promote the devel-

opment of osteoarthritis following mechanical injury (DMM) in mice. As the DMM model is most rep-

resentative of osteoarthritis development following traumatic joint injury (PTOA) in humans, these

findings suggest that PTOA arises as result of activation of the IgE/FceRI/Syk axis. It is possible that

non-traumatic osteoarthritis, calcium pyrophosphate crystal-associated osteoarthritis, or other sub-

sets of osteoarthritis may arise from activation of other molecular pathways.

We propose a model wherein IgE-mediated mast cell activation via FceRI and Syk which results in

mast cell degranulation and the release of pro-inflammatory and degradative mediators, including

tryptase, leads to cartilage and joint breakdown. This results in a vicious cycle of tissue damage,

inflammation, and unchecked mast cell activation, and thus causes the development and progression

of osteoarthritis. Our findings demonstrate a central role for IgE-mediated mast cell activation in the

pathogenesis of osteoarthritis, and provide the rationale for targeting mast cells or tryptase as a dis-

ease-modifying therapeutic strategy for osteoarthritis.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent (M. musculus)

KitW-sh/W-sh The Jackson
Laboratory

Stock No. 012861

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent (M. musculus)

Cpa3-Cre;Mcl-1fl/fl Lilla et al., 2011 Dr. Stephen Galli
(Stanford University)

Genetic
reagent (M. musculus)

Cpa3-Cre;Mcl-1+/+ Lilla et al., 2011 Dr. Stephen Galli
(Stanford University)

Genetic
reagent (M. musculus)

Fcer1a-/- The Jackson
Laboratory

Stock No.10512

Genetic
reagent (M. musculus)

C57BL/6J The Jackson
Laboratory

Stock No. 000664

Antibody Anti-Mast Cell
Tryptase antibody

Abcam catalog #:ab2378
clone: AA1

Antibody Mouse IgG1, kappa
Isotype Control

Crown Biosciences catalog #: c0005

Antibody Phospho-p44/42 MAPK
(Erk1/2) (Thr202/Tyr204)
Antibody

Cell signaling catalog #: 9101

Antibody p44/42 MAPK
(Erk1/2) Antibody

Cell signaling catalog #: 4695

Antibody Anti-beta actin antibody Abcam catalog #: Ab8227

Commercial
assay or kit

Mast Cell
Degranulation
Assay Kit,

Millipore catalog #: IMM001

Chemical
compound, drug

imatinib mesylate LC Laboratories catalog #: I-5508

Chemical
compound, drug

APC366 Tocris catalog #: 2511

Chemical
compound, drug

PRT062607 Synnovator catalog #: 1370261-97-4

Human samples
All human samples were obtained and studied under protocols that included written informed con-

sent and consent to publish and that were approved by the Stanford University Institutional Review

Board (IRB) (approval #3780) and the University of Padova IRB (approval #39872). Osteoarthritic

synovial membranes were obtained at the time of total joint replacement from individuals with end-

stage osteoarthritis at the VA Palo Alto Health Care System. Synovial fluids were obtained from indi-

viduals with varying degrees of osteoarthritis severity as assessed by K-L score. Synovial membranes

and synovial fluids from individuals undergoing arthroscopic anterior cruciate ligament reconstruc-

tion surgery who had no arthroscopic evidence of articular cartilage loss were used as controls.

Transmission electron microscopy (TEM) analysis of human synovium
Synovial membranes from five osteoarthritic knees and five non-osteoarthritic control knees with

prior joint trauma >6 months ago but no radiographic osteoarthritis were analyzed, and after stain-

ing with immuno-gold labeled anti-tryptase (Abcam, clone AA1) or isotype-matched control anti-

body the entire post-etch-embedded section for each sample was scanned by TEM. The number of

mast cells and degranulated mast cells was determined by an examiner blinded to the experimental

group of each sample. Mast cells were identified based on the presence of electron dense granules

containing gold-labelled tryptase particles. Degranulation was determined by assessment of fusion

of granule plasma membranes, fusion of granule membranes with cell membranes, exteriorization of

granules, and presence of tryptase particles outside the exteriorized granule. The percent of degra-

nulating mast cells per total mast cells was calculated for each sample. Multiple independent experi-

ments were performed, and representative images and results are presented.
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Detailed methods
Synovial lining tissue was fixed in Karnovsky’s fixative containing 2% glutaraldehyde and 4% parafor-

maldehyde in 0.1 M sodium cacodylate. After an initial ~30 min fixation, the specimens were cut

into ~1 mm3 pieces and returned to fresh fixative for 16–24 hr at 4˚C. The specimens were washed

with 100 mM cacodylate buffer, fixed with 1% osmium tetroxide for 1 hr, washed with excess dis-

tilled water then en bloc stained with 1% aqueous uranyl acetate overnight at 4˚C. Samples were

then dehydrated in a series of ethanol washes, propylene oxide, and embedded in resin. We picked

up 75–90 nm sections on formvar/Carbon-coated slot Cu grids, stained them for 30 s in 3.5% uranyl

acetate in 50% acetone followed by staining them in 0.2% lead citrate for 3 min. Post-embedding

immunolabelling was carried out by micro etching in 10% periodic acid, followed by treatment with

10% sodium meta-periodate. Sections were blocked and stained with anti-human mast cell tryptase

antibody (Abcam, clone AA1), or an isotype-matched IgG1 control antibody (Abcam), followed by

incubation with a goat anti-mouse antibody conjugated with 10 nm Gold particles (British Biocell).

Sections were then observed in a JEOL JEM-1400 120kV transmission electron microscope (JEOL

USA) and images captured using a Gatan Orius 4k � 4 k digital camera.

Measurement of active tryptase in synovial fluids
Levels of active tryptase were measured with the tosyl-gly-pro-lys-pNA substrate assay (Mast Cell

Degranulation Assay Kit, Millipore) according to the manufacturer’s protocols.

Analysis of mast cell-related gene expression
We downloaded publicly available data from the US National Center for Biotechnology Information

Gene Expression Omnibus (NCBI GEO accession codes GSE32317) comparing gene expression pro-

files of synovial membranes obtained from patients with early- or end-stage osteoarthritis and from

individuals with prior joint trauma >6 months ago but no radiographic osteoarthritis (annotated as

‘healthy’ in the online dataset). All microarray analyses were restricted to putative mast cell- and

mast cell activation-related genes. Unsupervised and supervised hierarchical clustering analyses were

performed on the microarray data by using Cluster and TreeView software. Significance Analysis of

Microarrays (SAM) analyses were used for determining statistical significance with a q-value cutoff

set at 0.05. Paired or unpaired student’s t-tests were employed where appropriate and p<0.05 was

considered statistically significant.

Surgical induction of osteoarthritis in mice
This study was performed in accordance with the recommendations in the Guide for the Care and

Use of Laboratory Animals of the National Institutes of Health. All mouse studies were performed

under protocols approved by the Stanford University Administrative Panel on Laboratory Animal

Care (APLAC approval # 9942) and VA Palo Alto Health Care System Institutional Animal Care and

Use Committees (IACUC approvals #ROW1552 and #ROW1755). Littermate controls were used for

Cpa3-Cre;Mcl-1fl/fl (B6-Cpa3-Cre;Mcl-1+/+), Igh7-/- (Igh7+/+), and Fcer1a-/- (Fcer1a+/+). A fully con-

genic KitW-sh/W-sh mouse strain on a C57BL6/J genetic background (Stock No. 012861) and age-

matched C57BL/6J (Stock No. 000664) were obtained from The Jackson Laboratory. Destabilization

of the medial meniscus (DMM) was performed as described previously (Glasson et al., 2007;

Raghu et al., 2017). Five to eight mice were used per experimental arm based on power calcula-

tions performed using the PS Power and Sample Size Calculations software program (W.D. Dupont

and W.D. Plummer, Department of Biostatistics, Vanderbilt University; Version 2.1.3.0).

Mast cell engraftment studies
To generate mast cell-engrafted mice, we injected 4-week-old, male, mast-cell deficient KitW-sh/W-sh

mice and Cpa3-Cre;Mcl-1fl/fl (Hello Kitty) mice intravenously (i.v.) with 107 wild-type bone marrow-

derived cultured mast cells (BMCMCs; generated as previously described [Grimbaldeston et al.,

2005]), and 8 weeks later with 106 BMCMCs intra-articularly (i.a.) into the stifle joints. Age-matched

mast cell-deficient littermate mice injected both i.v. and i.a. with PBS (KitW-sh/W-sh + PBS or Cpa3-

Cre;Mcl-1fl/fl +PBS) and mast cell-sufficient mice injected both i.v. and i.a. with PBS (C57BL/6J + PBS

or B6-Cpa3-Cre;Mcl-1+/+ + PBS) were used as controls. DMM was then performed at 16 weeks of
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age. Mast cell engraftment was assessed by toluidine blue staining of stifle joint sections from mice

sacrificed 20 weeks after DMM.

Pharmacologic treatment of murine osteoarthritis
Twenty-week-old wild-type C57BL/6J mice were randomized by cage to receive vehicle (water), 100

mg/kg/day imatinib mesylate (LC laboratories) or 5 mg/kg/day APC366 (Tocris) divided between

two daily doses or 75 mg/Kg/day PRT062607 (synnovator) once daily by oral gavage for 12 weeks

(beginning 24 hr after DMM surgery). Two of eight mice treated with 100 mg/kg/day imatinib were

excluded from analyses due to inadequate histology. Similarly, for anti-IgE treatment, twenty-week-

old wild-type C57BL/6J mice were administered 2.5 mg/Kg mouse anti-IgE antibody or IgG1k iso-

type (Crown Biosciences) i.p. twice a week for 12 weeks. Mouse anti-mouse IgE was made using the

sequences derived from the rat hybridoma (R1E4) that specifically binds to the region of mouse IgE

known to bind FceRI (Ota et al., 2009). Mice were sacrificed 12 weeks after DMM for histologic

assessment of osteoarthritic development.

Histologic assessment of osteoarthritic development in mice
Stifle joints were harvested 12 or 20 weeks after DMM and fixed in 10% neutral buffered formalin

followed by decalcification in formic acid for 48 hr. Joints were then embedded in paraffin, and 6

mm sections cut from three separate levels of the joint and stained with Safranin-O for assessment of

cartilage damage; H and E for assessment of synovial thickening (synovitis) and osteophyte forma-

tion; and toluidine blue for the assessment of mast cells. Cartilage degeneration, synovitis, and

osteophyte formation were evaluated by two blinded observers using a modified version of a

described scoring system (Kamekura et al., 2005) as we previously described (Wang et al., 2011).

In brief: Cartilage degeneration was calculated by depth of cartilage degeneration (score of 0–4)�

width of cartilage degeneration (with a score of 1 meaning one-third of the surface area, a score of 2

meaning two-thirds of the surface area, and a score of 3 meaning the whole surface area) in each

third of the femoral-medial and tibial-medial condyles. The scores for the six regions were then

summed. Synovitis scores were calculated as previously described (Blom et al., 2004): 0, no changes

compared to normal joints; 1, thickening of the synovial lining and some influx of inflammatory cells;

2, thickening of the synovial lining and intermediate influx of inflammatory cells; and 3, profound

thickening of the synovial lining (more than four cell layers) and maximal observed influx of inflamma-

tory cells. Scores for synovitis were recorded for the femoral-medial and the tibial-medial condyles,

and the scores for the two regions summed. Osteophyte formation was scored according to a previ-

ously described scoring system (Kamekura et al., 2005): 0, none; 1, formation of cartilage-like tis-

sues; 2, increase of cartilaginous matrix; 3, endochondral ossification. Mast cells were quantified by a

blinded examiner who determined the number of toluidine blue-positive mast cells per high power

field of the joint sections.

Immunohistochemical staining of murine joint sections for tryptase
Synovial sections were fixed, decalcified, blocked, and stained with a biotinylated anti-tryptase anti-

body (Abcam, clone AA1), followed by avidin-HRP, then TMB substrate, and microscopy performed

to determine if tryptase-positive mast cells were present.

In vitro tryptase stimulation assays
Primary synovial fibroblasts were derived from synovium of individuals with end-stage osteoarthritis

by enzymatic digestion with 2 mg/ml Collagenase Type IV for 24 hr at 37˚C. Passage 3 (P3) fibro-

blasts were serum starved overnight in 1% fetal bovine serum and then stimulated with media alone

(Alpha MEM) or with 0.2 mg/ml tryptase in the presence or absence of 100 mM of the tryptase-selec-

tive inhibitor APC366. Their mRNA was isolated, and mRNA levels of pro-inflammatory mediators

were measured by qPCR and normalized to those of 18 s. Taqman probes were obtained from

Applied Biosystems. Proinflammatory cytokine and chemokine secretion was measured by multi-

plexed, fluorescent bead-based immunoassay (Luminex) by using the human cytokine 27-plex assay

(Bio-Rad). For analysis of Erk activation, 103 primary synovial fibroblasts were stimulated with media

alone (Alpha MEM) or with 1 mg/ml tryptase for 30 min and then lysates were run on SDS PAGE gel
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and western blot analysis was performed with anti-Erk1/2, anti-phosphoErk1/2 or anti-b-actin

antibodies.

Statistics
For analyses involving a single comparison, statistical comparisons were performed using either a

two-tailed Student’s t test or Mann-Whitney U test following tests for variance homogeneity. Multi-

ple comparisons were performed using a one-way analysis of variance (ANOVA) followed by Dun-

nett’s post-hoc test.

Study approval
All human samples were obtained under protocols approved by the Stanford Institutional Review

Board (IRB) or the University of Padova IRB, and written informed consent was received from partici-

pants prior to inclusion in the study. Participants were identified by numbers, never by name, in this

study. All mouse breeding and osteoarthritis studies were performed under protocols approved by

the Stanford Committee of Animal Research and in accordance with National Institutes of Health

guidelines.
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