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Insulin-like growth factors (IGFs) are key growth-promoting peptides that act as both 

endocrine hormones and autocrine/paracrine growth factors. In the bloodstream and in 

local tissues, most IGF molecules are bound by one of the members of the IGF-binding 

protein (IGFBP) family, of which six distinct types exist. These proteins bind to IGF with 

an equal or greater af�nity than the IGF1 receptor and are thus in a key position to 

regulate IGF signaling globally and locally. Binding to an IGFBP increases the half-life of 

IGF in the circulation and blocks its potential binding to the insulin receptor. In addition to 

these classical roles, IGFBPs have been shown to modulate IGF signaling locally under 

various conditions. Although members of the IGFBP family share signi�cant sequence 

homology, they each have unique structural features and play distinct roles. These IGFBP 

genes also have different modes of regulation and distinct expression patterns. Some 

IGFBPs have been found to bind to their own receptors or to translocate into the interior 

compartments of cells where they may execute IGF-independent actions. In spite of 

this functional and regulatory diversity, it has been puzzling that loss-of-function studies 

have yielded relatively little information about the physiological functions of IGFBPs. 

In this review, we suggest that evolution has tended to retain an array of IGFBPs in 

order to facilitate �ne-tuning of IGF signaling. We explore the emerging explanation that 

many IGFBP functions have evolved to allow the targeted adjustment of IGF signaling 

under stressful or irregular conditions, which would likely not be revealed in a standard 

laboratory setting.

Keywords: insulin-like growth factor, insulin-like growth factor-binding protein, insulin-like growth factor 1 

receptor, insulin-like growth factor signaling, evolution

INTRODUCTION

�e insulin and insulin-like growth factor (IGF) signaling pathway is highly conserved among the 
metazoans. Many invertebrates have large numbers of insulin-like peptides (ILPs); for instance, 
the Caenorhabditis elegans genome contains around 40 (http://wormbase.org), and the Drosophila 
melanogaster genome contains 8 (http://�ybase.org). In vertebrates, the ancestral insulin-like gene 
has diverged into insulin, IGFs-1 and -2, and several ILPs including relaxin and relaxin-like peptide 
(1). Insulin primarily acts in an endocrine fashion to regulate metabolism, whereas IGFs have a 
variety of roles as endocrine, paracrine and autocrine factors that promote cell growth, prolif-
eration, di�erentiation, survival, etc. Both IGF-1 and IGF-2 bind to the IGF-1 receptor (IGF1R), 
which is expressed in almost all cells, with hepatocytes being an important exception in mammals. 
�e liver secretes IGF-1 into the circulation in response to growth hormone (GH) stimulation  
(2, 3). Local tissues also secrete IGF-1 in response to GH, and this paracrine/autocrine IGF-1 acts 
together with the endocrine IGF-1 (mostly liver derived) to mediate the global growth promoting 
e�ects of GH (4). In addition to their role in regulating fetal, neonatal, and postnatal growth, IGFs 
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TABLE 1 | The IGFBP gene repertoire in selected vertebrate species.
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are also involved in diverse processes including wound healing 
(5), development of CNS and other tissues (6), regulation of 
protein, carbohydrate, and lipid metabolism (7), neuroprotec-
tion (8), aging (9), etc.

�e diverse functions of this central hormonal pathway 
require that robust regulatory mechanisms be in place to avoid 
inappropriate regulation and/or dysfunction in di�erent tissues 
and at di�erent times. We now understand that IGF signaling is 
regulated by a family of speci�c IGF-binding proteins (IGFBPs) 
of which there are six distinct types in vertebrates. �ese IGFBPs 
share signi�cant sequence homology and they are capable of 
binding IGFs with equal or greater a�nity than the IGF1R.  
In fact, in both the circulation and in local tissues, most IGFs can 
be found bound to an IGFBP (10–13). In this review, we discuss 
the complex interplay of both overlapping and unique functions 
by which IGFBPs in�uence IGF signaling.

THE IGFBP FAMILY

�e IGFBP family is evolutionarily ancient and highly conserved 
in vertebrates (11, 14–16). �e six types of IGFBPs have been 
designated IGFBP-1 through IGFBP-6. Mammals generally 
possess one gene that belongs to each of the six types, and 
humans follow this pattern (Table 1). Some vertebrate species 
occasionally lack one or more of the types, and others have 
more than one IGFBP gene that can be classi�ed within one 
type (Table 1). It is believed that the IGFBP family evolved via 
successive rounds of whole genome duplications. Notably, many 
teleost �sh possess two copies of each of the six types of IGFBPs 
(Table  1), which is attributable to the third round of whole 
genome duplication that they are believed to have undergone 
following their divergence from the other vertebrates (16–21). 
Salmonid �sh experienced an additional round of genome wide 
duplication and can have four copies of each IGFBP (22–24). 
We discuss the evolution of the IGFBP family in more detail in 
a later section.

All IGFBPs generally have approximately 200–300 amino acids 
and share a conserved structure consisting of a highly cysteine-
rich N-terminal domain that is highly conserved among the 
IGFBP family and across species, a linker domain whose sequence 
is variable, and a cysteine-rich C-terminal domain that is also 

evolutionarily conserved (Figure  1A). �e N- and C-terminal 
domains are globular and are structurally stabilized by multiple 
disul�de bonds between the conserved cysteine residues. Both of 
these domains participate in forming the IGF-binding site. �e 
central linker domain is unstructured and serves to tether the 
N- and C-terminal domains together but also provides a location 
for functional motifs (10, 25).

Many of the functions of di�erent IGFBPs are made possible 
by their unique collection of functional motifs (Table 2). �ese 
functional motifs include binding sites for heparin, components 
of the extracellular matrix and cell surface proteoglycans; pro-
teolytic cleavage sites; sites of post-translational modi�cations 
including glycosylation, etc. In addition, IGFBP-2, -3, -5, and -6 
all contain functional nuclear localization sequences by which 
they are imported into the cell nucleus in certain cell types as we 
discuss below.

It should be noted that a number of proteins belonging to the 
CCN (cyr61, ctgt, and Nov) protein family have been reported 
to contain sequences similar to the IGFBP N-domain and were 
once named IGFBP 7–12. It was later recognized that these were 
not IGFBPs and were renamed as IGFBP-related proteins and 
classi�ed as part of a broader superfamily with the IGFBPs (26). 
�e latter nomenclature has been questioned because these CCN 
family proteins not only lack high-a�nity IGF-binding abilities 
but are also structurally no more related to IGFBPs than to von 
Willebrand factor, thrombospondin, or growth factor cysteine 
knots (27). �ese CCN family proteins will not be discussed in 
this review.

IGFBP BIOLOGICAL ACTIONS

In this section, we discuss a selection of the vast literature on the 
many reported biological actions/activities of IGFBPs that have 
been reported in gain-of-function studies in  vivo or in  vitro. 
Each species has its own standard nomenclature for gene and 
protein names. In this article, we deal with a large number of 
species. To increase the readability, we will use the same symbol 
for each IGFBP name. Whenever required, the species name is 
added to avoid confusion.

Endocrine Actions of IGFBPs
In extracellular environments, most IGFs are bound with IGFBPs, 
either in a binary complex or a ternary complex (Figure  1B). 
�e vast majority of IGFs in the serum are bound to an IGFBP. 
IGFBP-3 is the most prevalent in adult serum with a concentration 
of around 100 nM/L, while all of the other IGFBPs are present at 
concentrations of less than 20 nM/L (25, 28). About 75–80% of 
serum IGFs were found in a ternary complex of about 150 kDa 
consisting of an IGF, IGFBP-3 (or less o�en IGFBP-5) and a gly-
coprotein called acid labile subunit (ALS). �e remaining 20–25% 
of IGFs were complexed with one of the other IGFBPs (25, 28). 
Unbound IGFs have a half-life of less than 10 min (29). Binding 
to an IGFBP increases IGF half-life in the circulation to around 
25  min, but the binary complexes are able to rapidly leave the 
circulation (29). Most of the circulating IGFs are present in the 
IGF-IGFBP3/5-ALS ternary complex (30, 31). �e addition of ALS 
increases the molecular size of the complex and this has the e�ect 
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of preventing the bound IGF from leaving the capillaries thereby 
con�ning it within the circulation (32). �e ternary complex 
thereby greatly prolongs the half-life of bound IGFs to about 16 h 
or more, forming a long-lasting reservoir of IGFs in the circulation 
(28). Deletion of the ALS gene in mice results in a 60% reduction in 
circulating IGFs and a 15–20% reduction in postnatal growth (33).

Insulin-like growth factors are su�ciently structurally similar 
to insulin that they can cross react with the insulin receptor (IR) 
(34). Another important function of circulating IGFBPs is to 
prevent the potential interaction of IGFs with the IR, which is 
crucial since IGF concentrations are high enough in the serum 
to cause hypoglycemic e�ects even given their lower a�nity for 
the IR (25, 35).

Insulin-like growth factor-binding protein-3 is produced in 
the liver and in other tissues and secreted into the serum, and 
its hepatic expression level is regulated by GH (36). �is ensures 
that as the amount of secreted IGF-1 increases in response to GH 
stimulation, there will be an increased quantity of IGFBP-3 to 
absorb it in the circulation. IGFBP-1 is also synthesized in the 
liver and its expression and secretion are highly regulated by 
catabolic factors and hormones. For example, hepatic IGFBP-1 
expression level is highly induced by starvation, hypoxia, and 
stress (37, 38). Its expression is reduced by insulin and increased 
by glucocorticoids (39, 40). �ese regulatory mechanisms serve 
to promote IGFBP-1 expression in response to starvation and 
catabolic conditions, including amino acid shortages and hypoxia 
(41, 42). �e functional role of IGFBP-1 in these conditions is to 

reduce the rate of development and growth by binding to IGFs 
and inhibiting IGF activity (37, 38).

Local Actions of IGFBPs
While the bulk of circulating IGFBP-3 and IGFBP-1 are produced 
in the liver, IGFBP-3 and other IGFBPs are also expressed in 
many peripheral tissues (43, 44). �e importance of local IGF-1 is 
supported by the �nding that deletion of IGF-1 speci�cally in the 
liver resulted in an 80% reduction in circulating endocrine IGF-1 
but no change in postnatal growth (45). Biochemical and cell cul-
ture studies suggest that IGFBPs generally bind IGFs with equal 
or higher a�nity than the IGF1R and can inhibit IGF signaling by 
sequestration of the ligands (12, 13, 25, 46) (see Figure 2A). An 
example of this behavior is found in vascular smooth muscle cells 
(VSMCs) where IGFBP-4 acts to block IGF-1 from interacting 
with the IGF1R and thereby inhibits IGF-1-stimulated DNA syn-
thesis (47). When IGFBP-4 was overexpressed in various tissues 
in mice, it resulted in hypoplasia of the a�ected tissue, suggesting 
that this may be a common action in di�erent cell types (48).

Some IGFBPs have been shown to potentiate IGF signaling. 
Several proteases are known to cleave IGFBPs, and the resulting 
proteolytic fragments have greatly reduced binding a�nity for 
IGFs. �is leads to the liberation of IGFs from the IGF/IGFBP 
complex and increases the amount of IGFs available for IGF1R 
binding, thereby converting the inhibition of IGF signaling into 
an enhancement (Figure 2B). �e proteases pregnancy-associated 
plasma protein A (PAPP-A) and PAPP-A2 are speci�c IGFBP 
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proteases (49). IGFBP-4 is cleaved by PAPP-A when bound to 
IGF. �is results in the release of the IGF ligand from the complex 
and a consequent increase in IGF ligand available for binding to 
the IGF-1R (50). PAPP-A knockout mice were about 40% smaller 
than wild-type littermates, which is consistent with the idea 
that PAPP-A cleaves inhibitory IGFBPs and thereby promotes 
IGF action (51). IGFBP-4 knockout mice were paradoxically 
slightly smaller than wild-type littermates, but mice null for both 
IGFBP-4 and PAPP-A were not smaller than IGFBP-4 knockout 
mice, indicating that the growth-promoting e�ects of PAPP-A 
likely result from the cleavage of IGFBP-4 (52). A number of other 
proteases have also been found to cleave various IGFBPs (53–55).

�e potentiating action of some IGFBPs can occur when the 
IGFBP binds to the target cell’s surface proteoglycans and/or 
extracellular matrix components, resulting in a concentration of 
local IGF that can then be released to the IGF1R (Figure 2C). 
It has been reported that IGFBP-5 undergoes a reduction of 
a�nity for IGFs when it binds to certain extracellular matrix 
components, allowing it to deliver and then release IGF ligands 
at target sites (56, 57). Di�erentiating myoblasts provide one 
example of the interplay between a locally produced IGFBP and 
autocrine/paracrine IGF signaling. During myogenesis, IGF-2 is 
produced locally at high levels and this is required for myoblast 
di�erentiation (58). Prior to the onset of IGF-2 secretion, there 
is an increase in the expression and secretion of IGFBP-5. �e 
secreted IGFBP-5 potentiates IGF-2 signaling and increases 
myoblast cell di�erentiation by binding to IGF-2 and promoting 
its interaction with the IGF-1R (59).

Insulin-like growth factor-binding proteins have also been 
reported to act locally under certain pathological conditions. 

A good example is the role of IGFBP-5 in the progression of 
atherosclerosis. IGFBP-5 is normally produced and secre ted 
by VSMCs but its expression is upregulated in the VSMCs 
found within atherosclerotic plaques (60). Immunostaining 
for IGFBP-5 protein was dense within atherosclerotic plaques 
and especially around calci�ed areas (61). Locally secreted IGFs 
have been suggested to play an important role in atherogenesis 
by promoting the VSMC proliferation and their migration into 
the area of the arterial wall known as the intima (62, 63). �ese 
actions are promoted by local IGFBP-5 (57). Interestingly, a 
protease resistant IGFBP-5 mutant actually inhibited VSMC 
proliferation and migration, suggesting a mechanism by which 
IGFBP-5 is normally cleaved in order to present the IGF ligands 
to the IGF-1R on the surface of VSMCs (56). IGFBP-5 also 
binds to certain extracellular matrix proteins that are enriched 
in atherosclerotic lesions. It was reported that these interactions 
enhanced the mitogenic e�ects of IGFs on VSMCs (53, 55, 64). 
�ese studies support a model in which local IGFBP-5 is con-
centrated within atherosclerotic lesions (by both increased local 
expression and secretion and by binding to locally enriched 
ECM components), where it then acts to concentrate and deliver 
IGFs to the IGF1R on local VSMCs.

Studies suggest that IGFBP-4 may be involved in inhibiting 
atherosclerosis. A protease-resistant IGFBP-4 mutant was able 
to inhibit atherosclerotic lesion development in hypercholester-
olemic pigs (65). When the PAPP-A protease that cleaves IGFBP-4 
was knocked down in a mouse model of atherosclerosis (ApoE 
KO), there was decreased formation of atherosclerotic lesions 
(66, 67). When PAPP-A expression was transgenically increased 
locally within VSMCs in artery walls in ApoE KO mice, there 
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was a substantial increase in atherosclerotic plaque formation 
that was associated with an increase in local IGF-1 availability 
(68). Targeting PAPP-A in ApoE KO mice with a monoclonal 
antibody that inhibited its proteolytic activity resulted in a 70% 
reduction in aortic plaque burden (69). �ese results suggest that 
the proteolysis of IGFBP-4 by PAPP-A releases IGF-1 that acts 
locally to promote atherosclerotic plaque formation.

IGF-Independent Actions
Several IGFBPs have been reported to have cellular actions that 
are independent of their IGF binding (Figure 2D). Some IGF-
independent actions are mediated by binding to cell surface 
proteins. For example, the integrin-binding RGD motif found 
in IGFBPs 1 and 2 allows them to promote cell migration and 
in�uence cell adhesion, respectively (70, 71). IGFBP-5 and -3 
possess functional nuclear localization sequences and can enter 
the nucleus (72, 73). �e nuclear localization of IGFBP-3 and -5 
was found to be mediated by importin beta (72). Locally pro-
duced IGFBP-5 was found to stimulate porcine VSMC migration 
by an IGF-independent mechanism (74). IGFBP-5 was shown to 
possess transactivation activity (73). �is transactivation activity 
was mapped to the N-domain and was also demonstrated in the 
N-domains of IGFBPs-2 and 3 (75). Nuclear localization and 
transactivation activity are also present in zebra�sh IGFBP-3 
and -5 (21, 76). In cephalochordate amphioxus, which diverged 
from the vertebrates approximately 520 million years ago, there 
is a single IGFBP-like gene. �e amphioxus IGFBPs contains 

a functional nuclear localization signal and a transactivation 
domain (77). �e lamprey IGFBP3, a jawless agnathan vertebrate, 
has been reported to possess both IGF-dependent action and the 
transactivation activity. �e conservation of IGFBP transactiva-
tion activity across eons of evolution suggests that it likely has an 
important function. Along this line, several studies have found 
roles for nuclear IGFBPs in altering transcription in cancer cells 
(78, 79), but the physiological role(s) of the endogenous IGFBPs 
in the nucleus remain unclear.

Other IGF-independent actions have been reported that do 
not apparently involve nuclear localization. Paracrine IGFBP-4 
was shown to promote di�erentiation of cardiomyocytes by 
inhibiting Wnt signaling in an IGF-independent manner (80). 
�e physiological relevance of this e�ect was supported by the 
fact that knockdown of IGFBP-4 in Xenopus embryos resulted 
in cardiac defects attributable to impaired cardiomyogenesis  
(80). On the other hand, IGFBP-4 knockout mice have no cardiac 
phenotype (81). �e lack of phenotype may be due to genetic 
redundancy and/or compensation by other IGFBPs. Another 
example is the antagonization of bone morphogenic protein 
signaling by IGFBP-3 in zebra�sh (76). It has been reported that 
human IGFBP-6 has antiangiogenic activity when tested using 
in  vitro assays. �is action is independent from IGF binding 
because an IGFBP-6 mutant with 10,000-fold lower binding 
a�nity for IGFs was as potent as the wild-type human IGFBP-6 
in inhibiting angiogenesis (82). Interestingly, IGFBP-6 was found 
to be able to bind vascular endothelial growth factor (VEGF) 
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and coincubation with IGFBP-6 abolished VEGF-stimulated 
angiogenesis. �is antiangiogenic action of IGFBP-6 was dem-
onstrated in  vivo in a tumor model by transplanting human 
Rh30 rhabdomyosarcoma cells stably transfected with IGFBP-6 
into BALB/c nude mice (82). Expression of zebra�sh IGFBP-6b 
had similar e�ects, indicating that this antiangiogenic activity is 
evolutionarily conserved (82).

Some IGFBPs may have cell surface receptor-mediated IGF-
independent actions (Figure  2D). Exogenous IGFBP-3 was 
reported to inhibit cultured cell growth by an IGF-independent 
mechanism (83, 84). �is e�ect was shown to be related to the 
binding of IGFBP-3 to the type 5 transforming growth factor β 
(TFGβ) receptor (85). �is receptor was then shown to be identi-
cal to the low-density lipoprotein receptor-related protein-1 
(LRP-1) (86). LRP-1 is known to be responsible for the uptake 
and clearance of various molecules from the circulation (87). �e 
downstream mechanisms by which the interaction of IGFBP-3 
with LRP-1 may lead to growth inhibition remain unclear. 
IGFBP-2 has been shown to bind to a receptor called receptor 
protein tyrosine phosphatase β (RPTPβ), which triggers a signal 
transduction cascade that leads to reduced PTEN phosphatase 
activity and a consequent enhancement of IGF-1-induced Akt 
pathway activation (88). �is interaction between IGFBP-2 and 
RPTPβ was shown to be responsible for the ability of IGFBP-2 
to trigger osteoblast di�erentiation (89). �is role of IGFBP-2 
was independent of IGF-binding and a 13-residue peptide cor-
responding of IGFBP-2’s heparin-binding domain 1 was shown 
to mediate its binding to RPTPβ (88, 89).

Loss-of-Function Studies
Given the numerous biological actions of IGFBPs found in gain-
of-function studies, it was surprising that little or no phenotypic 
change was observed when individual IGFBP genes were deleted 
in mice (81, 90–93). IGFBP-1 knockout mice were indistinguish-
able from their wild-type littermates and no embryonic lethality 
was observed (91). IGFBP-2 knockout mice were phenotypically 
normal with the exception of minor gender speci�c changes in 
bone structure and minor changes in the weights of spleen and 
liver in adult males (90, 92). IGFBP-3 knockout mice were also 
normal (81). Deletion of the IGFBP-4 gene in mice resulted in a 
mild 10–15% reduction in prenatal growth, which is somewhat 
paradoxical given that overexpression of IGFBP-4 also reduces 
growth (81). IGFBP-5 knockout mice were also phenotypically 
normal (81). Genetic deletion of IGFBP genes using CRISPR-
Cas9 or TALEN in zebra�sh have also resulted in little or no 
alteration in phenotype. Zebra�sh IGFBP-3 knockout �sh are 
morphologically normal and their growth rate and developmen-
tal speed are comparable to their siblings. Likewise, IGFBP-5a 
and -5b knockout zebra�sh are morphologically indistinguish-
able from their wild-type siblings when kept under optimized lab 
conditions (unpublished data).

When IGFBP-3, -4, and -5 were knockout together in mice, 
there was a 25% reduction in body growth, decreased fat accumu-
lation and quadriceps muscle mass, expanded pancreatic islets, 
and enhanced glucose homeostasis (81). �ese triple mutant mice 
were viable (81). Considering that knockout of IGF-1 itself results 
in a 60% reduction in prenatal growth followed by perinatal 

lethality for over 95% of mutant pups (94), the phenotype of the 
triple IGFBP-3/4/5 knockout mice can be viewed as relatively 
moderate.

�e lack of substantial phenotypes in these IGFBP mutant 
mice and the �nding that these animals can survive without 
three out of the six IGFBPs suggests a high degree of func-
tional redundancy and/or genetic compensatory mechanisms. 
Indeed, elevated levels of IGFBPs-1, -3, and -4 were found in the 
IGFBP-2 knockout mice, supporting the notion that the lack 
of IGFBP-2 may be compensated for by upregulation of other 
IGFBPs (90).

Genetic redundancy among paralogous genes is a widespread 
phenomenon and can result in the masking of phenotypes in 
loss-of-function studies (95, 96). One study of the Drosophila 
genome suggested that when gene duplications occur, only 
4% of the resulting paralogs survive (97). One explanation 
for the stable retention of redundant paralogous genes is that 
genes with redundant functions may also acquire functions 
that are unique to themselves. �is can result in the coselec-
tion of the redundant functions with the unique functions in 
a model referred to as the “piggyback” mechanism (98, 99). In 
this model, whenever it is the case that most mutations tend 
to inactivate both the redundant and non-redundant functions 
simultaneously, redundant functions can then be retained in 
both gene duplicates. Unique functions could be obtained by 
gain-of-function mutations, but it is more common for comple-
mentary inactivating mutations to cause ancestral functions to 
be partitioned between the duplicates in the process of subfunc-
tionalization (100). Redundant functions can be maintained in 
both duplicates when at least one unique function is maintained 
in each duplicate (100).

WHY ARE THERE SO MANY IGFBPs?

Why has evolution favored the retention of so many IGFBP genes? 
One potential explanation is that, given the crucial importance of 
the IGF pathway in determining central life history traits such 
as body size and longevity, it may be that even relatively minor 
�ne-tuning of IGF signaling levels would be strongly selected for. 
A possible example comes from the zebra�sh IGFBP genes. In 
zebra�sh, there are two IGFBP-1 genes, being paralogs of mam-
malian IGFBP-1 (17). Zebra�sh IGFBP-1a and -1b have similar 
expression patterns and regulatory responses, but IGFBP-1a has 
a higher a�nity for IGFs than IGFBP-1b, which may allow more 
graded inhibition of IGF signaling during catabolic conditions 
than was possible with only a single IGFBP-1 gene (17). �e 
zebra�sh genome also contains two IGFBP-2 genes. In this case, 
the IGFBP-2a and -2b proteins have similar biological activities 
(18, 101). However, these two paralogous genes exhibit distinct 
spatiotemporal expression patterns. During embryogenesis, 
IGFBP-2a mRNA is found in the lens and the brain boundary 
vasculature; it subsequently becomes highly expressed in the 
liver. IGFBP-2b is detected initially in all tissues at low levels, but 
later becomes abundant in the liver (18). In the adult stage, liver 
has the highest levels of IGFBP-2a mRNA, followed by the brain. 
IGFBP-2b mRNA, on the other hand, is only detected in the liver 
(18, 101). �e two zebra�sh IGFBP-5 genes have diverged both 
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in gene expression patterns and protein functions. Zebra�sh 
IGFBP-5a and -5b are expressed in spatially restricted, mostly 
non-overlapping domains during early development (21). �e 
IGF-binding site is conserved in both zebra�sh IGFBP-5a and -5b, 
and they are both secreted and capable of IGF binding (21). While 
zebra�sh IGFBP-5b has transactivation activity, no such activity 
is found with IGFBP-5a (21). Given their divergence in both 
expression patterns and cellular actions, zebra�sh IGFBP-5a and 
5b may regulate IGF-signaling within their respective domains in 
subtly di�ering ways. �is may provide enhanced �ne-tuning of 
IGF signaling as compared with a single IGFBP-5 gene.

A second possible explanation is that genetic compensation is 
responsible for masking what would otherwise be more signi�-
cant phenotypes. It has been recognized recently that permanent 
genetic deletions (knockouts), o�en result in a less severe phe-
notype than transient reductions in expression (knockdowns) 
(102). �e mechanisms responsible for this phenomenon remain 
unclear but a number of hypotheses have been proposed, includ-
ing the idea that related or unrelated genes could be upregulated 
in the permanent mutants (102). When zebra�sh IGFBP-3 was 
deleted, for example, no phenotypes were detected. However, 
when zebra�sh IGFBP-3 was knocked down using antisense 
morpholinos, it resulted in defects in the development of the 
pharyngeal skeleton and inner ear (103).

Another possible explanation is that, in addition to their 
somewhat overlapping functions of transporting and protecting 
IGFs in the circulation, the individual IGFBPs are also involved 
context-dependent regulation of IGF signaling in speci�c cell 
types and under speci�c stressful or aberrant conditions. Flexible 
and versatile modes of regulation such as these would be highly 

advantageous for organisms in the wild and would be strongly 
selected for, despite being unlikely to produce observable pheno-
types under optimized laboratory conditions. One example is the 
role of IGFBP-1 in responding to catabolic conditions by throttling 
back growth and developmental rate in order to conserve scarce 
resources (38, 42, 104). Another example is the speci�c role of 
IGFBP-1 in liver regeneration. IGFBP-1 knockout mice exhibited 
normal growth but were found to have impaired liver regenera-
tion (91). �eir liver cells were highly sensitive to induction of 
apoptosis by treatment with Fas agonist. �is e�ect could be 
ameliorated by pretreatment with IGFBP-1 (105), suggesting that 
IGFBP-1 has a crucial but conditional role in protecting the liver 
when facing injury and healing. �e role of IGFBP-5 in mammary 
gland remodeling is a further example. �e IGFBP-5 knockout 
mice had normal body growth and normal mammary gland 
development under standard laboratory conditions. However, 
these mutant mice exhibited delayed mammary gland involu-
tion and enhanced alveolar bud formation a�er ovariectomy 
and estradiol/progesterone treatment (106). Another example is 
provided by zebra�sh IGFBP5a, which is speci�cally expressed 
in a speci�c type of epithelial cell (ionocytes) on the larval yolk 
sac skin that are responsible for transporting Ca2+ ions. When 
wild type larvae are raised in embryo solution containing a very 
low calcium concentration, these ionocytes rapidly proliferate 
via a mechanism that requires the activation of IGF signaling 
in these cells (107). �is allows increased calcium import and is 
necessary for survival under these conditions. �is proliferation 
is blunted in the IGFBP5a knockout �sh larvae, causing lethality. 
However, under optomized and calcium-rich conditions, these 
mutant �sh are indistinguisable from their wild type siblings. �is 
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suggests that IGFBP-5a is critical for calcium ionocytes to activate 
a conditional proliferation program in order to maintain calcium 
homeostasis.

As always in biology, the question of why there are so many 
IGFBPs can only be fully understood in the context of evolution-
ary history. Based on analyses of phylogenetic relationships, the 
surrounding chromosomal regions in which modern IGFBPs 
sit, and IGFBP sequences from a large number of species, the 
evolution of the IGFBP family in early vertebrate ancestors has 
been reconstructed (16). An ancestral IGFBP sequence in an 
ancient early chordate was duplicated resulting in two adjacent 
IGFBP sequences in a chromosomal region that also bore the 
homeobox (HOX) genes. �ese two original genes were then 
duplicated along with the entire genome in the two successive 
rounds of tetraploidization that occurred in early vertebrates 
(108), resulting in eight IGFBP genes. It is thought that two 
of them were lost, resulting in the six types of IGFBPs seen in 
mammals and most other vertebrate classes (Figure 3). In many 
teleost �sh, another round of tetraploidization occurred, result-
ing in a further doubling of IGFBP genes (16, 109). Some of these 
additional duplicates were subsequently retained in modern �sh. 
Indeed, there is substantial variation in numbers of IGFBP genes 
between �sh species (Table 1). �e salmonid �sh, whose com-
mon ancestor underwent a fourth round of whole genome dupli-
cation, exhibit the largest known repertoire of 22 IGFBP genes 
(22, 23). �e preservation and evolutionary conservation of most 
of the IGFBP gene duplicates implies that these genes might have 
aquired unique evolutionarily adaptive roles, either by develop-
ing new functions opportunistically (neofunctionalization) or by 

retention of a subset of the parent gene’s original functions in each 
duplicate (subfunctionalization). �is is in agreement with the 
idea that �ne tuning of IGF signaling is strongly adaptive to the 
extent that perhaps even small changes in the regulation of IGF 
signaling would be su�cient to account for the conservation of 
additional IGFBP genes to provide these regulatory advantages.

�e acquisition of IGF-independent actions of IGFBPs pre-
sents an intriguing question. One possible explanation is that 
they were present in the ancestral IGFBP gene. A comparative 
study suggested that the single amphioxus IGFBP has a functional 
nuclear localization sequence and transactivation activity but 
lacks the ability to bind modern IGFs (77). Both IGF-dependent 
and IGF-independent actions appear to have been present in the 
earliest vertebrates as indicated by the fact that an IGFBP from 
sea lamprey exhibited both IGF-dependent and -independent 
actions (110). �erefore, the IGF-binding function of IGFBPs 
may have been acquired later in evolution.

CONCLUDING REMARKS AND 

PROSPECTS

We propose that IGFBPs provide a set of tools with which evo-
lution has acted to increase the �exibility and versatility in the 
regulation of the IGF signaling system. An ancestral IGFBP gene 
has diversi�ed into a number of IGFBP genes, which have both 
overlapping and unique expression patterns and functions. �ese 
IGFBPs can be viewed as di�erent tools that all apply leverage but 
also provide individual context speci�c advantages. A number 
of attributes of IGFBPs may help to give rise to the increased 
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�exibility and versatility in their abilities to regulate IGF actions. 
�ese include: (1) distinct spatiotemporal expression patterns of 
these IGFBP genes, (2) di�erences in their ligand-binding a�n-
ity and selectivity, (3) di�erent roles in the circulation including 
formation of the ternary complex with ALS, (4) di�erent abilities 
to interact with cell surface proteins, extracellular proteins, and 
other growth factors, (5) di�erent subcellular localization, and 
(6) various IGF-independent activities (Figure 4). �e existence 
of multiple IGFBPs can contribute to the �ne-tuning of IGF 
signaling both globally and locally, and under various physiologi-
cal and pathological conditions. �e involvement of IGFBPs in 
mammary gland growth, liver regeneration, and atherogenesis, 
and the adaptive proliferation of calcium ionocytes in zebra�sh 
are all examples of this sort of process. It is plausible that more 
IGFBPs will be found to participate in other roles of this type.  
A great deal of work has identi�ed many roles for IGFBPs in can-
cer cells despite the fact that IGFBPs are not commonly mutated 
in human cancers (12). Given the involvement of IGFBPs in 
tissue remodeling and conditional proliferation of certain cell 
types, it is not surprising that their physiological actions would 
be coopted by cancer cells in order to facilitate the needs of tumor 
growth.

Much has been learned in recent decades about the cell 
type-speci�c actions of IGFBPs but many questions remain 
unanswered. One major question is, why do several of the IGFBPs 
have the ability to enter the cell nucleus? Although certain IGFBPs 
have a functional nuclear localization motif and a transactivation 
domain that are both evolutionarily conserved, the physiologi-
cal functions of the nuclear IGFBPs remain unknown. Another 
area of inquiry for future research will be to identify additional 
stressful conditions that IGFBPs have evolved to respond to. It 

will also be of great interest to identify pathological processes that 
depend on the misregulation of IGFBP(s) to increase or decrease 
IGF signaling, or on inappropriate activation of their IGF-
independent actions. We also have much more to learn regarding 
the evolutionary history of the IGFBPs in early vertebrates and 
the nature of its IGF-independent functions. �is may shed light 
on the complex biology of modern IGFBPs.

CRISPR/Cas9-based genetic editing technology will allow the 
generation of mutant animals whose endogenous IGFBP genes 
are directly mutated to disrupt individual functionalities such 
as IGF-binding, nuclear translocation, or interaction with cell 
surface proteins, to allow assessing the roles of those capabilities 
individually or collectively under physiological conditions in vivo. 
�e CRISPR-Cas9-based approaches will allow the physiological 
roles of redundant paralogs to be determined much more readily 
by enabling the generation of multiple knockouts at reasonable 
cost. Increasing our understanding of IGFBPs will yield insights 
into the array of biological processes to which IGF signaling is 
linked, including many that are crucial for human health and 
diseases.
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