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IGFBP2 POTENTIATES EGFR-STAT3 SIGNALING IN GLIOMA 

 

Yingxuan Chua, M.S. 

Advisory professor: Wei Zhang, Ph.D. 

 

Gliomas are clinically challenging brain tumors with dismal survival rates due to its 

infiltrative nature and ineffective standard therapy. Insulin-like growth factor binding protein 2 

(IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular 

functions. Despite a clear causal role in cancer development, the contributions of intracellular 

IGFBP2 to tumor development and progression are poorly understood. Here we present 

evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to 

aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we 

demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 

transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 

directly influences the invasive and migratory capacities of human glioma cells, providing a 

direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These 

activities are also consistent with the strong association between IGFBP2 and STAT3-activated 

genes derived from the TCGA database for human glioma. A high level of all 3 proteins 

(IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent 

patient dataset. These results identify a novel tumor-promoting function for IGFBP2 of activating 

EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating 

EGFR signaling by 2 distinct mechanisms. As targeting EGFR in glioma has been relatively 

unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.  
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CHAPTER ONE: INTRODUCTION 

Gliomas 

Introduction. Gliomas are the most common adult primary malignant brain tumor, 

representing 70% of adult primary brain tumors [1,2]. Gliomas are thought to arise from glial 

cells or their precursors and occur in the central nervous system (CNS), the brain and spinal 

cord [3]. The CNS is comprised of many cells types, including glial cells, neurons and vascular 

cells [4]. Glial cells include astrocytes, oligodendrocytes and ependymal cells. Astrocytes 

actively sense control synaptic transmissions, while oligodendrocytes wrap myelin sheaths 

around axons, and ependymal cells line the ventricle walls and regulate transfer of ions and 

proteins from the cerebral spinal fluid into the brain [5-7]. Neurons function to process and 

transmit electrical signals whereas the vascular network in the brain is responsible for oxygen 

and nutrient delivery [6,8].  

Gliomas are classified as World Health Organization Grades I to IV based on 

histopathological appearance, including predominant cell type, nuclear aytpia, mitotic figures, 

necrosis and microvascular proliferation [9] . Low-grade gliomas (LGG) consist of grade I 

tumors (such as pilocytic astrocytoma), which are considered non-malignant, and grade II 

tumors (diffuse astrocytoma, oligodendroglioma). High-grade gliomas (HGG) consist of grade III 

tumors (anaplastic astrocytomas, anaplastic oligodendrogliomas) and grade IV tumors 

(glioblastomas - GBMs). Approximately 55% of malignant gliomas are GBMs [10]. Grade I 

tumors are benign and generally have a favorable prognosis after surgical resection [11]. High-

grade gliomas are diffusive and infiltrate into normal brain parenchyma, rendering surgical 

resection alone insufficient; thus standard therapy in these cases include adjuvant 

chemoradiotherapy, which can prolong median survival [12]. Extracranial GBM metastasis 

occurs in about 0.4% - 0.5% cases [13-17].  Even though GBMs rarely metastasizes, it remains 

one of the most lethal cancers, with a median survival of 12-15 months [1,18].  
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The prognosis of glioma patients varies depending on many factors, including tumor size 

and location, treatment, age, Karnofsky performance score (KPS), histology of tumor, and 

molecular genetic factors [19]. Gliomas typically occur in the cerebral hemisphere (86%), most 

frequently in the frontal and temporal lobe; however tumor size and exact location limits the 

extent of surgical resection, as tumors often infiltrate deep into the cerebrum [20]. Advanced 

age and postoperative survival are inversely correlated; glioblastoma patients younger than age 

40 years have a 5-year survival rate of 34%, compared with 6% for patients 40 years old and 

older [21]. Studies reported higher KPS, which measures the functional status of patients, 

correlates with improved patient outcome [19].  Several risk factors for glioma have been 

suggested, including occupation and environmental carcinogens; however these studies remain 

controversial [22]. To date, the only established risk factors for gliomas are hereditary 

syndromes and exposure to ionizing radiation [2]. Hereditary syndromes such as 

neurofibromatosis types 1 and 2 and the Li−Fraumeni syndrome may predispose individuals to 

glioma, mainly astrocytomas, which accounts for 5% of all glioma cases. Therapeutic cranial 

irradiation for patients with non-related cancers such as acute lymphoblastic leukemia was also 

highly associated with increased risk of developing gliomas.  

The Cancer Genome Atlas (TCGA) consortia along with other researchers have 

performed comprehensive large-scale genomic and epigenomic profiling of glioma and 

uncovered distinctive recurring genetic and epigenetic aberrations [18,23-25]. This accumulative 

research resulted in a molecular classification of distinct glioma subgroups with diagnostic and 

predictive significance. Furthermore, Nutt et al demonstrated that prediction modeling using 

molecular profiling of histologically ambiguous gliomas better correlated with survival outcome 

than standard pathology [26]. Thus, there is ongoing effort to refine the WHO classification 

system by incorporating clinically relevant molecular signatures of glioma [27] , as the genetic 

profiles can aid in diagnosis and prognosis prediction [28].  
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Genetic alterations in glioma. Decades of extensive research have characterized the 

key genetic events in gliomas, including alteration of receptor tyrosine kinases, PI3K pathway 

activation, and p53 and retinoblastoma (Rb) tumor suppressor pathways inactivation [24,29]. 

Overall, the genetic and epigenetic alterations in glioma contribute to cancer hallmarks, leading 

to tumorigenesis and progression [30,31]. The main molecular alteration in grade I pilocytic 

astrocytoma is BRAF alteration, typically occurring in children [32,33]. Oligodendrogliomas 

typically have loss of both chromosomal arms 1p (short arm of chromosome 1) and 19q (long 

arm of chromosome 19); whereby this 1p/19q codeletion has a better prognosis than gliomas 

without codeletion [34-36]. HGGs generally are characterized by loss of heterozygosity at 

chromosome arm 10q (about 60%), PTEN (for Phosphatase and tensin homolog) loss or 

alterations, EGFR amplifications, and INK4a/ARF loss [37]. Primary GBM arises de novo 

without detectable precursor diseases, but from acquisition of multiple genetic alterations. 

Meanwhile progression into secondary GBM is thought to involve stepwise development of 

genetic events that involves loss of tumor suppressor genes and oncogene overexpression, 

arising from LGG (grade II) [38]. 

Receptor tyrosine kinases in glioma. In GBMS, the two most significantly mutated or 

amplified RTKs are EGFR (57%) and PDGFRA (10%), followed by FGFR (3.2%) and MET 

(1.6%) [39].  EGFR and PDGFRA can be simultaneously activated in primary GBM [40]. 40% of 

amplified PDGFRA harbor an intragenic deletion (termed PDGFRAΔ8,9) in which exon8-9 is 

deleted resulting in a truncated extracellular domain but constitutively active protein [38,41]. 

MET amplification occurs in about 5% of GBM, overexpression in 29% GBM, and is rarely 

mutated [42]. EGFR can interact with and activate c-MET in the absence of HGF ligand [43]. 

FGFR3-TACC3 (for transforming acidic coiled-coil 3) genes oncogenic fusion genes occur in 3-

7% GBMs [44,45]. Our group reported that FGFR3-TACC3 expression is mutually exclusive 

with EGFR, PDGFRA, and MET amplifications [45]. We further demonstrate that FGFR3-
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TACC3 fusion is formed by tandem duplication, resulting in at least three different variants that 

produce functional oncogenic in-frame fusion proteins.  

PI3K/PTEN/AKT pathway. According to analysis of TCGA GBM database, PI3K (for 

Phosphatidylinositol-4,5-bisphosphate 3-kinase) and PTEN (for Phosphatase and tensin 

homolog) mutations are mutually exclusive, with 25.1% of GBM harboring PI3K mutations and 

41% with PTEN loss or mutation[39]. PTEN loss correlated with increased AKT (also known as 

Protein kinase B) activity, whereas PI3K mutant specimens express lower AKT activity than 

specimens lacking PI3K mutations [39]. AKT activation due to PTEN loss has been 

demonstrated to contribute to EGFR kinase inhibitor insensitivity in GBMs [46]. Recently, our 

group identified AKT3 isoform as the main isoform in mediating glioma progression, primarily 

through activation of DNA repair pathways, which leads to radiation and temozolomide 

resistance [47].  

TP53. The TP53 pathway (p53, MDM2 (for Murine Double Minute 2), MDM4) 

dysregulation occurs in 86% of GBMs, but is particularly prevalent in the development of 

secondary glioblastoma [39,48]. The p53 protein is a tumor suppressive transcription factor 

important for regulating cell growth, DNA repair, and apoptosis through protein-protein 

interaction or gene regulation.  According to TCGA analysis of GBM, p53 alterations through 

mutation or deletion occurred in 28% of GBMs, MDM2 alterations occurred in 7.6% of GBMs, 

and MDM4 alterations occurred in 7.2% of GBMs [39]. More than 90% of secondary GBM have 

p53 mutations compared to less than 35% in primary GBM [49]. The prognostic impact of p53 in 

glioma remains inconclusive. The diversity of p53 alterations affects the response to therapy: 

inactivating p53 mutation in GBM cell lines [50] or in patients [51] led to increased 

chemoradiotherapy sensitivity, while others report p53 status of GBM patients did not affect 

sensitivity to radiotherapy [52]. Some studies report p53 mutation or expression correlated with 
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better survival [53-55], whereas other reports no significant impact on survival in patients with 

p53 mutation [56-58]. 

In physiological conditions, p53 is degraded or inhibited upon binding of MDM2 

ubiquitinase [59]. MDM2 binds to the p53 transactivation domain and suppresses p53 

transcriptional regulatory mechanisms, or promotes p53 proteasomal degradation through its 

ubiquitin ligase functions. Thus even in gliomas expressing wild-type p53, p53 may remain 

dysfunctional due to MDM2 overexpression. MDM2 and MDM4 cooperate to modulate p53 

activity: MDM2 primarily prevents p53 protein accumulation, whereas MDM4 regulates p53 

transcriptional activity. 

RB (for retinoblastoma 1). In GBMs, RB1 mutation or deletion occurs in 7.6% cases, 

and Rb downstream signaling is impeded mainly through CDKN2 family deletion [39]. RB1 

tumor suppressor protein regulates cell cycle progression from G1 to S phase and its signaling 

effectors include CDKs (for cyclin dependent kinases), CCNDs (for cyclins) and CDKN2A (for 

cyclin-dependent kinase inhibitor 2A) [48]. CDKN2A encodes 2 proteins, p16INK4a and 

p14ARF; P16INK4a prevents phosphorylation of RB1, and thus prevents G1/S cell cycle 

transition, whereas p14ARF binds to MDM2, which stabilize p53 and prevents cell cycle 

progression. Furthermore, Rb downstream signaling is also impeded through amplification of 

CDK4 (14%), CDK6 (1.6%), and CCNDs (2%). 

IDH1/2 (isocitrate dehydrogenase 1/2) mutations. IDH1 or IDH2 mutations are early 

genetic events that occur in 50%–80% grade II and III gliomas, and is a marker of secondary 

GBMs, but are rare in primary glioblastomas (5%) [60-62]. Patients harboring IDH1 or IDH2 

mutation have a median overall survival of 31 months, significantly longer than in patients with 

wild-type IDH (15-month survival)[62]. The role of IDH mutations in glioma has yet to be clearly 

elucidated. However, it is known that IDH1/2 mutations produce 2-hydroxyglutarate (2-HG), 
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which functions as an oncometabolite that contributes to glioma progression through aberrant 

HIF1a stabilization and induction of histone demethylation [61,62].  

DNA methylation. Cancer-specific DNA methylation is the aberrant addition of a methyl 

group at CpG (cytosine-phosphodiester-guanine) dinucleotides located in CpG islands within 

the promoter of a gene. TCGA network identified a glioma CpG island methylation phenotype 

(G-CIMP) that represents a subtype of the proneural tumors, which is associated with grade II 

and III gliomas, with frequent IDH1 mutations and longer overall survival [18]. The IDH1 

mutation can induce the G-CIMP glioma phenotype, which frequently has MGMT methylation 

[63]. MGMT methylation frequently occurs in gliomas [64,65], particularly LGGs. MGMT is 

involved in DNA repair; thus the epigenetic silencing of MGMT by promoter methylation can 

confer sensitivity to temozolomide [64].  

GBM subtypes. TCGA consortia classified GBMs into 4 subtypes based on genomic 

characteristics, namely classical, proneural, mesenchymal, and neural subtypes [25]. In addition 

to the gene expression-based molecular classification, these subtypes are defined by patient 

age, survival rates and treatment response. The classical subtype harbors the most genomic 

alternations in GBM: 93% have chromosome 7 amplifications and 10 deletions, and 95% 

express EGFR amplification [25]. Classical subtype also distinctively lacks alterations of TP53, 

NF1, PDGFRA or IDH1 [25]. Clinically this highly proliferative classical subtype has poor 

prognosis; however, of all the subtypes, aggressive treatment causes the most reduction in 

mortality in the classical subtype [25]. Proneural subtype is characterized by PDGFRA 

mutations, which occur almost exclusively in this subtype [25]. Proneural subtype also has the 

most frequent IDH1 mutations of all the subtypes and TP53 is frequently mutated in this subtype 

[25]. Secondary GBMs are generally classified as proneural [25].  Almost all G-CIMP positive 

tumors have been shown to display the proneural gene expression profile [18]. Proneural 

subtype grade II and III gliomas with IDH1 mutation and G-CIMP positivity, is generally 
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associated with better survival [66]. NF1 mutations most frequently occur in the mesenchymal 

subtype, which also harbors mutations and/or loss of TP53, PTEN, and CDKN2A, and express 

mesenchymal markers MET and YKL40 [25]. Tumor necrosis factor family pathway and NF-κB 

pathway are also overexpressed in the mesenchymal subtype. The mesenchymal subtype is 

typically associated with poor prognosis [67]. Genetic alterations in the neural subtype include 

gene types that are expressed in normal brain or differentially expressed by neurons, including 

NEFL, GABRA1, SYT1 and SLC12A5 [25]. The neural subtype typically consists of LGGs or 

grade III gliomas [25]. Overall, the comprehensive molecular signature classification of GBMs 

provides better insights into the complex signaling pathways of GBMs and can ultimately lead to 

personalized therapy for GBM patients. 

 

Figure 1. Overall alterations rates of most common signal transduction and tumor 
suppressive pathways in GBM. Used with permission and originally published by Brennan et 
al.The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-477. [39].  
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Therapeutics. Comprehensive genomic and epigenomic profiling of gliomas indicate 

that heterogeneities within tumor cells play a dominant role in the progression, development of 

resistance to therapy and recurrence. Despite the increasing knowledge of molecular 

aberrations involved in gliomas, the standard therapy remains to be primarily surgical resection, 

radiotherapy and chemotherapy. Anaplastic gliomas with codeletion of 1p/19q are more 

sensitive to chemotherapy with procarbazine, lomustine, and vincristine, compared to those 

without deletions [1]. A study has shown that TMZ treatment of GBM patients with MGMT 

methylation had a median survival of 21.7 months, compared to 12.7 months in GBM patients 

without MGMT methylation [64]. Thus even though chemotherapy is the standard, it is not 

beneficial to all patients. Therefore it is important to appreciate the heterogeneity of gliomas and 

utilize the existing knowledge of signature molecular biomarkers so that patients can 

prospectively be treated with the appropriate therapy.  

Two independent Phase II clinical trial studies for recurrent GBMs, using erlotinib or 

gefinitib, which are EGFR small molecule tyrosine kinase inhibitors (TKIs), demonstrated EGFR 

inhibitors alone failed to improve prognosis[68]. Other studies with newly diagnose GBMs 

utilized erlotinib or gefitinib  in combination with TMZ and/or radiation therapy also demonstrated 

no significant improvements [68]. This suggests that even though EGFR is a major oncogene in 

glioma, targeting one pathway alone is insufficient. Some lung cancer patients harboring EGFR 

kinase domain mutations respond better to gefitinib, thus it is possible that EGFR mutations in 

glioma may have an impact on response to EGFR inhibitors. In line with that, Mellinghoff et al 

reported positive albeit modest response of GBM patients with coexpression of EGFRvIII and 

PTEN to erlotinib and gefitinib [69]. Imatinib (STI571/Gleevec/ Glivec; Novartis), which inhibits 

the PDGFR, BCR-ABL and c-KIT pathways and has success in leukemia and gastrointestinal 

tumors, demonstrated no clinical benefits in GBM patients [68].  
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Besides TKIs, monoclonal antibodies that recognize epitopes with high selectivity and 

affinity are actively being researched in gliomas. Bevacizumab is a FDA approved anti-VEGF 

humanized monoclonal antibody that binds and inhibits VEGF activity and has been used in 

combination with chemotherapy in many cancers [70]. Several Phase II clinical trials of 

combination bevacizumab and irnitoecan (a toposisomerase inhibitor) in recurrent GBMs were 

effective and thus lead to FDA approval for recurrent GBMs despite severe toxicity of treatment 

[68]. Cetuximab, a chimeric monoclonal antibody that binds to EGFR ligand binding domain and 

inhibits downstream signaling, was also tested in a Phase II trial in patients with recurrent GBM 

[71]. Cetuximab in combination with bevacizumab and irinotecan demonstrated a positive 

response rate; however the response was not notably different than single agent or 

bevacizumab and irinotecan treatment [71]. However, xenograft mouse model data 

demonstrated reduced tumorigenenicity in GBM tumors with exon 27 deletion mutation in EGFR 

C-terminal [72].  

Antitumor vaccines such as ΔEGFR-specific vaccines are directed against EGFRvIII 

mutations, or wtEGFr vaccines are currently undergoing clinical testing [73-75]. The premise is 

that these peptide-based vaccines will be captured by antigen presenting cells and brought to 

the lymph node where circulating cytotoxic T-lymphocytes will be activated to recognize and kill 

cells expressing EGFRvIII or wtEGFR. Other type of GBM-specific vaccines, such as tumor 

lysate vaccine and cancer stem cell vaccine are also currently undergoing early clinical trials 

[75].  

Despite intensive research, prognosis remains poor for HGG patients. Thus better 

understanding of the molecular mechanisms involved in tumor progression, along with novel 

treatment regimens including target therapy or combination therapy may potentially improve the 

clinical outcome of GBM patients.  
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Insulin-like growth factor binding protein 2  

Introduction. Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) is a member of 

the IGFBP family of secreted proteins consisting of IGFBP1-6 [76]. Human IGFBP2 is located 

on chromosome 2q33-q34 and predominantly expressed in fetal tissues [77,78].  IGFBP2 

consists of three domains, the N-terminal, linker, and C-terminal. The cysteine-rich N- and C- 

terminal are important for IGFI and IGFII binding, while interaction with extracellular matrix and 

integrins occur at the heparin binding domain (HBD) in the linker domain and C-terminal [79].  

IGFBP2 is the major IGFBP expressed in cerebral spinal fluid and during brain 

development [80-82]. Postnatal IGFBP2 expression is significantly decreases and is limited to 

hematopoietic stem cells and in liver and spleen progenitor cell populations [83-85]. However, 

IGFBP2 is upregulated in a pathological conditions such as liver cirrhosis, renal failure [86], and 

in cancers [87]. IGFBP2 functions can be IGF-dependent or IGF-independent, depending on cell 

type and microenvironment.  

IGFBP2 functions. As a secreted protein, IGFBP2 binds IGFI and IGFII mitogens with 

high affinity in the extracellular environment. IGFBP2 can act as a carrier protein to transport 

IGFs and regulate interaction with their receptors or to prolong their stability [88,89]. IGFBP2 

binds to IGFII with higher affinity than IGFI [90]. IGFBP2 binding to IGFs is predominantly 

inhibitory to IGF mitogenic signaling [91-93], however IGFBP2 may also transport IGFs to their 

receptors to potentiate IGF mitogenic signaling [94,95]. In vascular smooth muscle cells, 

IGFBP2 potentiates IGF-1 mediated proliferation [95], while in osteoblasts IGFBP2 potentiates 

IGF-II-stimulated differentiation [96]. On the contrary, IGFBP2 was demonstrated to bind and 

suppress IGF-1-mediated proliferation in a breast cancer study [97].  

 In addition to its functions as a secreted protein, IGFBP2 can interact with other proteins 

at the cell surface (such as integrins) or intracellularly, independent of IGF binding [98-100]. 
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Independent of its IGF binding role, Periera et al demonstrated that IGFBP2 binds to integrin 

α5β3 to inhibit breast cancer migration and growth [101]. Upon interaction with extracellular 

matrix or integrin binding, or upon proteolysis by serine proteases or a distintegrin 

metalloproteases (ADAMs), IGFBP2 releases IGF and permits free IGF to bind to its receptors 

[102]. There are four major protease cleavage sites in IGFBP2, located between Tyr103 and 

Gly104, Leu152 and Ala153, Arg156 and Glu157, and Gln165 and Met166 in the linker domain 

[102]. Using a protease-resistant and non-ECM-binding IGFBP2 mutant, Soh et al demonstrated 

that this mutant inhibited IGF-stimulated in vitro cell proliferation and in vivo tumor growth of 

MCF-7 breast tumor xenograft mice [79]. This study suggests that protease cleavage of IGFBP2 

to release IGF (which presumably allows freed IGF to bind to its receptor) is required to facilitate 

tumor cell proliferation and growth. In another study, Russo et al demonstrated that IGF1-

stimulated cell proliferation was inhibited upon addition of IGFBP2 in neuroblastoma cells [94]. 

However when IGFBP2 was overexpressed, cell proliferation was significantly enhanced in the 

presence of IGFI. Further investigation revealed that ECM-binding was required to mediate this 

proliferative advantage, indicating that pericellular-localized IGFBP2 (through ECM binding) 

releases IGFs in close proximity to its receptors, thus facilitating enhanced proliferation, 

migration and invasion.  

IGFBP2 is involved in response to CNS injuries such as cerebral contusion or stroke 

[103,104]. In response to CNS injuries, IGFBP2 is the only IGFBP expressed in activated 

microglia [105] and the major IGFBP expressed in neurons and proliferating (reactive) 

astrocytes [104,106]. Neurons are terminally differentiated and have limited proliferative 

capacity, whereas astrocytes are highly proliferative and can convert from resting 

(differentiated) states to reactive (proliferative) states upon stimulation [106]. IGFBP2 gene 

expression is similar in both resting and reactive astrocytes; however compared to resting 

astrocytes, reactive astrocytes had increased IGFBP2 protein levels [106]. Interestingly, there is 
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a markedly lower IGFBP2 level in the culture media of reactive astrocytes, compared with 

resting astrocytes. This possibly suggests that reactive astrocytes rely on the intracellular 

functions of IGFBP2 rather than secreted IGFBP2 for proliferative activity. Alternatively, 

because the culture media of reactive astrocytes contained proteolytically cleaved IGFBP2, it is 

possible that cleavage releases IGFs from IGFBP2 inhibition and permits IGF-mediated 

proliferation.  

IGFBP2 in cancer. IGFBP2 is overexpressed in various cancers, including gliomas 

[84,107-109], ovarian cancer [110,111], prostate cancer [112,113], breast cancer [114], lung 

cancer [115,116], leukemia [117], and PAX/FKHR translocation negative rhabdomyosarcomas 

[118]. Elevated IGFBP2 expression typically correlates with higher tumor grade, poor survival, 

increased tumor recurrence, and increased drug resistance [108-110,119-122]. Elevated 

IGFBP2 is also observed in the cerebral spinal fluid of patients with central nervous system 

tumors [80]. IGFBP2 is involved in tumorigenesis [123,124], invasion and metastasis 

[94,125,126], angiogenesis [124], cancer stem cell expansion [127] and drug resistance 

[121,122]. IGFBP2 expression typically decreases upon cancer remission [80]. 

IGFBP2 is an oncogenic factor that has many roles in cancer. IGFBP2 regulates key 

genes involved in tumorigenesis, including proliferation, cell cycle progression, migration, and 

invasion. IGFBP2 silencing in rhadomyosarcoma cells resulted in decreased CCND1 (cyclin 

D1), MMP2 (matrix metalloproteinase 2), and MCM (minichromosome maintenance protein) 

gene expression, which are genes involved in cell cycle progression, migration and invasion 

[118]. Research using neuroblastoma cells showed that IGFBP2 can regulate genes involved in 

migration, proliferation or angiogenesis-enhancing genes, including MMP2, STAT3 and VEGF 

[124].  
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In accordance to its role in regulating genes involved in tumorigenesis, IGFBP2 is 

involved in mediating tumorigenic activities in cancer cells.  IGFBP2 inhibits growth of normal 

prostate epithelial cells, but stimulates growth of prostate cancer cells; the stimulatory growth 

effect on prostate cancer cells are androgen-dependent and partially mediated through MAPK 

and PI3K signaling [128]. In ovarian cancer cells, IGFBP2 enhances invasion capacity [129] and 

stimulates cell growth and proliferation through ERK1/2 and JNK pathway [130]. IGFBP2 is 

highly expressed in acute myeloid leukemia (AML) and is a critical for promoting the survival 

and migration of AML cells, through PTEN/AKT and STAT3 signaling [117]. IGFBP2 is also 

linked to drug resistance, which is a major clinical obstacle. In AML, high IGFBP2 expression is 

associated with higher risk of relapse after stem cell transplant and resistance to chemotherapy 

[121,131]. Through interaction with integrin β1, IGFBP2 drives resistance to docetaxel by 

inactivating PTEN in prostate cancer [122]. High IGFBP2 levels in non-small cell lung cancer 

are associated with resistance to dasatinib, a small molecule inhibitor of SRC family tyrosine 

kinases and receptor tyrosine kinases including EGFR [132]. Furthermore, IGFBP2 was recently 

identified as a biomarker of metastasis and a pro-angiogenic gene [126]. Metastasis is the 

cause of 90% of cancer deaths [133], while angiogenesis is an important cancer hallmark [31]. 

Using highly metastatic breast cancer cell lines, Png et al demonstrated that IGFBP2 is secreted 

by metastatic cells to recruit endothelial cells via the IGFI-dependent activation of IGF1R [126]. 

Research in neuroblastoma demonstrated that IGFBP2 enhanced VEGF transcription and 

protein level, and subsequently promoted angiogenesis [124]. 

IGFBP2 in glioma. Our group’s discovery that IGFBP2 is aberrantly reactivated and 

overexpressed in GBMs [84] was followed by validation from other groups [108,119,134]. As 

high plasma levels are predictive of clinical outcome, IGFBP2 is proposed as a prognostic and 

predictive factor in gliomas [109,134-137]. G-CIMP positive glioma (which is associated with 

longer patient survival) has decreased IGFBP2 and COX2 expression compared to G-CIMP 
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negative glioma [39]. Moreover, low IGFBP2 is associated with global hypermethylation, which 

is also linked to longer patient survival [138]. Furthermore, analysis of the TCGA GBM database 

demonstrated that IGFBP2 and STAT3 are among the 12 upregulated genes predictive of 

decreased survival [137]. 

IGFBP2 can exert its oncogenic functions through cooperation with other oncogenic 

factors. Research from our group demonstrated that IGFBP2 in combination with PDGFB 

expression can promote gliomagenesis and progression to HGG [123]. Glioma cells exhibit 

increased migration and invasion capacities, which are cancer hallmarks that contribute to the 

aggressive phenotype of HGGs. Independent of IGF binding, IGFBP2 enhances glioma cell 

migration and invasion through its interaction with integrin α5 [139], to stimulate JNK [140] or 

integrin β1 activation [141]. Furthermore, IGFBP2-mediated activation of integrin β1 leads to the 

activation of migration- and invasion-related pathways, ILK (for integrin-linked kinase) and 

NFKB (for nuclear factor kappa B), in gliomas [141]. Besides the integrin β1/ILK/NFKB pathway, 

IGFBP2 also promotes glioma cell proliferation, invasion and chemoresistance through integrin 

β1-mediated ERK activation [125].  

Microarray analysis of IGFBP2-overexpressing glioma cells demonstrated upregulation 

of genes involved in enhancing cell motility and invasion, including MMP2 and integrins [142]. 

IGFBP2 depletion lead to decreased glioma cell invasion in vitro through reduction of CD24, an 

invasion-related gene, and reduced tumorigenecity in nude mice [143]. In addition to its role in 

enhancing cell motility and invasion-related genes, analysis of glioma patient samples revealed 

that IGFBP2 is coexpressed and correlated with angiogenesis-related genes, specifically VEGF 

[144]. Angiogenesis is one of the key features of GBM, and IGFBP2 expression is associated 

with angiogenesis in GBM [145]. In addition to angiogenesis, IGFBP2 can also facilitate cell 

cycle progression by promoting S-phase and G2/M entry in glioma [125]. 
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IGFBP2 is inversely linked to tumor suppressor genes, such as PTEN and p16/INK4. 

IGFBP2 and PTEN are inversely correlated in gliomas:  PTEN negatively regulates IGFBP2 and 

thus elevated IGFBP2 can be attributed to PTEN loss, which is common in gliomas, however 

the underlying mechanism of regulation remains unknown [146,147]. Furthermore, IGFBP2 

expression can be induced by PI3K/Akt signaling [146], and IGFBP2 can induce AKT activation 

[127]  in a positive feedback loop. In addition to PTEN loss, loss of INK4A-ARF (which encodes 

for p16INK4a and p14ARF tumor suppressors) also frequently occurs in HGGs. Our group 

demonstrated using human glioma samples and glioma mouse model that IGFBP2 is inversely 

correlated with p16INK4a and ARF [148]. A mouse model study demonstrated Ink4a-Arf loss 

resulted in increased glioma incidence [149]. In addition to establishing IGFBP2 overexpression 

as a marker for Ink4a/ARF deletion, our group demonstrated that IGFBP2 inhibition using 

antisense oligonucleotide in a glioma mouse model with Ink4a/ARF−/− background resulted in 

prolonged survival.  

IGFBP2 is negatively regulated by MIIP (for migration and invasion inhibitory protein), 

the protein product of tumor suppressive gene IIP45 (for invasion inhibitory protein 45). Using in 

vitro and in vivo mouse xenograft studies, Song et al demonstrated that MIIP binds to IGFBP2 

and inhibits glioma cell invasion [150]. However, IIP45 is frequently downregulated in GBM 

[150]. IGFBP2 is also negatively regulated by mircoRNA-491 (MIR491) [151]. IGFBP2 is one of 

the targets of MIR-491 gene product, miR-491-3p. However, MIR-491 tumor suppressive gene 

is frequently deleted in GBM [151]. Furthermore, the deletion of MIR491 in GBMs contributes to 

aberrant proliferation, invasion and glioma stem cell expansion [151].  

Cancer stem cells are thought to be cells responsible for repopulating the tumor bulk and 

contribute to cancer relapse and drug resistance. In a study using glioma stem cells (GSCs) 

isolated from GBM patients, Hsieh et al demonstrated that IGFBP2 is overexpressed in glioma 

stem cells [127]. They showed that IGFBP2 regulates GSC self-renewal and promotes GSC 
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expansion and survival through AKT activation [127]. When IGFBP2 was inhibited, stem cell 

related genes, BMI, NES, CD133, and SOX2 were markedly decreased. Furthermore, IGFBP2 

was found to promote G1/S-phase progression by regulating cell cycle related genes, CCND1, 

CDC2, CDK4, and CCNE1 in GSCs [127].  

IGFBP2 localization. Even though it is a secreted protein, IGFBP2 can localize on the 

cell surface, in the cytoplasm and in the nucleus and its functions differ based on its localization. 

In pulmonary alveolar type 2 cells (stem cells of the lung which can proliferate during lung 

development or repair), increased IGFBP2 secretion is associated with proliferation inhibition 

[152]. In another study, hyperoxia exposure (prolonged exposure to 95% oxygen) of these type 

2 cells demonstrated concomitant inhibition of proliferation and increased IGFBP2 gene and 

accumulation of IGFBP2 protein in the media [153].  In human alveolar lung epithelial cells, 

hyperoxia led to decreased secreted IGFBP2, and accumulation of intracellular IGFBP2, 

particularly nuclear [154]. Consequently, cell proliferation was inhibited and apoptosis was 

induced. These studies demonstrate that in these two types of lung cells, both extracellular and 

intracellular IGFBP2 functions to inhibit proliferation.  

IGFBP2 binds to the cell membrane through proteoglycans as demonstrated in postnatal 

rat olfactory bulb [155]. IGFBP2 has also been demonstrated to interact with extracellular matrix 

(ECM) components (laminin, fibronectin, vitronectin, collagen type IV, and proteoglycans) via its 

heparin binding domain (HBD) located at 179PKKLRP184 in the linker domain in neuroblastoma 

cells [94]. This interaction resulted in neuroblastoma proliferation, invasion and angiogenesis. 

Besides ECM interaction, IGFBP2 can also localize to the cell surface by binding to integrin 

α5β1 through its Arginine-Glycine-Aspartic (RGD) acid sequence in the C-terminal independent 

of IGF binding.  In Ewing’s sarcoma cell, IGFBP2 interaction with integrin α5β1 leads to cellular 

deadhesion and decreased cell proliferation [156].  On the contrary, IGFBP2 interaction with 

integrin α5β1 in glioma results in increased oncogenic activities, including enhanced cell motility 
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and invasion [139,141]. Independent of its RGD sequence, IGFBP2 can also localize to the cell 

surface by interacting with integrin αvβ3, which results in inhibition of IGF-mediated breast 

cancer cell migration and reduction in tumor growth [101]. IGFBP2 is overexpressed and 

secreted in similar amounts in both small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC); however membrane-associated IGFBP2 is predominant in SCLC, while in 

NSCLC relies on secreted IGFBP2 to regulate IGF actions [92].  

In addition to cell surface localization, IGFBP2 can also localize intracellularly. Research 

using a CMV-IGFBP2 transgenic mouse model demonstrated peri-nuclear IGFBP2 localization 

[157]. Peri-nuclear localization of IGFBP2 was also detected in rhabdomyosarcoma cells [118]. 

No studies to date have established the role of peri-nuclear IGFBP2. Besides peri-nuclear 

localization, IGFBP2 is also detected in the nucleus. IGFBP2 is localized to the nucleus in 

normal astrocytes [104]. Research using mouse lung epithelial cells demonstrated that IGFBP2 

binds to p21CIP1/WAF1 and co-localizes in the cytoplasm and the nucleus, leading to growth 

inhibition [158]. Terrien et al demonstrated that serum deprivation induced IGFBP2 expression 

increase, along with IGFBP2 nuclear localization and p21CIP1/WAF1 induction, thus resulting in 

growth inhibition. In lung adenocarcinoma, IGFBP2 was detected in the nucleus upon exposure 

to oxidants [154]. In prostate cancer, IGFBP2 was demonstrated to co-localize and bind with 

PAPA-1, a transcription factor related to growth inhibition, in the nucleus [159]. Recent studies 

by Azar et al identified a monopartite nuclear localization signal (NLS) at 179PKKLRP184 of 

IGFBP2, which overlaps with the HBD [160]. Azar et al demonstrated that importin α interacts 

with IGFBP2 at the NLS to shuttle IGFBP2 into the nucleus [160]. Furthermore, nuclear 

localization of IGFBP2 in neuroblastoma cells lead to enhanced VEGF promoter activity and 

subsequently, angiogenesis [124]. Besides promoting VEGF activation, the tumorigenic 

functions of nuclear IGFBP2 have yet to be elucidated.  
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Figure 2. IGFBP2 functions in the cell. IGFBP2 is a pleiotropic protein with extracellular and 
intracellular functions. Extracellular IGFBP2 binding to IGF, can either inhibit IGF-mediated 
mitogenic signaling by preventing binding to its receptor, or potentiate IGF-mediated signaling 
by transporting IGF to its receptor.  IGFBP2 binding to integrin can also activate JNK, ERK1/2, 
ILK, AKT, and NFKB, leading to enhanced proliferation, migration and invasion. IGFBP2 
through its nuclear localization signal can bind importin and translocate into the nucleus. 
Nuclear IGFBP2 can bind to p21 or PAPA-1 to inhibit growth. However, nuclear IGFBP2 is also 
known to activate transcription of VEGF, MMPs and integrins. Other than that, there is limited 
knowledge on the tumor-promoting functions of nuclear IGFBP2.  
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Epidermal growth factor receptor  

Introduction. The epidermal growth factor receptor (EGFR)/HER1/ErbB1 is a cell-

surface receptor tyrosine kinase (RTK) belonging to the ErbB family. Other members of the 

ErbB family are HER2 (ErbB2/neu), HER3 (ErbB3), and HER4 (ErbB4). EGFR is the first RTK 

to be discovered, characterized as a ligand-binding cell surface protein with tyrosine kinase 

activity, and linked to human cancers [161,162]. EGFR family members have an extracellular 

ligand-binding domain, a single pass transmembrane domain, and a conserved cytoplasmic 

protein tyrosine kinase domain. EGFR members can form homo- and heterodimers that are 

activated by different ligands. HER2, an orphan receptor with no known ligand, is the preferred 

binding partner of other EGFR family members [163], while HER3 kinase domain is catalytically 

inactive and relies on heterodimerization with other EGFR members for signal transduction 

[164]. 

EGFR and its ligands. EGFR can be canonically activated by binding of ligands: EGF, 

transforming growth factor α (TGFα), heparin-binding EGF-like growth factor, amphiregulin, 

betacellulin, epiregulin, and epigen [165]. These ligands have a conserved EGF motif (CX7 

CX4–5 CX10–13 CXCX8 C) [166], although recently identified non-canonical EGFR ligands, 

prolidase C and CCN2 lack this motif [167,168]. EGF ligands are anchored on the plasma 

membrane and require proteolytic cleavage by metalloproteases to release mature, soluble 

ligands, a process termed ectodomain or ligand shedding [166]. Metalloproteases (or 

“sheddases) involved in EGFR ligand shedding include a disintegrin and metalloproteases 

(ADAMs) or matrix metalloproteases (MMPs) [165]. Ligand shedding of EGFR ligands allows for 

mainly paracrine and autocrine EGFR signaling, although it is reported that ADAM17 (also 

known as tumor necrosis factor (TNF) alpha converting enzyme (TACE)) is required for 

juxtacrine signaling of TGFα/EGFR [169]. ADAM10 and ADAM17 are the main ADAMs for 
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EGFR ligands shedding [170]. ADAM17 has a key role in activating EGFR signaling [169]. Mice 

lacking ADAM17 display similar phenotype to mice lacking EGFR, TGFα, and HB-EGF [170]. 

EGFR and its ligands are important for skin, hair follicle, bone and female reproductive 

system development [166]. EGFR expression in the brain is high during embryonic development 

and peaks peri-natally; in adult brain, expression is markedly diminished and limited to the 

neural progenitors cells in the subventricular zone [171]. EGFR ligands, EGF, TGFa and HB-

EGF, are constitutively expressed throughout the developing and adult brain [171,172]. In the 

adult brain HB-EGF and TGFα expression are ubiquitous, with HB-EGF more abundantly 

expressed than TGF-a; while EGF is lowly expressed in comparison, and expression is limited 

to discrete areas in the brain [172-174]. EGF can stimulate neural stem cell division and 

differentiation, while EGFR activation is required for neural stem cell expansion and survival 

[171]. EGF, HB-EGF and TGFa are key mitogenic and pro-survival factors for glial cells and 

astrocytes, and key maintenance factors for neurons [175]. Similar to IGFBP2, in response to 

brain injury, EGFR and its ligands are upregulated specifically in reactive astrocytes, microglial 

cells and neurons to aid in brain repair [171].  

EGFR signaling pathways. Ligand binding at the extracellular domain of EGFR causes 

a conformational change to the extended stabilized form, inducing dimerization [176]. 

Dimerization then triggers the activation of intrinsic tyrosine kinase to auto-phosphorylate 

tyrosine residues on the cytoplasmic tail by catalyzing the transfer of the γ-phosphate of bound 

ATP to the other tyrosine residues [177]. Phosphorylated (activated) EGFR provides docking 

sites for recruiting effector proteins with Src homology 2 (SH2) and phosphotyrosine-binding 

(PTB) domains, thereby initiating activation of several downstream signaling pathways 

[177,178]. The docking sites on EGFR of which includes tyrosine (Y) residues Y920, Y992, 

Y1068, Y1086, and Y1173, can mediate activation of different signaling pathways [177,179]. 

Adaptors Grb2 (docking site at Y1068 and Y1086) and Shc (Y1148 and Y1173) mediate MAPK 
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signaling, Grb2 and docking protein Gab1 (Y1068 and Y1086) mediate P13K/AKT signaling, 

while Phospholipase-gamma C directly binds at Y992 and Y1173 [177,180]. Signal transducer 

and activator of transcription 3 (STAT3) via its SH2 domain binds directly to EGFR at Y1068 

and Y1086 [181,182], leading to phosphorylation of STAT3 at Y705 (pSTAT3 Y705). E3 

ubiquitin ligase Cbl (for Casitas B-lineage lymphoma proto-oncogene) binding negatively 

regulates EGFR through receptor internalization and subsequent lysosomal degradation 

[183,184]. Cbl can directly bind to phosphorylated EGFR at Y1045 or indirectly through 

association with Grb2. 

EGFR activation results in signal transduction that leads to cell migration, proliferation 

and survival [177]. In normal tissues, EGFR and its ligands availability is tightly regulated and 

only activated to regulate tissue development and maintain homeostasis [185]. Aberrant 

activation of EGFR pathway ultimately leads to oncogenesis. Many in vitro studies 

demonstrated that overexpression of EGFR along with its ligands, EGF or TGFa can induce 

neoplastic transformation of fibroblasts and mammary epithelial cells [186]. 

EGFR in cancer. EGFR is one of the most commonly amplified and overexpressed 

receptor tyrosine kinase in human cancers [187]. EGFR is overexpressed in various cancers 

including head and neck cancer, breast cancer, renal cell carcinoma, non-small cell lung cancer 

(NSCLC), colon cancer, ovarian cancer, and gliomas [176]. In NSCLC, EGFR is overexpressed 

in about 60% cases and correlates with poor prognosis, and the tyrosine kinase domain is 

frequently mutated, resulting in constitutively active EGFR signaling [188].  

EGFR in gliomas. EGFR is a signature oncogene of high-grade glioma; a recent study 

by the TCGA GBM Analysis Working Group reported 57% patients have EGFR alterations 

(including amplification and mutation), which is also associated with significant upregulation of 

EGFR protein expression and phosphorylation [39]. EGFR amplification and overexpression is 
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more commonly detected in primary GBM, and rarely in secondary GBM [48]. EGFR amplicons 

are frequently mutated, with EGFR variant III (EGFRvIII) mutation being the most prevalent form 

[48]. EGFRvIII is an in-frame deletion of exons 2-7 (which codes for a portion of the ligand 

binding domain) that results in constitutive activation of EGFR signaling [189]. EGFRvIII, also 

known as termed EGFR, is prevalent in 50% of HGGs with EGFR amplification or 

overexpression [183,190]. A study by Fan et al demonstrated that some GBM cells co-express 

wildtype EGFR (wtEGFR) and EGFRvIII; in these cells, EGFR phosphorylates EGFRvIII and 

together subsequently activates STAT3 [191]. They also demonstrated that co-expression of 

wtEGFR and EGFRvIII synergistically enhanced cellular transformation in vitro and promoted 

tumor growth in nude mice, more potently than expression of the receptors alone. This EGFR-

EGFRvIII-STAT3 signaling axis confers a more aggressive phenotype in GBM. Other EGFR 

deletion mutations include EGFRvI and EGFRvII mutations occur in the N-terminal, whereas 

EGFRvIV and EGFRvV mutations are in the C-terminal [183]. In 14% of GBMs, EGFR point 

mutations occur in the C-terminal locking the receptor in an open and active conformation [183].  

Besides activating mutations, EGFR can be aberrantly activated by ligand stimulation. 

EGFR ligands (EGF, TGF-α, and HB-EGF) which stimulate the activation of EGFR, are 

increased concurrently with EGFR or EGFRvIII overexpression in gliomas [175,183,192,193]. 

ADAM17, the primary EGFR ligand sheddase involved in EGFR transactivation, is 

overexpressed in GBM and promotes GBM progression by enhancing proliferation, invasion, 

and angiogenesis [194]. ADAM17 also promotes GSC migration and invasion potential through 

activation of EGFR/AKT or EGFR/ERK signaling [195].  

EGFR activation leads to the recruitment of PI3K to the cell membrane, which then 

activates AKT (Protein kinase B) or mTOR (mammalian target of rapamycin) signaling. 

EGFR/PI3K/AKT or mTOR signaling increases glioma cell proliferation and survival [183]. PTEN 

can suppress this signaling axis, however in GBMs, PTEN is mutated in 15 to 40% cases, 
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resulting in inactivation and loss of function [196]. GBM patients with concurrent EGFR and p53 

alterations are significantly associated with worse survival [197]. Another major downstream 

pathway of EGFR activation is STAT3. EGFR is frequently expressed concurrently with 

constitutively activated STAT3 in HGGs [198]. Furthermore, a study of glioma patient samples 

demonstrated that STAT3 and AKT activation positively correlated with EGFR expression in 

high-grade gliomas [199]. Both EGFR and EGFRvIII can interact with STAT3 in the cytoplasm to 

mediate signal transduction, or in the nucleus to regulate gene transcription (nuclear EGFR 

activities will be discussed in the following section). 

EGFR localization. Upon activation, EGFR is internalized and trafficked into 

endosomes via clathrin-mediated or clathrin-independent endocytosis [176]. In the endosomes, 

EGFR is recycled back to the membrane or to the lysosome for degradation, depending on the 

ligand. EGF stimulation generally leads to lysosomal degradation while TGF-α stimulation 

typically leads to receptor recycling [200]. Although controversial, there is accumulating 

evidence that endosomal EGFR can mediate signaling. Endosomal EGF-EGFR complex 

maintains its phosphorylated state and remains bound to adaptor proteins such as Grb2 and 

Shc [201]. An in vitro study using MDCK (canine kidney epithelial cells) and BT20 (breast 

cancer) cells showed that upon EGF stimulation, endosomal EGFR, which remained activated 

for 2 hours, activated Ras, ERK, and Akt, leading to enhanced cell survival [202]. Conversely, 

endocytosis can negatively regulate EGFR signaling; endosomal EGFR was also demonstrated 

to induce apoptosis, a protective feedback mechanism to restrict uncontrolled proliferation and 

maintain homeostasis [203]. Furthermore, EGF stimulation or apoptotic stimuli can also 

stimulate internalized EGFR (and EGFRvIII) to translocate the mitochondria and interact with 

cytochrome c oxidase (Cox) subunit II, leading to enhanced cell survival [204-206].  

Alternatively, endosomal EGFR can also be shuttled into the nucleus in cooperation with 

nuclear transport receptors, importin α and importin β1 [207,208]. EGFR has a tripartite nuclear 
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localization signal 645RRRHIVRKRTLRR657 within the juxtamembrane region that interacts with 

importins [209]. Nuclear EGFR was first detected in hepatocytes during liver regeneration and in 

human adrenocortical carcinomas [210]. EGF and TGF-a were also found to be localized in the 

nucleus of proliferating hepatocytes [207]. Later, nuclear EGFR was reported in other highly 

proliferative cells and tissues including placenta, uterus of pregnant mice, and basal cells of 

normal mouth mucosa [211]. Nuclear translocation of EGFR can be mediated by ligand 

stimulation, irradiation, heat shock, H2O2 and cisplatin treatment [207]. In tumors, nuclear 

EGFR has been detected in thyroid follicular carcinoma [212], breast carcinoma [213], 

esophageal squamous cell carcinoma [214], ovarian cancer [215], non-small cell lung cancer 

[216] and glioma [217], and correlates with poor survival. In the nucleus, EGFR functions as a 

transcriptional co-activator with other transcription factors, as a nuclear tyrosine kinase to 

phosphorylate nuclear proteins, and also as a modulator of DNA repair [218].  

Despite the lack of DNA binding domain, nuclear EGFR can promote gene transcription 

through its transactivation domain in its C-terminus and interaction with DNA-binding 

transcription factors [211]. Nuclear EGFR forms a complex with RNA helicase A (RHA) to bind 

to AT-rich sequences (ATRS) in the promoter of target genes, such as CCND1 (cyclin D1) and 

INOS (inducible nitric oxide synthase; iNOS) [219]. Additionally, nuclear EGFR can also partner 

with STAT3 transcription factor to promote gene transcription of COX2 (cyclooxygenase 2) in 

gliomas [220], INOS in breast cancer[221] and CMYC in pancreatic cancer[222]. Nuclear 

complex containing EGFR and STAT5 can bind the ATRS and activate gene transcription of 

Aurora-A, a serine/threonine kinase important for cell cycle progression, survival and neoplastic 

transformation [223]. Both constitutively activated EGFR and overexpression of Aurora A are 

known to be involved in chromosomal instability, thus  the discovery of EGFR-STAT5-Aurora A 

axis provides insights into the mechanism. Furthermore, nuclear EGFRvIII-STAT5a/STAT5b 

complex can activate Aurora-A transcription, while nuclear EGFRvIII-STAT5b can activate Bcl-
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xL transcription [224]. Nuclear EGFRvIII-cMyc complex were also discovered in the nucleus and 

contributed to oncogenic phenotypes [225].  

Acting as a tyrosine kinase in the nucleus, EGFR can bind and phosphorylate chromatin-

bound proliferating cell nuclear antigen (PCNA), leading to PCNA stabilization and DNA 

damage repair, and cell proliferation [226]. In addition to association with PCNA to facilitate 

DNA repair, EGFR translocates into the nucleus and interacts with DNA-protein kinase (DNA-

PK) upon ionizing radiation to initiate repair of DNA-strand break repair [227]. Anti-EGFR 

monoclonal antibody called C225 or cetuximab, triggers interaction between EGFR and DNA-

PK, but decreases nuclear DNA-PK activity [228]. Another study showed that cetuximab can 

inhibit radiation-induced EGFR nuclear transport and subsequent DNA-PK activity resulting in 

impaired DNA repair [229]. Overall, nuclear EGFR is demonstrated to be involved in resistance 

to cetuximab, gefitinib, radiation and chemotherapy [209]. 

 Increasing evidence demonstrate the tumor-promoting functions of nuclear EGFR, 

however the mechanisms that regulate EGFR nuclear localization and functions remain elusive. 

In breast cancer, MUC1 (mucin-1) was demonstrated to interact with EGFR and regulate EGFR 

trafficking to the nucleus [230]. However the mechanisms that regulate nuclear transport of 

EGFR in other cancers, including gliomas, have yet to be elucidated. The presence of nuclear 

EGFR correlates with poor survival of cancer patients, therefore it is important to understand the 

mechanisms that regulate aberrant EGFR nuclear trafficking and nuclear functions.  
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Figure 3. Cytoplasmic and nuclear EGFR signaling. Originally published by HW Lo and MC 
Hung. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle 
progression, nitric oxide pathway and patient survival. Br J Cancer. 2006;94(2):184-188. [207]. 
Used with permission.  
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Signal transducer and activator of transcription  

Introduction. Signal transducer and activator of transcription (STAT) is a family of latent 

transcription factor consisting of 7 members: STAT1, STAT2, STAT3, STAT4, STAT5a, 

STAT5b, and STAT6 [231]. STATs primarily mediate signaling downstream of cytokine and 

growth factor receptors, by transducing signals through the cytoplasm and transcriptional 

regulation in the nucleus. STAT protein structure consists of the N-terminus, followed by the 

coiled-coiled domain (for protein-protein interaction), DNA-binding domain, linker domain 

(unknown function), SH2 domain (for dimerization with other STATs) and the transactivation 

domain (contains binding sites for transcriptional co-regulators), and the C-terminus [231].  

Among the STATs, STAT3 is the most thoroughly studied in development and 

oncogenesis, because it is crucial for regulating the transcription of genes involved in cell 

proliferation, apoptosis, angiogenesis, immune responses, invasion and metastasis [232]. 

Mouse model studies demonstrated that unlike all the other stat genes, only targeted deletion of 

stat3 causes early embryonic lethality, indicating the importance of STAT3 in normal 

development [233,234]. STAT3 is key for maintaining tissue homeostasis in the intestine, skin, 

thymus, and is also important for wound healing and mammary development [235,236].  STAT3 

is expressed in the developing CNS [237]. In the developing brain, STAT3 is crucial for 

maintenance of neural stem cells, neuronal cell survival, and glial and astrocytic differentiation 

[231,237-239]. STAT3 activation also occurs in reactive astrocytes, activated microglia, and 

neurons in neurodegenerative diseases such as Alzheimer’s disease or in response to CNS 

injury [238,240-242]. 
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Figure 4. STAT3 signaling pathway in cancer. Originally published by SY Huang. Regulation 
of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical 
implications. Clin Cancer Res. 2007;13(5):1362-1366. [152]. Published with permission. 
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Mechanisms of STAT3 activation. Cytokine receptors, Janus kinases (JAKs), and 

receptor tyrosine kinases are the main proteins that lead to activation of STATs by 

phosphorylation. One major mechanism of STAT3 activation is by way of cytokines: interleukin 

(IL) cytokines signal through a dual receptor system comprising IL-receptor (IL-R), which lacks 

intrinsic kinase activity, and the signal transducing component, gp130 (also known as CD130) 

[243]. IL binding to the IL-R/gp130 complex recruits JAK to gp130, resulting in JAK 

phosphorylation. Activated JAK in turn phosphorylates tyrosine kinase residues in gp130 C-

terminus, which become docking sites for STAT3, leading to STAT3 phosphorylation. STAT3 

can also be activated through receptor tyrosine kinases (RTKs), including epidermal growth 

factor (EGFR), vascular endothelial growth factor receptor (VEGFR), platelet derived growth 

factor receptor (PDGFR), and non-receptor tyrosine kinases, src and abl. In addition to directly 

binding to RTKs such as in the case of EGFR (as mentioned previously), STAT3 can be 

activated by binding to JAK or src, which is bound on RTK [244].   

STAT3 activation primarily occurs by phosphorylation of tyrosine residue 705 (Y705) 

located in the SH2 domain, which is required for STAT3 dimerization and DNA-binding function 

[232]. Serine/threonine kinases such as MAPK (p38MAPK, ERK, JNK), PKCδ, and mTOR, can 

phosphorylate STAT3 at serine position 727 (S727) located in the transactivational domain 

[234]. Environmental stress or inflammatory cytokines can also induce phosphorylation of S727, 

but not Y705 [245]. The functions of S727 remain controversial; most research established a 

positive role of S727, demonstrating that it is necessary for STAT3 enhanced transcriptional 

activity [234]. On the contrary, some studies suggest that S727 phosphorylation inhibits Y705 

phosphorylation, leading to inhibition of STAT3 DNA binding and transcriptional activation 

[245,246]. Thus, S727 can have either a positive or negative regulatory role depending on cell-

type or stimulus. Phosphorylation of Y705 and S727 differentially regulate mouse embryonic 

stem cell (mESC) fates: leukemia inhibitory factor (LIF)-mediated STAT3 phosphorylation at 
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Y705 is indispensable for mESC self-renewal, while Fgf/Erk-mediated phosphorylation at S727 

is essential for promoting mESC differentiation and neuronal commitment [247]. Conversely in 

human ESC, LIF/STAT3 signaling was insufficient to maintain self-renewal and pluripotency 

state despite induction of STAT3 phosphorylation at Y705 and modest induction of Y727 [248].  

Non-canonical STAT3 activity can also occur independent of phosphorylation and direct 

DNA binding [249]. Yang et al demonstrated using STAT3 Y705F (Tyr705 → Phe705) mutant 

that cannot be phosphorylated at Y705, unphosphorylated STAT3 in response to IL6 stimulation 

can cooperatively bind to NFKB and mediate gene transcription of RANTES, an important 

mediator of inflammation [250]. Unphosphorylated STAT3 can also bind to the promoter of 

several pro-apoptotic genes including FOS, to suppress transcription in tumor cells [251]. In a 

separate study, STAT3 was demonstrated to localize in the mitochondria independent of 

tyrosine phosphorylation, SH2 domain and DNA-binding domain, to support Ras-mediated 

malignant transformation [252]. However, this mitochondrial STAT3 localization remains 

controversial [249]. 

STAT3 can transcriptionally induce its own inhibitor, the suppressor of cytokine signaling 

3 (SOCS3) of the SOCS family [253]. Besides binding to gp130 and promoting the degradation 

of gp130 complex, SOCS3 through its SH2 domain can bind to the kinase inhibitory region of 

JAK and inhibit JAK-mediated STAT3 activation[234,253]. Furthermore, SOCS3 can also 

compete with STAT3 SH2 domains for binding to receptor [234]. Protein tyrosine phosphatases 

(PTPs) and protein inhibitors of activated STATs (PIAS) can also deactivate STAT3. PTPs 

dephosphorylate STAT3 while PIAS block DNA-binding activity or recruit transcriptional 

corepressors [234]. 

 

STAT3 target genes. Upon STAT3 tyrosine phosphorylation (thereby activation), 

STAT3 forms homo- or hetero- dimers through reciprocal phosphotyrosine–SH2 interactions 
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and translocate to the nucleus to regulate gene transcription [243]. Unphopshorylated STAT3 

has also been frequently demonstrated to localize in the nucleus, although its role is not well 

established yet [254]. STAT3 nuclear import occurs through NLS located in the coiled-coiled 

domain and importin-α3/importin-β1-Ran-mediated active transport, independent of tyrosine 

phosphorylation [249,254].  

In the nucleus, although STAT3 primarily dimerizes, it can also cooperate with C/EBPβ, 

NFKB, activator protein 1, and glucocorticoid receptor to regulate genes [243]. STAT3 activates 

genes involved in cell cycle regulation (cyclin D1, c-Myc), angiogenesis (vascular endothelial 

growth factor/VEGF), migration and invasion (MMP-2 and MMP-9), and anti-apoptosis (survivin, 

Mcl-1, and Bcl-XL) [255-257]. STAT3 is also a key mediator of cancer inflammation, as it 

upregulates crucial inflammatory genes [258]. 

STAT3 directly binds to the promoter region of VEGF, a critical neovascularization factor 

that promotes angiogenesis [255,259]. Accordingly, STAT3 activation and VEGF expression 

were significantly correlated in breast cancer, head and neck carcinoma, melanoma and 

pancreatic cancer [260]. STAT3-VEGF signaling axis is not limited to cancer cells, as it was also 

observed in endothelial cells of the tumor microenvironment, ultimately leading to angiogenesis 

and metastasis [234,260,261]. MMPs upregulated by STAT3 activation promote cancer cell 

migration and invasion by degradation of various extracellular matrix proteins, thereby 

facilitating metastasis [257,260].  

  STAT3 in cancer. Among the STAT proteins, constitutively activated STAT3 is most 

frequently detected in majority of human cancers [234]. To investigate the role STAT3 in 

oncogenesis, Bromberg et al created a constitutively activated STAT3 (STAT3-C) plasmid by 

mutating two key cysteine residues (A661C and N663C) to allow formation of disulfide bridges 

in SH2 domains, thus generating spontaneous STAT3 homodimers independent of stimulation 
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[262]. This study led to the discovery of STAT3 as an oncogene, because STAT3 by itself could 

induce malignant transformation of fibroblasts in soft colony formation assay and mediate tumor 

formation in nude mice tumor xenografts [262].  

Aberrant activation of STAT3 is detected in many cancers, including but not limited to, 

lymphoma, leukemia, brain, prostate, breast, lung, and colon cancers [263-265]. There is a 

positive correlation between elevated EGFR activation and STAT3 activation in many cancers 

[266,267]. EGFR/STAT3 signaling is constitutively activated in approximately 50% of early stage 

NSCLC resulting in suppressed apoptosis and enhanced tumor growth and survival [266]. 

Studies in lung adenocarcinoma demonstrated activated STAT3 (pY705) expression is 

positively correlated with the presence of somatic-activating EGFR mutations [268]. Somatic 

constitutively active STAT3 mutations have been detected in leukemia, lymphomas and also 

hepatocellular carcinoma [260]. These mutations occur in the SH2 domain, inducing amino acid 

changes that confer higher hydrophobicity to STAT3 dimerization surface, thus activating 

STAT3 by potentially facilitating phosphorylation at Y705 [260].  

Depending on the genetic background of the cancer cells, STAT3 can either have an 

oncogenic or tumor-suppressive function. Although STAT3 is primarily linked to oncogenic 

functions, a few studies have demonstrated the tumor suppressive functions of STAT3 [260]. 

Loss of PTEN induces malignant transformation, however, STAT3 activation is able to suppress 

PTEN-loss induced transformation [269]. In contrast, STAT3 in cooperation with nuclear 

EGFRvIII in PTEN-deficient astrocytes can mediate malignant transformation [269]. Thus 

EGFRvIII acts as a switch to convert STAT3 from a tumor-suppressive to oncogenic protein. 

Furthermore, in p19ARF knockout background, STAT3 or STAT3C dramatically suppressed 

tumorigenecity in a SCID mouse xenograft model. Conversely, in p19ARF-positive Ras-

transformed hepatocytes, STAT3 exhibited tumor-promoting functions by increased tumor 

formation in SCID mice [270]. In gastrointestinal cancers, STAT3 in cooperation with NFKB is 
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responsible for maintaining a pro-carcinogenic inflammatory microenvironment and 

inflammation-associated tumorigenesis [268]. However, NFKB also mediates activation of target 

genes involved in anti-tumor immune response, which is inhibited by STAT3 [268].  

STAT3 in gliomas. STAT3 is constitutively active in 28.6% of LGGs and 60% of HGGs, 

while co-expression with EGFR occurs in 27% of HGGs [198].  STAT3 is a master regulator of 

the mesenchymal transformation of glioblastoma, whereby coexpression with C/EBPβ can 

reprogram neural stem cells towards an aberrant mesenchymal phenotype similar to HGG 

[271].  

STAT3 is constitutively activated in GSCs and is important for proliferation, survival and 

maintenance of GSCs [272,273]. Enhancer of Zeste homolog 2 (EZH2), a lysine methyl 

transferase and a critical regulator for GSC maintenance, can bind and activate STAT3 via 

lysine methylation at K180 of STAT3 [274]. It is speculated that STAT3 methylation at K180 

protects phosphorylated Y705 from dephosphorylation, and thus enhances its oncogenic 

activity. BMX (bone marrow X-linked), a nonreceptor tyrosine kinase, activates STAT3 signaling 

to maintain GSC self-renewal and proliferative potential and to upregulate essential GSC 

transcription factors [275]. An alternative route of STAT3 activation is through cytokine 

signaling: GBM cells and GSCs expressing EGFRvIII secrete elevated levels of IL-6 family 

cytokines, which then activates gp130 in neighboring tumors cells with wild-type EGFR, thus 

sustaining high STAT3 activation and thereby accelerating tumor growth [276]. IL6, a key 

modulator of STAT3, was demonstrated to be amplified, along with increased protein 

expression in GBM, compared to LGG [277]. 

STAT3 is negatively regulated by endogenous inhibitors. However, these endogenous 

inhibitors are frequently inactivated in gliomas. Expression of PIAS3, an inhibitor of STAT3, is 

reduced in GBM and is correlated with increased STAT3 activation and consequently, cell 
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proliferation [278] . Protein tyrosine phosphatase receptor delta (PTPRD), a STAT3 inhibitor, 

negatively correlated with STAT3-mediated tumorigenicity in GBM [277]. PTPRD is a tumor 

suppressor that is frequently mutated or inactivated by deletion or epigenetic silencing through 

CpG island hypermethylation in more than 50% of GBM tumors [279]. PTPRD knockdown using 

shRNA resulted in increased cell growth in immortalized primary human astrocytes in tumor 

xenografts on SCID mice [279].  

Many in vitro and in vivo studies have demonstrated the oncogenic functions of STAT3 

in glioma, whereby inhibition of STAT3 activation induces apoptosis and suppresses tumor 

proliferation and growth [280-282]. Interestingly, in vitro inhibition of STAT3 resulted in 

sensitization of HGGs to anti-EGFR therapy or chemotherapy [198]. GBM cells are resistant to 

temozolomide-induced DNA damage due to elevated expression of the DNA repair enzyme, 

O6-methylguanine-DNA methyltransferase (MGMT) with concomitant upregulation of STAT3 

[283]. Analysis of temozolomide-treated GBM patient samples revealed that MGMT and 

pSTAT3 (Y705) are positively correlated. Further investigation using small molecule STAT3 

inhibitor VI to inhibit STAT3 dimerization and DNA-binding and shRNA to deplete STAT3 

expression, led to downregulation of MGMT expression, indicating MGMT expression is STAT3-

dependent in GBM. In this study, Kohsaka et al demonstrated that STAT3 inhibition potentiates 

temozolomide efficacy in temozolomide-resistant glioma cell lines, suggesting that STAT3 is a 

potential target for TMZ-resistant GBMs.   

STAT3 activation is associated with upregulation of tumor-promoting factors in glioma 

[284] and inhibition of STAT3 results in suppressed proliferation and survival of glioma cells 

through decreased levels of proteins such as anti-apoptotic protein Bcl-xL [281]. MMP2 and 

VEGF are known STAT3 target genes that are significantly and positively correlated with 

IGFBP2 in GBM [285]. The VEGF signaling pathway is associated with IGFBP2 in glioma cells 

[141], and stable IGFBP2 overexpression in a GBM cell line also demonstrated increased 
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MMP2 expression [142].  An in vitro and in vivo study using glioma cell lines and human GBM 

tissues demonstrated that co-expression of EGFR and EGFRvIII is associated with increased 

pSTAT3(Y705) [191]. EGFR/EGFRvIII co-expressing GBM cells enhanced both nuclear 

transport of EGFRvIII, and phosphorylation of nuclear STAT3 [191]. Furthermore, this study 

demonstrated that both EGFR and EGFRvIII were able to form a complex with STAT3 in the 

nucleus. EGFR/STAT3 nuclear complex can activate gene transcription of COX2, iNOS and 

cMYC, resulting in enhanced oncogenic activity.  

As STAT3 is constitutively activated in gliomas, it is important to understand the 

mechanisms that regulate STAT3 activation to better understand glioma pathogenesis and 

develop improved therapeutics.  
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SUMMARY 

 IGFBP2 is overexpressed in gliomas and is associated with poor clinical outcome. 

Despite the wealth of research linking IGFBP2 to glioma progression and poor prognosis, 

detailed mechanisms of the tumor-promoting functions are still poorly understood. While 

typically considered a secreted factor, IGFBP2 is pleiotropic and can be localized intracellularly, 

and its functions differ based on its localization. The intracellular mechanism of actions of 

IGFBP2, specifically nuclear functions, remains unclear. Similarly, EGFR, which is traditionally 

considered a cell surface receptor, is a dynamic protein with intracellular functions, particularly 

in the nucleus. In addition to functioning as an upstream activator of STAT3, EGFR can form a 

complex with STAT3 in the nucleus and activate the transcription of oncogenic genes. The 

significance of nuclear EGFR in tumor biology is increasingly evident, specifically the presence 

of a nuclear EGFR/STAT3 complex in glioma which promotes its aggressiveness, but regulators 

of this pathway have yet to be identified. I hypothesize that IGFBP2 enhances EGFR and 

STAT3 signaling to promote tumorigenic activity in gliomas. This hypothesis will be tested 

in 2 aims: 1) elucidate the link between IGFBP2, EGFR and STAT3, and 2) determine the 

functions of nuclear IGFBP2 in relation to nuclear EGFR and STAT3.   
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Figure 5. Proposed mechanism of IGFBP2-mediated EGFR/STAT3 signaling activation. 
IGFBP2 regulates two mechanisms of EGFR signaling: activates intracellular EGFR-STAT3 
signal transduction, and facilitates EGFR nuclear accumulation resulting in elevated nuclear 
EGFR/STAT3 activity. IGFBP2-mediated activation of cytoplasmic and nuclear EGFR-STAT3 
signaling leads to enhanced oncogenic activity.  

 

 

 

EGFR

Plasma membrane

Cytoplasm

Nucleus

P

STAT3STAT3

P

EGFR

STAT3

EGFR IGFBP2

IGFBP2

IGFBP2

• COX2

• CMYC

 Cell proliferation

 Angiogenesis

 Invasion

 Chemoresistance

IGFBP2-overexpressing glioma



38 

 

CHAPTER 2: MATERIALS AND METHODS 

This chapter is based upon: Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, 

Cogdell DE, Verploegen M, Moore LM, Fuller GN, Nykter M, Cavenee WK, Zhang W. IGFBP2 

potentiates nuclear EGFR-STAT3 signaling. Oncogene. 2015. doi: 10.1038/onc.2015.131 [286].  

Cell culture, treatments, plasmids and transfections 

SNB19, U87 and T98G cells were obtained from ATCC (Manassas, VA). Cells were 

cultured in Dulbecco modified essential/F12 50:50 medium supplemented with 10% fetal bovine 

(empty vector) and SNB19.BP2 WT (IGFBP2 wild-type) cells were created as previously 

described [50]. To generate BP2ΔNLS (IGFBP2 mutation at the nuclear localization signal), 

amino acid residues 179PKKLRPP185 of the IGFBP2 nuclear localization signal were mutated 

to 179PNNLAPP185 using the Quikchange Lightning site-directed mutagenesis kit (Agilent 

Technologies, Santa Clara, CA) according to the manufacturer’s protocol.  A stable 

SNB19.BP2ΔNLS cell line was created by transfection of pcDNA3.1.IGFBP2ΔNLS plasmid via 

FuGENE HD (Promega, Fitchburg, WI) according to the manufacturer’s protocol, followed by 

G418 selection for 3 weeks. 

IGFBP2 stimulation experiments were performed by using recombinant IGFBP2 

(ab63223; Abcam, Cambridge, MA) with cells starved of serum overnight. Depletion of IGFBP2 

and EGFR was achieved via transfection of Lipofectamine RNAiMAX (Life Technologies, Grand 

Island, NY) according to the manufacturer’s protocol with 2 different pools of siRNA from 

Mission siRNA (Sigma, St Louis, MO) for 48 hours.  Some cells were treated with a broad-

spectrum ADAM inhibitor, TAPI-2 (#14695; Cayman Chemical, Ann Arbor, MI) or marimatstat 

transfection of Lipofectamine RNAiMAX according to the manufacturer’s protocol with 2 different 

pools of siRNA from Life Technologies (#s13718 and #s13719).  
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Cell viability assay 

Cells were seeded at 2000 cells/well (WP1066, Erlotinib) or 600 cells/well (TMZ) in 

quadruplicate in 96 well plates and allowed to attach overnight. Cells were subjected to 

treatment for 72 hours (WP1066, Erlotinib) or 5 days (TMZ). Cell viability was measured after 2 

hour incubation with 0.5mg/mL MTT reagent and lysed with DMSO. Plates were read at 590nm 

using Tecan SpectraFluor Microplate Reader (Tecan Group Ltd.) 

Bioinformatics analysis 

GSEA. A total of 268 LGG samples obtained from the TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/) were subjected to RNA sequencing. The gene expression data were 

median-centered and then transformed to log2 space. We calculated the correlation of IGFBP2 

gene expression with all other genes in the genome and ranked the genes in descending order 

based on the correlation coefficients. Using the gene expression correlation as the ranking 

metric, GSEA was then used to calculate the score for the degree of enrichment of the genes 

with higher correlation coefficients among genes involved in the STAT3 signaling pathway [287]. 

TCGA RPPA analysis. In a similar manner to GSEA, the correlation of IGFBP2 or 

STAT3 protein expression with proteins in the TCGA TMA was calculated for 257 LGG samples 

for which reverse phase protein array (RPPA) data were available.  Proteins that had higher 

correlation coefficients with both IGFBP2 and STAT3 proteins were considered the most likely 

candidates to represent molecular mechanisms underlying the association of IGFBP2 and the 

STAT3 signaling pathway. 

Ingenuity Pathway Analysis. The interaction network feature of Ingenuity Pathway 

Analysis was used to determine direct downstream targets of STAT3. Interactions were filtered 

on the basis of their confidence level so that only interactions experimentally observed in 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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humans were included in the table of results. Interactions were also filtered by relationship type 

so that only interactions of type "expression" or "transcription" were included.  

Hierarchical clustering. Hierarchical clustering of 157 experimentally validated STAT3 

target genes were performed across all samples in the NCI Rembrandt public data repository 

(http://rembrandt.nci.nih.gov) [288], which has 329 tumors: 59 oligodendrogliomas, 102 

astrocytomas, and 178 glioblastomas.  

Immunoprecipitation, immunoblotting and cellular fractionation 

For immunoprecipitation (IP), cells were subjected to lysis in NP-40 buffer with 0.1% 

phosphatase inhibitor cocktail (Pierce Biotechnology, Thermo Fisher Scientific, Waltham, MA). 

Biotechnology, Santa Cruz, CA) and appropriate species normal IgG, lysates were 

(#SC-6001; Santa Cruz Biotechnology; 1:100) and EGFR (#2256; Cell Signaling Technology, 

Beverly, MA; 1:100). Beads were washed with NP-40 buffer 3 times and boiled in Laemmli 

buffer. Proteins from the IP experiment or extracted from cell lysates were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (10%) in running buffer and transferred onto 

an Immobilon TM-PVDF membrane (Millipore, Billerica, MA) for 1 hour at 100V in transfer buffer 

(24 mM Tris base, 191 mM glycine and 20% [v/v] methanol). Membranes were blocked for 1 

hour at room temperature with 5% (w/v) non-fat milk powder in phosphate-buffered saline 

solution (PBS) with 0.1% Tween-

antibody: IGFBP2 (#SC-6001; 1:500); EGFR (#4267; Cell Signaling Technology; 1:1000), 

EGFR-Y1068 (#3777; Cell Signaling Technology; 1:1000), beta-tubulin (#2128; Cell Signaling 

Technology; 1:1000), PARP (#9542; Cell Signaling Technology; 1:1000), STAT3 (#9139; Cell 

Signaling Technology; 1:1000), STAT3-Y705 (#9145; Cell Signaling Technology; 1:1000), Bcl-
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xL (#2764; Cell Signaling Technology; 1:1000), cyclin D1 (#2978; Cell Signaling Technology; 

1:1000), c-MYC (#SC-40; Santa Cruz Biotechnology; 1:1000), COX-2 (#160112; Cayman 

Chemical; 1:250), or ADAM17 (#T5442; Sigma; 1:500) in blocking solution. After washing in 

PBST, blots were incubated for 1 hour at room temperature in PBST with secondary antibodies 

(anti-goat IgG, anti-rabbit IgG, or anti-mouse IgG; Santa Cruz Biotechnology; 1:5000) couple to 

horseradish peroxidase (HRP). Immunoblots were incubated with enhanced 

chemiluminescence SuperSignal West Pico or Femto solution (Pierce Biotechnology). Cellular 

fractionation was performed by using the NE-PER nuclear and cytoplasmic kit (Pierce 

Biotechnology) according to the manufacturer’s protocol. Densitometric analysis of immunoblot 

bands were quantified using ImageJ software (U.S. National Institutes of Health, Bethesda, 

MD).  

Confocal imaging 

Cell on chamber slides were fixed in 4% paraformaldehyde, permeabilized with 0.5% 

Triton X-100 and incubated with primary antibody to EGFR (#4267; 1:100) and IGFBP2 (#SC-

6001; 1:100) at 4°C overnight. They were then incubated with secondary antibody (Life 

Technologies [Alexa Fluor]; 1:500) for 1 hour at room temperature in 1% bovine serum 

albumin/PBS buffer. They were mounted in Vectashield (Vector Laboratories, Burlingame, CA), 

and nuclei were counterstained with DAPI (4',6-diamidino-2-phenylindole, dihydrochloride). 

Immunofluorescence images were acquired by using an Olympus FV1000 Laser Confocal 

Microscope at 40x/NA 1.3 objective (stacking from basement membrane to apical site at 1µM 

intervals).  

Tissue microarray construction and immunohistochemical analysis  

Tumor samples were collected and the TMA comprising formalin-fixed, paraffin-

embedded astrocytoma tissues was processed at Tampere University Hospital as described 
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previously [108]. Briefly, histologically representative tumor regions were selected by a 

neuropathologist (HH), and samples from these areas were placed in TMA blocks using a 

custom-built instrument (Beecher Instruments, Sun Prairie, WI). The diameter of the tissue 

cores in the microarray block was 1 mm. Altogether, 222 diffusely infiltrating astrocytomas (167 

glioblastomas, 17 grade 3 astrocytomas, and 38 grade 2 astrocytomas) were included in the 

immunohistochemical analysis. For staining, 5-µm sections from TMA blocks were 

deparaffinized in xylene or hexane and rehydrated through an ethanol dilution series. 

Immunohistochemical staining was performed with goat antibodies against human IGFBP2 

(#SC-6001; 1:300), phosphorylated STAT3 (#9145; 1:100), and EGFR (GR-01, Calbiochem, 

San Diego, CA; 1:50), together with the HRP-diaminobenzidine (DAB)–based Cell and Tissue 

Staining Kit (R&D Systems, Minneapolis, MN) or the Envision+System HRP-DAB kit (Dako, 

Carpenteria, CA). 

Intensity of cytosolic expression levels of the proteins in tumor cells was manually 

quantified by using a scoring system from 0 to 3 (0 = no signal, 1 = weak signal, 2 = moderate 

signal and 3 = strong signal). The proportion of the cells with nuclear protein localization was 

manually classified into 4 categories: 0%, <10%, 10-30% and ≥30%. Intensity of nuclear 

expression levels in tumor cells was manually quantified by using a scoring system from 0 to 2 

(0 = no signal, 1 = weak signal, 2 = strong signal). The TMA samples were examined and 

scored by 2 neuropathologists who were blinded to the clinical data. A survival association 

analysis of the patients from whom these samples were taken compared survival in patients 

with nuclear co-localization of all 3 proteins—IGFBP2, EGFR and phosphorylated STAT3 (≥1% 

cells with nuclear staining)—with survival of all the other patients. The survival data were 

analyzed by the log-rank test and visualized with a Kaplan-Meier plot. Statistical analyses were 

run with SPSS 20.0 software for Windows (SPSS Inc., Chicago, IL). The statistical significance 

of associations was evaluated by using the Pearson chi-square test.   
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Invasion and migration assays 

The cell invasion assay was performed in triplicate in Matrigel-coated transwell 

chambers (8-µm pore size; (BD Biosciences, San Jose, CA). The cells were plated in 500 µL of 

serum-free medium (4x104 cells per transwell) and allowed to invade toward a medium 

containing 10% FBS for 16 hours. Cells that invaded into the underside of the filter were fixed 

and stained with HEMA-DIFF solution (Thermo Fisher Scientific). The numbers of invaded cells 

from 5 randomly chosen fields from each membrane were counted. The cell migration assay 

was performed the same way as the invasion assay, using transwell chambers (8-µm pore size, 

BD Biosciences) and the cells were allowed to migrate for 4 hours. 

Statistical analysis 

GraphPrism 6 (GraphPad, La Jolla, CA, USA) and SPSS 20.0 software for Windows 

(SPSS Inc., Chicago, IL) were used for statistical analysis and graphing. The Spearman 

correlation test was used to examine correlation between protein or phosphoprotein expression 

in the TCGA RPPA data set. The survival data were analyzed by the log-rank test and 

visualized with a Kaplan-Meier plot. The statistical significance of protein associations in the 

TMA data set was evaluated by using the Pearson chi-square test. Statistical test on GSEA was 

estimated as previously described [287]. Student t-tests were used for paired comparisons 

where variances were estimated to be similar. Except for one-side test for the GSEA analysis 

[287], all other tests were two-sided with P<0.05 as the threshold for statistical significance in all 

tests. Indicated annotations correspond to the following P-values: *P<0.05, **P<0.01, 

***P<0.001, and ****P<0.0001.  
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CHAPTER 3: RESULTS 

This chapter is based upon: Chua CY, Liu Y, Granberg KJ, Hu L, Haapasalo H, Annala MJ, 

Cogdell DE, Verploegen M, Moore LM, Fuller GN, Nykter M, Cavenee WK, Zhang W. IGFBP2 

potentiates nuclear EGFR-STAT3 signaling. Oncogene. 2015. doi: 10.1038/onc.2015.131  [286].  

 

Introduction 

Secreted proteins such as growth factors and hormones exert their function by binding to 

the extracellular domain of membrane receptors. Secreted factors can also enter the cell 

through receptor-mediated endocytosis [289-292]. Once internalized, these proteins can 

regulate intracellular cytoplasmic signal transduction and transcriptional activity in the nucleus 

[211,293-298]. Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) is a secreted protein 

that was initially characterized as binding and modulating the activity of IGF-I and -II [299-301]. 

IGFBP2 can also function independently of IGF binding, and its versatility as a secreted or 

cytoplasmic signaling effector has been widely characterized. IGFBP2 can bind integrins 

[101,139,141] and activate PI3K/AKT [146] [141] and ERK [302]. Recently, a classic 

nuclear localization signal sequence that is responsible for nuclear entry has been identified in 

IGFBP2 [124]. However, the functional and clinical significance of nuclear IGFBP2 has not been 

clearly elucidated [154,157-159].  

In mammals, IGFBP2 is expressed at high levels in embryonic tissues, but the 

expression is drastically decreased after birth. Postnatally, IGFBP2 expression is observed in 

limited cell populations: hematopoietic stem cells and liver and spleen progenitor cells 

[77,78,82-84,303]. IGFBP2 is reactivated during progression of a wide spectrum of cancer 

types, including glioma and prostate, breast and lung cancers [84,114,146,304]. IGFBP2 plays 

an oncogenic role in tumor initiation and progression to high-grade glioma [123] and is a 

signature gene associated with poor clinical outcome in high-grade glioma [305]. Furthermore, 
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IGFBP2 mediates cell expansion and survival of glioma stem cells [127]. Despite the clear role 

for IGFBP2 in tumorigenesis, the mechanisms underlying the contribution of intracellular 

IGFBP2 (particularly nuclear) to the tumorigenic program remain unknown. 

EGFR/IGFBP2 and EGFR/STAT3 [198,306] are concurrently co-expressed in glioma. 

EGFR is activated in 30-50% of high-grade gliomas through amplification, overexpression or 

mutation [307-309]. EGFR signal transduction can be mediated by STAT3. STAT3 interacts with 

EGFR at 2 autophosphorylation sites in the cytoplasmic domain, tyrosine 1068 or tyrosine 1086 

[181], and is activated by phosphorylation at tyrosine 705 (Y705) [310]. In addition to this 

cytoplasmic interaction, EGFR and STAT3, after translocation into the nucleus, can form a 

complex to activate transcription of genes such as COX2 [220], iNOS [221] and c-MYC [222]. 

Nuclear EGFR expression in glioma and other cancers, such as breast carcinoma [213], 

esophageal squamous cell carcinoma [214] and ovarian cancer [215], is associated with poor 

survival and linked to an aggressive tumor phenotype [207]. Furthermore, IGFBP2 regulates 

expression of the VEGF, MMP2, TIMP1, TWIST, BCL2 and HIF1A genes [124,142], which are 

known transcriptional targets of STAT3. Recent research implicated nuclear IGFPB2 in 

angiogenesis through activation of VEGF, a STAT3 target gene [124]. These observations 

suggest that there is a functional connection between IGFBP2, EGFR and STAT3 in glioma. 

Here we tested this hypothesis and provide evidence that IGFBP2 mediates the tumorigenic 

program through a tightly linked IGFBP2-EGFR-STAT3 regulatory signaling network. 

IGFBP2 activates the STAT3 signaling pathway via an EGFR-dependent mechanism 

To explore the functional interaction between IGFBP2, EGFR and STAT3, we stimulated 

SNB19 parental (SNB19.par) glioma cells, which had been serum-starved overnight, with 

increasing amounts of exogenous IGFBP2 protein.  Immunoblotting analysis demonstrated 

increased expression of both total EGFR and EGFR activated via phosphorylation at tyrosine 
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Y1068, or pEGFR(Y1068), in parallel with IGFBP2 stimulation (Fig. 6A). STAT3 activation via 

phosphorylation at tyrosine 705, designated pSTAT3(Y705), and expression of STAT3 

transcriptional targets Bcl-xL, cyclin D1 and c-MYC also increased in response to IGFBP2 

stimulation. 

 

Figure 6. IGFBP2 activates EGFR-STAT3 signaling pathway. (A) Immunoblot analysis of 
SNB19 cells starved of serum overnight then stimulated with exogenous IGFBP2 protein at the 
indicated dosages (0, 50, 100, 250 ng/mL) for 60 minutes. Densitometric analysis shown below 
the immunoblot indicates fold-change relative to unstimulated control cells (normalized to beta-
actin loading control or total protein for phosphorylated proteins). (B) Immunoblot analysis of 
U87 cells starved of serum overnight then stimulated with exogenous IGFBP2 (100ng/mL) for 
the indicated time points (0, 5, 10, 15, 30, 60 minutes). Densitometric analysis shown below the 
immunoblot indicates fold-change relative to unstimulated control cells (normalized to loading 
control or total protein for phosphorylated proteins). 
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Next, we performed a time-course experiment in which U87 glioma cells, which lack 

endogenous IGFBP2 expression, were stimulated with exogenous IGFBP2 after overnight 

serum-starvation. Immunoblotting analysis revealed induction of EGFR, STAT3 and Bcl-xL 

expression as early as 5 minutes following addition of exogenous IGFBP2 (Fig. 6B). 

Furthermore, immunoblotting analysis of SNB19 cells stably overexpressing IGFBP2 

(SNB19.BP2) demonstrated that, compared to SNB19 cells stably transfected with empty vector 

(SNB19.EV), IGFBP2 overexpression resulted in increased expression of EGFR and 

phosphorylated STAT3, along with Bcl-xL, cyclin D1 and c-MYC (Fig. 7A). To examine the 

involvement of EGFR in IGFBP2-mediated STAT3 activation, we depleted EGFR by using 2 

different pools of small interfering RNA (siRNA) in SNB19.BP2 cells and observed decreases in 

STAT3 activation (Fig. 7B), supporting the hypothesis that IGFBP2 mediates STAT3 activation 

through EGFR. To rule out the possibility of off-target effects of EGFR siRNA-mediated 

knockdown, we knocked down EGFR in SNB19.BP2 cells and stimulated the cells with 

recombinant IL6. We observed STAT3 phosphorylation in these cells, confirming that EGFR 

knockdown impairs STAT3 activation by IGFBP2 without compromising alternate STAT3 

activation pathways (Fig 8). 

EGFR can be indirectly activated through transactivation, which involves a disintegrin 

and metalloproteinases (ADAMs) [169]. To determine whether ADAMs are involved in IGFBP2-

mediated EGFR activation, we inhibited ADAMs by treatment with 2 different ADAM inhibitors, 

TAPI2 and marimastat [311,312]. U87 cells serum-starved overnight were pretreated with 20µM 

TAPI-2 or marimastat, then stimulated with exogenous IGFBP2 for 5 minutes (Fig. 9A). 

Immunoblotting analysis demonstrated that exogenous IGFBP2 stimulated EGFR and STAT3 

activation despite ADAMs inhibition. Furthermore, because ADAM17 is essential to regulation of 

EGFR transactivation [169], we knocked down ADAM17 using 2 different pools of siRNA to 

evaluate whether IGFBP2-mediated EGFR activation involves ADAM17 (Fig. 9B). 
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Immunoblotting analysis showed that ADAM17 knockdown did not affect EGFR and STAT3 

activation in SNB19.BP2 cells. These data demonstrate that ADAMs are not involved in 

IGFBP2-mediated EGFR/STAT3 activation. 

 

Figure 7. IGFBP2 activates STAT3 through EGFR. (A) Immunoblot analysis comparing stable 
SNB19 empty vector cells (SNB19.EV) to SNB19 cells stably overexpressing IGFBP2 
(SNB19.BP2). Densitometric analysis shown below the immunoblot indicates fold-change 
relative to SNB19.EV after normalization to beta-tubulin loading control (or total protein for 
phosphorylated proteins). (B) Immunoblot analysis comparing SNB19.EV and SNB19.BP2 cells 
depleted of EGFR via 2 independent pools of EGFR siRNA (EGFR sir#1, EGFR sir#2) to cells 
transfected with scrambled negative control siRNA (ctrl siR). The intensity of pSTAT3(Y705), 
quantified by densitometry, is shown below the immunoblot as fold-change relative to control 
siRNA, normalized to total STAT3. 
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Figure 8. IGFBP2-induced STAT3 activation is mediated through EGFR. Immunoblot 
analysis of SNB19.BP2 cells depleted of EGFR by using 2 independent pools of EGFR siRNA 
(EGFR sir#1, EGFR sir#2) or scrambled negative control siRNA (ctrl siR), followed by overnight 
serum starvation and stimulation with 100ng/mL recombinant human IL6 (rhIL6) for 15 minutes. 
 
 

 

Figure 9. Inhibition of ADAMs do not affect IGFBP2-mediated EGFR signaling activation. 
(A) U87 glioma cells were serum-starved overnight, then pretreated with an ADAMs inhibitor, 
TAPI-2 or marimastat (MMS) (20μM), for 2 hours. After pretreatment, cells were stimulated with 
100ng/mL IGFBP2 in serum-free medium with fresh TAPI-2 or marimastat (20μM) for 5 minutes. 
Whole-cell lysates were collected for immunoblotting. (B) SNB19.EV and SNB19.BP2 cells were 
transfected with ADAM17 siRNA or scramble negative control siRNA for 48 hours and serum-
starved overnight, then treated with 100ng/mL IGFBP2 for 5 minutes. Whole-cell lysates were 
collected for immunoblotting. 
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To evaluate the importance of STAT3 activity for cell viability of IGFBP2 overexpressing 

glioma cells, we used a preclinical STAT3 inhibitor, WP1066 [38] to treat SNB19.BP2 cells, and 

SNB19.EV cells as a control. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay demonstrated that SNB19.BP2 cell viability was significantly decreased with STAT3 

inhibition compared to SNB19.EV cells, indicating that STAT3 activation is a vital downstream 

pathway of IGFBP2 in glioma (Fig. 10A). Consistent with reports of STAT3-mediated 

temozolomide (TMZ) resistance in glioma [39, 40], SNB19.BP2 cells were less sensitive to TMZ 

treatment compared to SNB19.EV as demonstrated by MTT assay (Fig. 10B). To investigate 

sensitivity of IGFBP2 overexpressing cells to EGFR inhibitor, we assessed the drug response to 

erlotinib via MTT assay. Erlotinib is a small molecule tyrosine kinase inhibitor that binds and 

inhibits EGFR activation via phosphorylation. There was no difference between SNB19.EV and 

SNB19.BP2 response to Erlotinib (Fig. 10C), consistent with clinical reports of insensitivity of 

glioma to EGFR inhibition.  
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Figure 10. Cell viability assays of SNB19.EV and SNB19.BP2 cells. (A) Cell viability of -
SNB19.EV and SNB19.BP2 cells were determined via MTT assay after treatment with 
increasing concentration of WP1066 for 72 hours. (B) Cell viability of SNB19.EV and 
SNB19.BP2 cells were determined via MTT assay after treatment with increasing concentration 
of TMZ for 5 days. (C) Cell viability of SNB19.EV and SNB19.BP2 cells were determined via 
MTT assay after treatment with increasing concentration of Erlotinib for 72 hours. All MTT 
experiments were performed in quadruplicate (n=4, mean ± s.d.) 

 

 

IGFBP2 is significantly correlated with STAT3 pathway activation in glioma 

Previous studies showed that IGFBP2 regulates the expression of many STAT3 target 

genes [124,142], and our results demonstrate that IGFBP2 can stimulate STAT3 activation 

through EGFR. To gain a comprehensive view of the relationship between IGFBP2 and STAT3 
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signaling, we analyzed the whole-genome gene expression profiling data from The Cancer 

Genome Atlas (TCGA) low-grade glioma (LGG) database. To assess whether STAT3 pathway 

genes are enriched in samples with IGFBP2 expression, we performed a gene set enrichment 

analysis (GSEA) using STAT3 pathway gene set derived from the Ingenuity Pathway Analysis 

(IPA). GSEA revealed that STAT3-activated genes were significantly correlated with IGFBP2 

(P<0.001; Fig. 11), suggesting that IGFBP2 expression is associated with STAT3 pathway 

activation. To further substantiate the IGFBP2-STAT3 link, we performed hierarchical clustering 

on the 157 experimentally validated STAT3 target genes across all samples in the REpository 

for Molecular BRAin Neoplasia DaTa (REMBRANDT) dataset. Two distinct clusters were 

formed, associated with tumor grade and IGFBP2 and STAT3 expression but not with other 

transcription factors such as beta-catenin (CTNNB1) or Forkhead box protein M1 (FOXM1) (Fig. 

12). Thus, using 2 independent glioma datasets (TCGA and REMBRANDT), we further validate 

that IGFBP2 and STAT3 expression are tightly linked. 

Next we postulated that the most functionally important of the correlated genes would 

likely be associated with STAT3 activity (as measured by phosphorylation) in the reverse-phase 

protein array (RPPA) data of the same TCGA cohort. In this proteomic analysis, we identified 

the 7 proteins (Fig. 13A, 13B) that were most significantly and strongly correlated with both 

IGFBP2 and pSTAT3(Y705) (correlation coefficients >0.2). Of these 7 strongly correlated 

proteins, 5 are closely related to the STAT3 signaling pathway, namely plasminogen activator 

inhibitor-1 (PAI-1), fibronectin, cyclin B1, pHER2(Y1248), and, notably, pEGFR(Y1068). HER2 

is a member of the EGFR family and an upstream regulator of STAT3, however it has not been 

shown to have clinical significance in glioma [313-317]. These results from patient samples are 

consistent with the results of our in vitro cell line–based studies, and together these results 

illustrate the potential importance of the IGFBP2-EGFR-STAT3 signaling axis in glioma.  
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Figure 11. IGFBP2 is strongly and significantly correlated with STAT3 pathway genes. (A) 
GSEA demonstrated enrichment for STAT3 target genes based on correlation with IGFBP2 
expression in the TCGA low-grade glioma database. The top of the panel shows the enrichment 
score (ES) for genes associated with STAT3 signaling pathway targets. The blue lines indicate 
where the STAT3 target genes appear in the ranked gene list, and the black lines represent the 
top 45 highly correlated targets. The bottom of the panel shows the ranking scores (correlation 
of all genes associated with the STAT3 signaling pathway targets with IGFBP2). This work was 
performed by Yuexin Liu.  
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Figure 12. Hierarchical clustering of 157 experimentally validated STAT3 target genes 
from Ingenuity Pathway Analysis across all samples in the Rembrandt glioma dataset. 
Two distinct clusters formed and associated with tumor grade and IGFBP2 and STAT3 
expression, but not with CTNN1B or FOXM1 expression. EGFR expression was elevated in a 
subset of glioblastomas. Blue bar represents low-grade glioma, and yellow bar represents high-
grade glioma. This work was performed by Matti Annala. 
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Figure 13.  IGFBP2 is significantly correlated with pSTAT3(Y705)-correlated proteins. (A) 
Correlation of expression of proteins in the TCGA RPPA data with IGFBP2 (x-axis) and 
pSTAT3(Y705) (y-axis). Each dot represents a protein. Proteins with correlation coefficients 
greater than 0.2 are highlighted in orange. (B) Correlation of the 7 proteins with the highest 
correlation coefficients with both IGFBP2 and STAT3. Also shown is the relationship of each 
protein with STAT3 (“target” = STAT3 transcriptional target; “regulator” = STAT3 upstream 
regulator). Y = yes, a known target or upstream regulator of STAT3; N = not a known target or 
upstream regulator of STAT3. This work was performed by Yuexin Liu. 
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IGFBP2 co-precipitates and co-localizes with EGFR 

To further evaluate the functional relationship between IGFBP2 and EGFR, we performed 

reciprocal immunoprecipitation (IP) studies followed by immunoblotting comparing IGFBP2-

overexpressing SNB19 cells and empty vector control cells. Co-IP experiments revealed co-

precipitation of IGFBP2 and EGFR (Fig. 14A). We next treated U87 cells, which had been 

serum-starved overnight, with 2 different doses of exogenous IGFBP2 followed by IP analysis 

and immunoblotting. The results showed a dose-dependent increase of IGFBP2 co-precipitated 

with EGFR (Fig. 14B). Confocal imaging analysis of SNB19.BP2 cells demonstrated clear co-

localization of IGFBP2 and EGFR proteins on the cell membrane and in the cytoplasm and 

nucleus (Fig. 15). Co-localization of IGFBP2 and EGFR provides further evidence of a complex 

containing IGFBP2 and EGFR.  

 

Figure 14. IGFBP2 co-precipitates with EGFR. (A) Co-immunoprecipitation (IP) of IGFBP2 
and EGFR in SNB19.EV control cells versus SNB19.BP2 cells analyzed by immunoblot (IB). (B) 
Immunoprecipitation of IGFBP2 in U87 cells starved of serum overnight then stimulated with 2 
different doses of IGFBP2 for 30 minutes, analyzed by immunoblotting. 
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Figure 15. IGFBP2 co-localizes with EGFR. Confocal microscopy images of 
immunofluorescence staining for IGFBP2 (green), EGFR (red) and DAPI (blue) in SNB19.BP2 
cells show IGFBP2 and EGFR co-localization; blue arrow = cell membrane; purple arrow = 
cytoplasm; white arrow = nucleus. This work was performed in collaboration with Limei Hu. 
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IGFBP2 facilitates EGFR nuclear accumulation 

Because we observed IGFBP2 and EGFR co-localization in the cytoplasm and nucleus, 

we investigated whether nuclear IGFBP2 is interacts with nuclear EGFR and whether this 

complex augments STAT3 transcriptional activation. We first fractionated SNB19.BP2 and 

SNB19.EV cells into cytoplasmic and nuclear fractions and performed immunoblotting to detect 

IGFBP2, EGFR and STAT3. Our results revealed that a substantial proportion of IGFBP2 and 

EGFR localized to the nucleus in SNB19.BP2 cells (Fig. 16A). We then determined the ratio of 

nuclear to cytoplasmic EGFR via densitometric analysis and found that SNB19.BP2 cells had 

more than twice as much nuclear EGFR as SNB19.EV cells. 

To investigate whether IGFBP2 facilitates EGFR nuclear accumulation, we stimulated 

SNB19.par cells (which had been serum-starved overnight) with exogenous IGFBP2 protein and 

then visualized EGFR protein localization by confocal imaging. IGFBP2 stimulation of 

SNB19.par cells resulted in EGFR accumulation in the nucleus (Fig. 16B). A time-course study 

with the same cells demonstrated that IGFBP2 nuclear accumulation paralleled EGFR nuclear 

accumulation in a time-dependent manner (Fig. 16C). To validate that EGFR nuclear 

accumulation is mediated through IGFBP2, we knocked down IGFBP2 using 2 different pools of 

siRNA in SNB19.BP2 cells and performed immunoblotting analysis on the fractionated cells. 

IGFBP2 depletion led to impaired EGFR nuclear localization with coordinate cytoplasmic 

accumulation of EGFR, whereas control knockdown did not affect EGFR nuclear accumulation 

(Fig. 16D). These results suggest that IGFBP2 plays a role in promoting EGFR nuclear 

accumulation.  
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Figure 16. IGFBP2 drives EGFR nuclear accumulation. (A) Immunoblot analysis of 
cytoplasmic (cyt) and nuclear (nuc) fractions of SNB19.EV and SNB19.BP2 cells. Beta-tubulin 
represents a loading control for the cytoplasmic fraction, and PARP represents a loading control 
for the nuclear fraction. Densitometric analysis represented by the bar graph, demonstrates 
percentage of cytoplasmic or nuclear EGFR. (B) Confocal images of SNB19 parental cells and 
SNB19 parental cells stimulated with exogenous IGFBP2 protein (250ng/mL for 30 minutes). 
Cells were stained for EGFR (red) and the nuclei stained with DAPI (blue).  (C) Immunoblot 
analysis of cytoplasmic and nuclear fractions of SNB19 parental cells stimulated with 
exogenous IGFBP2 (250ng/mL for indicated times). The graph represents fold-change of 
cytoplasmic or nuclear IGFBP2 and EGFR calculated from densitometric analysis of the 
immunoblot bands. (D) Immunoblot analysis comparing cytoplasmic and nuclear fractions of 
SNB19.BP2 cells depleted of IGFBP2 via 2 independent pools of IGFBP2 siRNA (BP2 siR #1, 
#2) to cells transfected with scrambled negative control siRNA (ctrl siR). Densitometric analysis 
represented by the bar graph, demonstrates percentage of cytoplasmic or nuclear EGFR. Panel 
B was performed in collaboration with Limei Hu. 
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Nuclear translocation of IGFBP2 is required for IGFBP2-mediated EGFR nuclear 

accumulation 

To better understand the mechanism of nuclear IGFBP2–mediated EGFR nuclear 

accumulation, we generated an IGFBP2 construct with a mutant nuclear localization signal [160] 

(BP2ΔNLS; Fig 17). Transient transfection of BP2ΔNLS plasmid into SNB19.par cells resulted in 

the expected compromise of IGFBP2 nuclear entry and also impaired EGFR nuclear 

accumulation (Fig. 18A). Next, we created a stable BP2ΔNLS-overexpressing cell line 

(SNB19.BP2ΔNLS). Compared to SNB19.BP2 WT (wild-type IGFBP2), impaired EGFR nuclear 

accumulation in fractionated stable SNB19.BP2ΔNLS cells resulted in decreased nuclear 

expression of COX2 and cMYC, which are known downstream targets of nuclear EGFR/STAT3 

complex (Fig. 18B). These results were replicated in another glioma cell line, T98G (Fig. 19A, 

19B). To determine whether BP2ΔNLS can bind to EGFR, we transiently transfected U87 cells 

with BP2 WT or BP2ΔNLS plasmid and performed IP followed by immunoblotting (Fig. 20). The 

results showed that mutation of IGFBP2 NLS does not affect binding to EGFR, demonstrating 

that nuclear translocation of IGFBP2 is important for mediating EGFR nuclear accumulation. 

Because IGFBP2 is involved in glioma cell migration and invasion [141,142], we then performed 

migration and invasion assays using the SNB19.EV, SNB19.BP2 WT, and SNB19.BP2ΔNLS 

cell lines. Migration and invasion potential were significantly impaired in the SNB19.BP2ΔNLS 

cells compared to SNB19.BP2 WT (Fig. 21A, 21B), indicating that nuclear IGFBP2 is important 

for the invasive phenotype of glioma cells, plausibly through regulation of nuclear EGFR-STAT3 

activity. 



61 

 

 

Figure 17. Diagram of IGFBP2 domains and nuclear localization signal (NLS). 

 

 

Figure 18. BP2ΔNLS impairs nuclear EGFR accumulation. (A) Immunoblot analysis of 
cytoplasmic and nuclear fractions of transiently transfected SNB19.EV, SNB19.BP2 wild type 
(BP2 WT) and SNB19 with a mutated IGFBP2 nuclear localization signal (BP2ΔNLS). 
Densitometric analysis represented by the bar graph, demonstrates percentage of cytoplasmic 
or nuclear EGFR. (B) Immunoblot analysis of cytoplasmic and nuclear proteins in stable 
SNB19.EV, SNB19.BP2 WT and SNB19.BP2ΔNLS cells. 
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Figure 19. IGFBP2 promotes nuclear EGFR accumulation in T98G glioma cells. (A) 
Immunoblot analysis comparing cytoplasmic and nuclear fractions of T98G cells depleted of 
IGFBP2 via 2 independent pools of IGFBP2 siRNA (BP2 siR #1, #2) for 48 hours to those 
treated with scrambled negative control siRNA (ctrl siR). Densitometric analysis of EGFR 
represented by the bar graph, demonstrates percentage of cytoplasmic (cyt) or nuclear (nuc) 
EGFR. (B) Immunoblot analysis of cytoplasmic and nuclear proteins in T98G cells transiently 
transfected with EV, BP2 WT and BP2ΔNLS. Densitometric analysis of EGFR represented by 
the bar graph, demonstrates percentage of cytoplasmic (cyt) or nuclear (nuc) EGFR. 
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Figure 20. Mutation of the IGFBP2 NLS does not affect binding to EGFR. U87 glioma cells 
were transiently transfected with EV, BP2 WT or BP2ΔNLS plasmid followed by 
immunoprecipitation (IP) for IGFBP2 and immunoblotting (IB).  
 

 

 

Figure 21. Migration and invasion potential were significantly impaired in the 
SNB19.BP2ΔNLS cells. (A) A migration assay was performed on SNB19.EV (empty vector), 
SNB19.BP2 WT (wild type) and SNB19.BP2 with a mutant NLS (SNB19.BP2ΔNLS or mutNLS) 
cells using a transwell migration chamber. (Left) Cells were fixed and stained after incubation for 
4 hours. (Right) Bar graph represents the mean number of migrated cells in 5 random view 
fields (mean ± s.e.m.). (B) An invasion assay was performed on SNB19.EV, SNB19.BP2 WT 
and SNB19.BP2ΔNLS cells using a transwell invasion chamber. (Left) Cells were fixed and 
stained after incubation for 16 hours. (Right) Bar graph represents the mean number of invaded 
cells in 5 random view fields (mean ± s.e.m.). Indicated annotations correspond to the following 
P-values: *P<0.05, ***P<0.005, and ****P<0.0001. This work was performed in collaboration 
with Limei Hu. 
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Levels of nuclear EGFR, nuclear IGFBP2 and pSTAT3 are significantly correlated in 

glioma 

The RPPA LGG data from TCGA revealed a close relationship between IGFBP2, 

activated EGFR and activated STAT3, but did not provide spatial information. To further 

investigate localization of these proteins, we performed immunohistochemical analysis to 

determine the association between IGFBP2, EGFR and pSTAT3(Y705) in a clinical glioma 

tissue microarray (TMA) comprising 222 samples of grade 2-4 gliomas. We observed both 

cytosolic and nuclear localization of IGFBP2, both of which were strongly associated with 

STAT3 phosphorylation in these gliomas (Fig. 22A, 22B, Table 1). Both cytosolic and nuclear 

IGFBP2 expression positively correlated with increased fraction and degree of phosphorylation 

of STAT3 (p=0.023 and p=0.018, respectively), suggesting a functional link between IGFBP2 

expression and STAT3 phosphorylation. 

We observed nuclear co-localization of IGFBP2 and EGFR in the clinical samples (Fig. 

22C, 22D, and Table 1). Cytosolic IGFBP2 did not correlate with nuclear EGFR and nuclear 

IGFBP2 did not correlate with cytosolic EGFR. However, nuclear IGFBP2 positively associated 

with nuclear EGFR localization (p=0.011). Furthermore, clinical samples that were triple positive 

for nuclear accumulation of IGFBP2, phosphorylated STAT3 and EGFR were strongly 

associated with poor survival (Fig. 23).  
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Figure 22.  IGFBP2 correlates with STAT3 activation and nuclear EGFR localization in 
clinical samples.  Expression and localization of IGFBP2, pSTAT3(Y705) and EGFR were 
detected with immunohistochemistry from a TMA that included 222 human grade 2-4 gliomas. 

(A) TMA immunostaining images (magnification 40) representing weak and strong staining of 
IGFBP2 and pSTAT3(Y705). (B) Cytosolic and nuclear IGFBP2 expression associated with the 
percentage of cells positive for pSTAT3 and with pSTAT3 staining intensity. Bar graphs illustrate 
the increasing fractions of pSTAT3-positive cells and pSTAT3 intensity upon increasing IGFBP2 

intensity or nuclear accumulation. (C) TMA immunostaining images (magnification 40) 
representing low and high nuclear localization of IGFBP2 and EGFR. (D) Nuclear IGFBP2 
associated with nuclear EGFR. The bar graph illustrates the fraction of samples with increasing 
nuclear EGFR localization upon increasing nuclear accumulation of IGFBP2. This work was 
performed by Kirsi Granberg and Hannu Haapasalo. 
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Figure 23. Nuclear co-localization of IGFBP2, EGFR and phosphorylated STAT3 predicted 
poor survival among patients with human grade 2-4 glioma. Patients were stratified into 2 
cohorts based on the nuclear staining of all 3 proteins: triple positives (≥1% of cells with nuclear 
expression, n=51, red line) and all other cases (n=83, blue line).  Survival rates were visualized 
by using a Kaplan-Meier survival plot (p=0.0086). This work was performed by Matti Annala. 
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Table 1. Analysis of IGFBP2, pSTAT3 (Y705) and EGFR in human glioma TMA. Levels of 
IGFBP2, pSTAT3(Y705) and EGFR in a TMA of glioma samples from patients were evaluated 
using immunohistochemical analysis. Correlation levels were calculated by using the Pearson 
chi-square analysis. This work was performed by Kirsi Granberg and Hannu Haapasalo. 
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CHAPTER 4: DISCUSSION  

 

SUMMARY. Gliomas remain one of the most lethal cancers despite decades of 

research. The standard of care therapy fails to improve clinical outcome due to the deeply 

infiltrative and drug resistant nature of the tumors. The complexity of oncogenic signaling in 

gliomas further intensifies the aggressive phenotype. Thus it is crucial to identify the key 

oncogenic signaling network(s) in glioma in order to develop novel therapeutic targets. IGFBP2 

is an important oncogene for promoting glioma progression.  The tumor-promoting mechanisms 

of IGFBP2 in glioma remains poorly elucidated as it is highly dynamic and can be secreted from 

the cell, or localize in the cytosol or nucleus, or bind different proteins. In this study, I combined 

genomics and functional analyses to examine the functional interaction of IGFBP2 with 2 other 

proteins highly activated in gliomas, EGFR and STAT3. My findings demonstrate that IGFBP2 is 

the key signaling activator of both the signal transduction activity and nuclear activity of EGFR 

and STAT3 (Fig. 24). Therefore IGFBP2 may be a potentially effective target for treating glioma.   

IGFBP2 in EGFR/STAT3 signaling 

Receptor tyrosine kinases activate intracellular signaling pathways to transmit signals 

from the extracellular environment into the nucleus where cellular activity is coordinated and 

controlled primarily through gene transcription. In physiological conditions, RTK signaling is 

tightly regulated to maintain homeostasis. In cancer, tumor cells acquire mutations that alter 

RTK leading to dysregulated signaling, resulting in uncontrolled growth and proliferation 

capacities. RTK signaling is altered in 88% gliomas [39], and the resultant acquired oncogenic 

capacities allow glioma cells to infiltrate into the brain parenchyma. As a result, maximal surgical 

resection while preserving normal brain function is hindered by infiltrative and poorly defined 

lesions. The residual lesions are typically resistant to adjuvant chemoradiotherapy and thus 

continue to proliferate and inevitably cause recurrence. Therefore, identifying critical oncogenic 
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signaling mediators in gliomas is pivotal for effective targeted treatment.  

EGFR is a signature glioma oncogenic RTK predominantly altered by amplification, 

overexpression, and activating mutations. Depending on the type of alteration, EGFR is 

aberrantly activated in a ligand-dependent or –independent manner. Aberrantly activated EGFR 

constitutively initiates a signaling cascade that activates transcription factors which then 

translocate into the nucleus to activate gene transcription. One of the main EGFR downstream 

transcription factors is STAT3 in gliomas. Activated STAT3 subsequently translocates to the 

nucleus to activate transcription of proliferation, migration, invasion, and angiogenesis related 

genes. Thus it is important to understand the regulatory factors involved in EGFR-STAT3 

pathway activation in gliomas. Our study expands the understanding of this network by 

demonstrating that IGFBP2 plays a role in the activation of EGFR-STAT3 and downstream 

pathways. 

Our group and others have found that IGFBP2 upregulates transcription of migration, 

invasion and angiogenesis-related genes, particularly STAT3, MMP2 and VEGF [124,142]. 

Because IGFBP2/EGFR and EGFR/STAT3 are concurrently expressed in gliomas[198,306], I 

hypothesize that IGFBP2, EGFR and STAT3 are functionally connected. In my study, I 

discovered that IGFBP2 activates STAT3 pathway through an EGFR-dependent mechanism. 

Forced overexpression of IGFBP2 or exogenous stimulation with recombinant IGFBP2, resulted 

in activated EGFR-STAT3 pathway and the downstream targets in glioma cells. I report that 

IGFBP2-mediated EGFR-STAT3 signaling is independent of ADAMs activity, suggesting that 

increased EGFR ligand shedding is not involved. Although I cannot eliminate the possibility that 

IGFBP2 may stimulate increased production of EGFR ligands to facilitate uncontrolled 

overstimulation of EGFR. Additionally, even though EGFR depletion inhibits STAT3 activation, 

cancerous cells may utilize alternative routes to activate STAT3 as I demonstrate using cytokine 

IL6.  
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My discovery of the IGFBP2-EGFR-STAT3 signaling axis is further validated through 

bioinformatics analyses of two independent databases, TCGA and REMBRANDT. Because 

IGFBP2 expression varies in LGGs, analysis of human LGG samples from the TCGA LGG 

dataset allows for a broader dynamic range and hence a more wide-ranging view of IGFBP2 in 

relation to STAT3. While both TGCA LGG and REMBRANDT analysis substantiated the tight 

link between IGFBP2 and STAT3, REMBRANDT analysis demonstrated correlation with tumor 

grade. The availability of TGCA LGG RPPA data further validated the correlative link between 

IGFBP2, activated EGFR (by way of phosphorylation at tyrosine residue 1068;pY1068) and 

activated STAT3 (pY705). Activated EGFR at Y1068 is one of the major docking sites for 

STAT3; thus the detection of pEGFR-Y1068 among the top 7 correlated proteins validates our 

findings.  Overall, using in vitro and bioinformatics analysis, I confirmed evidence of IGFBP2-

EGFR-STAT3 signaling axis in gliomas.  

This discovery of IGFBP2-mediated EGFR activation is not without precedent; in breast 

cancer cells, IGFBP2 can mediate signaling activation of ErbB2, a member of EGFR family, in a 

time and dose-dependent manner [318]. However, the exact mechanism of IGFBP2-mediated 

EGFR family signaling activation has up to now not been elucidated. Trastuzumab, a 

humanized monoclonal antibody targeting ErbB2 extracellular domain, induces ErbB2 receptor 

internalization and degradation. In contrast, as reported by Dokmanovic et al, IGFBP2 does not 

induce ErbB2 receptor degradation [318]. Therefore it is possible that IGFBP2 can stabilize 

ErbB2 either by preventing internalization or degradation. My immunoblot analysis 

demonstrates increased total EGFR protein upon IGFBP2 stimulation or overexpression. In my 

studies, the presence of IGFBP2 does not affect EGFR internalization since EGFR is detected 

in the cytoplasm and the nucleus. Thus it is plausible that IGFBP2 may affect EGFR 

degradation, perhaps through Cdc42-mediated modulation of c-Cbl, a known mediator of EGFR 

degradation. Cdc42 sequesters c-Cbl and prevents EGFR degradation [319]. Conventionally 
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Cdc42 is associated with actin cytoskeletion regulation; however accumulating evidence 

implicates Cdc42 in malignant transformation and invasion [319]. Our previous studies 

demonstrated that IGFBP2 overexpression activates Cdc42 signaling, whereas IGFBP2 

inhibition through MIIP overexpression resulted in decreased CDC42 [141,150]. Further studies 

are required to investigate the role of Cdc42 in IGFBP2-mediated EGFR signaling.  

The observed interaction and co-localization of IGFBP2 and EGFR demonstrates an 

additional mechanism for the pleiotropic functions of IGFBP2. It is currently unclear where this 

interaction occurs or whether it is direct or indirect. Studies using vascular smooth muscle cells 

demonstrated that IGFBP2 binds to the extracellular domain of receptor protein tyrosine 

phosphatase β via its heparin binding domain (HBD) in an IGF-dependent manner [95]. 

Because IGFBP2 NLS is located in the HBD, we used mutated IGFBP2 NLS to demonstrate 

that IGFBP2 binding to EGFR is independent of the NLS or HBD domain. Even though IGFBP2 

lacks EGF-like motifs, I cannot exclude the possibility of binding to EGFR extracellular domain. 

Other studies have demonstrated EGFR ligand-like functions of prolidase C [167] and 

connective tissue growth factor [168], which both lack EGF motifs but can bind to EGFR 

extracellular domain and activate EGFR signaling.  

Another plausible mechanism of binding may be indirectly through integrins. In cells with 

high EGFR expression, integrin α5β1 can interact with EGFR and form a complex on the cell 

surface [320]. Furthermore, integrin α5β1 association stimulates EGFR tyrosine phosphorylation 

independent of EGFR ligands, although the addition of ligands can increase EGFR activation 

levels. Constitutive elevation of urokinase plasminogen activator receptor (uPAR) can induce 

activation and association of EGFR with integrin α5β1 in a study performed using human 

hepatoma and fibrosarcoma cell lines [321]. Accordingly, our lab’s previous studies 

demonstrated that IGFBP2 binds and activates integrin α5β1 in gliomas. Therefore, IGFBP2-

EGFR interaction may potentially indirectly occur through mutual association with integrin α5β1.  
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Nuclear functions of IGFBP2 

To add to the complexity of oncogenic pathways, signaling molecules are 

spatiotemporally dynamic [60-65]. In addition to cell surface–initiated signaling, EGFR can also 

mediate signaling in the nucleus after internalization[209]. Analogously, in addition to acting as a 

secreted or cytoplasmic signaling effector, IGFBP2 can translocate to the nucleus, albeit the 

functions remain poorly defined. 

My findings indicate that nuclear IGFBP2 is important for mediating glioma cell migration 

and invasion. Furthermore, our study also highlights IGFBP2 as a non-canonical pathway of 

promoting EGFR nuclear accumulation. EGF ligand not only can activate EGFR signaling 

cascade in the cytoplasm, but also stimulate EGFR nuclear translocation. Similarly, IGFBP2 is a 

dynamic secreted protein with intracellular functions that can mediate intrinsic or extrinsic 

signaling depending on the context. The mechanisms of IGFBP2-induced EGFR nuclear 

accumulation are currently unknown although our study ruled out the involvement of NLS or 

HBD domain in IGFBP2-mediated EGFR nuclear accumulation.  

In a study using breast cancer cells, IGFBP3 can associate with EGFR in the cytoplasm, 

but upon etoposide treatment, IGFBP3, EGFR and DNA-PKs (DNA repair enzyme) can form a 

complex in the nucleus [322]. EGFR kinase inhibition using gefitinib inhibited the etoposide-

induced nuclear increase of both EGFR and IGFBP-3, indicating that EGFR kinase activity is 

required for both EGFR and IGFBP3 nuclear translocation in response to DNA damage by 

etoposide. As with my study, the mechanisms of IGFBP3-induced EGFR nuclear translocation 

remain unknown. It is possible that IGFBP2 may promote EGFR internalization and both 

proteins interact with importins that mediate nuclear translocation. Furthermore as mentioned 

earlier, IGFBP2 interaction with EGFR may stabilize EGFR, prevent degradation or recycling, 

and instead shuttle EGFR to the nuclear import route.  
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My investigation revealed that nuclear IGFBP2 induced increased EGFR/STAT3 activity 

as measured by downstream target expression, COX2 and cMYC. COX2 expression in gliomas 

is primarily regulated by EGFR either through activation of signaling cascade [323,324], or in 

cooperation with STAT3 in the nucleus [220]. COX2 overexpression correlates with glioma 

grade and is associated with poor survival [325]. In addition to increasing glioma cell migration, 

invasion and angiogenesis in vitro, COX2 increases tumor growth in xenograft glioma mouse 

models [325]. cMYC is required for glioma stem cell maintenance and correlated with HGGs 

[326-328]. This highlights the potential of targeting IGFBP2 to disrupt EGFR/STAT3 

transcriptional activity in glioma. IGFBP2 induces DNA-PKs expression in HGGs in an IGF-

independent manner [329]. In addition to cytosolic interaction, EGFR binds and activates DNA-

PK in the nucleus to regulate DNA repair [227,330], resulting in radiation and chemotherapy 

resistance. Though it remains to be investigated, IGFBP2-mediated EGFR nuclear 

accumulation may also induce DNA-PK expression in glioma, leading to DNA repair and 

consequently chemoradioresistance.   

Therapeutic implications.  

STAT3 overexpression is attributed to resistance to TMZ, the first-line chemotherapy in 

high-grade gliomas [283]. Consistent with this, we showed that IGFBP2 overexpressing cells 

were more resistant to TMZ treatment whereas the upregulated expression of activated STAT3 

in IGFBP2 overexpressing cells sensitized the cells to STAT3 inhibitor, WP1066. Furthermore, 

treatment with EGFR inhibitors or radiation can induce EGFR nuclear translocation [207]. It is 

possible that in IGFBP2 overexpressing glioma, EGFR is actively being shuttled into the nucleus 

by IGFBP2, rendering the cells resistant to EGFR-targeted therapies such as erlotinib that 

targets the kinase activity of EGFR. Thus our results may explain the lack of response to EGFR 

inhibitors in IGFBP2-overexpressing glioma patients. 

EGFR crosstalks with STAT3 through 2 routes: tyrosine kinase–mediated activation of 
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STAT3 [181,182] and nuclear cooperation as transcriptional cofactors to activate iNOS, COX2 

and cMYC [220-222]. Our study identifies IGFBP2 as a key activator of two fundamental 

functions of EGFR-STAT3, signal transduction and nuclear activity in glioma. Canonical EGFR 

activation mechanism primarily involves ligand binding. Because EGFR ligands including EGF, 

TGFα and HB-EGF are constitutively expressed in normal adult brain [331-334], therapeutic 

targeting of these ligands is not feasible without compromising normal brain function. IGFBP2 is 

expressed in fetal brain and gliomas, but not in normal adult brain [78,84], thus making IGFBP2 

a more attractive therapeutic target in gliomas.  

Thus far, EGFR inhibition has limited patient response in glioma while STAT3 targeted 

therapy also has limited success in clinical trials in other cancers. By identifying the pivotal role 

of IGFBP2 in perpetuating nuclear crosstalk of EGFR/STAT3, our study uncovers the 

importance of exploiting IGFBP2 as a target for glioma therapy. In addition, Celecoxib can 

induce radiosensitivity in tumor cells by inhibiting radiation-induced nuclear EGFR transport 

[335]. Omomyc, which is a dominant negative form of cMYC, can inhibit glioma cell proliferation 

and survival, and also suppress tumor growth in orthotopic mouse xenograft [336]. Combination 

targeted therapy of IGFBP2, COX2, and cMYC may be a beneficial alternative to EGFR or 

STAT3 targeted therapy. Overall, our discovery can be extended to other tumor types with 

known IGFBP2/EGFR/STAT3 alterations, such as lung and breast cancer.  
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Figure 24. IGFBP2 functions in glioma. IGFBP2 through activation of integrin α5β1 can 

activate ILK-NFKB pathway. EGFR can also crosstalk with integrins to activate AKT-NFKB 

pathway. This project highlights a novel role of IGFBP2 in activating two functions of EGFR, 

intracellular signal transduction by way of STAT3 activation, and nuclear EGFR-STAT3 

signaling. Ultimately, IGFBP2 activation of these oncogenic pathways lead to tumorigenic 

events.  
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CHAPTER 5: FUTURE DIRECTIONS 

IGFBP2-EGFR-STAT3 mechanism of activation 

As mentioned in the discussion, IGFBP2 interaction with EGFR should be further 

investigated to determine the mechanisms involved in EGFR-STAT3 activation (Fig. 25A, B). 

One possibility is that IGFBP2 may over-stimulate the production of EGFR ligands. 

Furthermore, as novel EGFR extracellular domain binding proteins have been reported to 

activate EGFR signaling, it is important to determine whether IGFBP2 can bind to the 

extracellular domain to activate EGFR. The possibility that IGFBP2 binding to EGFR confers 

EGFR to a constitutively activated state should also be investigated. Moreover, because 

IGFBP2 binds to integrin α5β1 and integrin α5β1 can activate EGFR, an IGFBP2-integrin α5β1-

EGFR route of activation should be assessed (Fig. 25C).  

IGFBP2 may also stabilize EGFR by preventing degradation possibly by upregulated 

Cdc42 to interfere with Cbl ubiquitinase. Because we observed increased nuclear EGFR 

accumulation with IGFBP2 expression, we should investigate whether IGFBP2 plays a role in 

actively transporting EGFR into the nucleus by cooperating with importins, or that IGFBP2 

interferes with nuclear export mechanisms of EGFR (Fig. 25D).  

Bild et al demonstrated that receptor-mediated endocytosis is required for STAT3 

translocation from the cytoplasm into the perinuclear region [337]. STAT3 colocalizes with EGF-

EGFR complex in endocytic vesicles and this complex is then transported from the cytosol to 

the perinuclear region. It is suggested that EGF is released from the complex at the perinuclear 

region, and that allows STAT3 to subsequently be released and imported into the nucleus. It is 

conceivable that IGFBP2-EGFR-STAT3 may also exist in a complex in glioma cells. 

Phenylarsine oxide (PAO), a pharmacological endocytosis inhibitor, blocks EGFR endocytosis, 

resulting in the loss of nuclear Stat3 DNA-binding activity. PAO can be used to assess whether 
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IGFBP2 is endocytosed into the cell via receptor-mediated endocytosis, particularly EGFR.  

Therapeutic IGFBP2 inhibition 

IGFBP2 inhibition has mainly been tested in vitro using neutralizing antibody (Ab) or 

antisense oligonucleotide (ASO). Neutralizing antibody blocks the functions of IGFBP2, but in 

general does not alter its expression. Antisense IGFBP2 is complementary to IGFBP2 mRNA 

and by base pairing with IGFBP2 mRNA, can inhibit physically inhibit translation of IGFBP2 

[338]. In a study of metastasis, IGFBP2 inhibition using neutralizing antibody inhibited 

endothelial cell recruitment by metastatic cells [126]. IGFBP2 inhibition using neutralizing 

antibody suppressed angiogenic activity in melanoma cells [339]. In prostate cancer cells, 

neutralizing IGFBP2 antibody or antisense IGFBP2 can inhibit IGFBP2-mediated cell 

proliferation [340]. IGFBP2 can stimulate adult neural stem cells to differentiate into neurons 

whereas blocking of IGFBP2 by neutralizing antibody can inhibit neuronal differentiation [341].  

Our group introduced antisense IGFBP2 into a PDGF-driven glioma mouse model, and 

demonstrated that in addition to reduced IGFBP2 expression, survival was prolonged compared 

to control mice [148]. OGX-225 is a second-generation antisense preclinical drug that inhibits 

both IGFBP2 and IGFBP5. So et al demonstrated that OGX-225 downregulates IGFBP2 

expression in both IGFBP2-overexpressing or endogenous IGFBP2 expressing breast cancer 

cells [342]. OGX-225 also decreased IGFBP2-mediated cell growth in vitro and tumor growth in 

xenograft mice. Furthermore, IGFBP2 overexpression results in resistant to paclitaxel-induced 

growth inhibition whereas OGX-225 chemosensitized these cells to paclitaxel.   

Because of the effectiveness of IGFBP2 inhibition in vitro and in vivo, future studies to 

test the efficacy of IGFBP2 inhibition with neutralizing antibody or OGX-225 using the RCAS 

glioma mouse model should be performed (Fig. 25E). Furthermore, targeted therapy of EGFR, 

STAT3, COX2, or cMYC in combination with IGFBP2 should also be investigated (Fig. 25F).  
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Figure 25. Proposed future research plans for IGFBP2 in glioma. Determine whether 
IGFBP2 activates EGFR through (A) increasing EGFR ligand production, or (B) stabilization of 
EGFR, or (C) crosstalk with integrin a5b1. (D) The role of IGFBP2 in EGFR nuclear import or 
export should also be investigated. Efficacy of therapeutic inhibition using (E) IGFBP2 
neutralizing antibody (Ab) or antisense oligonucleotide (ASO), and/or combination therapy with 
(F) celecoxib or omomyc should be assessed.  
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