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Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human

serum.The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ

in their constant region, particularly in their hinges and upper CH2 domains.These regions

are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different

subclasses have different effector functions, both in terms of triggering FcγR-expressing

cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and acti-

vating complement. The Fc-regions also contain a binding epitope for the neonatal Fc

receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional

transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells,

where it participates in both phagocytosis and antigen presentation together with classical

FcγR and complement. How these properties, IgG-polymorphisms and post-translational

modification of the antibodies in the form of glycosylation, affect IgG-function will be the

focus of the current review.
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INTRODUCTION
Immunoglobulin G (IgG) is one of the most abundant proteins

in human serum, accounting for about 10–20% of plasma pro-

tein. It is the major class of the five classes of immunoglobulins in

human beings, IgM, IgD, IgG, IgA, and IgE. These closely related

glycoproteins, composed of 82–96% protein and 4–18% carbo-

hydrate, differ in heavy chain structure and have different effector

functions. IgG can be further divided in four subclasses, named, in

order of decreasing abundance IgG1, IgG2, IgG3,and IgG4 (1). The

subclasses of IgG were discovered in the 1960s following extensive

studies using specific rabbit antisera against human IgG myeloma

proteins (1). Differences in structure and function of IgG sub-

classes are summarized in Table 1. Although they are more than

90% identical on the amino acid level, each subclass has a unique

profile with respect to antigen binding, immune complex forma-

tion, complement activation, triggering of effector cells, half-life,

and placental transport.

In addition, IgG antibody responses to different types of anti-

gens leads to marked skewing toward one of the subclasses. Selec-

tive subclass deficiencies are usually not detrimental to the indi-

vidual, but do sometimes lead to enhanced susceptibility toward

specific classes of pathogens. This can be caused by complete

isotype- or subclass deficiency due to deletions in the Ig loci of

chromosome 14, but this is rare (3). More often, one or more of the

IgG subclass levels – predominantly IgG2 and/or IgG4 – are below

the normal range in healthy individuals (4),which sometimes leads

to an impaired response to infections with encapsulated bacteria

as will be discussed below. All in all, the acquired variability within

the Ig locus seems to have selected for beneficial changes during

evolution for optimizing or fine tuning the antibody-mediated

immune response.

IgG ANTIBODY RESPONSES

The route by which an antigen enters our body and its chem-

ical composition steers the (secondary) immune reaction into

preferential patterns of class switching. Besides direct B-cell trig-

gering by the antigen itself, a number of secondary signals will

influence differentiation of the B-cell, including recognition by

pattern-recognition receptors like Toll-like receptors and cytokines

produced by other lymphocytes and antigen-presenting cells (5,

6). For example, protein antigens usually trigger B-cells receiv-

ing T-cell help through MHC-class II expressed by the B-cell.

For those antigens, class switching tends to be IgG1 or IgG3,

but can also be IgG4 or IgE. On the other hand, in the absence

of T-cell help, polysaccharide antigens may induce class switch-

ing to IgG2 in particular. B-cells undergoing class switching in

a primary or secondary immune reaction can also go through

subsequent class switching (7), but those events are limited by

the availability of remaining heavy chain genes, not excised from

the genome in previous class-switching events. The relatively

terminal position of the Cγ4 cassette may be one of the rea-

sons why IgG4 responses tend to occur after repeated antigen

exposure (8).

IgG1

Antibody responses to soluble protein antigens and membrane

proteins primarily induce IgG1, but are accompanied with lower

levels of the other subclasses, mostly IgG3 IgG4 (9). Because IgG1

is normally the most abundant subclass, a lack of IgG1 seen in a

variety of primary and secondary antibody deficiencies, can result

in decreased total IgG levels (hypogammaglobulinemia). IgG1

deficiencies, sometimes in combination with other IgG subclass

deficiencies, are associated with recurrent infections (10).
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Table 1 | Properties of human IgG subclasses.

IgG1 IgG2 IgG3 IgG4

General

Molecular mass (kD) 146 146 170 146

Amino acids in hinge region 15 12 62a 12

Inter-heavy chain disulfide bonds 2 4b 11a 2

Mean adult serum level (g/l) 6.98 3.8 0.51 0.56

Relative abundance (%) 60 32 4 4

Half-life (days) 21 21 7/∼21a 21

Placental transfer ++++ ++ ++/++++a +++

Antibody response to:

Proteins ++ +/− ++ ++e

Polysaccharides + +++ +/− +/−

Allergens + (−) (−) ++

Complement activation

C1q binding ++ + +++ −

Fc receptors

FcγRI +++c 65d
− − ++++ 61 ++ 34

FcγRIIaH131 +++ 5.2 ++ 0.45 ++++ 0.89 ++ 0.17

FcγRIIaR131 +++ 3.5 + 0.10 ++++ 0.91 ++ 0.21

FcγRIIb/c + 0.12 − 0.02 ++ 0.17 + 0.20

FcγRIIIaF158 ++ 1.2 − 0.03 ++++ 7.7 − 0.20

FcγRIIIaV158 +++ 2.0 + 0.07 ++++ 9.8 ++ 0.25

FcγRIIIb +++ 0.2 − − ++++ 1.1 − −

FcRn (at pH < 6.5) +++ +++ ++/+++a +++

aDepends on allotype.

bFor A/A isomer.

cMultivalent binding to transfected cells. Adapted from Bruhns et al. (2).

dAssociation constant (×106 M−1) for monovalent binding (2).

eAfter repeated encounters with protein antigens, often allergens.

IgG2

Immunoglobulin G-antibody responses to bacterial capsular poly-

saccharide antigens can be almost completely restricted to IgG2 (9,

11–13), and IgG2 deficiency may result in the virtual absence of

IgG anti-carbohydrate antibodies (14), although these responses

can also be compensated for by enhanced levels of other IgG sub-

classes, in particularly by elevated IgG1 and IgG3 levels (15). An

increased susceptibility to certain bacterial infections is associated

with IgG2 deficiency, suggesting a role of IgG2 in the defense to

these pathogens (16). Low concentrations of IgG2 often occur in

association with a deficiency in IgG4 and/or IgA1 and IgA2 (17).

An extensive analysis of anti-carbohydrate reactivities in intra-

venous immunoglobulin revealed that although IgG2 indeed rep-

resents the bulk of the reactivity to many glycans, this is not always

the case (18). IgG1 antibodies have also been reported to prevail

against Haemophilus influenzae b polysaccharide during natural

infections (9). In normal immune responses in healthy individu-

als, IgG1 and IgG3 responses can also be observed, and certainly

against protein-conjugated glycans, which happens in the reaction

to second-generation pneumococcal vaccines (19).

IgG3

IgG3 antibodies are particularly effective in the induction of

effector functions. Being a potent pro-inflammatory antibody, its

shorter half-life may function to limit the potential of excessive

inflammatory responses. However, the finding that some indi-

viduals bearing the G3m allotypic “s” or “15” marker [i.e., G3m

(s)/G3m (15) and G3m (st)/G3m (15, 16) allotypes] also have

IgG3 with prolonged half-life may challenge that assumption

(20). Curiously, IgG3 levels in these individuals do not seem to

be increased, which may be explained by γ3-promotor polymor-

phisms known to affect the frequency of class switching to IgG3

in G3m (g) allotypes, explaining the low concentration in most

G3m (g) homozygous individuals (21, 22). Viral infections in gen-

eral lead to IgG antibodies of the IgG1 and IgG3 subclasses, with

IgG3 antibodies appearing first in the course of the infection (9).

IgG3-dominated responses appear to be rare. A curious example

is the so-called anti-hinge antibodies (23), which bind to the hinge

region of Fab2 fragments but not intact IgG antibodies. Also, anti-

bodies to P and Pk blood group antigens are largely restricted to

IgG3 (24). Responses against other red cell antigens (e.g., RhD)

and platelets (e.g., human platelet antigen 1a), as seen in trans-

fusion and in pregnancies, are often dominated by IgG1, IgG3, or

both (25–27). Decreased IgG3 levels are frequently associated with

other IgG subclass deficiencies (28).

IgG4

Allergens are often good inducers of IgG1 and IgG4, in addition

to IgE. IgG4 antibodies are often formed following repeated or

long-term exposure to antigen in a non-infectious setting and may
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become the dominant subclass. Examples are long-term bee keep-

ers and allergic individuals that underwent immune therapy (8,

29–31). In immunotherapy, relief of symptoms appears to corre-

late with IgG4 induction. Switching to IgG4 may be modulated by

IL10, linking this subclass downregulation of immune responses or

tolerance induction (8, 32). IgG4 may also represent the dominant

antibody subclass in immune responses to therapeutic proteins,

such as factor VIII and IX (33–35) and at least some recombi-

nant antibodies such as adalimumab (36). Furthermore, helminth

or filarial parasite infections may result in the formation of IgG4

antibodies (37, 38), and high IgG4 titers can be associated with an

asymptomatic infection (39).

Isolated IgG4 deficiencies are rare; it is uncertain what the

possible consequences are. On the other hand, a group of dis-

orders, nowadays referred to as IgG4-related diseases (IgG4RD),

are characterized by elevated serum IgG4 concentration and tissue

infiltration by IgG4-positive plasma cells and may affect a number

of organs (40, 41). The spectrum of IgG4RD is wide and includes

patients with autoimmune pancreatitis (AIP), Mikulicz’s disease,

hypophysitis, Riedel thyroiditis, interstitial pneumonitis, intersti-

tial nephritis, prostatitis, lymphadenopathy, retroperitoneal fibro-

sis, inflammatory aortic aneurysm, and inflammatory pseudo-

tumor (42). In AIP patients, elevated serum IgG4 (>1.4 g/L) is

observed in 70–80% of the cases, as well as in 10% of pancreatic

cancer patients. However, as 5% of the normal population also

has elevated IgG4 levels, this makes it only suitable for diagnosis

in combination with other features of AIP.

STRUCTURE
Similar to the other isotypes, the IgG immunoglobulin molecule

consists of four polypeptide chains, composed of two identical

50 kDa γ heavy (H) chains and two identical 25 kDa κ or λ light

(L) chains, linked together by inter-chain disulfide bonds. Each

heavy chain consists of an N-terminal variable domain (VH) and

three constant domains (CH1, CH2, CH3), with an additional

“hinge region” between CH1 and CH2 (Figure 1A). Similarly, the

light chains consist of an N-terminal variable domain (VL) and

a constant domain (CL). The light chain associates with the VH

and CH1 domains to form a Fab arm (“Fab”= fragment anti-

gen binding), and functionally, the V regions interact to form

the in antigen-binding region – acquired through differential

assembly of Variable, Diversity (VH only), and Joining gene seg-

ments and inclusion of somatic mutations (43–45), although

their relative contribution to antigen binding varies greatly. Two

heavy chain–light chain heterodimers (HL) combine into a sin-

gle antibody molecule (H2L2) via disulfide bonds in the hinge

region and non-covalent interactions between the CH3 domains

(Figure 2A). The part of the antibody formed by the lower

hinge region and the CH2/CH3 domains is called “Fc” (“fragment

crystalline”).

FIGURE 1 | (A) Crystal structure of an human IgG1 molecule (1HZH)

viewed from two different angles, demonstrating the flexibility of the

two Fab fragments with respect to each other and the Fc tail. The binding

location for FcγR, binding IgG asymmetrically in a 1:1 configuration

(46–49), is indicated by the blue circle (lower hinge, upper CH2) on the

left, and the location of the binding motifs for FcRn, TRIM21, and the

potential site for binding of DC-SIGN on the right (intersection of CH2

and CH3). FcRn, and the potential binding site of DC-SIGN bind IgG in a

2:1 configuration (50–52), respectively, while a dimer of TRIM21 binds

IgG in a 1:1 configuration (53). The N-linked glycan at position 297

attached to each of the heavy chains is shown on the right. (B) The

N-linked glycan found at position 297 can be found as a core structure,

common to all IgG found in human beings and rodents (core structure

indicated with a red dashed line), but can be found with either an

addition of fucose, bisecting N -acetylglucosamine (GlcNAc), one or two

galactose, and one or two sialic acid residues.
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FIGURE 2 |The schematic layout of the IgG subclasses and isomers

thereof. (A) The IgG subclasses, indicating how the different heavy and light

chains are linked, the length of the hinge, and the number of disulfide bridges

connecting the two heavy chains. For orientation, and comparison with

Figure 1, the location of the hinge, CH2, and CH3 domains are shown. The

classical A/A isoform of IgG2 with four different disulfide bridges between the

two heavy chains is depicted here, but in (B) the B/B form, with only two

disulfide bridges and alternative linkages of the light chain to the heavy chain

form is shown, together with the intermediate A/B form. (C) Isomers of IgG4

resulting in half-molecule exchange. On the far left and far right, two

classically depicted IgG4 clones in slightly different colors are shown just after

secretion from B-cells. These are connected with two inter-chain disulfide

bridges. However, these are in fact in equilibrium where these are reduced

creating forms without covalent linkages between the symmetric molecules.

This form can either revert back to covalently linked form or swap heavy

chains in a stochastic process with that of neighboring IgG4 molecule creating

a asymmetric bispecific IgG4 (bottom middle) that is also in flux, reverting into

covalently linked IgG4 (top, middle). By this process, most IgG4 found in

human beings (expressing the IgG4-R409 allotype, see text for more details

and Figure 3) are monovalent-bispecific molecules.

The global structures of the four human IgG subclasses are

very similar (Figures 1 and 2A), but with important differences

between each subclass that affect their binding to accessary mol-

ecules and receptors, affecting their functionality (Table 1). The

four subclasses show over 90% homology in amino acid sequence,

with differences that are not randomly distributed. Much variation

is found in the hinge region and N-terminal CH2 domain, whereas

fewer amino acid differences are found in the other domains.

Of these, least is known about the functional consequences – if

any – of structural variations found within the CH1 domain. On

the other hand, structural differences in the CH2/CH3 domains,

forming the Fc tail, are relatively well studied.

The residues most proximal to the hinge region in the CH2

domain of the Fc part are responsible for effector functions of

antibodies as it contains a largely overlapping binding site for C1q

(complement) and IgG-Fc receptors (FcγR) on effector cells of the

innate immune system.

A highly conserved N-linked glycosylation site at position 297

is located at the interface between the two CH2/CH3 forming

the Fc of an IgG molecule (Figure 1A) that is both responsi-

ble for subtle but important changes of quaternary structure of

the Fc – allowing for a more exposed docking-site for FcγR. As

discussed further below, these glycans also directly participate

in the FcγR binding, but can also modulate these interactions

through highly specific modifications of the N297 glycan – changes

that seem to be regulated during specific immune responses in

human beings (54, 55). Although this glycosylation site is often

regarded as the only glycosylation site in IgG, the V region of

approximately 10–15% of all antibodies is also glycosylated. These

sites most often arise through VDJ-recombination or somatic

hypermutation (43), and this glycosylation has been reported to

affect antigen-binding characteristics (56–59) and allowing bind-

ing to regulatory lectins. This, in turn, can also modulate the

activation-threshold required for B-cell stimulation, and has been

described as a positive selection signal in certain types of follicular

lymphomas (60).

The interface between the CH2–CH3 domains also contains

the binding site for the neonatal Fc receptor (FcRn), responsible

for the prolonged half-life of IgG, placental passage, and transport

of IgG to and from mucosal surfaces. Little variation exists in this

region, with FcRn binding only minimally affected, except perhaps

for IgG3 as discussed further below.

However, the binding profiles of FcγR and C1q to the different

IgG subclasses go hand in hand (Table 1); each IgG subclass having
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its distinctive pattern that has been investigated in detail. How the

differences in the primary sequences of the IgG subclasses (Fc and

hinge) lead to variations in tertiary structural elements, thereby

critically influence the properties of each subclass, is the subject of

the following sections.

STRUCTURAL VARIATION IN THE HINGE REGION

The hinge region forms a flexible linker between the Fab arms and

the Fc part. Length and flexibility of the hinge region varies exten-

sively among the IgG subclasses (Figure 2) (61). This affects the

possible conformations of the Fab arms relative to the Fc domain

as well as to each other. The hinge exon of IgG1 encompasses

15 amino acids and is very flexible. IgG2 has a shorter hinge than

IgG1, with 12 amino acid residues. The lower hinge region of IgG2

(actually encoded by the CH2 region) also has a one amino acid

deletion (lacking one of the double Glycines found at position

235-6), resulting in IgG2 having the shortest hinge of all the IgG

subclasses. In addition, the hinges of IgG2 are even more rigid due

to a poly-proline helix, stabilized by up to four (with some excep-

tions discussed below) extra inter-heavy chain disulfide bridges

(Figure 2). These properties restrict the flexibility of the IgG2 mol-

ecule. Similarly, the hinge region of IgG4 also contains 12 amino

acids and is thus shorter than that of IgG1. Its flexibility is inter-

mediate between that of IgG1 and IgG2 (62). Unlike IgG2, it does

encode for the CH2-encodied glycines 235-6 in the lower hinge

(Figure 3A).

FIGURE 3 | IgG subclasses and IgG allotypes. (A) All differences

between the IgG isotypes depicted schematically according to their

localization (numbered below a graphical representation of the gene) in the

different domains and exons depicted above the sequence. Bold

underlined numbers (EU numbering) contain isoallotypic variant at that

position. Amino acids depicted in bold varies from the other subclasses,

but amino acids depicted in italics are present in two subclasses. The

green boxed amino acids numbers are residues involved in binding to C1q,

in red amino acids involved in FcγR binding, and in blue residues involved

in binding to FcRn. “-“ instead of a letter for amino acid stands for the

missing G236 residue in IgG2. (B) The amino acid variation found within

IgG1, IgG2, and IgG4 allotypes, and (C) among the IgG3 allotypes. The

presence or absence of the two kinds of IgG3-hinge exons (a, and b) are

indicated by “+” or “–” in (C). For (B,C), amino acids in bold are those

unique for subclass or allotype, and those underlined isoallotypes, as this

amino acid is also found in other subclasses at this position. The unique

IMGT numberings and a representative sequence accession number are

indicated on the right. For some of the allotypes, the IMGT numberings

are represented by several different genes, but encoding for identical

hypothetical proteins.
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IgG3 has a much longer hinge region than any other IgG sub-

classes or Ig human isotype, i.e., about four times as long as the

IgG1 hinge, containing up to 62 amino acids (including 21 pro-

lines and 11 cysteines), forming a poly-proline helix with limited

flexibility (63, 64). The exact length of the hinge varies between

allotypes of IgG3, which apparently has undergone much more

evolutionary radiation than the other subclasses (Figures 3B,C)

as discussed below. In IgG3, the Fab fragments are relatively far

away from the Fc fragment, giving the molecule a greater flexibil-

ity. This long hinge of IgG3 is a result of duplications of a hinge

exon, encoded by one exon in IgG1, IgG2, and IgG4, but up to

four exons in IgG3. One of those exons is common to all IgG3

allotypes, but it also has 1–3 copies of a homologous second type

of IgG3-hinge exon (Figure 3C). The elongated hinge in IgG3 is

also responsible for its higher molecular weight compared to the

other subclasses. The difference in hinge flexibility influences the

relative orientation and movement of the Fab arms and Fc tail of

the IgG antibody.

Binding sites for C1q and/or FcγR may be partially or com-

pletely shielded by Fab arms, affecting binding of the IgG

to these molecules. The relative flexibility of the Fab arms

with respect to the Fc differs between subclasses as follows:

lgG3 > lgG1 > lgG4 > lgG2 (62, 65), which also reflects the rel-

ative binding of these subclasses to FcγR and C1q, although this

only partially explains the respective activities of the IgG subclass,

as discussed elsewhere in this review. This flexibility also affects

antigen-binding capacity and immune complex formation.

INTER-CHAIN DISULFIDE BONDS

The four IgG subclasses also differ with respect to the number of

inter-heavy chain disulfide bonds in the hinge region (Table 1;

Figure 2A). In addition, both IgG2 and IgG4 are found as several

isomers, in which the hinge disulfide bonds are differentially inter-

connected (see below). Another structural difference between the

human IgG subclasses is the linkage of the heavy and light chain

by a disulfide bond. This bond links the carboxy-terminal cys-

teine of the light chain to the cysteine at position 220 (in IgG1)

or at position 131 (in IgG2, IgG3, and IgG4) in the CH1 domain

(Figure 2A). These two positions are spatially juxtaposed and the

essential structure and function of the molecule appears to be con-

served between the two types of linkage between heavy and light

chain.

HINGE ISOMERS IN IgG2 AND IgG4

In IgG2, structural hinge isomers have been observed as a result

of alternative formation of disulfide bonds between the cysteines

in the hinge region of the heavy chains and those involved in the

formation of disulfide bonds between the light and heavy chain

(Figure 2B) (66, 67). These isomers were found particularly in

IgG2 antibodies with kappa-light chains, but much less for lambda

light chains. The major forms are the classical A form, with four

disulfide bridges between the two IgG2 heavy chains, and the B

form in which one hinge cysteine forms a disulfide bond with the

light chain. However, other configurations exist (67, 68), as these

isoforms apparently form independent of each other, giving rise

to A/A, B/B, but also A/B isoforms (Figures 2A,B). FcRn binding

does not seem to be different for the different isomers (69). IgG2

has also been reported to form covalent dimers (70), which might

be regarded as an additional isomer.

Two isomers of IgG4 differing in the disulfide bonding of hinge

cysteines coexist. The core hinge of IgG is formed by a CXXC

motif, also found in redox-reactive proteins such as thioredoxins

(71). Compared to IgG1, with a relatively rigid CPPC motif (72),

intra-chain disulfide bonds are more easily formed between these

cysteines found at positions 226 and 229 in IgG4, which possesses a

CPSC core hinge (Figure 2C). The result is an observable amount

of non-covalently linked half-molecules (consisting of one heavy

and one light chain, HL, as opposed to the classical configura-

tion of H2L2) in addition to covalently linked inter-chain isomers

(Figure 2C) (73, 74). An S228P mutant of IgG4, thus with an

IgG1-core hinge, does not form half-molecules, which is in agree-

ment with the finding that this species does not occur in IgG1. The

process is reversible but depends on redox conditions. Formation

of the intra-chain isomer (half-molecules) is an important step in

the “Fab arm exchange.”

IgG4 Fab ARM EXCHANGE

In vivo, half-molecules of IgG4 recombine randomly with other

half-molecules of IgG4, combining specificities of two IgG4 mol-

ecules, effectively resulting in monovalent-bispecific antibodies

(Figure 2C) (75,76),and is controlled by redox conditions (74,77).

The unique S228 in the core hinge of IgG4 allows formation of the

intra-chain isomer, and R409 (rather than the equivalent lysine

in IgG1) results in weaker CH3–CH3 interactions (Figure 3A)

(77, 78). Both determinants appear to be required to observe

Fab arm exchange in vivo (74) and have been observed for the

therapeutic IgG4 antibody natalizumab (79). The functional con-

sequence of this are at least twofold. The resulting IgG4 antibody

cannot effectively crosslink the target antigen. Furthermore, mul-

tivalent target binding is not possible for bispecific antibodies,

resulting in a lower avidity, although the affinities of IgG4 antibod-

ies are generally high. In combination with the observations that

IgG4 responses seem to dominate after repeated antigen exposure

(e.g., bee venom), and because IgG4 has low affinity to activat-

ing FcγR while retaining relatively high affinity to the inhibiting

FcγRIIb (Table 1), this may serve as an evolutionary way to pre-

vent excessive immune responses against these sterile antigens not

posing infectious threats. IgG4 has, therefore, been characterized

as “blocking antibody,” especially in the context of allergy, where

it may compete with IgE for allergen binding (8).

ALLOTYPES
In addition to isotypic variation, allelic variation is found among

the IgG subclasses (Figure 3) (80). These polymorphic epitopes of

immunoglobulins that can differ between individuals and ethnic

groups (81) were originally discovered on the basis of serologi-

cal findings (82), as immunogenic determinants were found on

IgG from some individuals but not others. Subsequently, allotypic

variations were genetically analyzed, and a number of structural

determinants identified (83–86). A large number of polymor-

phisms were found in IgG, a finding made useful for example

in paternity testing and forensic medicine before HLA typing

became available (82). Exposure of an individual to a non-self

allotype can induce an anti-allotype response, and may occur
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in transfused individuals (82) and has even been described in a

pregnant woman (87). However, not all variations in IgG amino

acid sequence lead to determinants that are immunogenic because

some determinants are found in other isotypes, and are there-

fore called isoallotypic variants (Figure 3). Other variations in

amino acid sequence can be present at sites that are minimally

exposed and, therefore, may not result in determinants that can

be serologically discriminated. Therefore, the original alphabeti-

cal and numerical designation systems (Gm or Genetic marker,

including a subclass designation, e.g., G1m for IgG1 (81), based

on serology, do not fully cover the structural variation among

different allelic forms of IgG subclasses. This is particularly true

for IgG3, which shows extensive polymorphisms – often of isoal-

lotypic origin (Figure 3C) (83). An example is the non-a or

nG1m (a) determinant (E and M at positions 356 and 358,

respectively) that can also be found on IgG2, 3, and 4 (81).

Therefore, in order to refer uniquely to a particular polymor-

phic variant, it is advisable to use the IMGT allele names rather

than either the alphabetical or numerical allotype nomenclature

(Figure 3).

The main allelic forms for IgG1 (Figure 3B) are G1m (z,a), G1m

(f), and G1m (f,a) (81, 88). The G1m (f) allele is only found in

Caucasians, whereas the G1m (f,a) allele is common in Orientals,

but other variants, G1m (z,a,x) and G1m (z,a,v), have also been

described (89, 90). Several allelic forms of IgG2 are known, includ-

ing G2m (..) variants, which, together with IgG4, serve as examples

of IgG variants without actual allotypic determinants, as here the

amino acids present at position 189 and 282 are isoallotypic and

also found in the other subclasses (Figures 3A,B) (91, 92). For

IgG3, many allelic forms are known, with the most important

ones encoding for amino acid changes shown in Figure 3C.

Since some allotypes have proven to be immunogenic, they

may be relevant to consider when developing therapeutic anti-

bodies. Treatment using therapeutic monoclonal antibodies can

in principle also lead to an anti-allotype response. However, to

date, little evidence has been found for significant anti-allotype

responses, e.g., adalimumab (93) or infliximab (94). There are no

known allotypic variations that result in a functionally different

antibody, except for IgG3, where a few isoallotypic variants result

in extended half-life (discussed in Section “FcRn”). Furthermore,

several polymorphisms in the CH3 domain affect the CH3–CH3

interdomain interactions, which for different IgG3 isoallotypic

variants result in these interactions to vary multiple orders of mag-

nitude, which potentially has consequences for e.g., C1q binding

(77). Interestingly, plasma IgG concentrations of an individual

appear to correlate with Gm allotype (21, 28, 95), which may be

related to the actual single-nucleotide polymorphisms (SNP) caus-

ing the allotypes themselves, or silent SNP, that in turn may affect

unfavorable codon-usage or alter secondary mRNA structures

affecting transcription (96–98). In addition, the allotype may also

affect class-switching efficiency and thereby serum concentrations,

through variations within the non-coding switch regions inherited

haplotype. This is because these sterile promoters undergo tran-

scription preceding actual class switching (21, 22, 98), and allotype

differences found within these region affect class-switching effi-

ciency directly, explaining the lower levels found of IgG3 in g3m

(g) individuals compared to G3m (b).

For IgG4 no serologically important allotypes are known to

exist, but isoallotypes have been described (81). Furthermore, a

polymorphic variant exists (K409 instead of R409) that is unable

to participate in Fab arm exchange (84). It is unknown if carry-

ing this variant has any biological consequences (e.g., because this

kind of IgG4 can potentially crosslink antigens as opposed to the

classical monovalent IgG4 type), as the apparent low allelic fre-

quency makes homozygotes rare, at least in the western-European

population.

In conclusion, most of the genetic variation in IgG have poten-

tial implications far beyond the original serological findings, as

non-serologically important variations exceed those by far. As

of yet, we still do not fully know the extent of these variabil-

ity as this has not yet been revisited by modern techniques.

This includes on the number of unknown variants, the fre-

quency by which they appear within and between populations.

This can have functional consequences, on expression levels (21),

half-life, FcγR binding [antibody-dependent cell-mediated cyto-

toxicity (ADCC), ADCP], tendency to form oligomers (99) and

activate complement, and influence on immunogenicity – again

within and between populations – and, therefore, have important

consequences for antibody-mediated immunotherapies.

GLYCOSYLATION
Immunoglobulin G contains a conserved glycan at position N297

of the heavy chains. In addition, roughly 10–20% of the Fab

have N-glycosylation sites in the binding region. The core struc-

ture of the IgG glycans comprises N -acetylglucosamine (GlcNAc)

and mannose residues (Figure 1B). This can be further extended

with galacose, sialic acid, core fucosylation, and bi-sected GlcNAc

(Figure 1B). Several dozen IgG-Fc glycoforms have been found

in healthy human serum, of which only a handful represent the

dominant form (fucosylated species in one of the following con-

figuration: without galactose, with one- or two galactose residues,

or with two galactose and a single sialic acid residue, Figure 1B)

(54, 100, 101). Between Fab and Fc glycans, there are several dif-

ferences in glycosylation, those most pronounced being markedly

increased levels of bisection, galactosylation, and sialylation in the

Fab glycans (including di-sialylation hardly seen in the Fc), but

reduced fucosylation (~94% for Fc, vs ~70% for Fab) (100, 102).

This is partially due to accessibility for glycosyltransferases and

glycosidases, Fab sites are generally more accessible compared to

the conserved site in the Fc, which lies more buried between the

two heavy chains (Figure 1A). In addition, glycosylation levels are

also controlled by availability of glycosyltransferases in the B-cells.

In several health and disease settings, a shift toward certain Fab-

and Fc-glycoforms of antibodies has been reported (54, 55, 103).

This shift may occur through epigenetic influence on expression

of glycosyltransferases (104), which is clearly affected by various

factors including, age, pregnancy, hormones, cytokines, bacter-

ial DNA, and food metabolites (105–107), although the complete

working mechanism of regulation of expression in B-cells has to

be determined.

As mentioned above, the composition of the N297 glycan influ-

ences the quaternary structure of the Fc. Interactions of the glycan

with the protein backbone stabilize the Fc (108). Addition of the

Fc-glycan gives the IgG-Fc a more open conformation, allowing
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binding to FcγR (109, 110). In addition, the glycan is in close prox-

imity to the FcγR itself, contribution to the binding through glycan

protein binding (110). However, perhaps even more important

is the fact that human FcγRIIIa and FcγRIIIb express a con-

served glycan at position 162, entering the Fc-space confining the

Fc-glycan, enabling a direct glycan–glycan interaction (46, 111).

Our knowledge on how the different glycoforms affect the effec-

tor function of IgG is still in its infancy, but some aspect have been

becoming increasingly clear as summarized below.

FUCOSYLATION

It has been known for quite some time that core fucosylation of

the IgG-Fc affects binding to FcγRIIIa (112), with non-fucosylated

antibodies binding FcγRIIIa much stronger. This higher affin-

ity translates into higher ADCC and phagocytosis of targets by

these antibodies (54, 112), and has been put to use in therapeu-

tic antibodies, like rituximab, to increase the efficacy of treatment

[reviewed by Ref. (113, 114)]. More recently, it has become clear

that this also applies to FcγRIIIb expressed on granulocytes (54,

115, 116). The molecular nature of this increased affinity is dis-

cussed below (see FcγRIIIa). After vaccination, or apparently after

normal immune responses, the IgG responses in human beings are

restricted to IgG with core fucose attached, as seen against soluble

proteins during influenza or tetanus toxoid vaccination (117). This

also reflected by the fact that ~94% of IgG-Fc glycopeptides are

fucosylated in total serum. Even more strikingly is the fact that IgG

fucosylation is prevented in some immune responses against par-

ticulate antigens, e.g., red blood cells and platelets (54, 55, 103), but

also witnessed in some elite controllers of HIV (57). Thus appar-

ently, FcγRIII-mediated IgG responses can be fine-tuned through

IgG fucosylation toward more pro- or anti-inflammatory effects.

BISECTION

Slight changes in bisection have been detected for some antigen-

specific IgG responses (54, 102, 103, 118). Little is known about

the importance of the biological implication of these changes. It

has been described that fucosylation and bisection occurs in a rec-

iprocal manner, with proximal bisection blocking fucosylation of

IgG, making it difficult to discriminate the effect of bisection from

core fucosylation (119–121).

GALACTOSYLATION

To our knowledge, no data have been published to date on the

influence of galactosylation on the level of antigen-specific IgG.

Immunization seems to result in a transient increase in galactosy-

lation of antigen-specific IgG in human beings, while having no

effect on total IgG galactosylation (117). However, general decrease

in galactosylation has been found in several autoimmune diseases

[reviewed in Ref. (122)], suggesting degalactosylated IgG to be

more pathogenic, or galactosylated IgG to have anti-inflammatory

activity. This includes rheumatoid arthritis, a disease that often

goes into remission during pregnancy – correlating with the

general increase in galactosylation in pregnancy (123).

SIALYLATION

As the terminal – and the only charged – sugar moiety, sialylation

has been proposed to have the most effect on the structure of the

Fc domain of the antibody, by closing the binding site for activat-

ing FcγRs, but opening up a cryptic binding site for DC-SIGN in

the CH2-CH3 interface (50). In proof of this, actual comparisons

of IgG with or without Fc-sialylation have confirmed this (124),

and mouse IgG decreased affinity to mouse FcγR in general (125),

although systematic analyzes of the importance of this for human

IgG-FcγR binding is lacking. Increased sialylation of IgG generally

follows increased galactosylation as galactosylated IgG is the sub-

strate for sialyltransferases (Figure 1B) (54, 103, 126). Binding to

DC-SIGN sialylated antibodies has been suggested to have strong

immunomodulatory function as described below (see DC-SIGN).

EFFECTOR MECHANISMS
BINDING TO EFFECTOR MOLECULES

Antibodies link the adaptive immune system with the effector

mechanisms of the innate immune system. They form a bridge

by combining antigen-binding sites with binding sites for many

innate receptors and adaptor molecules. The effector mechanisms

that will be triggered vary between the different immunoglobulin

subclasses. Typically, IgG1 and IgG3 are potent triggers of effec-

tor mechanisms, whereas IgG2 and IgG4 will induce more subtle

responses, and only in certain cases. However, these antibodies

remain capable of neutralizing virus particles and toxins. Below,

binding to C1q and FcRns is discussed, emphasizing the structural

aspects that differ between the subclasses (Table 1).

C1q

Upon binding to target surfaces, IgG, as well as IgM, can activate

complement. Complement activation is initiated through binding

and subsequent activation of C1q, leading to deposition of C3b to

further opsonize the target, but also to the formation of the mem-

brane attack complex, C5–C9, causing disruption of the targeted

bilipid membrane (127). IgG1 and IgG3 can efficiently trigger this

classical route of complement (128), but IgG2 and IgG4 does so

much less efficiently or only under certain conditions for IgG2.

This is due in large part to the reduced binding of C1q to the latter

subclasses (128–130), although it has also been described that in

addition to C1q binding, downstream events of the complement

cascade (C4b deposition) are differentially affected by the differ-

ent IgG subclasses (128). Residues in the CH2 region important

for C1q binding include L235, D270, K322, P329, and P331 (130–

133). In IgG2, reduced C1q binding appears to be largely caused

by residue A235 (which is Leu in other subclasses) (132), whereas

in IgG4, P331 is – at least in part – responsible for the reduced or

absent binding of C1q (130, 133). Structural determinants in the

middle or “core” hinge region (residues 226–230) can influence

the binding of C1q (134). On the one hand, rigidity in this region

contributes favorably to C1q binding, whereas removal of cysteine

bonds negatively affects binding. It has also been suggested that

the relatively long hinge of IgG3 makes the C1q binding site more

accessible resulting in more efficient complement activation (135,

136). However, IgG3 engineered with a short IgG4 hinge binds

C1q efficiently, although complement activation was somewhat

reduced (137).

Interestingly, IgG has recently been suggested to form hexamers

by interactions through the CH2–CH3 interface when opsonized

on target surfaces, forming an optimal platform for the hexameric
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configuration of C1q (99). These data are supported by mutation

in this interface, e.g., I235 in the CH2 and H433 in the CH3 that

individually affect complement activation through C1q (99).

Curiously, engineered IgG1/3 hybrids with an IgG1-CH1, and

hinge regions were found more potent in complement activation

compared to wild-type IgG3, with the largest contribution arising

from the CH1 domain swap (138). Conversely, the binding of C1q

to IgG4 can be influenced by shielding of the potential binding

site by Fab arms (74, 136, 139, 140). The orientation of the Fabs

have been modeled to be perpendicular to that of the hexameric

platform of IgG on solid surfaces and in solution (99) and may

thereby affect C1q biding, although this needs to be confirmed.

IgG4 also results in less complement activation by forming small

immune complexes, probably because of their monovalency, and

in this way can even reduce complement activation by IgG1 anti-

bodies (141). Although the short hinge of IgG2 may lead to similar

shielding of the potential C1q binding site, a notion that fits with

its general poor activation of the classical complement cascade,

IgG2 can activate this cascade at high densities of surface antigens,

as is the case for polysaccharides – to which IgG2 antibodies tend

to form (19, 142, 143). At these high epitope densities, IgG2 may

be more likely to efficiently form hexamers, increasing the avidity

of this subclass for C1q substantially (99).

Fcγ-RECEPTORS
FcγR bind to a region partially overlapping the C1q binding site.

The binding of IgG to these receptors has been studied in detail.

For all FcγR interactions, the stretch of amino acids comprising the

N-terminus of the CH2 domains and strands adjacent in the three

dimensional immunoglobulin fold are important for binding. In

general, this encompasses amino acids 234–239, 265–269, 297–

299, and 327–330 (110, 144). However, each of the IgG subclasses

has a unique binding profile to each FcγR (Table 1) (2), and their

expression profiles are highly variable between different immune

cells of myeloid and NK cell origin (145). A major distinction can

be made between IgG1/IgG3 that interact efficiently with most

FcγR, and IgG2/IgG4, which show reduced affinity to a number

of FcγR. Furthermore, monomeric IgG3 binds more efficient than

monomeric IgG1 to FcγRIIa, FcγRIIIa, and FcγRIIIb, and binding

efficiency of complexed IgG3 to all FcRns exceeds that of IgG1 (2).

Structural determinants responsible for the differences between

IgG1 and IgG3 are still unknown. Below, we discuss structural dif-

ferences that are known to be responsible for the subclass-specific

variations.

FcγRI

Although FcγRI is often referred to as a single entity, FcγRI consists

of three homologous genes on the short arm of chromosome one

(146), and several alternative splice variants have been described

(147). However, only the existence of the full-length form, FcγRIa,

consisting of three extracellular domains has been studied in detail.

The gene encoding for the potential FcγRIb variant, potentially

consists of a nearly identical receptor with only the two N-terminal

extracellular Ig-domains, but retaining the intracellular cytoplas-

mic tail, while FcγRIc would also lack the cytoplasmic tail and

transmembrane region, and would, therefore, be predicted to rep-

resent a secreted form (Figure 3). FcγRIa receptor binds all human

IgG subclasses except IgG2, and unlike the other FcγR, contains its

unique third membrane-proximal immunoglobulin domain that

is also responsible for its higher affinity to IgG (148). Mutations

of IgG1 in the lower hinge to the IgG2 equivalents, in particular

E233P, L235A, and G236Delta, abrogate binding (149–153). Bind-

ing to FcγRI is reduced for IgG4 (2), and both P331S and L234F

are implicated to account for the reduced binding in comparison

to IgG3 (152), but P331 may not be important for binding of IgG1

(151, 153). An IgG3 with a partially deleted hinge was found to

have reduced binding to FcγRI and FcγRIIa (154).

FcγRIIa

FcγRIIa is the most widely expressed FcγR on myeloid cells and

has been described as the only FcγR with significant binding to

IgG2 (2, 155–157). Binding is more efficient for the 131H (“low-

responder,” LR) variant than the 131R (“high-responder,” HR)

variant (nomenclature based on differential binding to mouse

IgG1, which binds the HR much better) (155). Binding affinity

varies among subclasses as follows: IgG3 > IgG1 > IgG4 = IgG2.

Recently, a crystal structure of the complex of IgG1 Fc with FcγRIIa

was published (144), and contact residues relating to differences

in subclass binding include L234, L235, G236 in the lower hinge,

and the structurally adjacent A327. Significantly, the 131R-site

in FcγRIIa is also in close proximity to the lower hinge in this

co-crystal structure. Thus, the lowered binding affinity of IgG2

to FcγRIIa, and the differential binding to the HR/LR-form of

FcγRIIa, may also be attributed to differences in the hinge of IgG2.

FcγRIIb/IIc

The extracellular domain of the inhibiting FcγRIIb is iden-

tical to the activating FcγRIIc that is expressed in ~11%

of individuals (158, 159). Binding to the inhibitory receptor

FcγRIIb or IIc is weak for all subclasses, generally preferring

IgG3 = IgG1 = IgG4 > IgG2. Interestingly, dissociation constants

for binding of monomeric IgG1 and IgG3 are similar, but immune

complexes of IgG3 seem to bind more efficiently compared to IgG1

(2). Binding to most activating FcRns is lower for IgG4 compared

to IgG1, but this is not the case for the inhibitory receptor FcγRIIb.

This altered balance between binding to activating receptors in

comparison to inhibitory receptors may be an important feature

of IgG4 that contributes to its low pro-inflammatory capacity.

FcγRIIIa

Two allotypic variants of FcγRIIIa exist: F158 and V158. The V158

variant has greater affinity for all subclasses, and for IgG3, binding

efficiency approaches that of FcγRIa (2), with general affinities

following IgG3 > IgG1 >> IgG4 > IgG2. Besides changing amino

acids 233–236 from IgG1 to the IgG2 equivalents, A327G (Ala

present in IgG1 and IgG3, Gly in IgG2 and IgG4) also results in

decreased binding (151). Binding affinity of FcγRIIIa seems to

be particularly sensitive to core fucosylation of the N-linked gly-

can at N297 of the Fc tail of IgG, as its binding affinity can be

enhanced up to 50× times – with corresponding increase in effec-

tor function – if the Fc tail is not fucosylated (160, 161). Recent

work by Ferrara et al. has pinpointed this interaction to be due

to carbohydrate–carbohydrate interactions between the glycan on

N297 of the heavy chain and glycosylation of FcγRIIIa at position

162 – a position unique to both FcγRIIIa and FcγRIIIb (46).
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FcγRIIIb

There are also functional allotypic variations of the neu-

trophil FcγRIIIb, referred to as human neutrophil antigen 1

(NA1/HNA1a) and (NA2/HNA1b) (162). The FcγRIIIb-NA1

form is capable of better ingestion of IgG1- or IgG3-opsonized

particles than RIIIb-NA2 (163). FcγRIIIb generally binds IgG1 and

IgG3 but not IgG2 and IgG4, with IgG3 binding better than IgG1

(2). A crystal structure of the complex of IgG1 Fc with FcγRIIIb

reveals amino acids 234–238 to be important contact residues,

and the subclass-specific variation in this area again can explain

the lack of binding of IgG2 and IgG4 to this receptor (47, 110).

FcRn

In the 1960s, the existence of a receptor responsible for the unusu-

ally long half-life of IgG (3 weeks, Table 1) and efficient transport

from mother to young was first proposed by Brambell (164, 165).

This was later confirmed by various groups and eventually cloned

and identified as the neonatal FcRn (166–169).

Structurally, FcRn is strikingly similar to MHC-class I mol-

ecules (51, 52). Like MHC-class I and other MCH-class I-like

molecules, FcRn is co-expressed with the non-glycosylated 12 kD

β2-microglobulin, encoded on chromosome 15. The α-chain of

human FcRn, a 45 kD polypeptide chain, is encoded on chromo-

some 19 at a locus harboring various other immune receptors (e.g.,

KIR, LAIR-1, CD89, CEACAM). Unlike FcRn from mice and rat,

the human FcRn has only one potential glycosylation site (N102).

It is located on the opposite face to the IgG-binding site and is

also shared with that of all known FcRn sequences (mouse, rat,

human being, macaque, pig, sheep, bovine, dromedary, and pos-

sum). FcRn does not bind its ligand at physiological pH (7.4).

Only in the acidic environment of endocytic vacuoles (pH ≤ 6.5),

where solvent exposed histidine residues in IgG are protonated,

does binding to FcRn take place (169–171). Histidine residues

within the Fc tail of IgG (CH2-CH3 interface) are critical for high

affinity binding to residues within β2M and FcRn α-chain (51,

52, 151). H435 sits at the heart of this interface, and the lowered

affinity of R435-containing allotypes of IgG3 to FcRn explains

their shortened half-life and lowered placental transport (Table 1).

Consequently, IgG3 has a normal half-life of 3 weeks and is trans-

ported efficiently across the placenta in individuals containing

H435-containing IgG3 allotypes (g3m, 15, or 16) (20, 172).

That FcRn protects IgG from degradation has been confirmed

by mouse models: IgG half-life is decreased in FcRn or β2-

microglobulin deficient mice (166–169). Four times as much IgG is

saved by FcRn-mediated recycling than is produced (173). While it

was originally proposed that FcRn expression on endothelial cells

is responsible for IgG recycling (174), later studies have shown that

the strong FcRn expression on myeloid cells contributes equally

to the half-life extension in mice (175). Likewise, overexpres-

sion of FcRn in transgenic animals results in higher IgG serum

levels (176).

However, FcRn starts its function early in life by transport of

IgG – and thereby humoral immunity – across the placenta from

mother to young (168, 177–179) and in rodents also after birth by

transport from mothers milk in the gut of suckling neonates. In

rats, this FcRn expression is downregulated in the small intestines,

which correlates with degradation of IgG in these cells (180).

In adult life, FcRn is expressed on many epithelial cells, and con-

tinues to function in IgG transport across FcRn expression epithe-

lial barriers (181). FcRn is able (in all species) to bi-directionally

transcytose cargo across polarized (both epithelial and endothe-

lial) cells, but the net transport direction depends on the tissue

(182–184). E.g., in syncytiotrophoblasts of the placenta, transport

is directed away from the apical toward basolateral surfaces, while

in the blood–brain barrier, it seems reversed (182–184) (abluminal

to luminal or brain to blood); however, the involvement of FcRn

in this transport is still debated (185).

Immunoglobulin G or IgG-antigen complexes have been

described to be transported across mucosal surfaces, such as the

intestinal cavity or respiratory epithelium, and thereby to func-

tion in immune surveillance (177, 181, 186, 187). With this role

in mucosal immunity, it complements sIgA in immunoregulatory

function as reviewed in Ref. (188).

As IgG can transport fully folded and functional proteins across

epithelial barriers, this offers new possibilities for FcRn as an

endogenous receptor to transport Fc-Fusion proteins or vaccine

antigens across otherwise impermeable epithelial surfaces (181).

On mucosal cells, FcRn has been found to transport IgG and

be involved in antigen sampling (177, 181, 187), and its expres-

sion on phagocytic cells (181, 189) has recently been found to

enhance phagocytosis capacity of IgG-opsonized particles (190,

191). On antigen-presenting cells, this ingestion of IgG-complexes

can lead to enhanced presentation (192–194). Similar to phago-

cytosis responses, the enhanced presentation likely requires the

external sensing and cellular activation through FcγR and pattern-

recognition receptors, handing the IgG-Antigen cargo over to

FcRn at low pH (191, 192, 195). Thus, immunoglobulin activi-

ties including extended half-life, transport to young, and antigen

sampling seems to be orchestrated through a single receptor, the

MHC-class I-like FcRn. In contrast, other effector functions of

IgG, such as phagocytosis and antigen presentation seem to be

mediated by both FcRn and classical FcγRs.

ALTERNATIVE RECEPTORS FOR IgG
FcRL

Fc receptor-like proteins, consisting of six members (FCRL1-6)

were originally identified as homologs of FcγR but were for a long

time regarded as orphan receptors, mostly expressed on B-cells.

Recently, however, FcRL4 and in particular FcRL5 were found to

bind immunoglobulin as well, with the former recognizing IgA,

IgG3, and IgG4, while FcRL5 binds all IgG subclasses similarly well,

but not IgA. Both these receptors are expressed on B-cells, express

an ITIM, and are known to downregulate B-cells after BCR cross

linking through recruitment of SHP-1 (196, 197). Although FcRL5

seems broadly expressed on B-cells populations (198), FcRL4 is

only expressed on subepithelial tissue B-cells (199) reportedly of

mucosal origin, suggesting that perhaps this receptor is involved

in negative feedback inhibition through antigen-specific IgG and

IgA, respectively.

TRIM21

Tripartite motif-containing protein 21 (TRIM21) is a cytosolic

protein expressed in almost all cell types but highly expressed

in immune cells. TRIM21 previously known as an autoantigen
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involved in several autoimmune diseases, e.g., systemic lupus ery-

thematosus (SLE) (200). Later, TRIM21 was found to bind IgG

with nanomolar affinity (53, 201). TRIM21 binds IgG in the Fc

domain at the CH2–CH3 interface similar to FcRn and protein

A/G, it competes for binding to IgG with protein A/G, and binding

is independent of N-glycosylation of the CH2 domain (202). Later,

it was demonstrated that TRIM21 functioned as an immunological

sensor, targeting IgG-opsonized virus and bacteria for antibody-

dependent intracellular neutralization by the ubiquitin-dependant

proteosome (203–206). The detection of antibody opsonized virus

by this receptor activates, requires proteasome and the ATPase

and unfoldase VCP (206, 207). It also activates further signaling,

and innate immunity responses are activated, characterized by the

NF-kB, AP-1, and IRF pathways (208).

The unique localization of this receptor in the cytoplasm leaves

many unanswered questions but simultaneously answering many.

It helps to explain how partially opsonized pathogens may still

be recognized and neutralized during the early phase of infection,

escaping recognition by the complement and FcγR system. The

relative importance of this system is still unknown during sec-

ondary infections, but may perhaps be relatively more important

at locations where complement and the myeloid system are less

prominently present, e.g., at mucosal surfaces of the gut.

DC-SIGN

The cytotoxic activity of sialylated IgG has been described to be

reduced in mice (125). Some of the immunomodulary activity

of IVIg has been attributed to binding of sialylated fraction IgG

to dendritic cell-specific ICAM-3 grabbing non-integrin (DC-

SIGN or SIGN-R1 in mice) (209, 210). Since this glycoform of

IgG represents only a small fraction (<10%) of all IgG in the

blood and IVIG treatment typically requires very high doses, it

was suggested that this fraction may be predominantly respon-

sible for the immunomodulatory functions of IVIG. However,

the precise mechanisms of this interaction are unknown, and still

await confirmation – particularly in the human setting, but also in

mice as some of the methods used to enrich IVIG for SA were

found to predominantly – if not exclusively – enrich for Fab-

associated SA (58, 59). It has been hypothesized that DC-SIGN

binds to the CH2–CH3 interface of the Fc domain of IgG, owing

to the opening up of the site, where DC-SIGN binds due to the

charged sialic acid. The simultaneous closing the interaction site

for FcγRs has then proposed to yield an anti-inflammatory IgG

(50, 124). Crosslinking of SIGN-R1 in mice has been described

to result in the release of IL-33, which in turn activates basophils

to secrete IL-4, upregulating expression of the inhibitory FcγRIIb

(209). However, recently an alternative receptor, the dendritic cell

immunoreceptor (DCIR) has been put forward as an alternative

candidate mediating the anti-inflammatory effect of silalylated-

IgG, inducing upregulation of T regulatory cells, and minimizing

Ig-complex-mediated airway hyperresponsiveness (211). To com-

plicate things even further, a recent report claims sialic acid con-

tents of IgG not to influence IgG binding to DC-SIGN, but to be

rather Fab mediated (212).

Furthermore, a number of Siglecs (Siglec-2/CD22, Siglec-8,

Siglec-9) have been implicated as ligands for IVIG (213–215),

although in case of Siglec-9, there is evidence that lectin-specific

antibodies in IVIG rather than sialylated antibodies are responsible

for binding (216).

CONCLUDING REMARKS
Immunoglobulin G-mediated responses diverge and depend

largely on the type of secondary immune responses, which in

turn depend on the type of antigen. This directs the immune

response to a specific IgG subclass or subclasses – the function

of which differs greatly between them. Besides this variation, the

IgG profile of a given individual determined by their inherited

allotypes can potentially influence the clinical manifestation of

the immune response, which ultimately differs between individu-

als and populations. An even greater level of complexity is added

by the profound variation seen in the glycosylation of the Fc tail,

affecting binding to various receptors – the nature of which we are

just beginning to understand.
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