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Murine antibody responses to soluble proteins and to carbohydrates are
generally restricted to the IgGI and IgG3 subclasses, respectively (1-7), suggest-
ing that IgG isotypes are not selected at random. Surprisingly, no family of
antigens has been shown to preferentially induce the production of IgG2a
antibodies, although this subclass represents a major component of mouse serum
immunoglobulins (8) . A few recent observations nevertheless suggested that
IgG2a could predominate in antiviral antibody responses (9-12) . This isotypic
bias was particularly striking after infection with lactate dehydrogenase-elevating
virus (LDV)t and lymphocytic choriomeningitis virus (LCMV). However, because
these two viruses induce considerable alterations of the immune system, including
a polyclonal B lymphocyte activation (13, 14), they mayevoke antibody responses
that are not representative of more common antiviral reactions .
To examine whether IgG2a restriction is a general property of marine anti-

body responses to viral antigens, we analyzed the isotypic profile of antibodies
directed against a panel of both DNA and RNA mouse viruses, representative
of widely different genera . Our data demonstrate that all viral infections intro-
duce a unique bias in the subclass selection process that makes IgG2a the
predominant antiviral IgG antibody in the mouse.

Materials and Methods
Mice. CBA/Rij and 129/Sv mice were bred at The Ludwig Institute for Cancer

Research, and C57BL/6 mice were purchased from TNO (REPGO Institute TNO,
Rijswijk, The Netherlands) . Mice were maintained in specific pathogen-free conditions
and used when 6-10 weeks old.

Viruses.

	

Infections were performed by the intranasal route with serial doses of a panel
of viruses, including mouse adenovirus (FL strain), polyomavirus (LID-1 strain), reovirus
type 3 (Abney strain), sindbis virus (Ar-339 strain), mouse hepatitis virus (MHV ; A59
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Abbreviations used in this paper :

	

LDV, lactate dehydrogenase-elevating virus; LCMV, lympho-
cytic choriomeningitis virus; MHV, mouse hepatitis virus; PVM, pneumonia virus of mice; TMEV,
Theiler's mouse encephalomyelitis virus.
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strain), Sendai virus, pneumonia virus of mice (PVM; strain 15), LCMV (WE3 strain),
Theiler's mouse encephalomyelitis virus (TMEV; GDVII strain), and Mengo virus (C50L
strain), or by the intraperitoneal route with LDV (Riley strain) .

Antigens.

	

Mice were immunized by intraperitoneal injection without adjuvant of 100
jig of chicken immunoglobulin (a gift of Dr. J. P. Vaerman, Universite Catholique de
Louvrain), human lactoferrin (15), horse ferritin (Boehringer Mannheim, Mannheim,
Federal Republic of Germany), bovine fibrinogen (Calbiochem-Behring Corp ., La Jolla,
CA), tetanus toxoid (Wellcome Reagents Limited, London, England), human thyroglob-
ulin (a gift of Dr . P. De Nayer, Universite Catholique de Louvrain), bromelain (Calbi-
ochem-Behring Corp.), human IgE (a gift of Dr . J. M. Saint-Remy, Universite Catholique
de Louvrain), keyhole limpet hemocyanin (KLH) Calbiochem-Behring Corp.)), or human
transferrin (Behringwerke, AG, Marburg/Lahn, Federal Republic of Germany) .
ELISA .

	

IgG antibody subclasses were determined in sera by ELISA as described by
Coutelier et al . (10) . Briefly, polystyrene plates (439454; Nunc, Roskilde, Denmark; or
655101 ; Greiner, Nurtingen, Federal Republic of Germany) were coated overnight with
pelleted viruses or with purified proteins, and incubated with serial dilutions of sera .
Binding of antibodies was measured with rabbit antisera specific for each mouse IgG
subclass followed by peroxidase-conjugated goat anti-rabbit IgG antibodies, or, for
C57BL/6, IgG2a, with an allotype-specific monoclonal antibody of BALB/c origin .
Results, expressed in micrograms per milliliter, were calculated on standard curves of
selected anti-DNP monoclonal antibodies (10) .

Results and Discussion

The subclass distribution of serum IgG antibodies wasanalyzed after infection
of mice with a panel of both DNA and RNA viruses, representative of eleven
different genera . For comparison, animals were also immunized with a number
of soluble protein antigens . These two groups of antigens elicited specific
antibody responses that differed markedly in their isotypic profiles . As a rule,
viruses induced much more IgG2a than IgGI antibodies, while the converse was
observed with soluble proteins. This wasbest illustrated by the IgG2a/IgGI ratio
shown in Fig. 1 . Somewhat surprisingly in view of the heterogeneity of the
viruses used in our experiments, the predominance of IgG2a antibodies was
consistent, ranging from 65 to 92% of total antiviral IgG in CBA/Rij mice (Table
1) . In particular, it wasnot significantly affected either by the presence or absence
of a viral envelope or by the DNA or RNA nature of the viral nucleic acids.
Moreover, it remained relatively constant with time (data not shown) and was
not changed after a secondary infection (Table 1I). The possibility that this
restriction could be due to the intranasal route used for virus inoculation was
also excluded by the finding that intraperitoneal injection of adenovirus elicited
a similar IgG2a-restricted response (Fig . 2).

In contrast, IgGI, IgG2b, and IgG3 antibodies showed greater relative varia-
tions. For example, virtually no IgGI antibodies were detectable against poly-
omavirus or sindbis virus, whereas they represented ^-20% of the antibody
response against Sendai virus. These differences were reproducible from one
experiment to another, which suggests that each viral species elicits an antibody
response with a characteristic isotypic profile.
The isotypic pattern of antiviral antibodies varied little in the three strains of

mice tested (129/Sv, CBA/Rij, and C57BL/6). However, after infection with
certain viruses, such as TMEV and PVM, C57BL/6 produced much less IgG2a
than CBA/Rij and 129/Sv mice (Table III) . This observation, which fits well
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FIGURE 1 .

	

IgG2a/IgGI ratio of antiviral and antiprotein antibodies. Sera from 129/Sv mice
were collected 6-7 wk after infection or 3-6 wk after immunization with soluble proteins .
Results are expressed as log mean ± SE of individual IgG2a/ IgGI ratios for antiviral (open
bars) and antiprotein (closed bars) antibodies. The broken line indicates the minimal
IgG2a/IgG1 ratio for mice where no IgGI could be measured .

TABLE I
Isotypic Distribution ofAntiviral IgG Antibodies in CBA/Rij Mice

Results are expressed in percent total antiviral IgG (sum of the four subclasses), mean ± SE . 7-17
mice/group were tested 21 d after infection .

with previous analyses of anti-LDV (10) and antioxazolone (16) antibodies, could
be related to the Igh-C allotype of the mice.
The unusual isotypic profile of antiviral antibodies could either be due to

certain common biochemical properties of viral antigens, such as the presence of
repetitive determinants, or be related to the viral infection itself. Preliminary
results indicated that, in some cases, a concomitant infection could modify the

Virus IgGI IgG2a IgG2b IgG3
Adeno 2.3±0.3 91 .6±0.6 4.4±0.4 1 .6±0.2
Polyoma <0.2 83.0 ± 2.2 9.9 ± 1.9 7.1 ± 1 .4
Reo 3 <0.3 86 .8 ± 1 .2 12 .5 ± 1 .2 <0.4
Sindbis 0.8 ± 0.1 90 .3 ± 1 .0 7.7 ± 0.8 1 .3 ± 0.2
LDV 3.0±1 .1 74.6±3.3 13.0±2.3 9.4±2.1
MHV 7.9±2.8 79.0±1 .6 10.4±1.1 2.7±0.5
Sendai 17.6±4.8 75.3±6.3 6.7±1.5 0.4±0.1
PVM 13.0±3.0 66.1±4.4 15.6±1 .9 5.3±2.5
LCMV 10.1±1 .7 86.6±1 .8 3.1±0.3 0.4±0.1
TMEV 12.4±2.2 65.9±3.6 19.4±3.6 2.4±0.3
Mengo <5 .2 71 .2 ± 5.1 18 .8 ± 3.9 <4.8



Isotypic Profile ofAnti-TMEV Antibodies after Secondary Infection

* CBA/Rij mice (3-4 mice/group) were reinfected with TMEV 7 wk after a primary infection .
Results are expressed as percent total antiviral IgG (mean'± SE).
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Isotypic distribution of antiadenovirus antibodies after intraperitoneal infection .
Sera were collected 3 wk after intraperitoneal infection of 129/Sv mice . Results are expressed
as percent total IgG response, (mean ± SE, n = 20).

TABLE III

Isotypic Distribution ofAntiviral IgG Antibodies in C57BL/6 Mice
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Results are expressed as percent total antiviral IgG (sum of the four subclasses), mean ± SE . 9-18
mice/group were tested 21 d after infection .

isotypic distribution of the antibody response against inactivated virus, which
supports the latter hypothesis . Analysis of the mechanisms involved in this
phenomenon could provide a new approach to the study of isotype selection .
IgG2a antibodies have been shown (17-19) to display functional characteristics

different from IgG 1 immunoglobulins, in particular with regard to complement
activation . Thepredominance of this subclass after viral infection could therefore
correspond to the selection of a more efficacious response to the virus. If this
proved to be true, this observation would have major implications in the devel-
opment of appropriate vaccination schemes.

Summary
The isotypic distribution of IgG antibodies was determined in the serum of

mice after infection with a panel of RNA and DNA viruses representative of I 1

Virus IgGI IgG2a IgG2b IgG3
Adeno 0.3±0.1 85.4±0.7 11 .8±0.7 2.5±0.2
Sendai 11 .1 ± 1 .4 73 .4 ± 2.2 14 .7 ± 1 .1 0.8 ± 0.1
PVM 33.9±3.8 33.2±3.4 19.5±2.8 13.5±2.7
LCMV 2.8 ± 0.7 81 .8 ± 1 .8 12 .9 ± 0.9 2.6 ± 1 .0
TMEV 6.5±2.4 57.6±4.8 34.7±3.1 1 .3±0.1
Mengo <0.3 90.3 ± 1 .8 9.0 ± 1 .8 0.4 ± 0.1

Time after
secondary
infection*

d

Total IgG

pg/ml

IgGI IgG2a

%4

lgG2b IgG3

-1 1.9±0.3 23.7±5 .4 68.1±6.2 6.9±0.8 1 .3±0.3
8 1.7±0.3 13.9±2 .5 73.7±2.7 11 .5±1 .2 1 .0±0.2

49 3.5±0.2 11 .1±0.6 84.0±1.0 4.5±1 .6 0.4±0.2



68

	

IgG2a RESTRICTION OF ANTIVIRAL ANTIBODIES

different genera . The antiviral response induced by all these viruses showed a
striking preponderance of the IgG2a subclass whatever the strain of mice tested
or the time elapsed after infection . Together with the predominance of IgG 1 in
antiprotein and of IgG3 in anticarbohydrate responses, this IgG2a restriction of
antiviral antibodies strongly suggests the existence of highly specific mechanisms
for the regulation of individual subclasses in the mouse.

We thank Mr. E . Van Roost for excellent technical assistance .

Receivedfor publication 4 September 1986.

References
1 . Perlmutter, R. M., D . Hansburg, D . E . Briles, R . A . Nicolotti, andJ . M . Davie . 1978 .

Subclass restriction of murine anticarbohydrate antibodies . J. Immunol . 121 :566 .
2 . Rosenberg, Y . J ., and J . M . Chiller . 1979 . Ability of antigen-specific helper cells to

effect a class-restricted increase in total Ig-secreting cells in spleens after immunization
with the antigen . J. Exp . Med. 150:517 .

3 . Slack, J ., G. P . Der-Balian, M. Nahm, and J . M . Davie . 1980. Subclass restriction of
murine antibodies . II . The IgG plaque-forming cell response to thymus-independent
type 1 and type 2 antigens in normal mice and mice expressing an X-linked immu-
nodeficiency . J. Exp. Med. 151 :853 .

4 . Der Balian, G. P ., J . Slack, B. L . Clevinger, H . Bazin, andJ . M . Davie . 1980 . Subclas s
restriction of murine antibodies . III . Antigens that stimulate IgG3 in mice, stimulate
IgG2c in rats . J. Exp . Med. 152 :209 .

5 . Mongini, P . K . A ., K . E . Stein, and W . E . Paul . 1981 . T cell regulation of IgG subclass
antibody production in response to T-independent antigens . J . Exp. Med . 153:1 .

6 . Moreno, C., andJ . Esdaile . 1983 . Immunoglobulin isotype in the murine response to
polysaccharide antigens . Eur . J. Immunol . 13:262 .

7 . Sarvas, H . O ., L . M . Aaltonen, F . Peterfy, I . J . T . Seppala, and O. Makela . 1983 .
IgG subclass distributions in anti-hapten and anti-polysaccharide antibodies induced
by haptenated polysaccharides . Eur. J. Immunol. 13:409 .

8 . Natsuume-Sakai, S ., K . Motonishi, and S . Migita. 1977 . Quantitative estimations of
five classes of immunoglobulin in inbred mouse strains . Immunology. 32:861 .

9 . Mc Donald, T. L ., T . Donnelly, A. Weber, and L . Quenette. 1983 . Antibody classes
and subclasses in circulating immune complexes isolated from mice infected with
lactic dehydrogenase virus . Immunology. 48:511 .

10 . Coutelier, J . P ., E, Van Roost, P . Lambotte, and J . Van Snick . 1986 . The murine
antibody response to lactate dehydrogenase-elevating virus . J. Gen . Virol . 67 :1099 .

11 . Thomsen, A. R., M . Volkert, and O . Marker . 1985 . Different isotype profiles of
virus-specific antibodies in acute and persistent lymphocytic choriomeningitis virus
infection in mice . Immunology. 55:213 .

12 . Reale, M . A ., C . A . Bona, andJ . L . Schulman . 1985 . Isotype profiles ofanti-influenza
antibodies in mice bearing the xid defect . J. Virol . 53 :425 .

13 . Coutelier, J . P ., and J. Van Snick . 1985 . Isotypically restricted activation of B
lymphocytes by lactic dehydrogenase virus . Eur. J. Immunol. 15:250 .

14 . Ahmed, R., and M. B . A . Oldstone . 1984 . Mechanisms and biological implications of
virus-induced polyclonal B-cell activation . In Concepts in Viral Pathogenesis . A . L .
Notkins and M . B . A . Oldstone, editors . Springer-Verlag, New York . 231-238 .

15 . Van Snick, J . L ., and P . L . Masson . 1976 . The binding of human lactoferrin to mouse
peritoneal cells . J. Exp. Med . 144:1568 .



COUTELIER ET AL .

	

69

16 . Laszlo, G., E . Rajnavolgyi, I . Ando, and J . Gergely . 1985 . The influence of Igh-1
genes on the class and subclass distribution of oxazolone-specific antibodies. Immu-
nogenetics. 21 :429 .

17 . Klaus, G. G . B ., M . B . Pepys, K . Kitajima, and B . A . Askonas . 1979 . Activation of
mouse complement by different classes of mouse antibody. Immunology . 38:687 .

18 . Heusser, C. H ., C . L . Anderson, and H . M . Grey . 1977 . Receptors for IgG : subclass
specificity of receptors on different mouse cell types and the definition of two distinct
receptors on a macrophage cell line, J. Exp. Med . 145:1316 .

19 . Coulie, P . G., and J . Van Snick . 1985 . Enhancement of IgG anti-carrier responses by
IgG2 anti-hapten antibodies in mice . Eur. J. Immunol. 15:793 .


