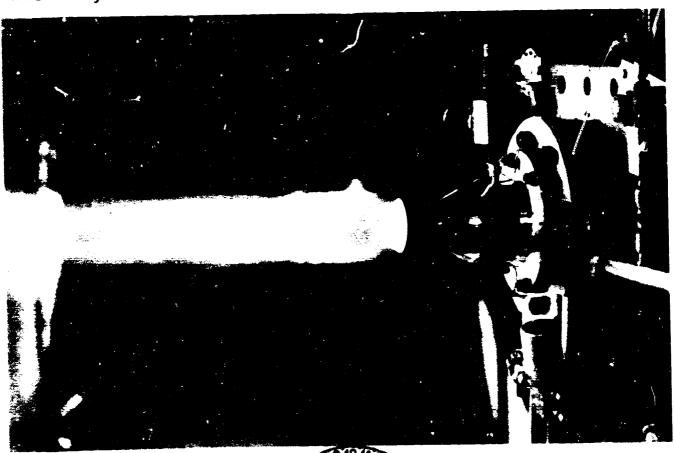


(MASA-CR-171884) IGNITION CHARACTERIZATION OF LOX/HYDROCARBOL PROFELLANIS Final Report (Aerojet Techsystems Co.) 142 p csc 11 HC AUT/ME AUT

NE5-25070

CR-111 86.


Unclas 21611 G3/28

c.1

Ignition Characterization Of LOX/Hydrocarbon Propellants

Contract NAS 9-16639 Final Report 30 April 1985

Prepared For: NASA - Lyndon B. Johnson Space Center

Aerojet TechSystems Company

IGNITION CHARACTERIZATION OF LOX/HYDROCARBON PROPELLANTS

Contract NAS 9-16639

Prepared For

NASA-Lyndon B. Johnson Space Center Houston, Texas

B. R. Lawver

D. C. Rousar

K. Y. Wong

Aerojet TechSystems Company
P.O. Box 13222
Sacramento, California 95813

FOREW RD

This final report is provided in partial fulfillment of contract NAS 9-16639, Ignition Characterization of LOX/Hydrocarbon Propellants. The program was conducted for the NASA-Johnson Space Center by the Aerojet TechSystems Company under the cognizance of W. C. Boyd, technical monitor. At Aerojet, the project engineers were B. R. Lawver and K. Y. Wong, and the program managers were R. W. Michel and D. C. Rousar. The technical work was performed during the period 6 July, 1982 to 31 July, 1984.

Significant contributions to this program were made by the following Aerojet personnel:

o. J. Angerson	В.	J.	Anderson
----------------	----	----	----------

B. D. Bates

B. W. Cathroe

R. L. Ewen

J. C. Fariq

R. S. Gross

R. Hernandez

W. G. Hooper

A. R. Keller

H. H. Mueggenburg

J. L. Pieper

R. J. Pruett

W. A. Thompson

DUDGEDING PAGE BLANK NOT FHIMED

ABSTRACT

This report presents the results of an evaluation of the ignition characteristics of the Gox/Ethanol propellart combination. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/-igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold $(-92^{\circ}$ to -165° F) and ambient $(44^{\circ}$ to 80° F) propellant temperatures were used.

Spark igniter ignition limits and thruster steady-state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio.

Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.

TABLE OF CONTENTS

			Page
I.	Int	roduction and Summary	1
ΙΙ.	Res	ults	5
III.	Con	clusions & Recommendations	19
IV.	Tec	hnical Discussion	21
	Α.	Design, Analysis, and Fabrication	21
	В.	Testing	59
	С.	Data Analysis	91
Refer	ences		133

LIST OF TABLES

Table No.		Page
i	Task I Igniter Test Variables	8
11	Swirler/Like Doublet OFO Injector Performance Summary Added Scope Tests	15
111	Task I Igniter Hardware List	24
VI	Prototype Thruster Design Criteria	32
٧	Task III Hardware List	35
VI	Summary of Predicted Igniter Characteristics	44
VII	Igniter Injector Cold Flow Results	60
VIII	Power Supply Specifications GLA Model 30344 Variable-Energy System	66
IX	Task I Igniter Instrumentation List	67
X	Task I Gox/Ethanol Ignition and Durability Test Matrix	69
ΧI	Added Scope Planned Gox/Ethanol Test Matrix	76
XII	Task III Thruster Instrumentation List	81
XIII	Task III Igniter Test Matrix	83
VIX	Task III Thruster Test Matrix	85
XV	Task I Igniter Pulse Test Summary	100
XVI	Gas Generator Test Summary	103
XVII	Task III Igniter Test Conditions	106
IIIVX	Task III Igniter Test Results	107
XIX	Performance Summary - Heat Sink Chamber	111
XX	Igniter Operating Conditions - Heat Sink Chamber	115
IXX	Performance Data Summary - Thin Wall Chamber	116
11XX	Pulse Performance Data Summary	126

LIST OF FIGURES

Figure No.		Page
1	Task I Prototype Igniter and Test Fixtures	6
2	Gox/Ethanol Igniter Test 281	7
3	Gox/Ethanol Flame Quench Ignition Limits	9
4	Effect of Spark Energy and Cold Fuel on Flame Quench Ignition Limits	10
5	Igniter Steady State C* Performance - 93% Fuel Coolant	11
6	Task III Prototype Thruster Assembly	13
7	Gox/Ethanol Thruster Test 135	14
8	Thruster C* and Isp Efficiency	16
9	Thruster Bit Isp	17
10	Typical Thruster Pulse Sequence (Thruster Test 183)	18
11	Spark Initiated Torch Ignition Process	22
12	Task I Igniter Hardware	25
13	Fuel Cooled Igniter Chamber	26
14	Added Scope - Thruster Test Assembly	27
15	Mid-Pc Fuel Film Coolant Ring	28
16	Mid-Pc Gox/Ethanol Swirler/Like Doublet OFO Injector	30
17	Mid-PC Gox/Ethanol Swirler/Like Doublet OFO Injector Pattern	31
18	Prototype Thruster Assembly	34
19	Gox/Ethanol Pulse Thruster Injector	36
20	Gox/Ethanol Injector Cutaway	37
21	Gox/Ethanol Swirler/Like Doublet OFO Injector Element Concept	39
22	Fuel Film - Coolant Injection Schemes	40
23	Fuel Circuit Cold Flow - Tangential FFC	41
24	Copper Heat Sink Chamber Section	43
25	Mid-Pc Heat Sink Nozzle	44
26	Thruster Thin-Wall Chamber	45
27	Propane Flow Rate vs AP	48
28	Methane Flow Rate vs ΔP	49
29	LOX Flow Rate vs AP	50

LIST OF FIGURES (cont.)

Figure No.		Pag
30	Flame Quench Parameter, Propane/Oxygen	5:
31	Flame Quench Parameter, Methane/Oxygen	52
32	Igniter Manifold Assembly Drawing	50
33	Igniter Manifold Drawing	54
34	Completed Igniter Injector Assemblies	55
35	Completed Igniter Manifolds	56
36	Closeup View of Completed Igniter Injector	57
37	Igniter Injector Flow Schematic	58
38	Gox/Ethanol Ignition Test Flow Schematic	62
39	Task I Igniter Test Setup	64
40	Igniter Solenoid Valve Schematic	65
41	Task I Igniter Instrumentation Locations	61
42	Task I Ignition Test Sequence	72
43	Space Shuttle RCS Engine Envelope	74
44	Bay 6 Test Facility	75
45	Bay 6 Test Facility Flow Schematic	78
46	Task III Igniter Testing Instrumentation Locations	80
47	Task III Thruster Testing Instrumentation Locations	82
48	Thruster Ignition Sequence - Steady State Testing	86
49	Thruster Pulse Sequence - GN ₂ Actuator	89
50	Thruster Pulse Sequence - GHe Actuator	90
51	Effect of Igniter Chamber Diameter and Cold-Flow Pressure on Ignition	92
52	Effect of Spark Energy on Ignition	94
53	Effect of Cold Propellant on Ignition	95
54	Effect of Fuel and Ox Temperature on Ignition	96
55	Cooled Igniter Chamber Ignition Limits	97
56	Igniter Heat Flux Correlation	99
57	Igniter Pulse Mode Sequence - Ambient Propellant	101
58	Effect of Fuel Film Coolant on Performance	104
5 9	Gox/Ethanol Igniter Firing	109

LIST OF FIGURES (cont.)

Figure No.		Page
6 0	Ignition Limit Data - Task III Igniter Testing	110
61	Thruster Isp Performance - Heat Sink Chamber	112
62	Thruster Isp Efficiency - Heat Sink Chamber	113
63	Thruster Isp Performance - Tangential FFC	118
64	Thruster Isp Performance - Tangential and Swirl FFC	119
65	Thruster Isp Performance - Ambient and Cold Propellant	121
66	Throat Wall Temperature History - Tangential FFC (Test 135)	122
67	Thruster Wall Temperature Profiles - Tangential FFC (Test 135)	123
68	Effect of Fuel Film Cooling on Predicted Thruster Adiobatic Wall Temperature	124
69	Effect of Pulse Width on Bit Impulse - Nominal Inlet Pressures	129
70	Effect of Inlet Pressures (MR) on Bit Isp	130
. 71	Effect of Pulse Width on Bit Impulse - Cold Propellants	131
72	Effect of Pulse Width on Bit Isp - Cold Propellants	132

I. INTPODUCTION AND SUMMARY

Recent studies indicate that future space transportation system (STS) engine development and operational recurring costs may be reduced through the use of low cost oxygen/hydrocarbon propellants in the auxiliary propulsion system (orbital maneuvering, reaction control, and vernier engines). The storable propellants (nitrogen tetroxide/monomethylhydrazine) used on the current STS are toxic and considerably more expensive than oxygen/hydrocarbon propellants. These propellants were selected over the oxygen/hydrocarbon propellants because a more extensive storable propellant thruster data base existed at that time. Also, the storable propellants are hypergolic and this eliminated the need for external ignition sources which were considered to be less reliable.

During the past five (5) years, several studies have been conducted for the purpose of expanding the oxygen/hydrocarbon thruster data base. Previous studies have examined the combustion performance and cooling characteristics of LOX/RP-1, LOX/propane, LOX/methane and LOX/ethanol. The objective of this study was to characterize the ignition and pulse mode capability of promising oxygen/hydrocarbon propellants for long-life, reusable, STS application. GOX/ethanol propellants were selected for testing on the basis of their demonstrated clean burning characteristics (Ref. 1) and because of the system advantages indicated for this propellant combination in the study reported in Reference 2.

In this program, a prototype 620 1bf GOX/ethanol RCE thruster with spark-initiated torch igniter was designed, fabricated and tested over a wide range of inlet conditions. The prototype igniter was used to determine the fundamental spark ignition characteriztics of GOX/ethanol propellants prior to thruster testing. These ignition characteristics included the effects of igniter chamber diameter, cold-flow pressure level (inlet pressure), spark energy, and inlet temperature. An integral thruster/igniter assembly was used to evaluate thruster pulse mode capability with the GOX/ethanol propellant combination. The thruster was gemonstrated to be ignitable over the whole

I, Introduction and Summary (cont.)

range of inlet conditions. All of the tests demonstrate smooth combustion with no evidence of combustion instability. The exhaust plumes were clean with no evidence of soot or carbon deposition. Pulse mode capability was demonstrated with pulse durations down to 40 msec.

The program consisted of five parts: (1) Task I - Igniter Experimental Evaluation; (2) Task II - Preliminary Design; (3) Added Scope Testing with Contract NAS 9-16639 Test Hardware; (4) Task III - Thruster Experimental Evaluation; and (5) Added Scope Igniter Design and Fabrication.

The objectives of Task I were to determine the fundamental spark ignition characteristics of GOX/ethanol propellants. These characteristics include the effects of design and operating variables such as igniter chamber size, cold-flow pressure level, spark energy, igniter cooling requirements, pulse mode capability and oxidizer manifold fuel contamination. A prototype igniter was designed, two assemblies fabricated and 205 hot fire tests conducted. The ignition testing covered a mixture ratio range of 0.4 to 40 and a cold-flow pressure range of 3.3 to 49 psia. Igniter chamber cooling tests covered a mixture ratio range of 0.4 to 1.3 and chamber pressures of 72 to 195 psia. The igniter was pulsed with a 0.2 second on and 0.2 second off duty cycle to demonstrate igniter pulse mode capability. Propellant temperatures ranged from 80°F to -165°F.

A secondary objective was to evaluate the carbon formation potential of fuel rich gas generator mixtures. This was accomplished by designing a gas generator chamber with an internal secondary injector to fit the igniter injector. Nine (9) tests were run over mixture ratio range of 0.189 to 0.441. No evidence of carbon formation was observed. Detailed Task I results are reported in the Task I data dump, Reference 3.

The objective of Task II was to analytically evaluate the ignition, performance and cooling requirements of GOX/ethanor igniters and thrusters for auxiliary propulsion applications. The results of these evaluations were used

I, Introduction and Summary (cont.)

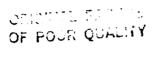
to guide the Task I & III igniter and thruster design activities. These results are reported in the Task II Data Dump, Reference 4.

The objective of the added scope testing was to get an early evaluation of combustion performance of GOX/ethanol thrusters for auxiliary propulsion applications. These tests were conducted using residual hardware from the Mid Pc Program (NAS 9-15958) and the test results were an aid to the Task III thruster design activity. Nineteen hot fire tests were run over the chamber pressure range of 95 to 303 psia and mixture ratio range of 1.07 to 2.35 with ambient (70°F) and cold (-125°F) propellants. Fuel film-coolant was varied from 0% to 20.8%. The Mid-Pc swirler/OFO injector pattern was selected for the Task III thruster on the basis of these results. Complete details are presented in the WBS 8.0 Data Dump, Reference 5.

The primary objective of the Task III testing was to experimentally evaluate GOX/Ethanol thruster ignition and pulse mode operation. A secondary objective was to evaluate thruster steady-state performance, cooling and stability characteristics. A prototype thruster consisting of an igniter, injector, and thrust chamber was tested over a wide range of propellant inlet temperatures and pressures. The testing was conducted in two parts. The first part checked out the Task I GOX/Ethanol igniter in the thruster test facility. Nineteen (19) tests were run to evaluate the igniter feed system. valve timing, and propellant inlet condition effects. The second part addressed full thruster operation. Sixty five (65) thruster tests were conducted. Thirteen (13) tests were run with a heat sink chamber to evaluate ignition and inlet condition effects on performance. Fifty two (52) tests were run with a thin-wall champer to evaluate film-coolant effectiveness and pulse mode performance over a range of inlet conditions. These Task III thruster tests were run over the mixture ratio range of 0.778 to 3.29 and chamber pressure range of 74 to 197 psia. Propellant temperatures ranged from amb ent down to -156°F. Detailed data are presented in the Task III Data Dump, Reference 6.

I. Introduction and Summary [cont.]

The objective of the added scope design and fabrication tests was to design and fabricate two (2) additional igniter injectors for ignition testing with LOX/liquid methane and LOX/liquid propane propellants. Ignition testing will be conducted at NASA/JSC. The data obtained will expand the LOX/hydrocarbon propellant ignition data base for thruster applications.


II. RESULTS

The ignition and steady-state performance characteristics of spark ignited GOX/Ethanol propellants were defined and pulse mode capability was demonstrated. The prototype igniter shown in Figures 1 and 2 was designed, fabricated and tasted over the range of conditions listed in Table I. A total of one hundred thirty eight (138) igniter tests were run to define the ignition limits in terms of cold flow pressure, ignition chamber diameter, mixture ratio, spark energy and propellant temperature.

The effect of cold flow pressure (P) and chamber diameter (D) on the flame quench ignition limits were correlated by plotting their product (PXD) versus the mixture ratio as shown in Figure 3. Cold (-125°F) fuel was found to only slightly reduce the ignition limits. Cold oxidizer had no measurable effect on ignition. Reducing the spark energy from 50 mj/spk to 10 mj/spk had a more significant effect on the ignition limit as indicated in Figure 4.

Complete mapping of the fuel rich regime could not be accomplished without making hardware changes beyond the scope of the current program. The changes involve designing a second igniter injector with larger fuel passages and smaller oxidizer passages to maintain fuel and oxidizer inlet pressures and injector velocities within reasonable limits. The igniter injector design could possibly be modified to incorporate either fuel-rich or ox-rich platelet stacks by utilizing a "bolt-on" stack design rather than the current "brazed-on" design. Therefore, it is recommended that future ignition work completely explore the fuel rich regime.

Sixty seven additional igniter tests were run to verify igniter cooling, C* performance and pulse mode capability. The igniter C* performance is shown in Figure 5. Performance was deemed to be satisfactory for Task III thruster application. Adequate cooling was demonstrated with 93% fuel coolant. Pulse mode capability was demonstrated by running a series of pulse tests with both ambient and cold $(-125\,^{\circ}\text{F})$ propellants. Ignition was achieved at all conditions where ignition was predicted.

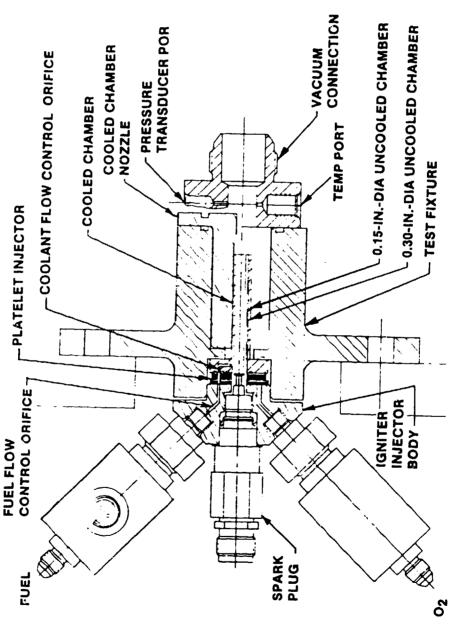


Figure 1. Task I Prototype Igniter and Test Fixture

(1.1.) Yr 2000 (1.000)

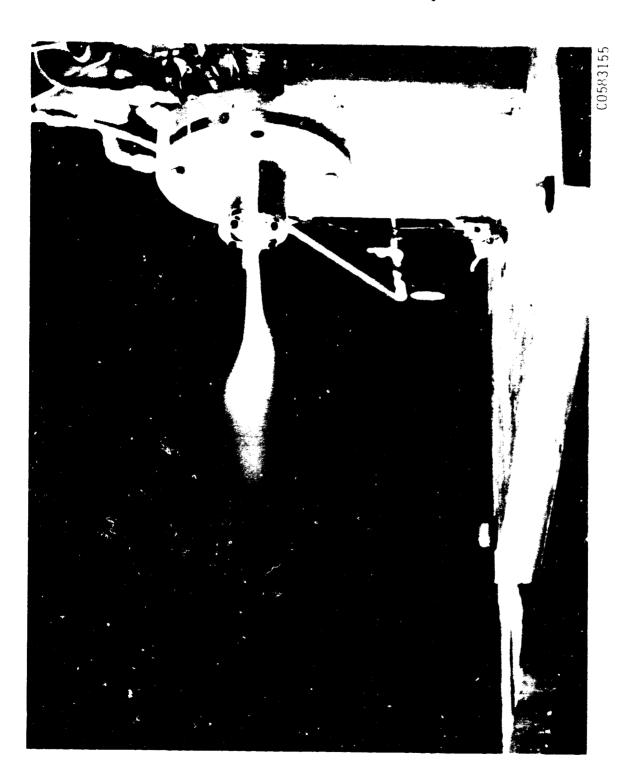


Figure 2. Gox/Ethanol Igniter Test 281

TABLE I

TASK I IGNITER TEST VARIABLES

- Propellant Temperature
 - ° Amb 44 to 80°F
 - ° Cold -92 to -165°F
- Cold Flow Pressure
 - ° 3.3 49 psia
- ° Chamber Diameter
 - ° 0.15 in.
 - ° 0.30 in.
- Mixture Ratio
 - ° 0.4 40
- ° Spark Energy
 - ° 10 50 mJ
- ° Spark Rate
 - ° 300 SPS (Fixed)
- ° Spark Gap
 - ° 0.025 in. (Fixed)

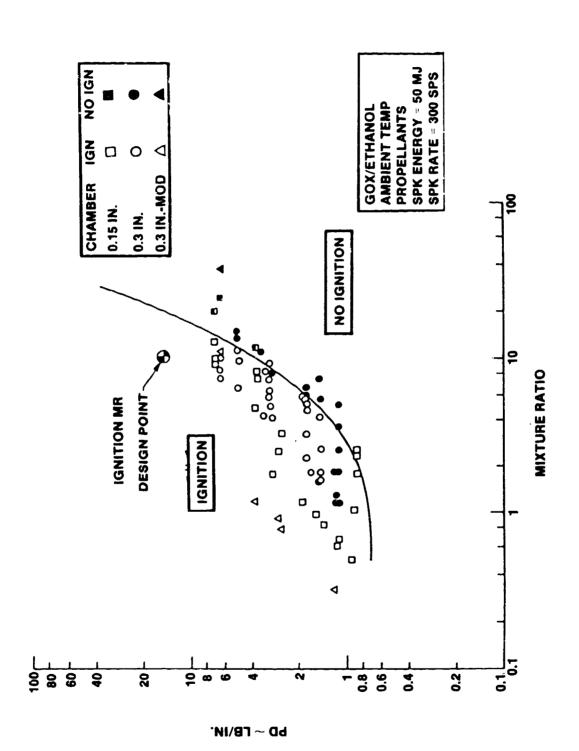


Figure 3. GOX/Ethanol Flame Quencher Ignition Limits

437 3/2 2

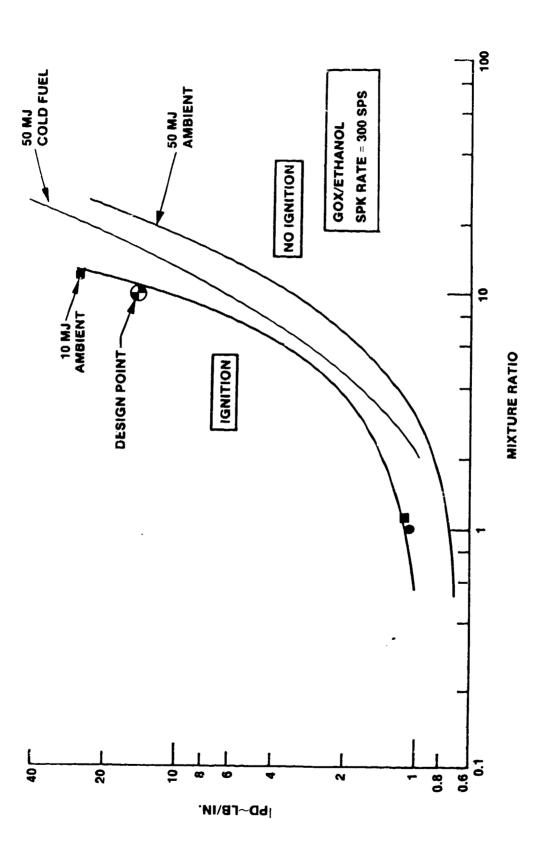


Figure 4. Effect of Spark Energy and Cold Fuel on Flame Quench Ignition Limits

#2-50

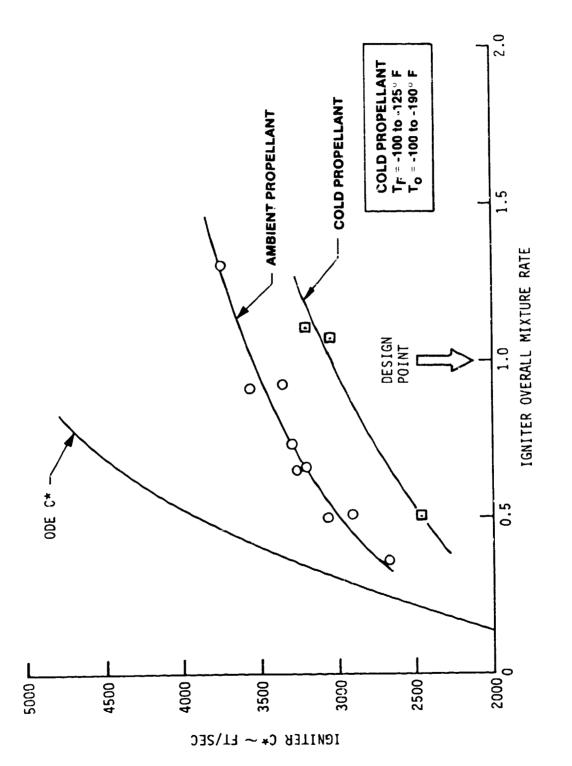


Figure 5. Ignitar Steady State C* Performance - 93% Fuel Coolant

II, Results (cont.)

A total of eighty-four (84) thruster tests were conducted. Nineteen (19) added scope tests were made using residual hardware (contract NAS 9-15958) and sixty-five (65) tests were made using the prototype thruster designed and fabricated on this program and shown in Figures 6 and 7. The results of the added scope tests are summarized in Table II. These tests confirmed that the performance of the swirler/like doublet 0FO injector would be adequate in the 4 inch chamber of the prototype thruster.

The prototype thruster combustion and Isp performances are shown on Figure 8 for ambient and cold propellant. The ambient temperature performance is nearly flat over the whole range of mixture ratio tested. The cold propellant reduces efficiency by about 6% at the design point mixture ratio.

The thin-wall chamber thermocouple data indicate that 40% FFC will be required to cool a columbium radiation cooled flight engine which operates at thermal steady state. Additional testing will be required to verify this requirement and to define performance for 40% FFC.

The thruster pulse performance was determined over a pulse width range of 40 msec to 500 msec. The Bit Isp is shown in Figure 9. A typical pulse sequence is shown in Figure 10.

All of the thruster tests were smooth with no evidence of combustion instability. The exhaust plume was observed to be clear and clean. No evidence of carbon formation or deposition was found.

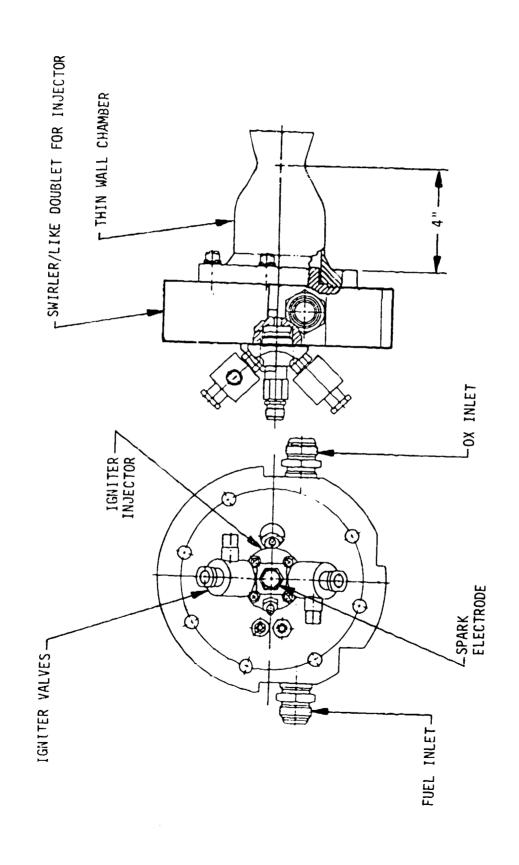
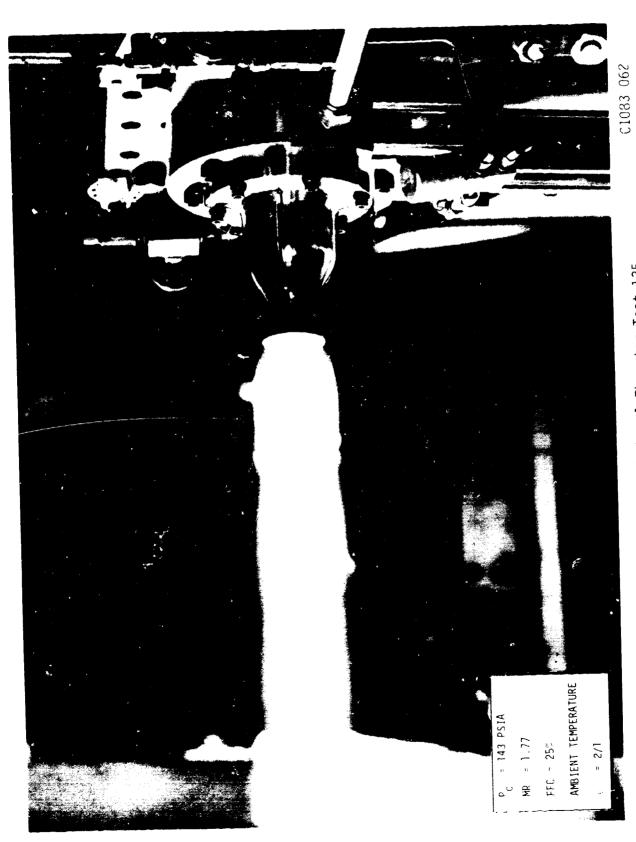


Figure 6. Task III Prototype Thruster Assembly



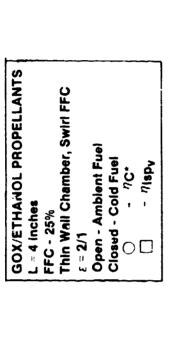

Figure 7. GOX/Ethanol Thruster Test 135

TABLE II

SWIRLER/LIKE DOUELET OFO INJECTOR PERFORMANCE SUMMARY ADDED SCOPE TESTS

Chamber L' = 4.7 in. MRENG = 1.8

Nominal Propellant Temperature (°F)	Chamber Pressure (psia)	Fuel Film Coolant (%)	Measured Combustion Efficiency (%)	Predicted Combustion Efficiency (%)
40	150	0	96-97	96
40	150	10	94-95	-
40	150	15	91-92	-
40	150	20	92-93	95
40	300	0	98-99	
40	300	20	93-95	-
-100	150	0	91-92	-
-100	150	10	90-91	-
-100	150	16	89-92	81
-100	300	16	89-92	-
	Cha	mber L' ≈ 8.	7 in.	
40	150-300	0	98.5-100	-
40	150-300	20	95-97	-

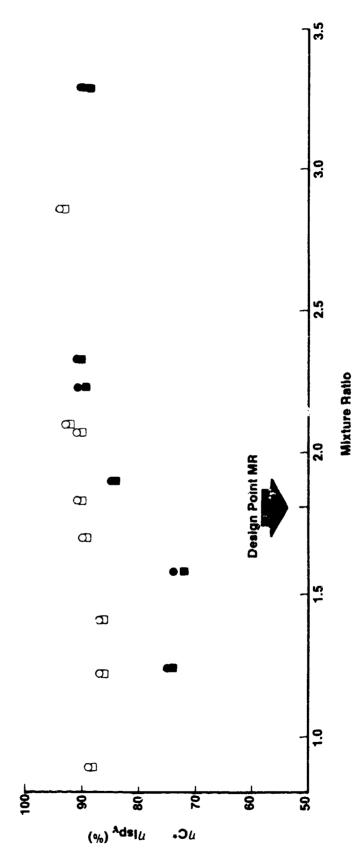


Figure 8. Thruster C* and Isp_v Efficiency

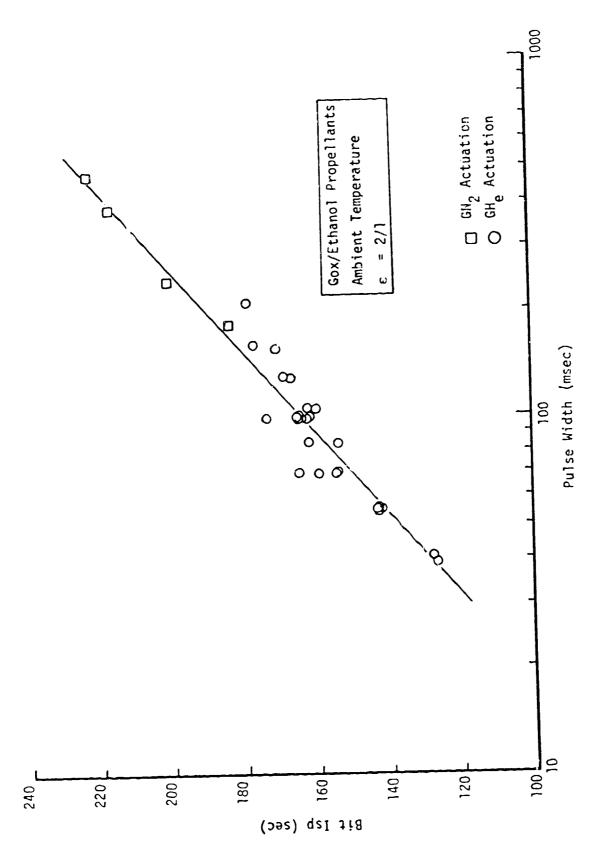


Figure 9. Thruster Bit Isp

Pulse Train With Cold Propellant

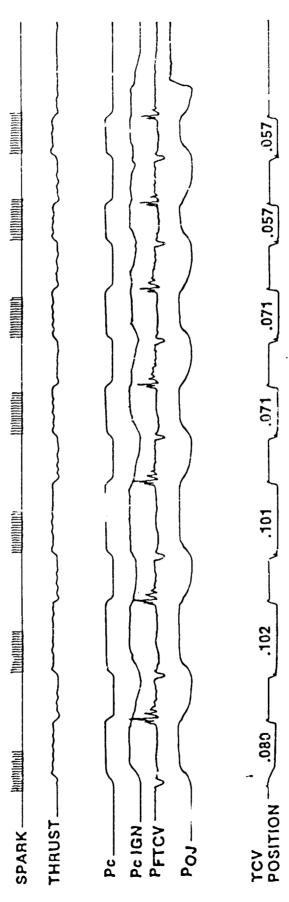


Figure 10. Typical Thruster Pulse Sequence (Thruster Test 183)

29. T. Q. (S.

III. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are grawn:

- 1. GOX/ethanol has broader mixture ratio ignition flame quenching limits on the fuel-rich side than predicted.
- 2. GOX/ethanol has higher cold-flow ignition flame quenching limits than predicted.
- 3. The extreme fuel-rich flame quenching mixture ratio limits could not be defined due to hardware limitations.
- 4. Cooling of igniter chambers is adequate over the range of conditions tested.
- 5. Cold ethanol $(-125^{\circ}F)$ slightly reduces the ignition mixtureratio limit. Cold oxygen $(-165^{\circ}F)$ has no apparent effect.
- 6. Reducing spark energy from 50 millijoules to 30 milli-joules reduces the ignition mixture ratio limits.
- 7. Fuel-rich (MR = 0.2 0.4) GOX/ethanol gas generator exhaust gases are carbon-free.
- 8. Extreme fuel-rich (MR < 0.1) igniter testing is recommended to define the fuel-rich flame quench limits.
- 9. GOX/Ethanol thrusters are ignitable over a broad range of inlet pressures (200 to 600 psia) and temperatures (65°F to -156°F).

- 10. GOX/Ethanol thrusters can be operated in a pulse mode with pulse as short as 0.040 sec.
- 11. Thruster performance (9% isp) is adequate for Space Shuttle auxiliary propulsion applications with 25% FFC.
- 12. Fuel film cooling of about 40% may be required for radiation cooled thrusters using swiri FFC injection.
- 13. Further GOX/Ethanol thruster testing should evaluate film coolant injection techniques and determine performance and throat adiabatic wall temperature as a function of film coolant flow rate in the 25-40% range.

IV. TECHNICAL DISCUSSION

A. DESIGN, ANALYSIS, AND FABRICATION

This section of the report describes the analysis, design and fabrication of the igniter aru thruster test components.

1. Igniter Hardware Design and Fabrication

The Task I igniter hardware was designed to fulfill the following functions: 1) generate basic ignition flame quenching and spark ignition data, 2) demonstrate satisfactory igniter steady-state operation, 3) demonstrate igniter pulse mode operation and evaluate oxidizer manifold contamination potential, 4) evaluate carbon formation potential of fuel-rich GOX/ethanol combustors, and 5) serve as thruster igniter for Task III testing.

These requirements were accommodated by designing a prototype igniter injector to fit both the Tasks III thruster and a test fixture for the Task I ignition testing. A variety of chambers were designed for the ignition testing.

The igniter design was patterned after previous successful spark initiated $60_2/GH_2$ and LOX/RP-1 igniters. The spark-initiated torch chamber ignition process is illustrated in Figure 11; (1) a flame kernal is produced within the spark gap by the spark discharge; (2) the flame kernal spreads and ignites an oxidizer-rich core flow within the igniter chamber; (3) the igniter core flow mixes and reacts with the fuel coolant flow to produce a fuel-rich torch exhaust; and (4) the fuel-rich torch flow reacts with the thruster oxidizer lead flow to ignite the thruster. An oxidizer-rich igniter core mixture ratio has historically been used to provide reliable ignition. Ignition testing on this program indicates that a fuel-rich core mixture ratio will also provide good ignition with ethanol fuel. The core and overall mixture ratios were selected on the basis of the Task II (Ref. 2) ignition

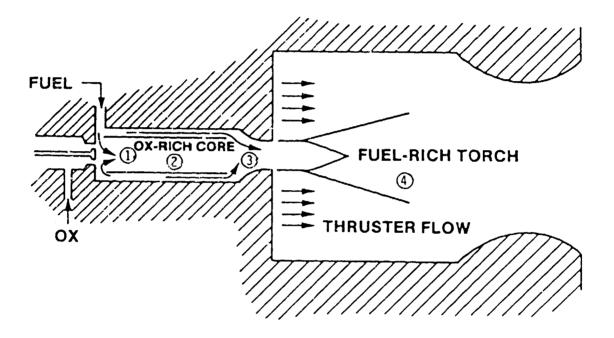


Figure 11. Spark Initiated Torch Ignition Process

IV, A, Design, Analysis, and Fabrication (cont.)

flame quenching and igniter chamber cooling analyses. The steady-state design conditions selected are:

 PC_{IGN} = 150 psia

 MR_{core} = 15 $MR_{overall}$ = 1

Chamber diameter = 0.200 inches

An assembly drawing of the Task I igniter hardware is shown in Figure 1. The test hardware quantities designed and fabricated are listed in Table III. The hardware consists of an injector assembly, cooled and uncooled igniter chambers, a gas generator chamber, a cooled chamber nozzle adaptor, a test fixture and a vacuum connector. Photographs of the test hardware are shown in Figure 12 and 13. Detailed descriptions of their design and fabrication are given in the Task I Data Dump, Ref. 3.

2. Added Scope Test Hardware

The added scope testing was accomplished using residual hardware from Contract NAS 9-15958 (Mid-Pc program). The hardware assembly is shown schematically in Figure 14. The copper chamber and nozzle heat sink sections were instrumented to measure wall temperatures and combustion pressures.

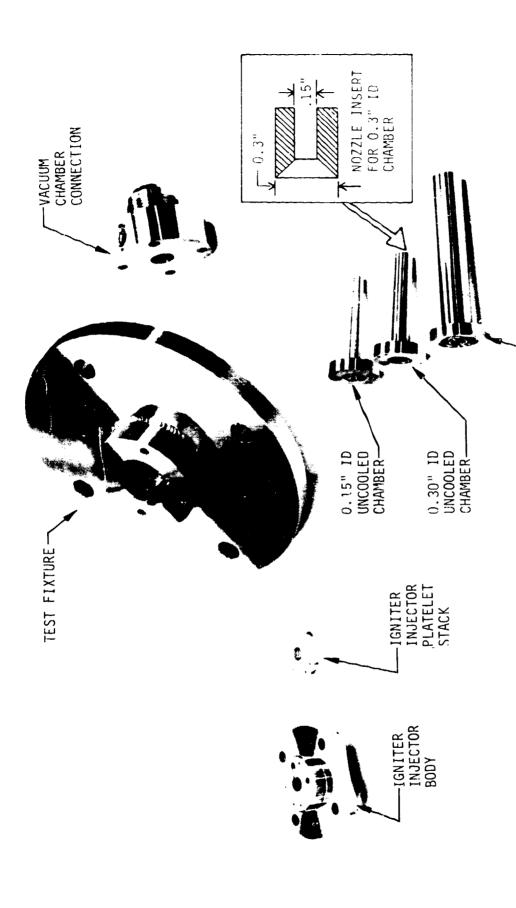

The fuel film coolant ring is shown in Figure 15. The acoustic resonator is incorporated into the film coolant ring. The resonator is an annular gap 0.085 in. wide with a depth of 0.7 in. There are no cavity partitions. The film coolant is injected from thirty-six (36) 0.015-in. diameter orifices which impinge on the outer rim of the injector as shown in Figure 15.

TABLE III

TASK I IGNITER HARDWARE LIST

Description	Quantity
Igniter Injector Assembly	2
Igniter Body	2
Platelet Stack	2
Uncooled Igniter Chamber - 0.3" dia.	1
Uncooled Igniter Chamber - 0.15" dia.	1
Cooled Igniter Chamber - 0.2" dia.	2
Gas Generator Chamber - 0.5" dia.	1
Cooled Chamber Nozzle	1
Test Fixture	1
Vacuum Connector	1

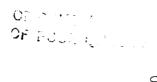

M. Marie

Figure 12. Task I Igniter Hardware

-GAS GENERATOR CHAMBER

OF POOR ()

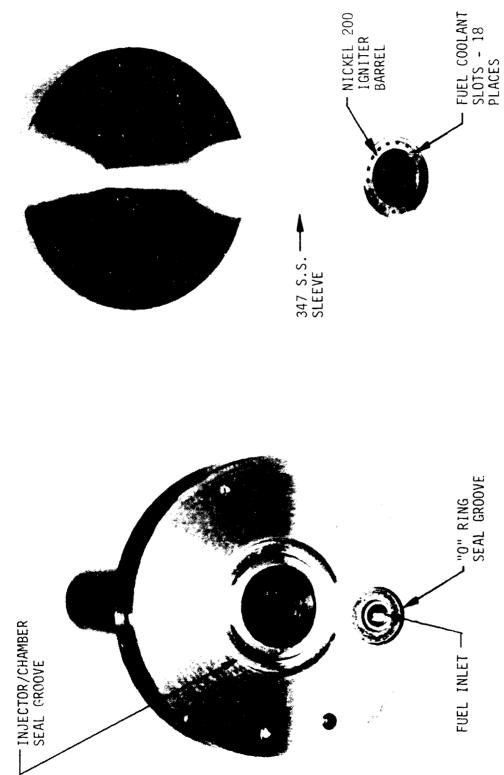


Figure 13. Fuel Cooled Igniter Chamber

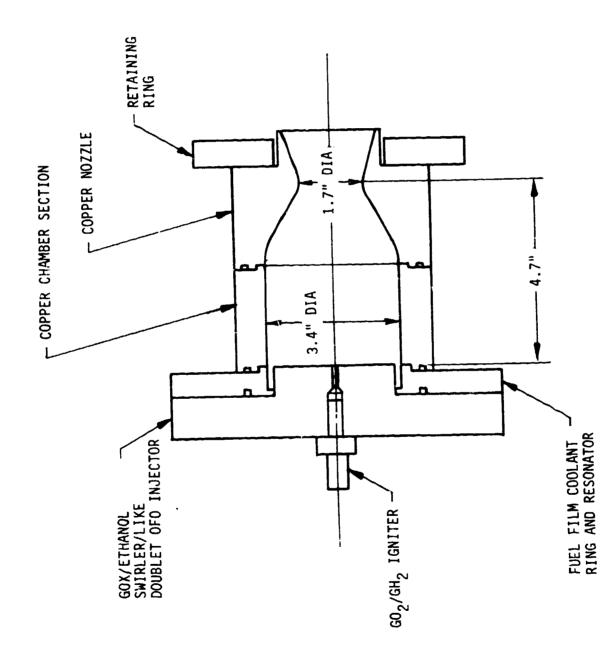


Figure 14. Added Scope Thruster Test Assembly

#47 B.S. __

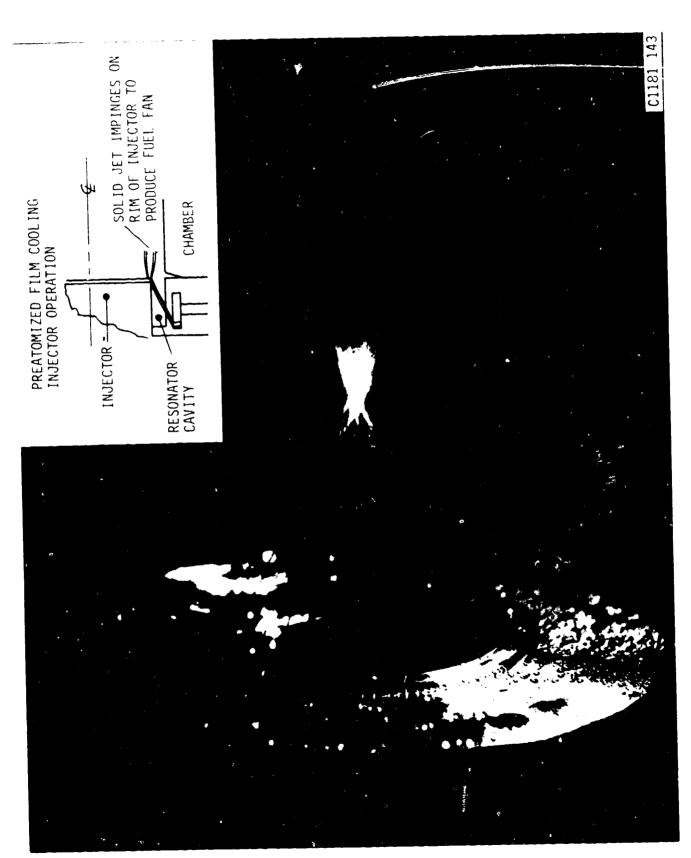


Figure 15. Mid-Pc Fuel Film Coolant Ring

IV, A, Design, Analysis, and Fabrication (cont.)

The injector, snown in Figure 16 consists of a concentric ring manifold with a platelet faceplate. The injector pattern is a 45-element swirler/like-doublet OFO triplet. The pattern layout is shown in Figure 17. The fuel of injected through swirler elements which produce atomized spray cones. The GOX is injected through a set of EDM'd orifices which impinge on the centerline of the fuel spray cone.

Engine ignition was accomplished with an uncooled $\rm GO_2/GH_2$ igniter. The igniter was operated at a mixture ratio of about 1.2.

3. Thruster Hardware Design and Fabrication

The prototype thruster was designed to acquire GOX/Ethanol ignition and combustion data applicable to an auxiliary propulsion system for the Space Shuttle Orbiter. A 620 lbf thruster that would fit within the existing Space Shuttle RCS engine envelope was selected for testing. Parametric analyses were performed during Task II (Ref. 4) to define the thruster configuration and design criteria as listed in Table IV. The analyses included ignition, performance, cooling and pulse mode operation. The performance analysis optimized the thruster combustion chamber and nozzle lengths for the Space Shuttle envelope. The combustion chamber length (injector face to throat) was optimized at 4 inches and the nozzle length at 7.8 inches with a nozzle expansion ratio of 2/1. A nozzle expansion ratio of 2/1 was selected for sea level testing of the prototype thruster. A nominal chamber pressure of 150 psia was selected on the basis of feed system considerations. A mixture ratio of 1.8 was selected on the basis of the performance and cooling analysis. Twenty five percent (25%) fuel film-cooling was picked.

The fuel manifold dribble volume was chosen to be 0.31 cubic inches, the same as the current Space Shuttle RCS engine. The oxidizer manifold dribble volume was selected to be 4 cubic inches to provide adequate

Figure 16. MID-Pc GOX/Ethanol Swirler/Like Doublet OFO Injector

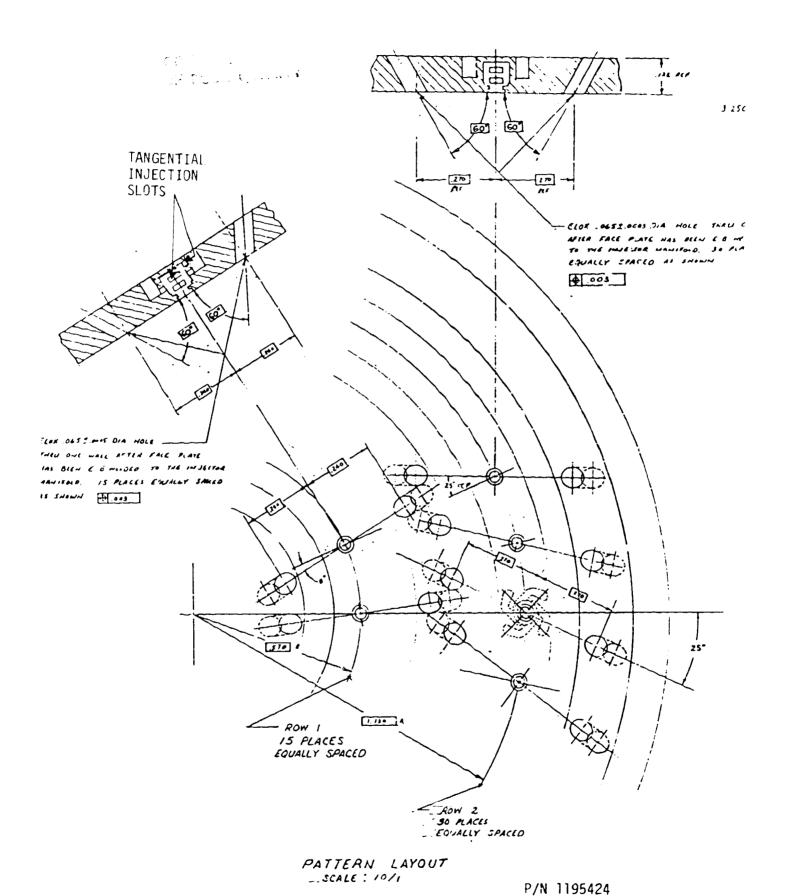


Figure 17. Mid-Pc GOX/Ethanol Swirler-Like Doublet OFO Injector Pattern

TABLE IV

PROTOTYPE THRUSTER DESIGN CRITERIA

Chamber Pressure	150 psia
Mixture Ratio	1.8
Fuel Film Coolant	25%
Thrust (Vacuum)	620 1bF
Oxidizer Flowrate	1.362 lb/sec
Fuel Flowrate	0.758 lb/sec
Oxidizer Injector Pressure Drop	70 psid (Valve Exit to Face)
Fuel Injector Pressure Drop	152 psia (Valve Exit to Face)
Chamber Length	4 in.
Chamber Diameter	3.4 in.
Throat Diameter	1.7 in.
Contraction Ratio	4/1
Nozzle Expansion Ratio	2/1
Fuel Dribble Volume	0.31 in. ³
Ox Dribble Volume	4 in. ³

IV, A, Design, Analysis and Fabrication (cont.)

volume for diffusion of the GOX to achieve uniform flow distribution across the injector face. Pulse mode analysis showed that the gaseous oxygen would fill and evacuate the manifold at near sonic velocity such that the larger oxidizer manifold volume would not limit pulse mode operation. Subsequent testing substantiated the analytical results.

An assembly drawing of the prototype thruster is shown in figure 18. It includes the components listed in Table V. The injector assembly is shown in Figure 19. It consists of a 304 stainless steel body and a 347 stainless steel platelet face plate. The fuel injector flow circuit is photo-etcned into thin sheets which are diffusion-bonded to form the face plate. The face plate is electron beam (EB) welded to the body. The oxidizer orifices are electro-discharge machined (EDM) into the face plate after EB welding. The fuel film coolant orifices are EDM'1 into the periphery of the injector. A cutaway through the injector manifolding is shown in Figure 20. The propellant valves are incorporated into the injector body to minimize manifold dribble volume. The propellant valve pintle and seal assemblies are purchased components. The fuel and oxidizer valves are linked together and driven with a single actuator for simultaneous actuation. The gaseous oxygen always fills faster than the liquid ethanol thus assuring an oxidizer lead on start.

The fuel enters the injector at the fuel inlet and flows through the valve into a manifold which distributes it into fifteen (15) 0.060 inch diameter downcorners. These downcorners feed fifteen (15) platelet manifolds which feed the fuel elements and the fuel film-coolant orifices while avoiding the oxider orifice locations. Each of the manifolds are "teed" at the end to feed the thirty (30) film-coolant orifices. The fuel manifolds are designed for velocities of 50 ft/sec. The total fuel manifold dribble volume is 0.31 cubic inches as measured from the valve seat to the injector face.

A. A.

Prototype Thruster Assembly Figure 18.

TABLE V

TASK III HARDWARE LIST

Description	Quantity
Thruster Injector Assembly (with valves)	1
Heat Sink Chamber L' Section	1
Heat Sink Nozzle	1
Chamber Retaining Flange	1
Thin-Wall Chamber	1
Igniter Injector	1
Igniter Chamber	1
Igniter Valves	2
Spark Electrode	2

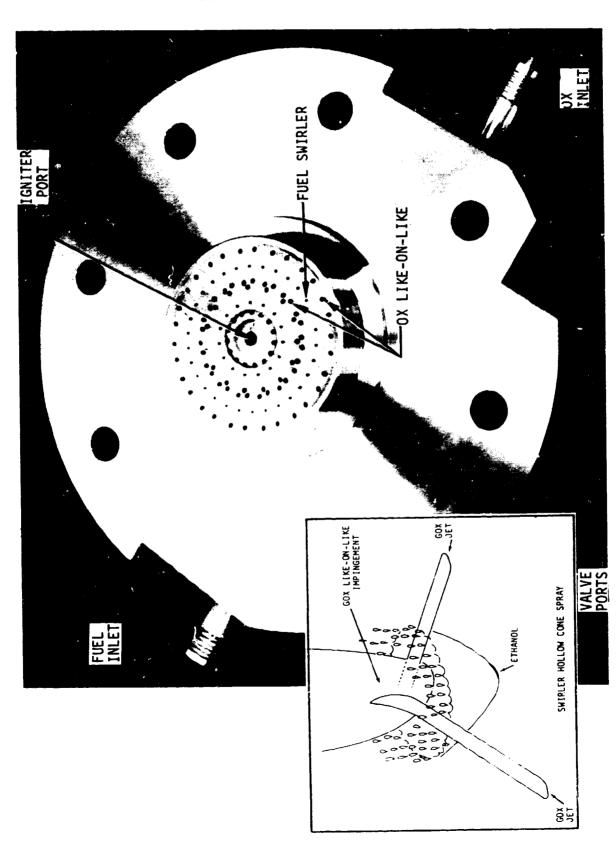


Figure 19. GOX/Ethanol Pulse Thruster Injector

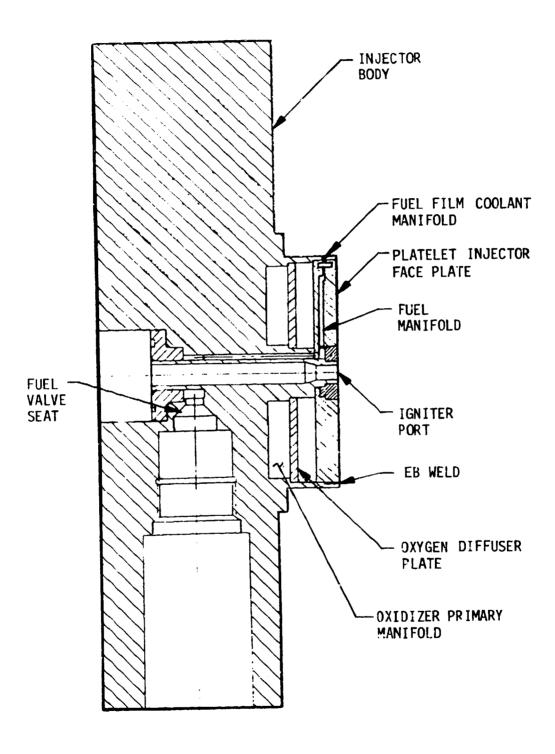


Figure 20. GOX/Ethanol Injector Cutaway

IV, A, Design, Analysis, and Fabrication (cont.)

The oxidizer enters the injector at the oxidizer inlet, flows through the valve and into the primary oxidizer manifold. It flows from the primary manifold through a platelet diffuser having sixteen hundred fifty (1650) 0.025 inch diameter holes into the secondary manifold which feed the injection orifices. The gaseous oxygen manifold volume is approximately 4 cubic inches. The injector pattern consists of forty five (45) fuel swirler elements with like-on-like oxidizer jets impinging over the fuel spray as shown in Figure 21. This pattern is nearly identical to that used on the Mid-Pc program (NAS 9-15958) and the added scope testing. The only difference is that the inner row of oxidizer orifices are injected axially rather than canted due to igniter port interference.

The fuel film-coolant (FFC) was initially injected tangentially from orifices located around the injector periphery as shown in Figure 22. This injection scheme was selected for its simplicity and ease of manufacture. However, early thruster testing revealed throat cooling to be inadequate with this injection scheme. It was subsequently changed to a swirl injection scheme also shown in Figure 22 in an attempt to improve throat cooling. No significant improvement in throat cooling was noted with the swirl FFC. It is recommended that pure axial injection be used in any further film-cooled studies. The platelet fuel film-coolant manifold was designed to be a little larger than necessary to accommodate these kinds of changes by welding and re-machining of the film-coolant orifices.

The injector was cold flow tested prior to initial not firing to determine the injector admittances and to check the pattern. A photo of the fuel water cold flow at rated fuel flow is shown in Figure 23. The fuel swirler elements produce finely atomized well-defined spray cones as designed. The fuel circuit Kw (admittance) was within 3% of that predicted. The fuel film-coolant orifices produced solid well defined streams. The Kw was within 6% of that predicted. The measured percent film coolant was 25.9% compared to the design goal of 25%.

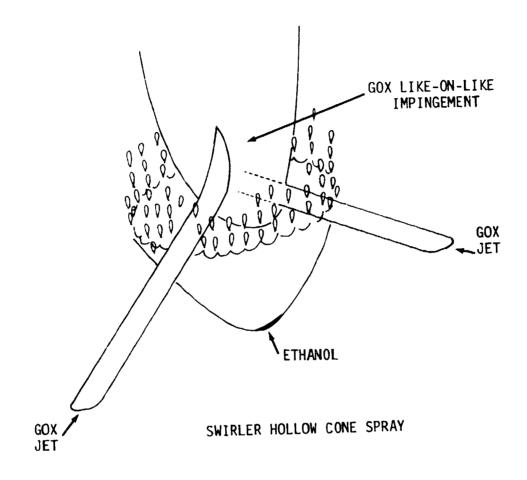


Figure 21. GOX/Ethanol Swirler Like-Doublet OFO Injector Element Concept

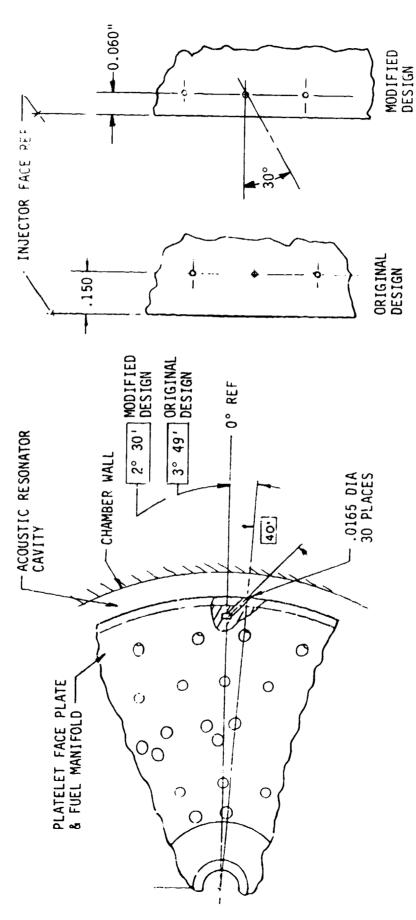


Figure 22. Fuel Film-Coolant Injection Schemes

ORIGINAL PACE IN OF POOR QUALITY

Figure 23. Fuel Circuit Cold Flow - Tangential FFC

IV, A, Design, Analysis, and Fabrication (cont.)

The oxidizer circuit was cold flowed with ${\rm GN}_2$. The measured CDA was within 1% of the predicted value.

A copper heat sink chamber L' section was designed and fabricated and is shown in Figure 24. A chamber pressure port and three (3) Kiscler transducer ports were provided. The copper heat sink nozzle section and retainer plate shown in Figure 25 were used with the L' section. They are residual hardware from the Mid-Pc (NAS 9-15958) program.

A 304 stainless steel thin-wall chamber, shown in Figure 26, was designed and fabricated for evaluating the thruster film cooling. It was instrumented with backside wall thermocouples to evaluate wall temperature and film cooling effectiveness.

The igniter assembly was the same hardware used for the Task I igniter testing (Ref. 3). The igniter valves were solenoid actuated and were manufactured by Ekel Valve Corp.

4. Added Scope Igniters

The added scope of this program was to design, fabricate and deliver two igniter injector assemblies to the Johnson Space Center. One of the igniters was to be designed to operate with LOX/liquid propane propellants and the other was to be designed to operate with LOX/liquid methane propellants. These two igniter injectors are similar to the igniter injectors previously designed for operation with gaseous oxygen (GOX) and liquid ethanol propellants.

The operating point conditions of these two propellant combinations are defined by the procedure outlined in the Task II data dump.

Analyses were performed to determine core mixture ratio, overall mixture ratio and total propellant flow rate. The final criteria are listed in Table VI.

OF POUR QUALLEY

HEAT-SINE CHAMBER SECTION

Figure 24. Copper Heat Sink Chamber Section

OF POOR CHALLY

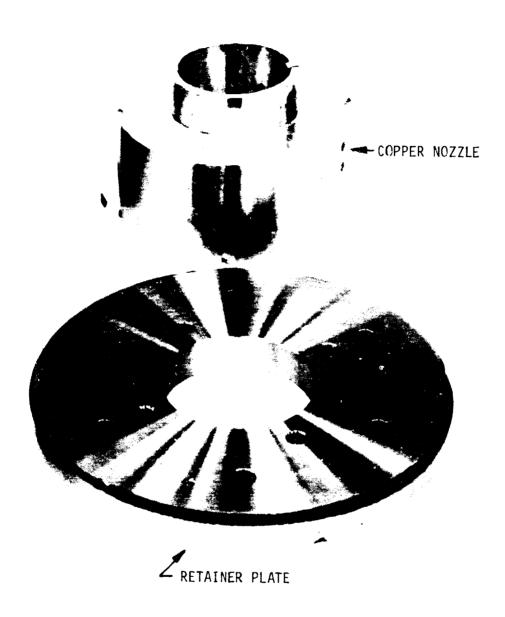


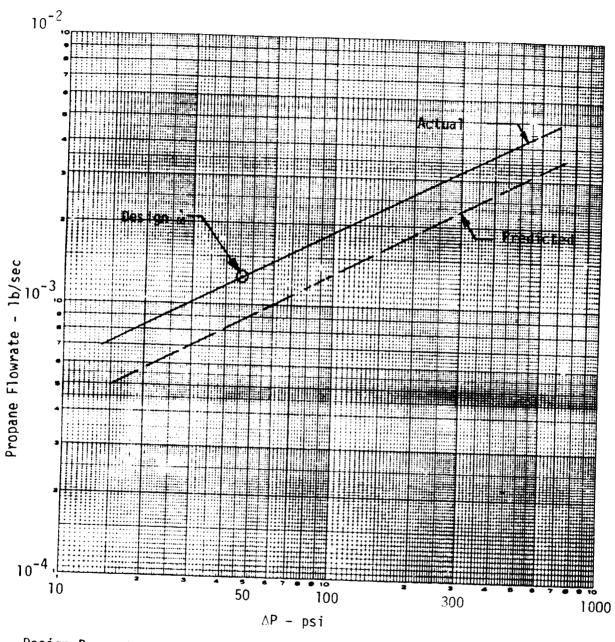
Figure 25. Mid-Pc Heat Sink Nozzle

Figure 26. Thruster Thin-Wall Chamber

TABLE VI
SUMMARY OF PREDICTED IGNITER CHARACTERISTICS

		Propane		/Methane
	<u>0×</u>	F	<u>0x</u>	E
Igniter Kw	0.001748	0.0002413	0.001748	0.000243
Hot Fire				
P _C (psia)	1	50		150
MR _{overall}	1	.6		1.8
C* _{ODC} ft/sec	5	333		5631
% Fuel Coolant		90%		90%
C* Efficiency	8	5%		85%
0 _{th}	0	.2		0.2
ŵ (lbm/sec)	0.02058	0.001286 (core)	0.02036	0.001131 (core)
		0.01158 (coolant)		0.01018 (coolant)
MR _{core}	1	6		16
T _j (°F)	-297	70	-297	-260
S.G.	1.15	0.497	1.15	0.425 -
۵ ^P j (psi)	121	57	118	52
P _{jm} (psia)	271	207	268	202
Cold Flow				
P _{jm} (psia)	271	207	268	202
P _C (psia)	2	23		23
ΔP _j (psi)	248	184	245	179
ŵ (1bm/sec)	0.02952	0.002308	0.02934	0.002105
MR		12.8		13.9
PO		4.5		4.5

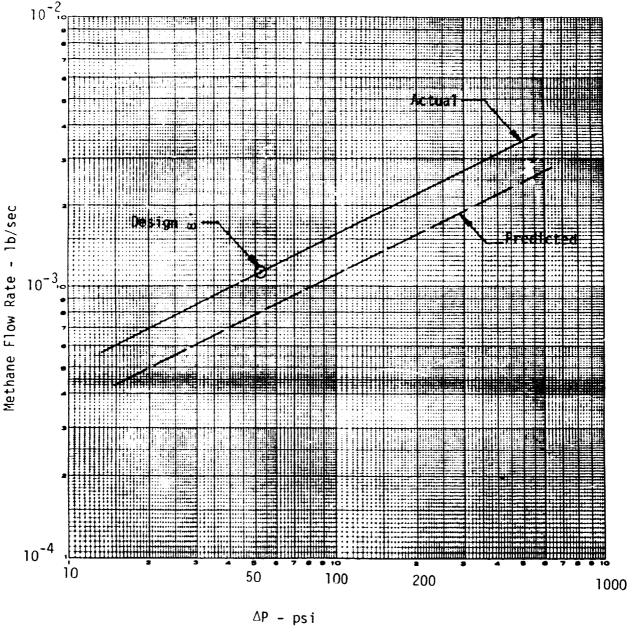
IV, A, Design, Analysis, and Fabrication (cont.)


The final flow rate vs ΔP plots for liquid propane, liquid methane and liquid oxygen are shown in Figures 27, 28, and 29 respectively. The design point results are plotted in Figures 30 and 31 for propane/LOX and methane/LOX propellants respectively. These results show that for both propellant combinations the same hydraulic passage geometry were chosen with acceptable pressure drop at the selected flow rates. Since the geometry can be used for both propellant combinations the number of platelet changes were minimized. Additionally, the design is similar to the previous ethyl alcohol test series, reducing the number of platelet changes further.

An assembly drawing of the Task I igniter hardware is shown in Figures 32 and 33. Photographs of some of the hardware are shown in Figures 34, 35, and 36.

The igniter injector assembly is shown in Figure 32. It consists of a machined 304 stainless steel body and a photo-etched 347 stainless steel injector platelet similar to the GOX/ethanol igniter. The two parts are joined with a copper furnace braze cycle. The propellant injection passages, shown in Figure 37 are photo-etched into the platelets which are subsequently diffusion bonded to form the injector stack.

The fuel manifold passages are designed for velocities of approximately 12 ft/sec to minimize dribble volumes. The fuel injector dribble volume is $.000588 \, \text{in.}^3$.


The fuel flows from the body into the platelet stack and splits into parallel igniter core and secondary injection circuits. The fuel core flow is distributed through two diametrically opposed rectangular orifices. These 5 mil (.005 in.) by 6 mil (.006 in.) orifices are located just downstream of the spark electrode as shown in Figure 37. The fuel coolant flow is distributed to the cooled chamber through the igniter inlet just downstream of the metering manifold (see Figure 37). The fuel coolant passage is blocked for the uncooled chamber ignition testing.

42-53 J

Figure 27. Propane Flow Rate vs /P

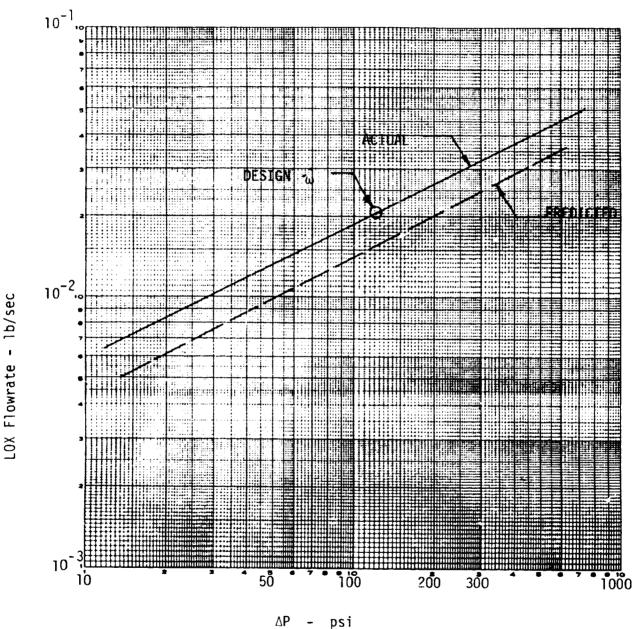
OF POOR QUALITY

Design Parameter

 $\dot{\omega}$ = .001131 lb/sec

Methane

Fluid Properties
T = -250°F
R_{HO} = 26.5 lb/ft³ $Vis = .700 \times 10^{-4}$ 1bm/ft-sec


Channel Size Width = .005" Depth = . 006"

Length = .035" 2 Platelets 2 Channels

Figure 28. Methane Flow Rate vs Δ P

OF POOR COMMIT

LOX FLOWRATE VS AP

Design Parameter

 $\dot{\omega}$ = .02058 lb/sec (LOX/Propane) $\dot{\omega}$ = .02036 lb/sec (LOX/Methane) Pc = 150 psia

= -300°F $= 71.8 \text{ lb/ft}^3$ R_{H0} $Vis = .135 \times 10^{-3}$ 1bm/ft-sec

Fluid Properties

L₀X

Channel Size

Width = .005" Depth = .009" Length= .170" 3 Platelets 12 Channels

Figure 29. LOX Flow Rate vs ΔP

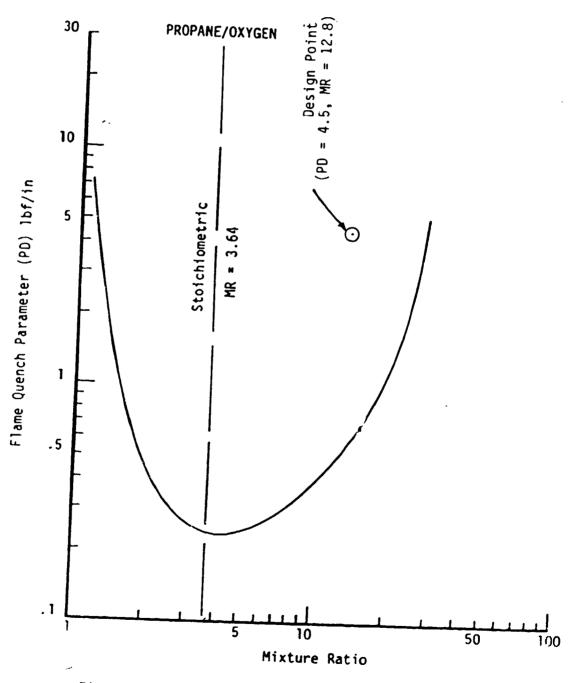


Figure 30. Flame Quench Parameter, Propane/Oxygen

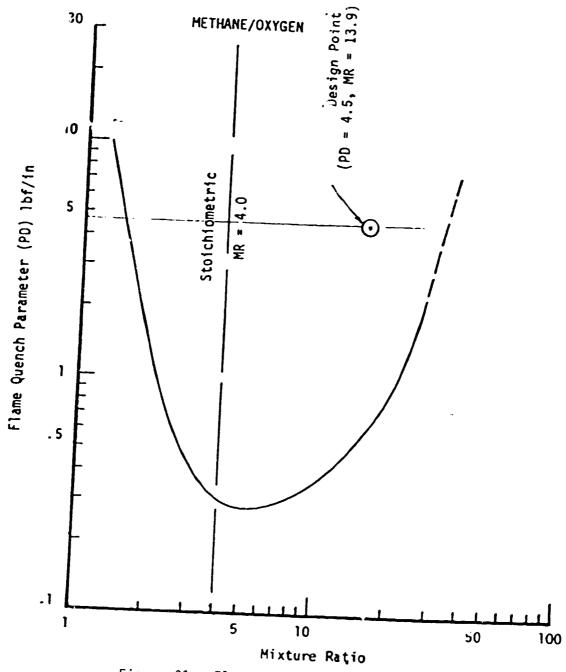


Figure 31. Flame Quench Parameter, Methane/Oxygen

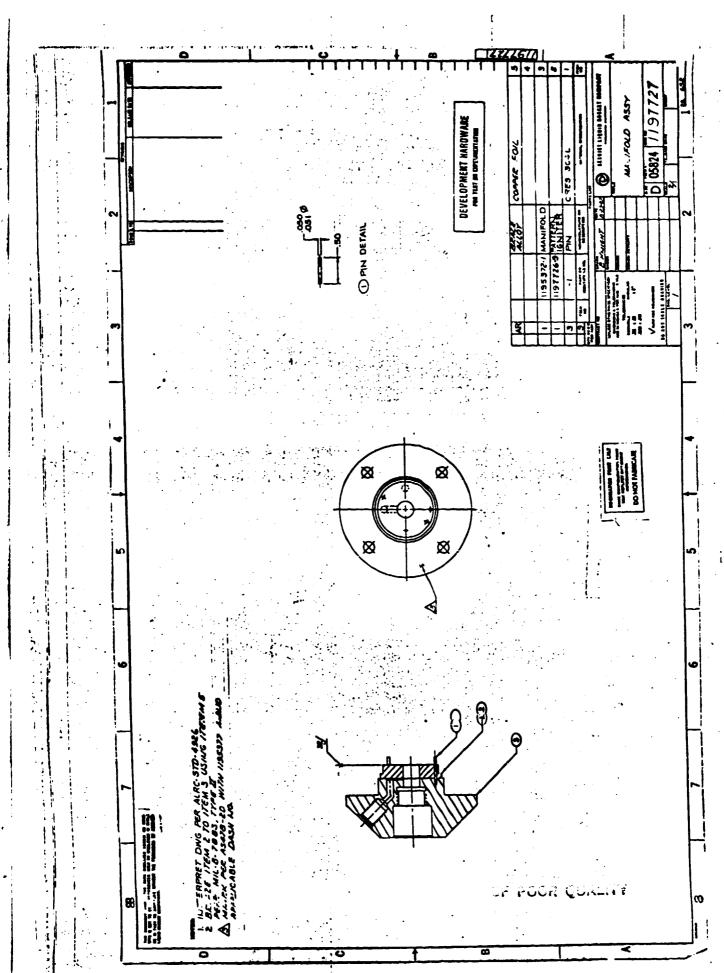
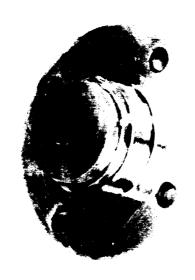
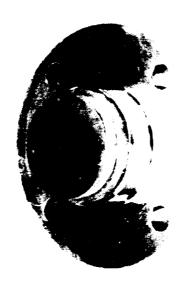




Figure 32. Igniter Manifold Assembly Drawing

Figure 33. Igniter Manifold Drawing

OF POOR QUALITY

6

:

31

Figure 34. Completed Igniter Injector Assemblies

0

æ

1:

CROPE TO THE SECOND SECOND

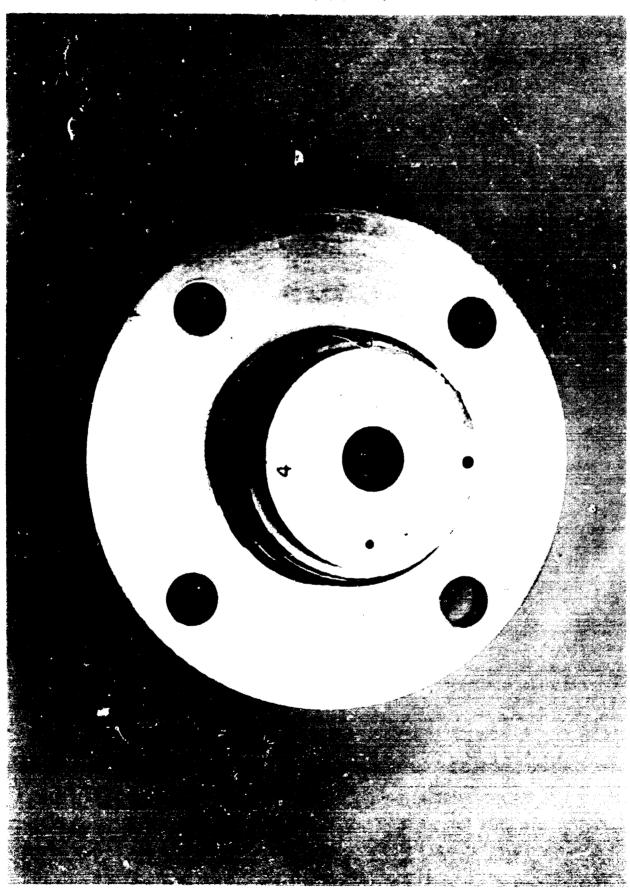


Figure 36. Closeup View of Completed Igniter Injector

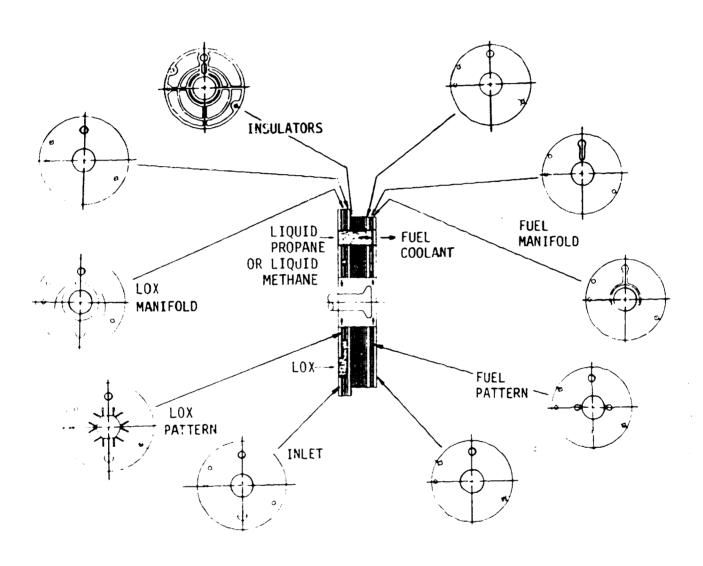


Figure 37. Igniter Injector Flow Schematic

IV, A. Design, Analysis, and Fabrication (cont.)

The LOX enters the platelet stacks from the body and is distributed into the igniter through six pairs of rectangular like-on-like doublet elements. These 5 mil (.005 in.) by 9 mil (.009 in.) orifices are located upstream of the spark electrode as shown in Figure 37. The LOX manifold passages are designed for 5 ft/sec. The LOX dribble volume is $_{-00476}$ in. $_{-3}^{3}$.

The injector flow admittances are listed in Table VII.

B. TESTING

This section of the report discusses testing of the Task I igniter, the added scope injector testing and the Task III thruster testing. Test objectives, test setups and test conditions are described.

Igniter Testing

The objectives of the igniter testing were to 1) define the ignition characteristics of spark initiated GOX/Ethanol igniters, 2) determine igniter chamber cooling requirements, 3) evaluate oxidizer manifold fuel contamination potential, 4) evaluate pulse mode operation, and 5) evaluate carbon deposition potential of fuel-rich GOX/Ethanol combustors.

a. Test Salup

Bay 3 of the Rocket Technology Test Laboratory was used for the Task I igniter testing. A flow schematic of the test system is shown in Figure 38. The gaseous oxygen was fed from standard storage "K" bottles. The liquid ethanol was supplied from a nitrogen-pressurized feed system. Both the fuel and oxidizer tanks and all propellant lines were jacketed to provide temperature-conditioning. Temperature conditioning was accomplished by flowing a mixture of liquid and gaseous nitrogen through the tank and line

TABLE VII

IGNITER INJECTUR COLD FLOW RESULTS

 $Kw = \dot{w} \Delta P \sim 1b//sec - psi^{1/2}$

SN 3 Igniter Injector

I. Fuel Circuit Water Flow T = 23°C

ΔΡ	ŵ	Kw
(psi)	(lb/sec)	(1b/sec-psi ^{1/2})
24 33 46.5	.0011 .00136 .00160	.000225
62.2 76	.00193 .00218	.000235 .000245 .000250
87.5 96.5	.00229 .00249	.000245 .000253

Average .000241

II. Oxidizer Circuit Water Flow $T = 24^{\circ}C$

ΔP (ps1)	₩ (1b/sec)	Kw (1b/sec-ps; ^{1/2})
54	.01247	.00169
74	.01467	.00170
100	.01768	.00176
119	.01936	.00177
138	.02090	.00177
157	.02211	.001765

Average .00174

SN 4 Igniter Injector

I. Fuel Circuit Water Flow T = 27°C

ΔP	₩	Kw
(ps1)	(1b/sec)	(1b/sec-psi ^{1/2})
12 29 39.5 45.5 53 68.5	.00068 .00112 .00132 .00138 .00156 .00178	.000196 .000208 .000210 .000205 .000214 .000215 .000220

Average .000210

TABLE VI I (cont.)

II. Oxidizer Circuit Water Flow T = 27°C

ΔP (psi)	₩ (lb/sec)	Kw ('b/sec-psi ^{1/2})
55 74.5 100 120 139.5 160	.0110 .01313 .01555 .01639 .01793	.001483 .001521 .001555 .001496 .001518
	Average	.00152

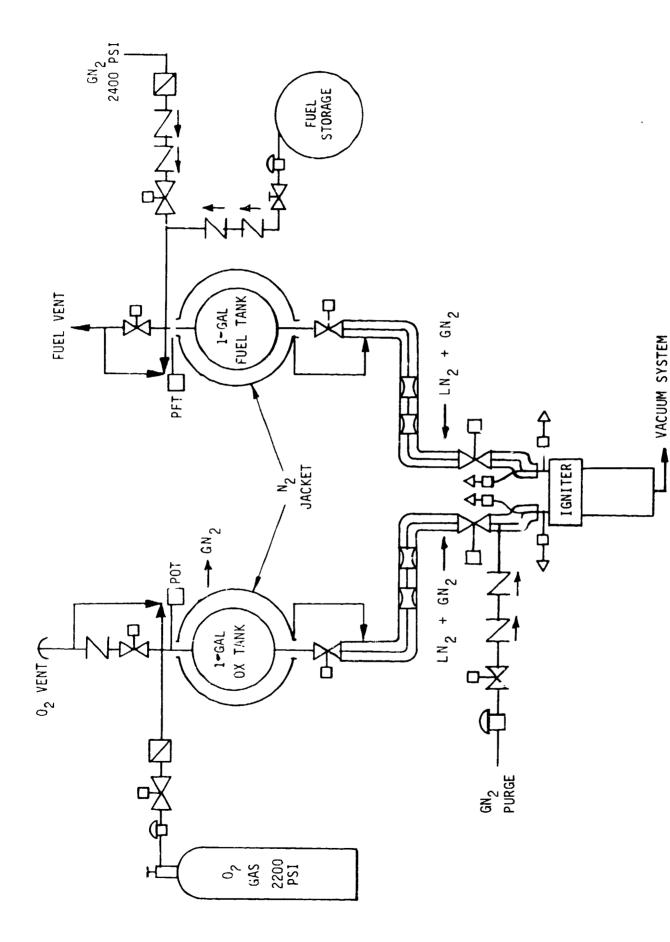


Figure 33. GOX/Ethanol Ignition Test Flow Schematic

100 Ball

IV, B, Testing (cont.)

jackets. The mixture was adjusted to provide temperatures from $-100\,^{\circ}\text{F}$ to $-165\,^{\circ}\text{F}$. The igniter test setup is shown in Figure 39.

The igniter valves are solenoid valves manufactured by Ekel Valve Company. A schematic of the valve is shown in Figure 40. The valve operates on 28 Volt DC power and has a pressure rating of 800 psid.

An Aerojet TechSystems owned variable-energy power supply system (GLA Model 30344) was used to provide spark energy. Power supply specifications are provided in Table VIII. The power supply and spark electrode were manufactured by GLA, a subsidiary of Simmonds Precision.

Instrumentation used for the igniter testing is listed in Table IX. It includes propellant inlet conditions, chamber wall temperatures and chamber ignition parameters. The instrumentation locations are indicated in Figure 41.

The gaseous oxygen (GOX) flowrates were determined using the flow calibrated injector admittance (CD_A) and the measured inlet pressure and temperature. The fuel flowrates for the ignition tests (i.e., core flow only) were determined in a like manner. Turbine flowmeters were used for fuel flow for the long duration cooled chamber tests.

b. Test Conditions and Procedures

The planned test conditions for the GOX/Ethanol ignition and cooling evaluation are listed in Table X. Included are the planned and actual number of tests completed. The igniter testing was conducted in two parts. Part 1 of the testing addressed igniter chamber ignition sensitivity. Two uncooled ignition chambers (0.15 and 0.30 in. in diameter) were used to determine chamber size effects. The cold-flow pressure was varied by controlling the injection inlet pressures and firing into an evacuated chamber.

42-24 J

Figure 39. Task I Igniter Test Setup

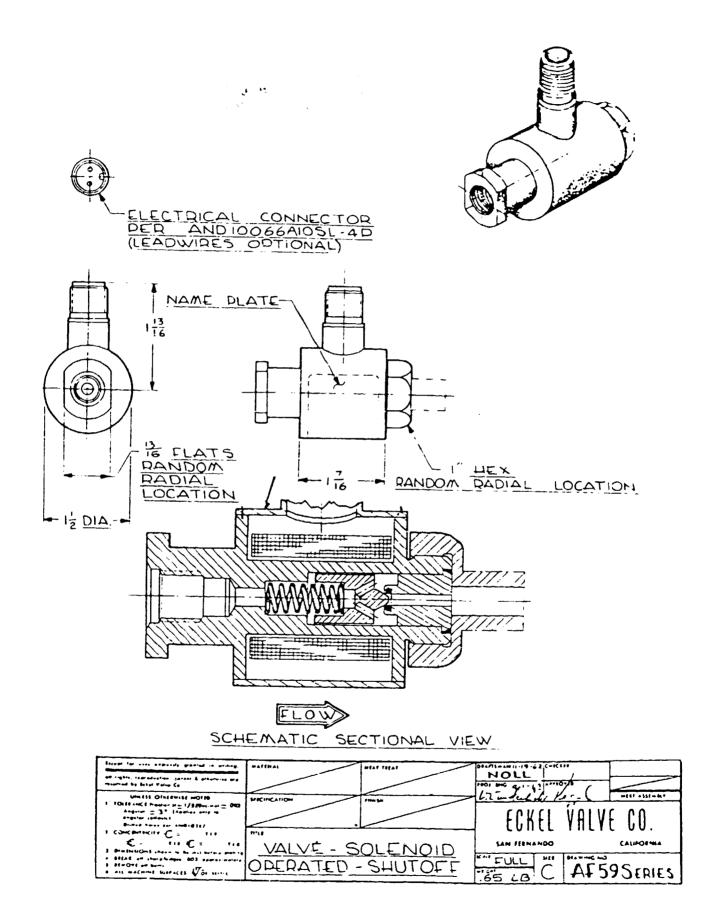


Figure 40. Igniter Solenoid Valve Schematic

TABLE VIII

POWER SUPPLY SPECIFICATIONS GLA MODEL 30344 VARIABLE-ENERGY SYSTEM

1.	Input Voltage	120 volts, 60 Hz
2.	Spark Rate	150, 300, and 500 sparks
* 3.	Spark Energy Level	0.01, 0.030 and 0.05 joules
4.	Storage Capacitor Voltage	3500 volts DC (adjustable)
5.	Output Voltage	25-30 kv (will fire 0.100 gap at 35 psig)
6.	Delay Time from Control Input to First Spark	Approximately 0.010 sec
7.	Unidirectional Output Pulse	
8.	Spark Igniter	Air-gap type
9.	Remote Control Capability	(28 VDC)
10.	Peak Reading Voltmeter	
11.	Discharge and Spark Rate Monitor	

^{*}Spark energy levels are based on a storage capacitor voltage of 3400V

TABLE IX

TASK I INSTRUMENTATION LIST

Parameter	Symbol	Units	Range	Digital	Recording 0'Graph	FM	Visual
Oxidizer Igniter Valve Current	101v	Amps	1/8		×		
Fuel Igniter Valve Current	IFIV	Amps	1/8		×		
Oxidizer Igniter Valve Voltage	VOIV	Volts	0-50		×		
Fuel Igniter Valve Voltage	VFIV	Volts	0-20		×		
Spark Trace	SPK	N/A	N/A		×		
Oxidizer Inlet Pressure	POIV	psia	0-200	×			
2 Fuel Inlet Pressure	PFIV	psia	0-500	×			
Oxidizer Inlet Temperature	1010	40	-200-100	×			
Fuel Inlet Temperature	TFIV	占。	-200-100	×			
Igniter Chamber Pressure	PCIGN	psia	0-200	×	×		
Test Chamber Pressure	PAMB	psia	0-15	×	×		×
Exhaust Temperature	TEXH	ۍ د	0-2500	×	×		
Wall Temperature	TWALL-1,4	٩,	0-2500	×	×		
Injector Temperature	LINJ	٥Ł	-200-100	×			
Fuel Flowrate	L A	lb/sec	0.01-0.02	×	×		

427 Q % _ 7

Figure 41. Task I Igniter Instrumentation Locations

42 ° \$ %

TABLE X

TASK I GOX/ETHANOL IGNITION AND DURABILITY TEST MATRIX

		1 1	, e	Tests					Test Conditions	tions	
Status		Series	# of Actual	# of Tests ual Planned	Feed/Temp Ox Fuel	Chamber Diameter	Core	Film Cooling	Duration	Chamber Pressure	Remarks
Complete	Checkout	۲	۰	2	Amb / Amb	1-0	180	None	0.2	180	Checkout
Complete		æ	32	52	Amb / Amb	1- 0	1-40	None	0.2	1-50	Baseline ignition with ambient propellant
Complete		ပ	21	4	Anb/Anb	0-1	180	None	0.2	180	Increased spark at no light conditions
		C-1	4	1	Amb/Amb	0-1	180	Mone	1.0	75-150	Determine heat flux
Complete		Û	17	12	Cold/Cold	0-1	TRD	None	0.2	1-50	Ignition with cold propellants
Complete	lgnition Tests	Ü	4	4	C014/C01d	1-0	180	None	0.2	180	Increased spark at no light condition
Complete		LL.	7	9	Amb/Cold	D-1	180	None	0.2	180	Cold fuel sensitivity
Complete		9	11	પ્ર	Cold/Amb	0-1	180	None	0.2	TRO	Cold GOX sensitivity
Complete		I	22	10	Amb / Amb	n-2	1-40	None	0.2	1-50	Reduced dia. sensitivity; ambient propellant
Complete		-	14	10	p103/p103	D-2	1-40	None	0.2	1-50	Reduced dia, sensitivity; cold propellant
Complete	Cooling Tests	ŗ	(2)	2	Amb / Amb	0-4	180	TRN	0.2	180	Checkout with film cooling
Complete		$\boldsymbol{\kappa}$	o .	9	Amb/Amb	D-4	1-40	Nom	TBD	1-50	Verify ignition characteriza- tion with cooling; ambient propellant
Complete		٦	6	9	Co14/Co1d	D-4	1-40	Мот	TBD	1-50	Verify ignition characterization with cooling; cold propellant
Complete		Σ	ç	5	Amb/Amb	D-4	3-20	180	ν.	150	Film cooling effectiveness vs core MR
Complete		z	2	2	Amb / Amh	D-4	3-20	181	ъъ	7.5	Low Pc sensitivity
Complete		C	5	2	Amb/Amb	n-3	180	T8ก	ı۲	180	Low MR coking at gas generator condition
Complete		د	6	æ.	Cold/Cold	D-4	3-20	TB.	ъ	150	Film cooling effectiveness at low propellant temperature

Status	Series	# of Actual	series Actual Planned	feed/Temp	Chamber	Core	F11m	Test Conditions	tions Chamber	
	O O	4	2	5	D-3	TB0	Cooling	Duration 5	Pressure	Remarks
	œ	4	٣	Amb/Amb	0-4	787	101	,	e e e e e e e e e e e e e e e e e e e	tow MR coxing at low-temperature gas generator conditions
	S	ю	3 7	P103/P103	D-4	TRD	מ מ	, v	150	Film-cooling optimization
	-	ю	Э	Amb / Amb	D-4	. E	TB C	ب م	150	Film-cooling optimization
							2	0.1	150	Igniter pulse and restart with ambient propellant (2 firings
	n	e	м	Amb/Amb	0-4	T80	780	-		per test)
	>	œ	m	6.00/p[0]	•	į		•	067	[gniter pulse and multiple restart.
					b=13	180	180	0.1	150	Igniter pulse and restart with
	≥	10	15	TRD	TRD	TBN	180	TRO		cold propellants
		216	140					200	(26)	Contingency tests

MOTE: 1. Adequate altitude conditions maintained through ignition period and through pulse, coast, and restart period.

Chamber pressure refers to cold flow pressure for series A through I and to steady-state pressure for series J

3. Cold propellant temperatures are approximately $50^{\circ} \mathrm{F}$ above the fuel freezing temperature.

4.

D-1 = 0.3" diameter; D-2 = 0.15" diameter; D-3 = Gas Generator Chamber; D-4 = 0.2" diameter

IV, 8, Testing (cont.)

Igniter mixture ratio was evaluated over a wide range of 0.4 to 40. The spark energy was varied over a range from 10 to 50 millipoules at a fixed spark rate of 300 sparks per sec to define minimum ignition energy. Approximately 138 ignition tests were made with the uncooled chambers.

Part 2 addressed chamber cooling, low-mixture-ratio (MR) gas generator (GG) operations, pulse-mode operation, and oxidizer manifold contamination in a purgeless operating mode. The igniter chamber coolant flow was controlled independently of core flow to achieve required coolant flow variability. The fuel coolant flow was varied by orificing the fuel inlet to the cooled chamber, see Figure 13. (An orifice was drilled through an alanhead bolt which screwed into the fuel inlet hole shown on Figure 13). Spark energy was held at a constant level as defined by the ignition characterization tests. Long duration (5 seconds) firings were conducted to confirm admutate igniter cooling under steady-state conditions. Approximately 58 cooled chamber tests and 9 gas generator tests were conducted.

The ignition tests were conducted using the sequence shown in Figure 42. The oxygen flow was started 10 msec ahead of the ethanol flow. The spark discharge was delayed about 110 msec to establish the cold-flow pressure. Ignition or non-ignition was indicated by the chamber pressure and exhaust temperature response. The total test duration was 0.4 seconds.

The gaseous oxygen inlet pressure was set to achieve the desired chamber cold-flow pressure and the fuel inlet pressure varied up or down to shift the mixture ratio. The spark energy was varied at fixed inlet conditions to determine its effect on ignition limits.

Added Scope Testing

The objective of the added scope testing was to get an early evaluation of GOX/Ethanol auxiliary propulsion thruster performance for 4-inch L' chambers, to aide the Task III thruster design. The Task II theoretical

42 T 2 W 2

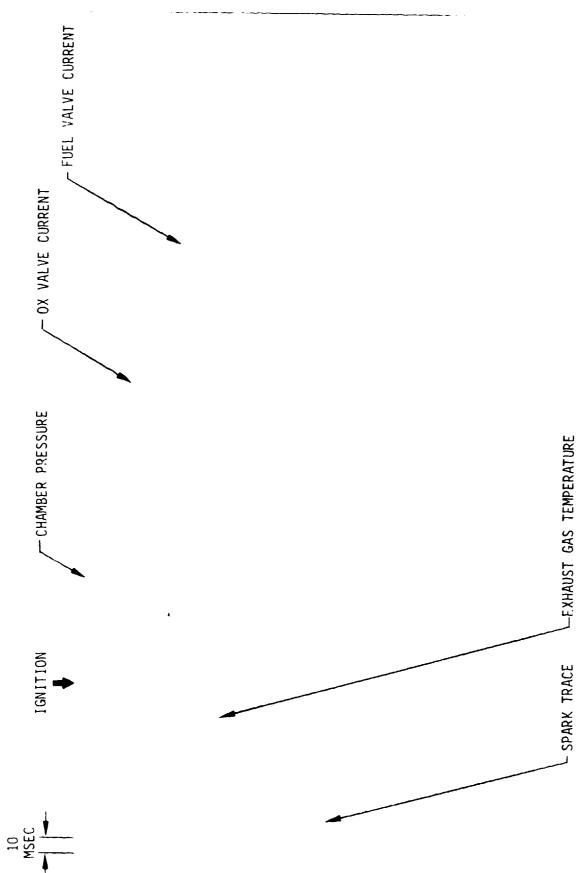


Figure 42. Task I Ignition Test Sequence

IV, B, Testing (ont.)

performance analysis indicated that an RCS thruster chamber length (L') of about 4 inches would provide optimum performance, given the Space Shuttle RCS envelope constraints shown in Figure 43. The parametric analysis examined the effects of overall mixture ratio, propellant temperature, chamber length for a fixed engine length, percent fuel film-coolant, chamber pressure, and nozzle area ratio. A design point mixture ratio of 1.8 was selected to achieve peak performance. A design point chamber length of 4 inches was selected to provide peak Isp for the fixed engine envelope. The intent of the added scope testing was to confirm these predictions.

a. Test Setup

The testing was conducted in the Aerojet TechSystems "A" Area Research Physics Lab Test Bay 6, shown in Figure 44. A complete description of the test facility is given under the Task III thruster test discussion.

b. Test Conditions and Procedures

The planned test matrix is shown in Table XI. Seven tests each with ambient temperature and cold temperature propellants wer scheduled to be conducted. Nine (9) ambient temperature and ten (10) cold propellant tests were actually completed. The test matrix was structured to acquire performance data over the chamber pressure and mixture ratio range selected for the Task III thruster: Pc = 100 to 300 psia and MR = 1.3 to 2.4. The film coolant was varied from C-20% of the fuel flow.

Task III Thruster Testing

The primary objective of the Task III testing was to experimentally evaluate GOX/Ethanol thruster ignition and pulse-mode operation. A secondary objective was to evaluate thruster steady-state performance, fuel

Figure 43. Space Shuttle RCS Engine Envelope

Man Man

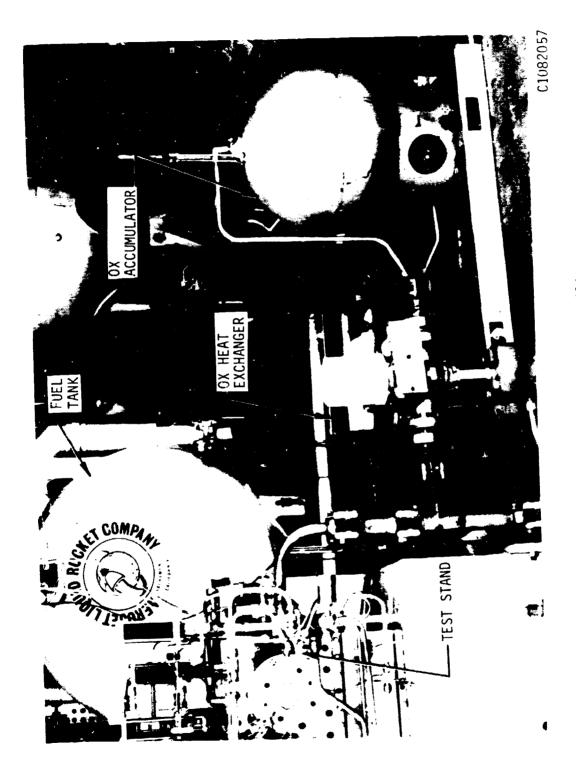


Figure 44. Bay 6 Test Facility

TABLE XI

ADDED SCOPE PLANNED GOX/ETHANOL TEST MATRIX

 $T_{\text{OX}} = T_F = \text{Ambient}$ L' = 4.7 Inches

Test Condition	Pc	MR	%FFC	Duration (sec)
1	150	1.7	20	5
2	150	1.3	20	5
3	150	2.4	20	5
4	150	1.7	10	5
5	100	1.7	20	5
6	300	1.7	20	3
7	300	2.4	20	3

All seven tests to be repeated with cold propellants ($T_{ox} = -160^{\circ}$ and $T_{F} = -125^{\circ}F$)

IV, B, Testing (cont.)

film-cooling requirements and stability characteristics. A prototype thruster consisting of an igniter, injector, and fuel film-cooled thrust chamber was tested over a wide range of propellant inlet pressures. Ambient and cold $(-2 \text{ to } -156 \, \text{F})$ temperature propellants were used.

The testing was conducted in two parts. The first part checked out the Task I GOX/Ethanol igniter in the Bay 6 thruster test facility. Nineteen (19) igniter tests were run to evaluate the igniter ignition limits, core to coolant fuel flow balance, valve timing, and propellant inlet pressure effects.

the second part addressed full thruster operation. Approximately 65 thruster tests were conducted. The first 13 tests were run with a heat sink chamber to evaluate thruster ignition and inlet pressure effects on performance. The remaining 52 tests were run with a thin-wall chamber to evaluate film-coolant effectiveness and pulse mode performance over a range of inlet conditions.

a. Test Setup

The testing was conducted in the Aerojet TechSystems "A" Area Research Physics Lab Test Bay 6, snown in Figure 44. This is the same facility used for the added scope testing. The propellant feed systems are snown schematically in Figure 45. The igniter propellants were fed from the main propellant lines and were orificed to provide proper flow balance. Oxygen was supplied to the engine from high-pressure storage bottles. A pebble-bed heat exchanger was used to temperature-condition the oxygen for the cold propellant tests.

The fuel was supplied to the engine from a pressurized 150-gallon tank. A tube bundle heat exchanger was used to temperature-condition the fuel for the cold propellant tests. Temperature conditioning was accomplished by flowing a mixture of liquid and gaseous nitrogen through the heat exchangers and lines.

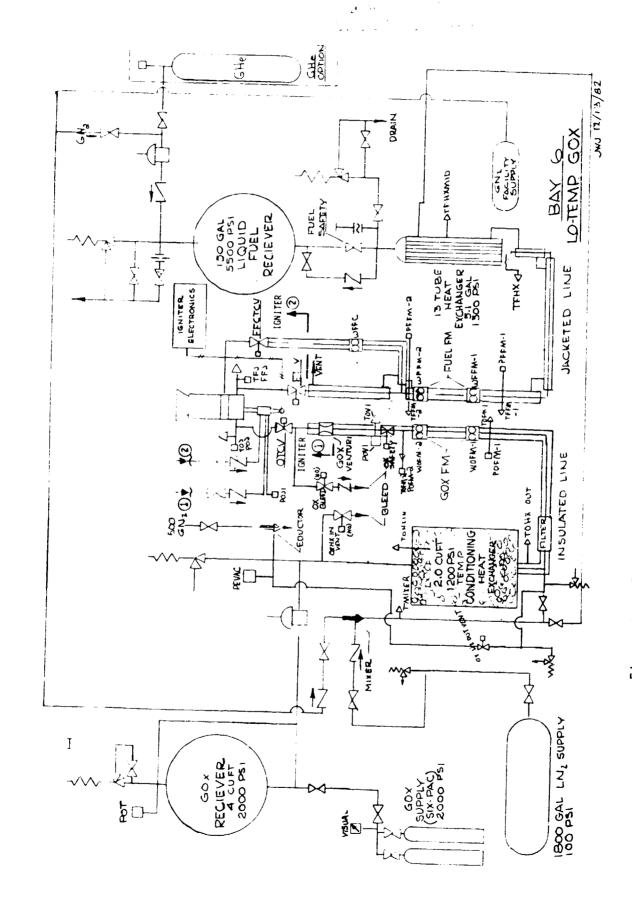


Figure 45. Bay 6 Test Facility Flow Schematic

IV. B, Testing (cont.)

The igniter was mounted in the thruster injector for the igniter-alone testing. It was instrumented as shown in Figure 46. The igniter total fuel flowrate was measured with a turbine flowmeter. The fuel core flow was determined from the calibrated injector admittance (Kw) and measured pressure drop (PFIV-PcIGN). The igniter oxidizer flowrate was determined from the calibrated injector \mathcal{C}_DA and the inlet pressure (POIV) and temperature (TOIV) using the gaseous isentropic flow equation. The igniter spark was provided by a calibrated variable-energy power supply (GLA Model 30344). A spark energy of 50 mj/SPK and a spark rate of 300 SPK/sec was used for all of the igniter and thruster tests.

The thruster assembly was instrumented to measure thrust, propellant flow-rates, inlet pressures and temperatures, combustor wall temperatures, and combustion pressures. These data were recorded on both digital and analog recording instruments as listed in Table XII. The instrumentation locations are shown in Figure 47. The thruster gaseous oxygen (GOX) flowrates were determined using a calibrated sonic venturi and the measured inlet pressure and temperature. The thruster fuel flowrate was measured using turbine flowmeters. The fuel film-coolant flowrates were determined using the FFC injector Kw and the measured pressure drops. Thruster pulse mode fuel flowrates were determined using the fuel injector Kw and the measured pressure drops (PVTCV-Pc).

b. Thruster Test Conditions and Procedures

The igniter-alone test conditions are listed in Table XIII. The first two igniter tests (conditions 1 and 2) were coldflow tests to verify proper valve function, and igniter coolant to core fuel split (% FFC). The igniter fuel film-coolant was initially measured to be 96% as compared to the design value of 93%. Ten (10) tests (conditions 3-5) were run with the 96% fuel film-coolant to check out ignition. Poor results were achieved. The igniter fuel circuit was rebalanced to 93% FFC by placing a

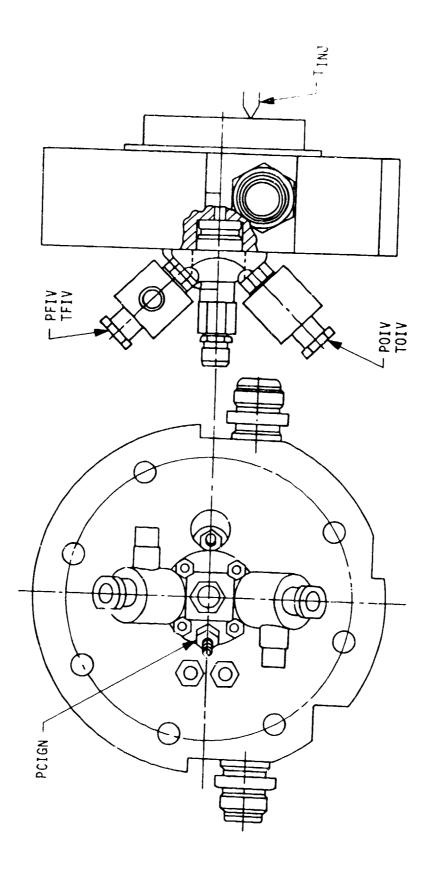
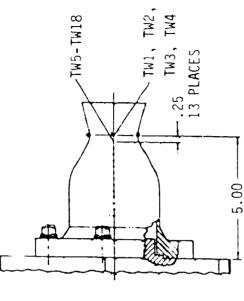


Figure 45. Task III Igniter Testing Instrumentation Locations


.

ABLE XII

TASK III THRUSTER INSTRUMENTATION LIST

Recording	1 O'Graph FM	*	د ٠	≺ :	×	×					>	< >	<	>	≺ >	≺ >	≺ >	≺ >	>	<	<	× >	< >	< >	< >	< >
	Digital			>	≺		×	×	< > -	: > .	: ×	: > :	< >	< >-	< >	< >	< >	< >	:	×	:	×	: ×	: ×	×	×
																			(PK-PK)		(PK-PK)					
	,	-/s	5/1	0-100)	¥/¥	0-500	0-200	-200-100	-200-100	0-500	0-2500	-200-100	0-1000	0-1000	-200-100	-200-100	0-500	0-100 psi	0-1000	0-100 psi	0.01-0.05	0.01-0.05	0.5-2.0	0.25-1.25	0-200
4	Units	Sdilly	Amps	≫€	< <u> </u>	£	psia	psia	+1	 	psia	+1	+1	psia	psia		+F				ps i	lb/sec	lb/sec	lb/sec	lb/sec	psia
Compo	1011	•	IFIV	LTCV	SPK		POIV	PF IV	T0 IV	TFIV	PCIGN	TWALL-1,18	CNIT	Pov	PFV	VOT	TFV	POJ	кол	LL.	K1, K2, K3	WOIGN	WF IGN	M O	WF	Pc
Parameter	Oxidizer Igniter Valve Current	Fuel Innites Value	AN I PA TOTAL TOTAL	inrust Chamber Valve Position	Spark Trace	Oxidizer Igniter Inlet processes	File Canitou Lalas n	ociding Inlet Pressure	oxidizer igniter inlet Temperature	ruel igniter inlet Temperature	igniter thamber Pressure	mail lemperature	Injector lemperature	UXIGIZER Iransducer Inlet Pressure	ruel Inruster Inlet Pressure	Uxidizer ihruster Inlet Temperature	ruel Inruster Inlet Temperature	Oxidizer Inruster Manifold Pressure	Oxidizer Kistier Thanst		Janiton Officers	igniter Uxidizer Flowrate	Theorem 1.	Thruster UXIG1Zer Flowrate	Chamber Processes	crambel riessure

*2-3-3. ·

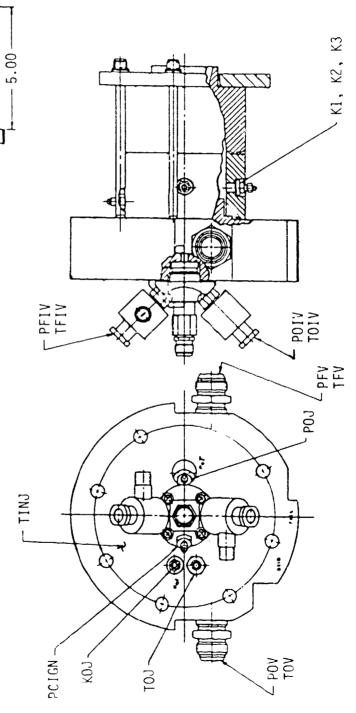


Figure 47. Task III Thruster Testing Instrumentation Locations

, a 1 3 3 3

TABLE XIII TASK III IGNITER TEST MATRIX

	Test						
Status	Condition No.	Test <u>Objective</u>	(psia)	MR Overall	Duration (sec)	No. of	Tests Actual
Complete Complete Complete Complete	1 2 3-5 6-10	Oxidizer Cold-Flow Fuel Cold-Flow Checkout Determine Effect of Inlet Conditions	N/A N/A 150 150 ±40%	N/A N/A 1.0 1.0 ±40%	1 1 1/4-1 1	1 1 3 5	1 1 11 6
						10	19

IV, B, Testing (cont.)

0.034 inch diameter orifice in the coolant circuit inlet. Seven (7) more tests (conditions 6-10) were run with 93% fuel film-coolant to determine the effect of inlet pressures on ignition. The inlet pressures were varied $\pm 40\%$ from the nominal. Cood ignition results were achieved and the 93% FFC condition was selected for thruster testing.

The thruster test matrix is shown in Table XIV. Fuel and oxidizer propellant cold flow tests (conditions 1 and 2) had been planned but were considered unnecessary on the basis of the water and ${\rm GN}_2$ cold flow results.

(1) Heat Sink Chamber

Test conditions 3-5 were run to checkout the system and igniter/valve sequence using the heat sink chamber. Three tests were planned but a total of 5 tests were run. The thruster was sequenced as shown in Figure 48. The igniter fuel valve was signaled 10 milliseconds ahead of the igniter oxidizer valve. The spark was signaled on with the fuel valve. The thruster bipropellant valve was signaled on about 45 milliseconds from the igniter fuel valve signal to permit time for the computer to test the igniter chamber pressure. If the igniter chamber pressure had not achieved a preselected level then the test would have been terminated. Ignition was achieved on all of these tests.

Test conditions 11-15 were run to determine the effect of inlet pressures on thruster ignition, performance and stability. Five (5) tests were planned and eight (8) tests were completed. The inlet pressures were varied $\pm 40\%$ from their nominal values. These ignitions were so smooth and reliable that the planned torch ignition test conditions 6-10 were considered unnecessary and were deleted from the Lest program. However, subsequent testing with cold propellant led to a condition of delayed thruster ignition which suggests that torch ignition limits should be explored on any future test program.

TABLE XIV

TASK III THRUSTER TEST MATRIX

ests Actual	0	C	មា	C	œ	13	2	22	9	v	3
# of Tests	1	~	٣	un.	5	10	4	\$	5	9	1 46
Chamber	Heat Sink	Heat Sink	Heat Sink	Heat Sink	Heat Sink	Thin Walled	Thin-Walled	Thin-Walled	Thin-Walled	Thin-Walled	Thin-Walled
Duration (sec)	7		1/4-2	1/2	1/2	5	1	5	0.5-0.04	0.08	0.100-0.050 Thin-Walled
₽€ O	N/A	N/A	Nominal	Nominal	Nominal ±40%	Nomina) ±40%	Nominal	Nominal ±40%	Nominal	Nominal ±40%	Nominal
Igniter Mr	N/A	N/A	Nominal	Nominal ±40%	Nominal ±40%	Nominal ±40%	Nominal	Nominel ±40%	Nomina }	Nominal ±40%	Nominal
₩ ₩	N/A	N/A	Nominal	Nominal	Nominal ±40%	Nominal ±40%	Nominal	Nominal ±40%	Nominal	Nominal ±40%	Nominal
می ا	N/A	N/A	Nominal	Nominal	Nomina! 140%	Nominal ±40%	Nominal	Nominal ±40%	Mominal	Nominal ±40%	Nominal
Propellant Temperature	Ambient	Ambient	Ambient	Ambient	Ambient	ço1d	Ambient	Ambient	Ambient	Ambient	Ambient
Test Objective	Oxidizer Cold-Flow	Fuel Cold-Flow	Checkout Sequence	Determine Torch Ignition Limits	Oetermine Inlet Condition Effects	Determine Propel- lant Temperature Effects	Checkout	Inlet Condition Effects	Evaluate Pulse Capability	Evaluate of Inlet Condi- tions on Pulse Performance	Demonstrate Pulse Train
Test Condition No.	7	2	3-5	6-10	11-15	16-25	56-29	30-34	35-39	40-45	46
Status	Deleted	Deleted	Complete	Deleted	Complete		Complete	Complete	Complete	Complete	Complete
Test No.							148-150	133-143	151-160		

Nominal Pc = 150 psia Nominal MR = 1.0 Nominal Igniter MR = 1.0 Nominal %FFC = 26%

-c-26 g

ORIGINAL OF F00 : 4.... THRUST Pc 7 PCIGN 7 IGNITER
TURNED OFF -TCV POSITION -THRUSTER BI-PROPELLANT VALVE (TCV) SIGNAL 10 MSEC IGNITER IGNITER OX VALVE FUEL VALVE SIGNAL SIGNAL Figure 48. Thruster Ignition Sequence - Steady State Testing

-c-20

IV, B, Testing (cont.)

(2) Thin-Wall Chamber Tests

The first thin-wall chamber tests (conditions 26-29) were run to verify proper thruster/igniter function. Four (4) tests were planned but only 2 were needed to verify proper function. Two sets of test conditions 30-39 were run. The first set was run with the tangential fuel film-coolant injection scheme and the second with the swirl injection scheme. Modifications to the thrust chamber valve actuator were also made prior to running the second set of tests. Test conditions 30-34 were run to evaluate the effect of inlet pressures on thruster performance and cooling. Nine (9) tests were run with the tangential fuel-film coolant and thirteen (13) tests with the swirl fuel-film coolant. The chamber pressure was varied over the range of 91 psia to 197 psia. The mixture ratio ranged from 0.778 to 2.86. The test durations varied from 1.0 to 5.1 seconds due to automatic throat temperature kills set to prevent throat overheating. The start sequence was the same as that used for the heat sink chamber.

Test conditions (35-39) were run to demonstrate thruster pulse mode capability and determine the minimum pulse width achievable. Four (4) pulse tests were run with the tangential fuel-film coolant and two (2) with the swirl injection. The first four (4) tests were single pulses varying in duration from 472 ms to 178 ms. The second two (2) tests were a series of seven (7) pulses varying in duration from 200 ms to 40 ms, with as little as one (1) second coast between pulses. All tests were run with nominal inlet pressures. Pulse mode capability was limited for the first four (4) tests by the thruster pipropellant valve pintle travel time. The valve pintle took 20 msec to open and 50 msec to close. These long travel times coupled with long electrical lags in the pilot valves prevented achieving pulses snorter than 178 milliseconds. The goal was for 80 milliseconds. The valve was subsequently reworked to speed the pintle travel time by driving the actuator with GHe rather than GN₂. The pilot valve electrical lags were also reduced with an electronic valve driver.

IV, B, Testing (cont.)

The $\rm GN_2$ driven valve sequence used for the first four (4) pulse tests is shown in Figure 49. The thruster bipropellant valve (TCV) was signaled on ahead of the igniter valves. The fuel igniter valve was timed to follow by 20 ms. The spark was actuated with the fuel valve, and the exidizer valve was set to follow by 10 ms. On shutdown, the TCV was signaled off about 80 ms ahead of the igniter valves.

The GHe driven valve sequence used for the remainder of the pulse tests is shown in Figure 50. The thruster bipropellant valve (FCV) was signaled 45 ms ahead of the igniter fuel valve. The spark and igniter fuel valve were started simultaneously. The oxidizer valve was lagged by 10-20 ms. The TCV pintle travel times were 10-20 ms for open and less than 5 ms for close. The TCV pilot valve electrical lag was reduced from 120 ms to 15 ms. The shortest pulse achieved was 40 ms.

Test conditions 40-45 were run to determine the effect of inlet pressure on pulse performance. These tests were made with the swir! fuel-film coolant and GHe actuated valve. The valves were sequenced the same as shown in Figure 50. Two (2) 80 ms pulses with a one (1) second coast was run on each of the tests.

Test condition 46 was run to demonstrate pulse mode capability. Two pulse tests were run using the same start sequence as the previous test conditions (40-45). Each of the pulse tests contained a string of seven (7) pulses, three (3) 100 msec, two (2) 70 msec and two (2) 50 msec. The pulses were separated by 65 msec coasts.

Test conditions 16-25 were run to determine the effect of cold (-125 F) propellant on thruster ignition and performance. Ten (10) tests were planned but thirteen (13) were completed, eight (8) steady-state and five (5) pulse tests. These tests were run with the thin-walled chamber rather than the heat sink chamber as originally planned. The swirf film-coolant injector and the GHe driven valve were used. The start sequence

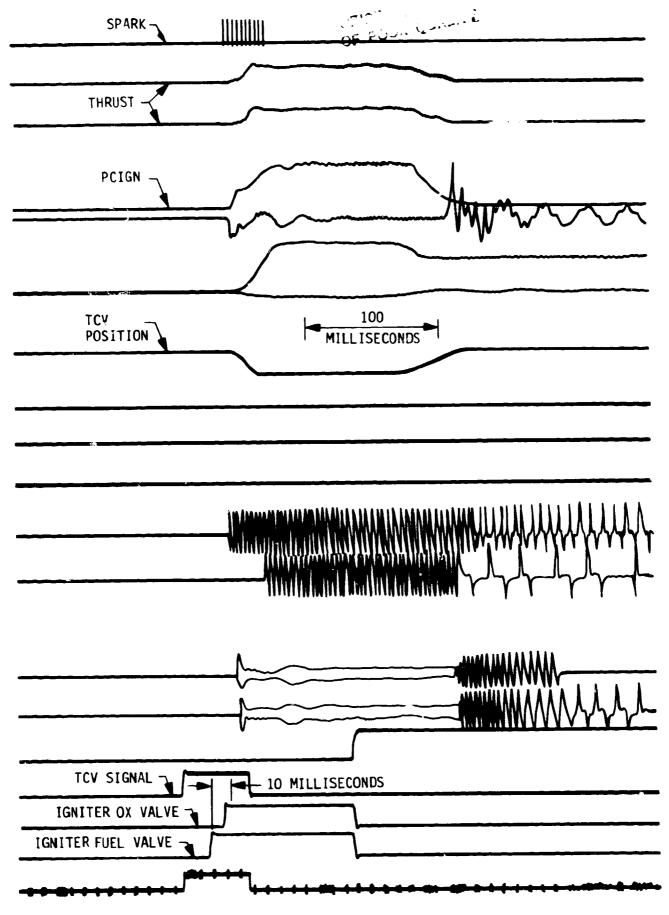


Figure 49. Thruster Pulse Sequence - GN₂ Actuator

- 4 C . . .

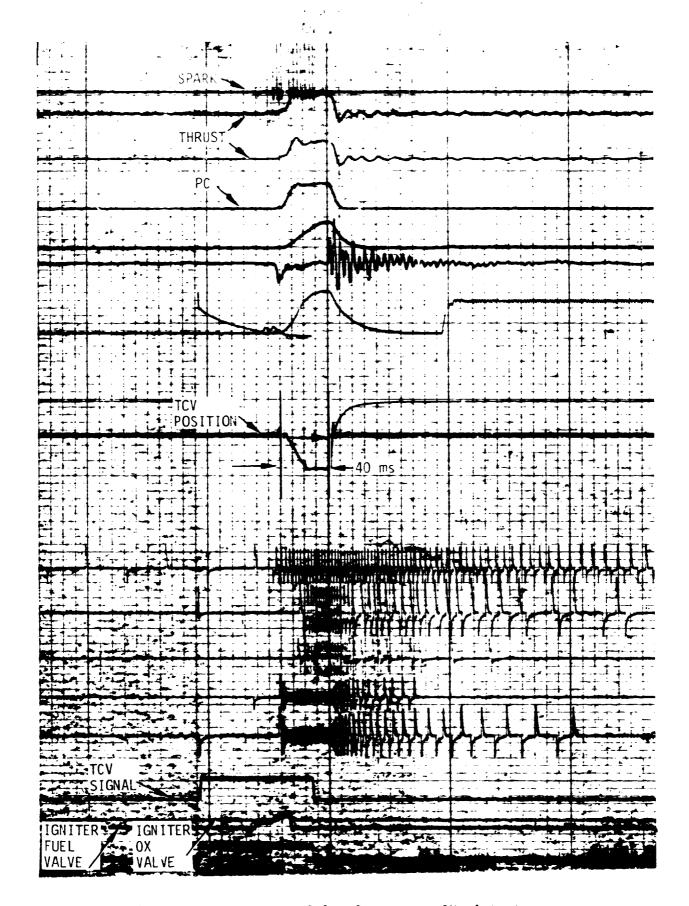
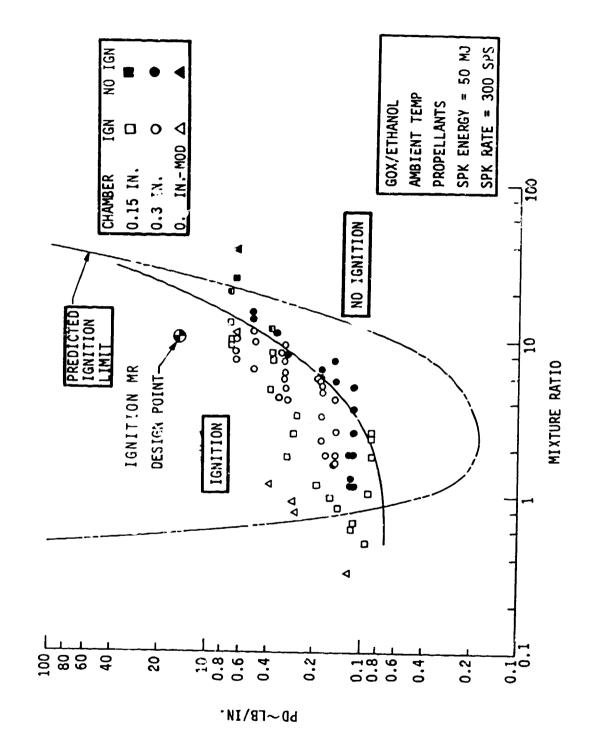


Figure 50. Thruster Pulse Sequence - GHe Actuator

IV, B, Testing (cont.)

used for the steady-state tests was the same as that used for the heat sink chamber. The steady-state test durations varied from about 1.0 to 5.0 seconds as determined by the throat temperature kills. Tests covered the Pc range from 74 to 188 psia and the mixture ratio range from 1.24 to 3.29. The pulse tests used the same sequence of seven (7) pulses used for test condition 46.


C. DATA ANALYSIS

This section of the report discusses and interprets the test data. The Task I ignition testing, added scope testing and Task III thruster testing are all discussed.

1. Task I Igniter Test Results

The ignition test variables and the range of conditions tested are listed in Table I. The effects of these variables were determined by plotting the ignition response (i.e., ignition or non-ignition) on the flame quench parameter (PD) versus core mixture ratio coordinates. The flame quench parameter is the product of the cold-flow pressure before ignition and the chamber diameter. It is derived from an analysis of the flame quench process (see Ref 3).

The effect of chamber diameter and cold-flow pressure on ignition is shown in Figure 51. Ignition is indicated by the open symbols and non-ignition by the closed symbols. Data are shown for the 0.15 inch diameter chamber and the 0.3 inch diameter chamber with and without a nozzle. The 0.3 inch diameter chamber was modified by inserting a 0.15 in. nozzle at the chamber exit as shown in Figure 12. The intent of the modification was to increase the chamber pressure for a given flow rate and reduce the oxidizer injection velocity to determine its effect on the ignition. The propellants were at ambient temperature. The spark energy and spark rate were held constant at 50 millijoules and 300 SPS respectively. Also shown on the figure are the predicted flame quench limits and the selected igniter design operating point. The core ignition mixture ratio of 10 differs from the steady-state mixture ratio of 15 due to increased fuel-flow before ignition.

Effect of Igniter Chamber Diameter and Cold-Flow Pressure on Ignition Figure 51.

IV, C, Data Analysis (cont.)

The data show that the ignition limit is shifted to the left of the predicted limits and that the fuel-rich limit occurs at much lower mixture ratios than predicted. The disagreement between the .3 inch ID and .15 inch ID data near PD = 0.1 is believed due to poor mixing between the ox and fuel streams which was caused by the high axial momentum of the GOX in the 0.3 inch configuration (highest flow rate through the annulus surrounding the spark electrode). See Reference 3, Figure 15.

The effect of spark energy on ignition limits is shown in Figure 52. The data for 10 millijoules and 30 millijoules spark energy are plotted on the PD vs MR coordinates. The 50 millijoules energy correlation is taken from Figure 51. The data show that reducing the spark energy from 50 to 10 millijoules reduces the ignition limits. It was recommended that 50 millijoules be used for thruster applications to maximize ignition margin.

The effect of cold propellant is shown in Figure 53. The fuel temperatures ranged from -102°F to -121°F and the GOX temperatures ranged from -89°F to -129°F. Both 0.15 inch diameter and 0.3 inch diameter data were obtained. The results show that the cold propellants only slightly reduce the ignition limits. The effect of independently varying the fuel and oxidizer is shown in Figure 54. These data show that the ignition limit is sensitive only to the fuel temperature. This is probably due to vaporization effects which are temperature dependent. It was concluded that the igniter would ignite reliably at the design point with cold propellant.

The cooled igniter chamber ignition limit data are plotted in Figure 55. Both ambient and cold propellants were tested. Agreement with the uncooled chamber data is evident by comparing the data to the uncooled chamber data. It is concluded that the cooled chamber ignition limits are the same as for the uncooled chambers.

Igniter C* performance was obtained for the 5 second duration igniter cooling tests. Both cold and ambient propellant temperature data are plotted in Figure 5. The theoretical One Dimensional Equilibrium (ODE) C* is

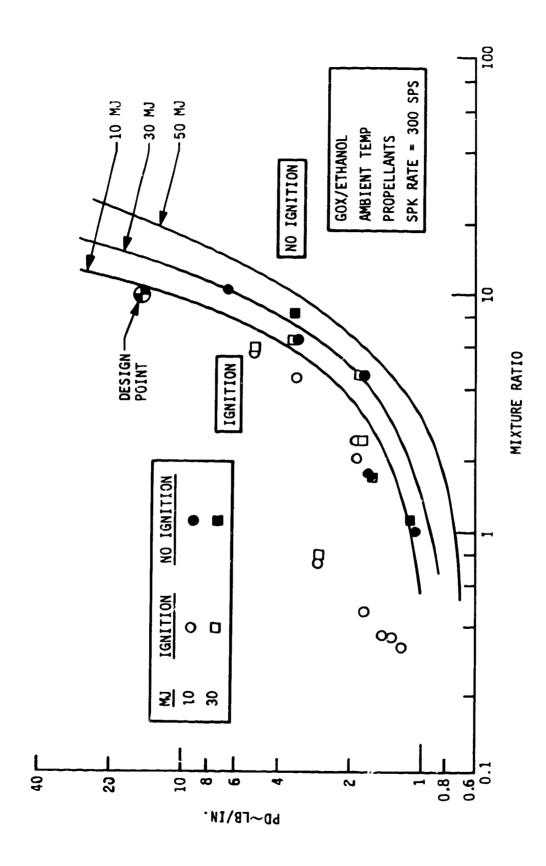


Figure 52. Effect of Spark Energy on Ignition

-

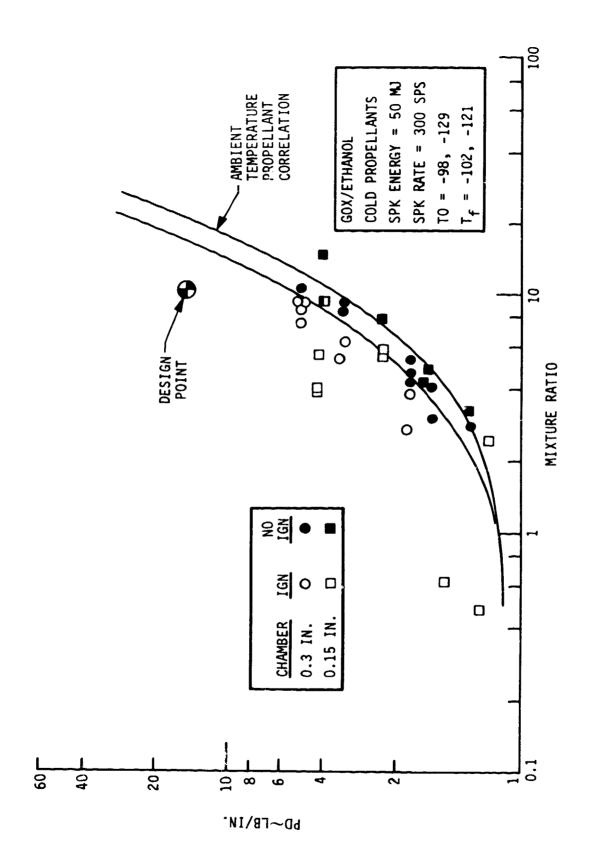


Figure 53. Effect of Cold Propellant on Ignition

es = 1

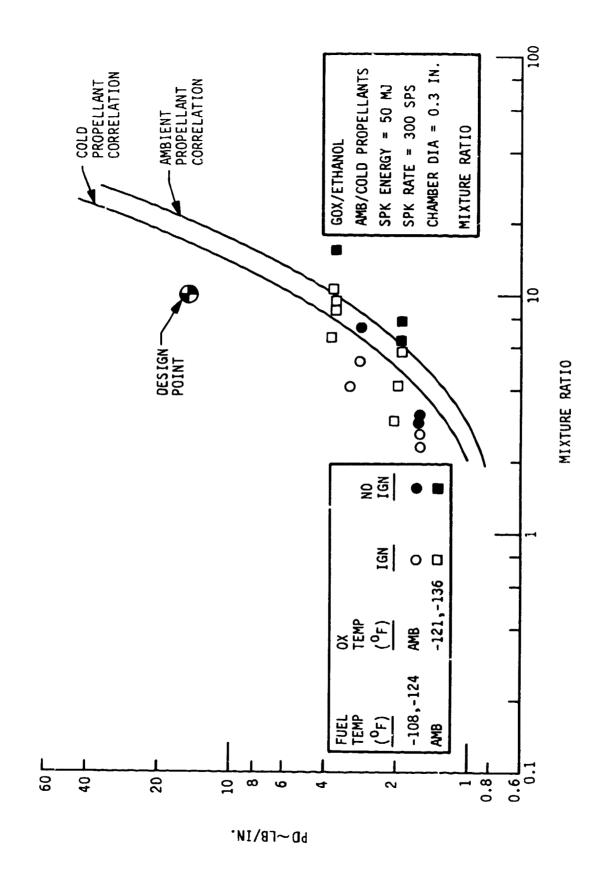


Figure 54. Effect of Fuel and Ox Temperature on Ignition

4 2 2

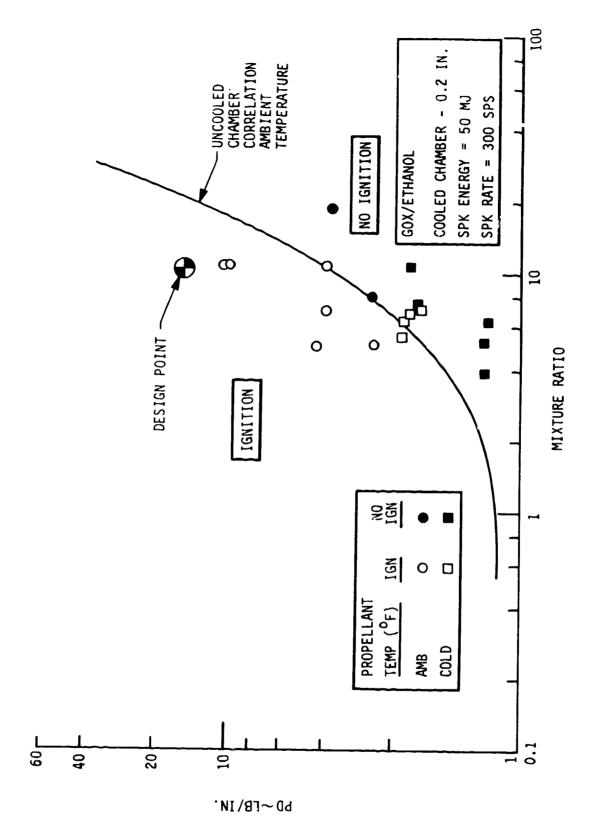


Figure 55. Cooled Igniter Chamber Ignition Limits

12.00

A STANS

-

plotted for reference. Ninety-three percent (93%) fuel coolant is the design point coolant. It is seen that cold propellant significantly reduces C* due to poor vaporization. However, it was concluded that the igniter has adequate performance for thruster applications.

Igniter cooling tests were run with both ambient and cold propellants and with different amounts of fuel coolant. The fuel coolant amount was adjusted by changing the orifice at the chamber coolant inlet.

The igniter heat fluxes were calculated from the coolant flowrate and temperature rises. These data were correlated with the $V\Delta T$ parameter in Figure 56. The $V\Delta T$ is the product of the coolant propellant subcooling (i.e., $T_{SAT} - T_{INLET}$). A correlation obtained from the literature and used in the design activity is shown for comparison. The igniter data agrees with this correlation. It was concluded that the igniter has adequate cooling margin at the design point for thruster application.

Fourteen pulse mode tests were conducted, six with ambient propellant and eight with cold propellant, to demonstrate pulse mode capability and evaluate oxidizer manifold contamination problems. These tests were conducted at vacuum conditions. The test results are summarized in Table XV.

All of the ambient temperature tests ignited with no problem and exhibited smooth repeatable combustion. Figure 57 shows the pulse string for Test 287. No oxidizer manifold disturbances were observed. Minor combustion roughness was observed with cold propellant at the start. However, combustion smoothed out as the igniter warmed up. It was concluded that the igniter can be operated in the pulse mode with ambient or cold propellant at the nominal inlet conditions.

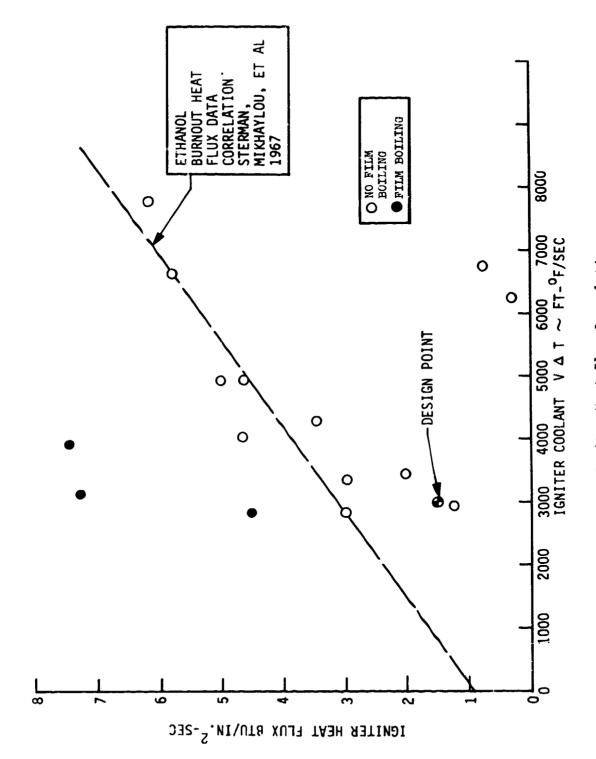


Figure 56. Igniter Heat Flux Correlation

TABLE XV

TASK I IGNITER PULSE TEST SUMMARY

Oxidizer Manifold Spikes	No	No	No	No	No	No	No	No	No	No	Minor	0 <u>N</u>	No	NO
Ignition	Yes	Yes	Yes	Yes	Yes	Yes	No Ignition on 2nd Pulse +	Yes	Yes	Yes	Yes	**ON	**ON	Yes
No. of Pulses	<i>ر</i> ،	2	2	5	S.	22	8	2	2	2	2	2	2	2
Off Time (sec)	1.0	1.0	1.0	0.2	0.2	0.2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
On Time (sec)	0.5	0.5	0.5	0.2	0.2	0.2	0.5	0.5	9.0	0.2	0.2	0.2	0.2	0.2
MR	1.16	1.10	1.06	1.09	1.06	0.760	1.89	1.58	1,33	1,36	1.61	•	•	1.12
Chamber Pressure (psia)	136	140	139	141	138	75	167	148	141	134	147	*	*	128
Propellant Condition	Ambiert	Ambient	Ambient	Ambient	Ambient	Ambient	ploo	Cold	plog	Cold	Cold	plog	Cold	Cold
Test No.	284	285	586	287	288	589	301	302	303	304	305	306	307	308

Reduced Inlet Pressures for 75 psia Point

^{**} Predicted No Ignition

⁺ Fuel Frozen in Injector

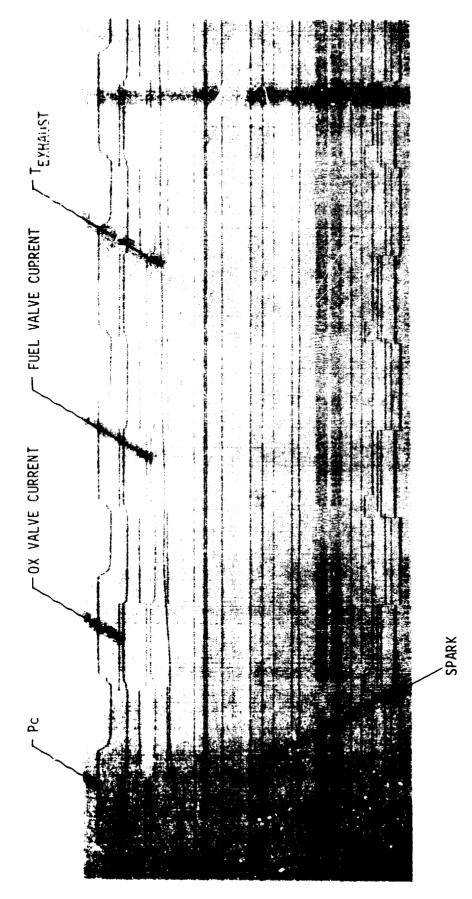


Figure 57. Igniter Pulse Mode Sequence - Ambient Propellant

Several gas generator tests were run to evaluate the polential for carbon formation and deposition at extreme fuel-rich conditions. The results are summarized in Table XVI. Tests were made with both ambient and cold propellants. No evidence of carbon formation was observed in the exhaust plume or on the hardware. Color sequence pictures of the exhaust plume were taken for this purpose. It was concluded that ethanol is extremely clean burning and has excellent combustion characteristics for gas generator operation.

2. Added Scope Test Results

The added scope test results are summarized in Table II.

Nine ambient temperature and ten cold propellant temperature tests were
made. Two data points for each test were analyzed to provide performance with
and without fuel film cooling. The fuel film coolant was terminated two
seconds before shutdown on most of the tests for this purpose.

The test data indicate efficiencies of 96-98% for the uncooled (film coolant turned off) tests at chamber pressures of 150 psia. Uncooled test data at a chamber pressure of 300 psia indicate combustion efficiencies of 97-99%. With the addition of approximately 20% fuel film cooling the combustion elfficiencies drop 2 to 5%, depending on chamber pressure.

The cold propellant tests with no film cooling show combustion efficiencies of 89 to 92%. The Task II analysis had indicated that the cold propellant performance would be reduced by 15%. The test data show a reduction of only 2 to 5%. It was concluded that performance of the Swirler/Like Doublet OFO injector would be adequate for thruster application.

The effect of fuel film coolant on performance is shown in Figure 58. It was concluded that thin wall chamber thermal data are required to accurately establish fuel film cooling requirements.

TABLE XVI

GAS GENERATOR TEST SUMMARY

Test No.	Propellar: Conditic:	Pc (psia)	MR	Duration (sec)	Carbon Formation
239	Ambient	Invalid	Data	1.75	No
240	Ambient	85.0	0.382	3.5	No
241	Ambient	84.3	0.392	3.6	No
242	Ambient	87.7	0.399	3.3	No
243	Ambient	71.1	0.304	5.0	No
244	Cold	92.5	0.441	5.0	No
245	Cold	92.3	0.433	5.0	No
2 4 6	Cold	73.1	0.264	5.0	No
247	Cold	54.2	0.189	5.0	No

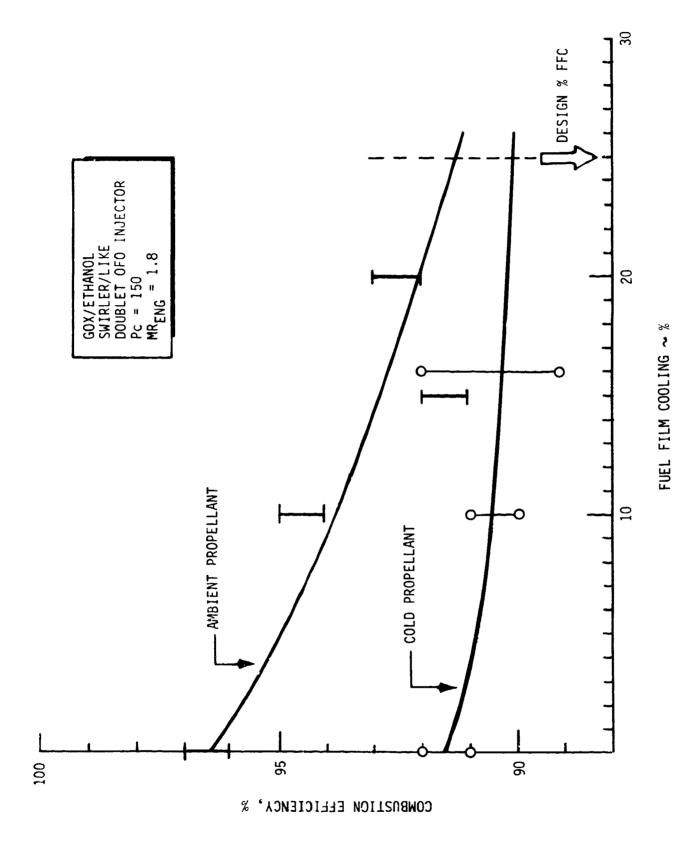


Figure 58. Effect of Fuel Film Coolant on Performance

*C-20

All of the tests exhibited smooth stable combustion. No evidence of any combustion oscillations was observed.

3. Task III Thruster Test Pesults

This section of the report discusses the Task III igniter and thruster test data results.

a. Igniter-Alone Tests Results

Nineteen igniter tests were run, two cold-flow and 17 hot firings. The hot firings were made over the range of conditions listed in Table XVII. The test data are summarized in Table XVIII. A photograph of a typical igniter firing is shown in Figure 59. The first ten firings were made with the igniter fuel flow balanced to 96% fuel film-coolant to provide more cooling margin than the design value of 93%. The 96% balance point caused more fuel to flow through the cooling circuit and less through the core. The result was to shift the core ignition mixture ratio to the non-ignition regime as defined during the Task I testing. Seven of the ten tests were non-ignition.

The remaining 7 tests were run at the 93% fuel film-coolant condition. Ignition was achieved at 6 of the 7 conditions with the 93% balance. Only the low fuel pressure inlet condition (Test 118) exhibited non-ignition due to a shift in core mixture ratio to the non-ignition regime. Ignition was subsequently achieved at this condition by providing a 20 msec fuel lead (test 119). The fuel lead provided a momentary fuel rich mixture in the core at ignition, thus driving the core mixture ratio from the non-ignition regime to the ignition regime. Based on these results a 10-20 msec fuel lead was selected for the thruster testing which followed.

TABLE XVII

TASK III IGNITER TEST CONDITIONS

Chamber Pressure	88.5-161 psia
Overall Mixture Ratio	0.381-1.65
% Fuel Film Coolant Flow	96% & 93%
Core Mixture Ratio	5.6-24.9
Fuel Lead	0 msec & 20 msec
Spark Energy	50 MJ/SPK
Spark Rate	300 SPKS/sec
Propellant Temperatures	51± - 78±F

TABLE XVIII

TASK III IGNITER TEST RESULTS

	Test		P01 V	PFIV	TO1 V	TOIV TFIV	9		,		9	g	9	ź	Ş			
Occidify Continue Continue							5 1		- -	CORE	co.	e o	ŧ	2	į		HOLD 1	
Fine Cold Flow 314 - 2 78 - 2 99-8 0.0213 6 0.0446 0.00159 - - 3.1 96.4 96.4 1.1 Desclout 315 219 74 57 311.5 0.0214 0.0426 0.00129 0.562 - 15.0 6.1 96.4 96.7 1.2 0.225 0.0214 0.0428 0.00142 0.562 - 15.0 6.1 96.4 96.7 1.2 0.225 0.0214 0.0428 0.00142 0.562 - 14.7 6.4 96.7 - 0.225 0.0214 0.0428 0.00143 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.0428 0.00143 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.00143 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.00143 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.00144 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.00144 0.443 - 14.7 6.4 96.7 - 0.225 0.0214 0.00144 0.443 - 14.7 14.8 6.8 96.0 1971 0.225 0.444 0.444 0.444 - 14.7 - 14.7 - 14.7 - 14.7 - 14.7 - 0.225 0.225 0.0214 0.00144 0.244 0.244 0.244 - 14.7 - 14.7 - 14.7 - 14.7 - 0.225 0.225 0.0214 0.00144 0.244 0.244 0.244 - 0.255 0.224 0.00144 0.244	ė	-	(Ps (4)		ខ្ម						Overal 1		Cold Flow	Cold Flow		(ft/sec)	(sec)	Remarks
Fuel Cold Flow - 221 - 60 15.6	101	Ox Cold Flow		•	8	•	29.8	0.0213	•		•	•		0.0		1	-	
Decetout 315 219 74 57 311.5 0.0214 0.0426 0.00042 0.562 .	701	Fuel Cold Flow	•	123	•	9	15.6	•	0.0446	0.00159	•	•	,	-				1 0 0 0 0 1 1 2 1
Checkout 335 219 74 57 31.0 0.0214 0.0423 0.00142 0.565 . 15.0 6.13 96.6 . 0.25 0.25 Checkout 329 223 61 52 32.0 0.0213 0.00143 0.495 . 14.7 6.4 96.7 . 0.25 Checkout 334 222 61 52 32.0 0.0213 0.00143 0.495 . 14.7 6.4 96.7 . 0.25 Checkout 330 302 224 59 51 32.1 0.0133 0.00143 0.495 . 14.7 6.4 96.7 . 0.25 Checkout 330 304 61 51 32.1 0.0139 0.00143 0.495 10.0 6.28 3.95 96.0 1971 0.25 Checkout 336 229 66 56 32.7 0.0131 0.00144 0.579 14.5 11.8 6.8 96.0 2.0	9	Checkout	335	219	7.4	23	31.5	0.0214	0.0426		0.502	•	18.0		, ·	• 06	- v	Nag = 0.00333
Checkout 329 223 61 52 32.0 0.0213 0.0436 0.0495 0.495 - 14.7 6.4 96.7 - 0.25 Checkout 334 222 61 52 32.7 0.0216 0.0438 0.00143 0.495 - 15.0 6.5 96.7 - 0.25 Checkout 336 224 59 51 788.5 0.0131 0.0228 0.00135 0.00145 0.495 - 11.3 6.4 96.7 - 0.25 Checkout 336 229 66 56 32.7 0.0214 0.00146 0.529 - 11.3 6.4 96.6 - 0.25 Checkout 336 229 66 56 32.7 0.0228 0.00146 0.527 14.5 11.8 6.8 96.0 2717 0.25 Checkout 336 229 66 56 313 0.0228 0.00146 0.534 - 11.3 6.4 96.6 - 0.25 Checkout 335 228 65 56 313 0.0228 0.00148 0.534 - 11.6 6.4 96.0 2.212 0.25 Checkout 335 228 65 56 313 0.0228 0.00148 0.534 - 11.6 6.4 96.0 2.212 0.25 Checkout 335 228 63 54 313 0.0228 0.00148 0.534 - 11.6 6.4 96.0 2.212 0.25 Checkout 335 228 63 54 313 0.0228 0.00148 0.534 - 11.6 6.4 96.0 2.212 0.25 Checkout 335 228 63 54 313 0.0228 0.00148 0.00148 0.594 13.8 9.8 6.4 92.8 3129 1 1 Checkout 328 225 63 54 313 0.0221 0.0214 0.00154 0.955 13.8 9.7 6.4 92.8 3129 1 1 Checkout 328 225 63 54 313 0.0221 0.0213 0.00154 0.545 7.4 5.6 4.7 92.6 3117 1 1 Checkout 331 309 63 56 9161 0.0214 0.0213 0.00169 0.625 11.3 9.2 6.4 92.8 3129 1 1 1 Checkout 331 309 64 56 9161 0.0214 0.0218 0.00164 0.0	š	Checkout	335	219	74	23	31.0	0.0214	0.0423		0.505	•	15.0		. 4	• 1	2,00	Becase of 101
Checkout 334 222 61 52 32.7 0.0216 0.00143 0.0493 - 15.0 6.5 96.7 - 0.25 Checkout 203 224 59 51 *88.5 0.0131 0.0023 0.00179 0.405 10.0 8.28 3.95 96.0 1971 0.25 Checkout 308 304 61 51 32.1 0.0199 0.00146 0.529 - 11.3 6.4 96.0 1971 0.25 Checkout 336 229 66 56 36.7 0.0228 0.00146 0.539 - 11.3 6.4 96.0 27.2 0.25 Checkout 336 228 66 56 31.0 0.0218 0.00148 0.539 11.3 1.0 9.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <t< td=""><td>105</td><td>Checkout</td><td>329</td><td>223</td><td>19</td><td>25</td><td>32.0</td><td>0.0213</td><td>0.0430</td><td></td><td>0.495</td><td>•</td><td> </td><td></td><td>2.96</td><td>. ,</td><td>0.25</td><td>Extended Electrode 0,021" - No Ignition</td></t<>	105	Checkout	329	223	19	25	32.0	0.0213	0.0430		0.495	•	 		2.96	. ,	0.25	Extended Electrode 0,021" - No Ignition
Checkout 203 224 59 51 * 88.5 0.0131 0.0223 0.4055 10.0 6.26 3.95 96.0 1971 0.255 Checkout 306 51 32.1 0.0199 0.0521 0.00176 0.381 - 11.3 6.4 96.6 - 0.255 Checkout 336 229 66 56 32.7 0.0171 0.0410 0.00146 0.579 - 14.8 6.8 96.0 - 0.255 Checkout 336 229 66 56 31.3 0.0228 0.0391 0.00184 0.577 14.5 11.8 6.8 96.0 2.025 0.255 Checkout 335 228 65 56 130 0.0218 0.0218 0.0318 0.599 13.6 6.4 96.0 2.025 Checkout 335 228 6.3 56 130 0.0218 0.0218 0.0219 0.0218 0.0219 0.0219<	106	Checkout	334	222	₹9	25	32.7	0.0216	0.0438		0.493	•	15.0		7.96		0.25	Repeat of 105
Checkout 308 304 61 51 32.1 0.0199 0.0521 0.00175 0.381 - 11.3 6.4 96.6 - 0.25 Checkout 336 229 66 56 32.7 0.0217 0.0410 0.00146 0.529 - 14.8 6.5 96.4 - 0.25 Checkout 336 229 66 56 4135 0.0228 0.00186 0.534 - 14.9 6.8 96.0 - 0.25 Checkout 339 317 64 56 436 0.0228 0.00186 0.534 - 13.6 0.02 0.025 Checkout 339 317 64 56 436 0.021 0.00186 0.534 1.4 1.1 6.4 96.0 2.21 0.025 Checkout 335 228 63 56 413 0.0213 0.00159 0.0326 0.0396 0.0396 13.8 9.7	6	Checkout	203	524	65	23	* 88.5	0.0131	0.0323		0.405	10.0	8.28		96.0	1971	0.25	Reduced Ox Inlet Pressure - Ignition
Checkout 336 229 66 56 32.7 0.0217 0.00146 0.529 - 14.8 6.5 96.4 - 0.25 Checkout 339 328 66 56 *135 0.0226 0.0391 0.00164 0.527 14.5 11.8 6.8 96.0 2212 0.25 Checkout 334 289 66 56 *136 0.0228 0.00146 0.5034 - 13.6 7.0 96.0 - 0.25 Checkout 339 317 64 56 *138 0.0216 0.0221 0.00186 0.939 13.6 9.8 6.4 96.0 2.21 0.25 Checkout 328 225 63 55 *131 0.0213 0.00152 0.992 13.8 9.7 6.4 92.8 91.9 1.25 91.9 1.2 9.2 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9 <td>B0</td> <td>Checkout</td> <td>308</td> <td>304</td> <td>61</td> <td>15</td> <td>32.1</td> <td>0.0199</td> <td>0.0521</td> <td></td> <td>0.381</td> <td></td> <td>11,3</td> <td></td> <td>96.6</td> <td>•</td> <td>0.25</td> <td>Incressed Fuel Inlet Pressure-No lanition</td>	B0	Checkout	308	304	61	15	32.1	0.0199	0.0521		0.381		11,3		96.6	•	0.25	Incressed Fuel Inlet Pressure-No lanition
Checkout 349 328 66 56 *135 0.0226 0.0391 0.00154 0.577 14.5 11.8 6.8 96.0 2212 0.255 Checkout 354 289 66 56 35.0 0.0228 0.0426 0.00168 0.534 - 13.6 7.0 96.0 - 0.25 Checkout 339 317 64 56 *138 0.0216 0.0228 0.00156 0.979 13.8 9.8 6.4 96.0 2.25 Checkout 328 228 63 55 *131 0.0211 0.0212 0.00156 0.992 13.8 9.7 6.4 92.8 3129 1 Checkout 328 225 63 55 *131 0.0213 0.00159 0.00159 0.392 13.8 9.7 6.4 92.8 31.9 0.25 Checkout 10.02 3.02 0.0213 0.00159 0.00154 0.545 7.4 <td>8</td> <td>Checkout</td> <td>336</td> <td>528</td> <td>99</td> <td></td> <td>32.7</td> <td>0.0217</td> <td></td> <td></td> <td>0.529</td> <td>•</td> <td>14.8</td> <td></td> <td>96.4</td> <td>•</td> <td>0.25</td> <td>No lanition</td>	8	Checkout	336	528	99		32.7	0.0217			0.529	•	14.8		96.4	•	0.25	No lanition
Checkout 354 289 66 56 35.0 0.0228 0.0426 0.00168 0.534 - 13.6 7.0 96.0 - 0.255 Checkout 339 317 64 56 *138 0.0219 0.0221 0.00156 0.979 13.6 9.8 6.4 96.0 2361 1 Checkout 332 228 63 55 130 0.0216 0.0221 0.00156 0.979 13.8 9.8 6.5 92.9 3014 0.25 Checkout 328 225 63 55 *131 0.0213 0.00152 0.992 13.8 9.7 6.4 92.8 3129 1 Determine Effect Of Float 193 226 61 55 *110 0.0213 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Determine Effect Of Inlet 191 2.0 0.0229 0.00169 0.545 7.4 5.6	911	Checkout	349	328	99		•135	0.0226			0.577	14.5	11.8		96.0	2212	0.25	Control
Checkout 339 317 64 56 *138 0.0219 0.0372 0.00148 0.588 14.7 11.6 6.4 96.0 2361 1 Checkout 335 228 63 55 130 0.0221 0.00156 0.979 13.8 9.8 6.5 92.9 3014 0.25 Checkout 328 225 63 55 *131 0.0213 0.00152 0.992 13.8 9.7 6.4 92.8 31129 1 Determine Effect of Inliet 193 226 61 55 *110 0.0125 0.0229 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Liniet Condition 331 309 63 56 *161 0.0218 0.00189 0.629 11.3 8.25 6.2 92.7 3456 1 Inlet 1nlet 0.0218 0.0198 0.00189 0.0029 11.3 8.25 6	=	Checkout	354	583	99		35.0	0.0228			0.534		13.6		96.0	•	0.25	No lantition
Checkout 335 228 63 55 130 0.0216 0.0221 0.00156 0.992 13.8 9.8 6.5 92.9 3014 0.25 Checkout 328 225 63 55 *131 0.0211 0.0213 0.00152 0.992 13.8 9.8 6.5 92.9 3129 1 Determine Effect Of Inlet 193 226 61 55 *110 0.0125 0.0029 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Inlet Condition 331 309 63 56 *161 0.0214 0.0258 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 *161 0.0218 0.00189 0.00299 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 *160 0.0218	112	Checkout	339	317	64		•138	0.0219			0.588	14.7	11.6		0.9	2361	-	Ignition
Checkout 328 225 63 55 *131 0.0213 0.0213 0.00152 0.992 13.8 9.7 6.4 92.8 3129 1 Determine Effect Of Till 193 226 61 55 *110 0.0125 0.0229 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Inlet Condition 331 309 63 56 *161 0.0214 0.0258 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 *161 0.0218 0.00161 1.086 - 13.4 6.3 91.9 - 1 Inlet Condition 329 139 63 56 *169 0.0213 0.00853 1.65 24.9 13.4 6.3 93.4 3226 1	Ξ	Checkout	335	228	63		130	0.0216	0.0221		0.979	13.8	8.6		95.9	3014	0.25	Rebalance FFC Flow - 0.034" Orifice
Determine Effect Of 193 226 61 55 *110 0.0125 0.0229 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Inlet Condition 331 309 63 56 *161 0.0214 0.0258 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 31.9 0.0215 0.0198 0.00161 1.086 - 13.4 6.3 91.9 - 1 Inlet Condition 329 139 63 56 *109 0.0213 0.0129 0.000853 1.65 24.9 13.4 6.3 93.4 3226 1	7	Checkout	328	522	63	-	•131	0.0211	0.0213		0.992	13.8	9.7		8.2	3129	-	KWF = 0.0025
Effect Of lg3 226 61 55 *110 0.0125 0.0229 0.00169 0.545 7.4 5.6 4.7 92.6 3117 1 Inlet Condition 444 226 64 55 *153 0.0287 0.0193 0.00134 1.48 21.3 13.5 8.6 93.0 3223 1 Inlet Condition 331 309 63 56 *161 0.0214 0.00289 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 *161 0.0218 0.00161 1.086 - 13.4 6.3 91.9 - 1 Inlet 329 139 63 56 *109 0.0213 0.000853 1.65 24.9 13.4 6.3 91.4 3226 1		Determine																
Inlet Condition 444 226 64 55 *153 0.0287 0.0193 0.00134 1.48 21.3 13.5 8.6 93.0 3223 1 Inlet Condition 331 309 63 56 *161 0.0214 0.0258 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 31.9 0.0215 0.0198 0.00161 1.086 - 13.4 6.3 91.9 - 1 Inlet Condition 329 139 63 56 *109 0.0213 0.0129 0.000853 1.65 24.9 13.4 6.3 93.4 3226 1	115	Effect Of	193	526	19		•110	0.0125			0.545	7.4	9,6		9.6	3117	-	
Inlet Condition 331 309 63 56 *161 0.0214 0.0258 0.00189 0.829 11.3 8.25 6.2 92.7 3456 1 Inlet Condition 333 139 64 56 31.9 0.0215 0.0198 0.00161 1.086 - 13.4 6.3 91.9 - 1 Inlet Condition 329 139 63 56 *109 0.0213 0.0129 0.000853 1.65 24.9 13.4 6.3 93.4 3226 1	911	inlet Condition	444	226	49		153	0.0287			87	, ,						
Injet Condition 333 139 64 56 31.9 0.0215 0.0198 0.00161 1.086 - 13.4 6.3 91.9 - 1 Injet Condition 329 139 63 56 *109 0.0213 0.0129 0.000853 1.65 24.9 13.4 6.3 93.4 3226 1		Inlet Condition	331	309	63		191				000							
Inlet Condition 329 139 63 56 *109 0.0213 0.0129 0.000853 1.65 24.9 13.4 6.3 93.4 3226 1		Inlet Condition	333	136	. 3		5					?:	63.6		<u>.</u>	6	-	
		Inlet	329	139			109				65	24.9	13.4			- 3226		No ignition Repeat of 118 W/20MS Fuel Lead

10/

ORIGHVAL PAGE 13
OE POOR QUALITY

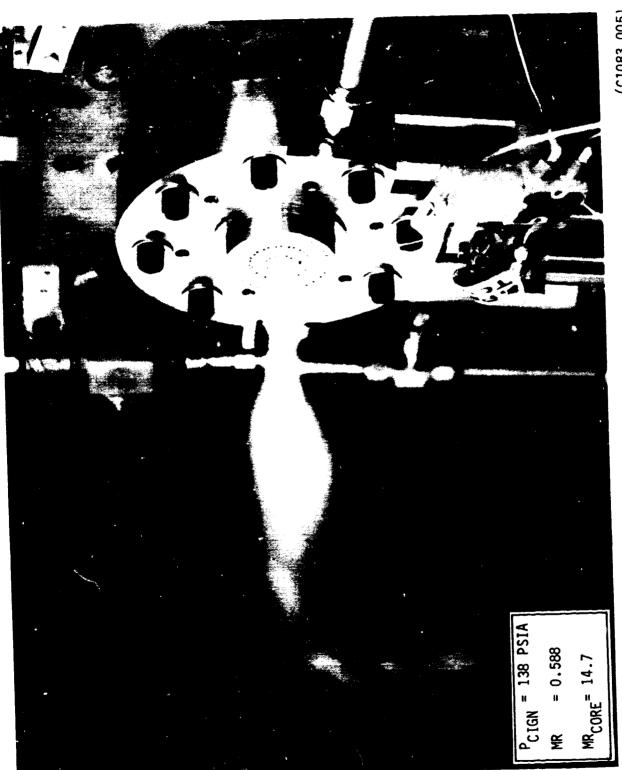


Figure 59. GOX/Ethanol Igniter Firing

Ignition data from these 17 tests are plotted in Figure 60 along with the Task I ignition correlation for comparison. These results are considered to be in good agreement with the Task I results. The igniter was deemed satisfactory for thruster testing.

b. Thruster Test Results

(1) Heat Sink Chamber

Thirteen heat sink chamber tests were run to evaluate ignition and thruster performance. The performance data for the heat-sink chamber tests are summarized in Table XIX. Data are listed for two summary periods for the longer (2 sec) duration tests. The vacuum specific impulse (Isp $_{VAC}$) is plotted versus mixture ratio in Figure 61. Included in Figure 61 is the ODE Isp $_{VAC}$ for comparison.

The Isp efficiency, shown in Figure 62, reaches a minimum near stoichiometric mixture ratio which may be indicative of significant mixing losses due to blow-apart. The same trend was observed with this pattern on the mid-Pc program (NAS 9-15958) and during the added scope (WBS 8.0) testing. The Isp efficiency at the design mixture ratio of 1.8 is about 90% which is close to that expected with 25% fuel film-cooling.

Examination of the high frequency data show unorganized combustion noise levels of 5-6% of Pc. No organized oscillations were observed. Post-test examination of the hardware showed it to be clean with no evidence of thermal incompatibility. The exhaust plumes were observed to be clear with no evidence of carbon formation.

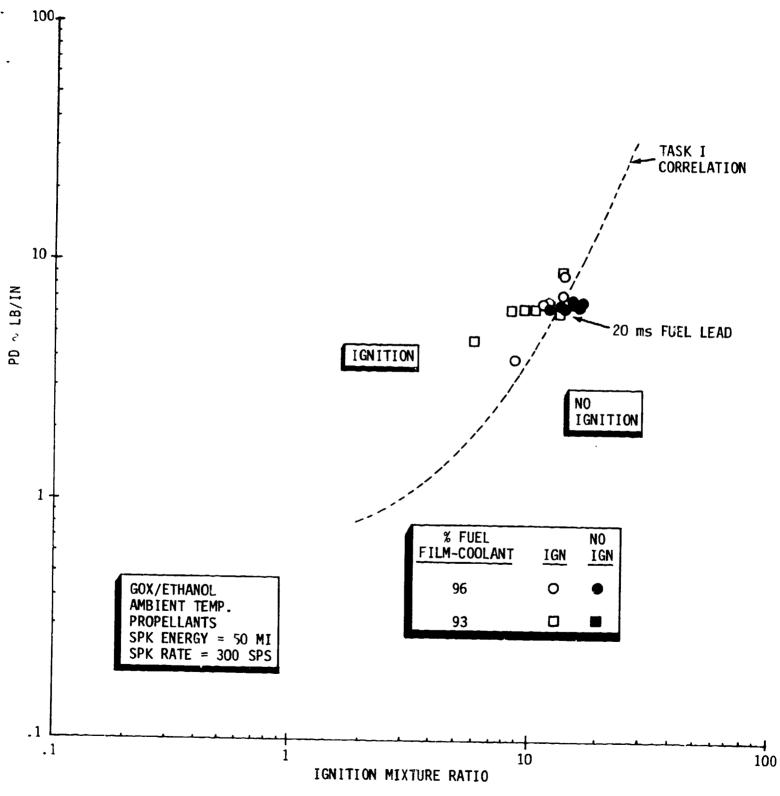


Figure 60. Ignition Limit Data - Task III Igniter Testing 110

PERFORMANCE DATA SUMMARY - HEAT SINK CHAMBER

, Isp,	87	8	88	છ્ટ	8	83	8	83	8	8	ထ္ထ	89	35	93	88	73	93	36	83	0	6 6	£ 6	<u>9</u>	93	93	
, (%)	95	93	93	93	93	93	96	26	66	66	86	98	101	102	26	96	104	103	66	: 8	£ ;	36	92	66	66	
Isp _{vac}	225.9	228.7	1.28.5	7.28.5	228.0	228.5	229.0	230.8	232.2	232.1	528.9	6.622	229.3	228.5	216.3	219.5	198.3	198.7	221 4		277.2	229.6	229.5	231.9	229.1	
C* (ft/sec)	5196	5274	5247	5237	5246	5241	5436	5467	5624	5617	5552	5275	5483	5454	9979	5317	4881	489	0002	h 100	5450	5311	5307	5401	5321	
vac (1bf)	411.9	446.6	444.7	447.4	445.3	449.8	446.4	457.2	445.7	448.8	444.1	449.4	376.4	389.5	457.8	480.4	307.7	308	5 6	8.0/2	285.0	593.7	597.8	532.7	1 22	.,,,,
W _T	1.823	1.952	1.946	1.958	1.953	1,969	1.949	1.981	1.919	1.934	1.941	1.955	1.642	1.705	2.117	2.192	1 551		366.1	1.250	1.275	2.586	2.605	2, 298	777	774.7
Æ E	1.427	1.663	1.609	1,633	1.630	1.667	1.523	1.597	1.510	1.542	1.545	1.586	2.259	2.484	1.098	1,206	786	3 6	0.793	1.103	1.181	1.761	1.800	2 177		2.433
Pc (psia)	129.8	141.1	139.9	140.5	140 4	141.4	145.2	148.4	147.9	148.8	147.6	149.3	123.4	127.4	152.7	150 7			<u>-</u>	97.5	95.2	188.1	189.5	170.1		1/6./
T0TCV (°F)	Amp dep	Amb	Ę	1) 4		A	P	A P	Amb	Amb	Amb	Amb	Amb	A d	A S			Amb	Amp	Amb	Amb	Amb	1	2	Amb
TFTCV (°F)	A T	A	4	4			A P	A	A P	Amb	A	A qu		2 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1			Amb D	Amp	Amb	Amp	de d			A mb
POTCV (psia)	233	3 6	36.3	555	700	753	35.2	363	35.	355	45.4	250	340	טנים מינים	338		000	213	213	202	212	490	304	0.00	469	203
PFTCV (psia)	900	9 6		0.67	C S S	667	1	2 5	2 6	, 20°	3 5	9 6	505	601	60.5	624	975	308	308	187	187	432	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	- C	313	313
FFC	3442	24.5	1 ANG	IANG	IANG	TANG	TANG	TANG	TANG	TANG	TANG	D. A.	TANG	- ANG	TANG	מאלו	JANG	TANG	TANG	TANG	TANG	TANG	200	IANG	TANG	TANG
Data Period	1 000	0.2/0.33	0.2/0.55	0.2/0.6	0.6/1.0	0.2/0.6	0.2/0.1	0.6/0.0	1.0/2.0	0.2/0.0	0.2/0.1	0.2/0.6	1.0/2.0	0.2/0.6	1.0/2.0	0.2/0.6	1.0/2.0	0.2/0.6	1.0/2.0	0.2/0.6	0 6/0 (0.2/0.0	0.670.0	1.0/2.0	0.5/0.6	1.0/2.0
Duration (1901)	1350	e	0.5	0.7		2.0	•	2.0		2.0	ć	7.0	(2.0	4	2.0		2.0		2.0		c	0.3		5.0	
Test	, NO.	02	121	122		123	į	124		125	Š	126	111	127	,	128		129		130	}		-51		132	

Ambient Propellants (T_0 = 58-65°F, T_f = 50-53°F) FFC = 26%

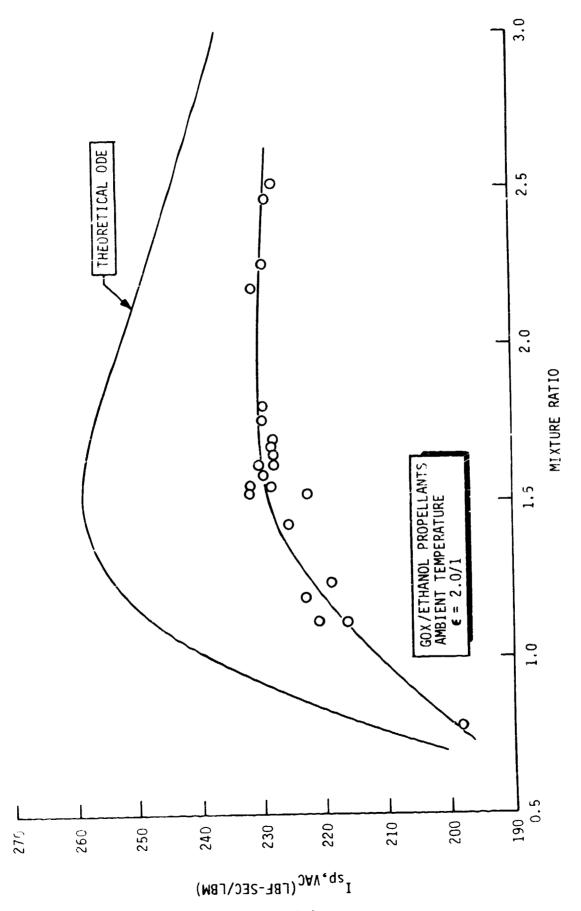


Figure 61. Thruster Isp Performance - Heat Sink Chamber

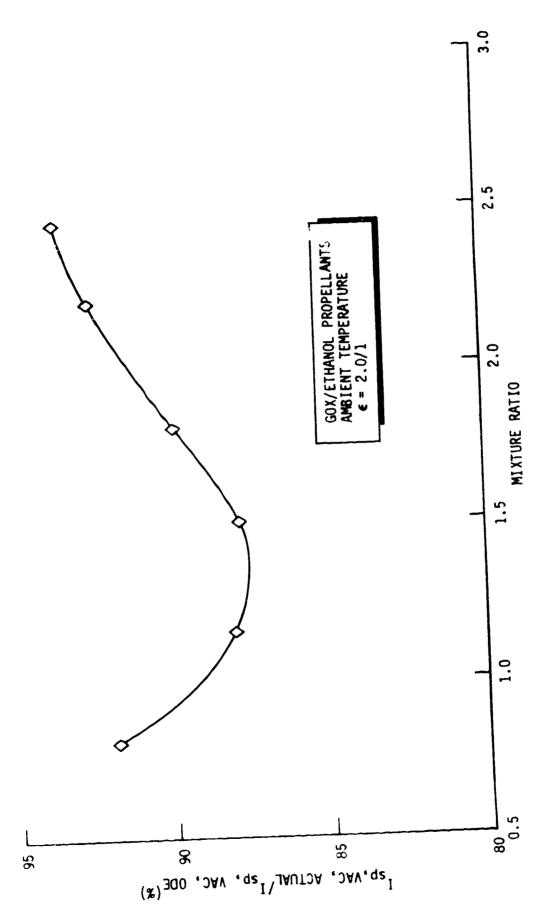


Figure 62. Thruster Isp Efficiency - Heat Sink Chamber

The igniter operating conditions for all of the heat sink chamber tests are listed in Table XX. The igniter steady-state chamber pressure runs 26-72 psi higher than the thruster chamber pressure due to the pressure drop through the igniter tube. The igniter overall mixture ratio varied from 0.557 to 3.0 over the $\pm 40\%$ range of inlet pressures. All ignitions were smooth and without overpressures.

(2) Thin-Wall Chamber

Fifty-two thin-wall chamber tests were run, thirty-two steady-state and twenty pulse tests. The steady-state performance data are summarized in Table XXI. The test variables were fuel film-coolant injection scheme (tangential or swirl), inlet pressures and inlet temperatures (ambient or cold). A typical thruster firing is shown in Figure 2.

The thruster performance ($Isp_{\mbox{VAC}}$) is shown in Figure 63 for ambient temperature propellants using the tangential fuel filmcoolant (FFC) injection scheme. Data for both the heat sink and thin-wall chambers are included. There is no difference in performance between the chambers as expected.. Also, included for comparison is the Equilibrium One Dimensional (ODE) Isp_{VAC} prediction. The Isp efficiency at the design mixture ratio of 1.8 is about 90% which is close to that predicted with 25% fuel filmcooling. The thin-wall chamber performance using the swifl FFC injection is plotted in Figure 64 along with the tangential FFC data for comparison. There are no significant differences in performance due to the two FFC injection schemes. This is in agreement with the throat cooling results which show no significant difference. It is concluded that a significant amount of mixing of the film-coolant flow with the core flow must occur in the converging section of the nozzle, thus masking any differences between the two FFC injection schemes. This mixing is possibly due to the radial component of the fuel film coolant injection velocity.

TABLE XX

IGNITER OPERATING CONDITIONS - HEAT SINK CHAMBER TESTS

			Thruster		Igniter	Igniter	Igniter	
Test	VICA	PFIV	Pc	P_{cIGN}	ΔP	Overall	Core	
No.	(psia)	(psia)	(psia)	(psia)	(psia)	MR	MR	Ignition
120	342	269	129	158	39	1.0	14.4	Yes
121	381	270	141	186	45	1.28	17.5	Yes
122	377	273	140	186	46	1.25	17.1	Yes
123	361	273	141	185	44	1.20	16.2	Yes
124	343	277	148	188	40	1.08	15.4	Yes
125	335	275	149	183	34	1.02	14.7	Yes
126	343	271	149	198	49	1.15	16.9	Yes
127	341	180	127	170	43	3.00	44.5	Yes
128	344	365	159	206	47	0.831	11.4	Yes
129	203	261	104	130	26	0.557	7.3	Yes
130	203	168	95	121	26	0.844	12.1	Yes
131	473	379	1 9 0	262	72	1.25	18.3	Yes
132	481	288	177	245	68	2.14	30.8	Yes

Igniter Fuel Valve Lead = 10 msec

Spark Energy = 50 MJ/SPK

Spark Rate = 300 SPS

TABLE XXI

PERFORMANCE DATA SUMMARY - THIN WALL CHAMBER

88 88 88 89	91 88 88 88 92 93
(z) 91 90 91	95 91 91 89 89 93
1sp,ac (sec) 228.7 227.4 228.5	193.9 199.0 227.5 227.2 224.3 220.6 229.2 229.2
(ft/sec) 5148 5110 5130	4427 4432 5159 5105 4764 4991 5100 4925
vac (1bf) 435.5 452.1 460.1	287.9 306.0 291.6 291.8 384.5 482.2 622.5 565.5
H _T (1b/sec) 1.988 2.013	1.485 1.537 1.282 1.284 1.714 2.186 2.716 2.515
MR _E 1.52 1.64	0.778 0.869 1.31 1.31 2.54 1.26 2.04 2.04
Pc (psia) 135.4 140.4 142.7	90.8 95.2 91.4 90.8 112.8 150.7 191.4
TOTCV (°F) Amb Amb Amb	Amb Amb Amb Amb Amb Amb Amb
TFTCV (°F) Amb Amb Amb	Amb Amb Amb Amb Amb Amb Amb Amb
POTCV (psia) 351 372 387 9PUTER KI	IPUTER K1 203 221 226 226 368 372 547 546
PFTCV (psia) 306 303 COM	299 299 184 184 188 428 429 309
FFC Injectors TANG TANG	TANG TANG TANG TANG TANG TANG TANG TANG
Data Period (sec) 0.6/1.0 0.6/1.0	0.6/1.0 4.0/5.0 0.6/1.0 1.0/1.87 0.6/1.05 0.6/1.0
Sec) 1.1 1.1 1.4	5.1 1.2 1.2 1.2
Test No. 133 134 135	136 137 139 140 141 143

Ambient Propellants (T0 = $60 - 70^{\circ}$ F, TF = $60 - 70^{\circ}$ F)

FFC = 26%

TABLE XXI (cont.)

PERFORMANCE DATA SUMMARY - THIN WALL CHAMBER

	^dsI,				90		89		35	98	88	93	90	86	06	68		72	74	84	90	89
	* 0 (%)				16		06		93	87	89	94	16	87	16	89		74	75	85	06	16
	Isp _{vac} (sec)				229.0		228.0		6.622	217.9	200.0	223.2	225.9	221.6	221.6	1.702		185.5	188.3	212.9	208.2	220.5
	C* (ft/sec)				5088		2905		2097	4845	4487	4917	5013	4938	4915	4543		4170	4192	4724	4608	4935
	fvac (1bf)				489.4		470.5		381.6	295.8	318.6	595.5	641.0	517.6	441.9	381.9		238.5	256.1	462.7	597.0	6.909
ĸ	ή _T (1b/sec)				2.137	lown	2.064		1.660	1.357	1.593	2.668	2.838	2.336	1.994	1.844		1.284	1.360	2.173	2.865	2.753
FIRE DESIGNATION OF THE STREET	π E	tion	(uc		150.2 1.83	Premature Shutdown	1.70	ition	2.10	1.22	0.89	2.86	2.07	1.41	2.33	3.29	ittion	1.58	1.24	1.90	3.29	2.23
	TOTCV PFJ POJ PC (°F) (psia) (psia)	No Ignition	Valve Not Fully Opened (No Reduction)		150.2	Prematu	144.5 1.70	No Ignition	116.9	6.06	98.8	181.3	196.6	159.4	135.4	115.7	No Ignition	73.9	78.8	141.8	182.5	187.7
- LANGE) POJ a) (psia		ned (No		526		242		208	143	147	351	345	257	112	203		116	113	1112	301	586
∑ ₹	PF.		y Ope				•		•	•	•	•		,	•							
אר האר האר האר	TOTCV (°F)	Amb	t Full		1.		•		ž	•	,,	=	<i>;;</i>	7.	-94	-102		-125	-126	-131	-149	-133
FER CREA	TFTCV (°F)	Amb	Valve No						ì	7	٠	`-	.•	٤	-5	12		-129	-156	-146	-137	-141
	POTCV (psia)				442		417		359	240	242	624	809	437	347	341		193		345		460
	PFTCV (psia)			Kill	326		326		201	506	318	329	457	447	302	192		179	586	399	349	471
	FFC Injectors	Swirl	=	Computer	Swirl		=	=	=	=	=	=	=	=	=	=	=	=	=	=	z	
	Data Period (sec)	ι	ı	f	.6-1.32	,	1.0-1.54	,	.6-1.34	3.0-3.64	4.0-5.0	.697	.6-1.02	1.0-1.71	1.0-1.62	1.0-1.48		1.0-2.0	2.0-3.0	1.0-1.78	.6-1.14	.6-1.23
	Duration (sec)	0.0	5.0	0.0	1.319	0.41	1.541	0.0	1.337	3.643	5.000	0.973	1.018	1.713	1.62	1.48		5.00	2.00	1.78	1.16	1.25
	Test No.	148	149	150	151	152	153	154	155	156	157	158	159	160	172	173	174	175	176	177	178	179

AND THE STATE

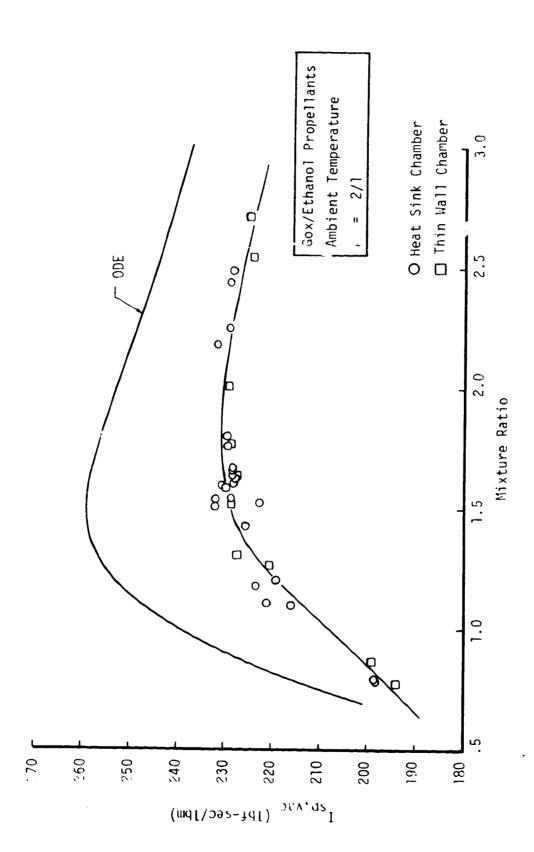


Figure 63. Thruster Isp Performance - Tangential FFC

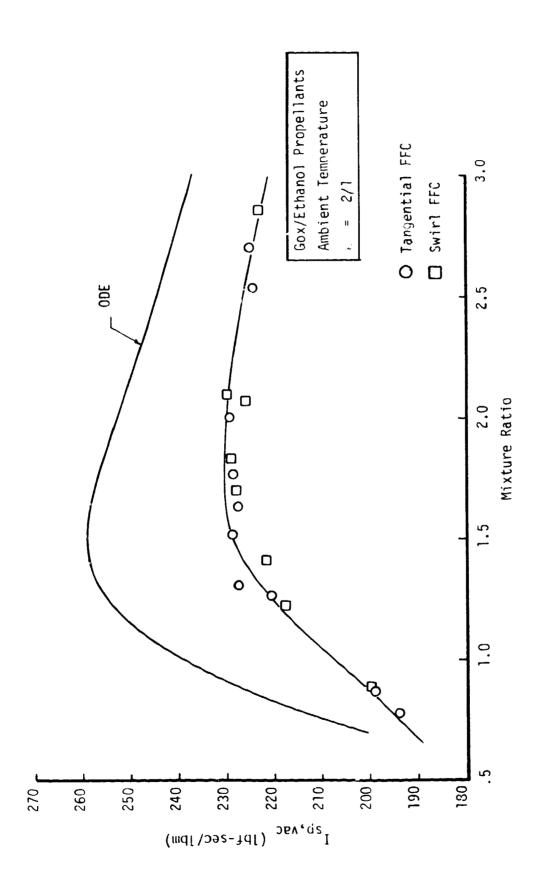


Figure 64. Thruster Isp Performance - Tangential and Swirl FFC

The cold propellant performance (Isp_{VAC}) data are plotted versus mixture ratio in Figure 65. The ambient performance data are included for comparison. The cold propellant reduces the performance by about 6% at the nominal operating conditions which is in agreement with earlier cold propellant testing (Reference 5). The C* and Isp efficiency data for the thin-wall chamber are summarized in Figure 8.

The thin-wall chamber backside thermocouples were instrumented to provide automatic engine shutdown if any temperature exceeded 1700°F. Most of the tests were terminated between 1 and 2 seconds duration by the temperature kill. Only the low Pc, low MR cases ran for a full 5 seconds duration. Typical throat wall temperature data are shown in Figure 66 for the nominal operationg condition (Test 135) using tangential FFC. Axial chamber wall temperature profiles for the nominal operation condition (Test 135) are shown in Figure 67. The upstream wall temperatures are substantially cooler than the throat as expected. The hottest location is in the throat. Postest examinations showed no evidence of streaking or hot spots in the cylindrical section of the chamber. Minor streaking was evident in the throat at the T-180 location. Post test examination showed reduced FFC flows which would explain T-180 being the hottest location. The same condition were observed with the swirl FFC.

Thermal analyses of the swirl FFC thermocouple data were made to predict the adiabatic wall temperatures to define the amount of fuel film-cooling required for a flight engine. The results are shown in Figure 68. The analysis shows that approximately 40% FFC would be required for this engine length and injector pattern. Smaller amounts of FFC may be adequate if a pure axial FFC injection scheme were used (no radial velocity component).

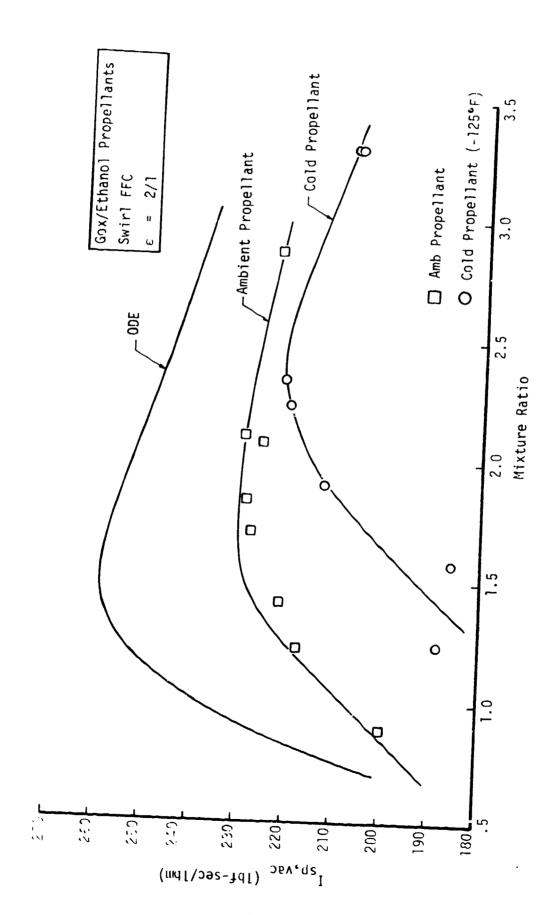


Figure 55. Thruster Isp Performance - Ambient and Cold Propellant

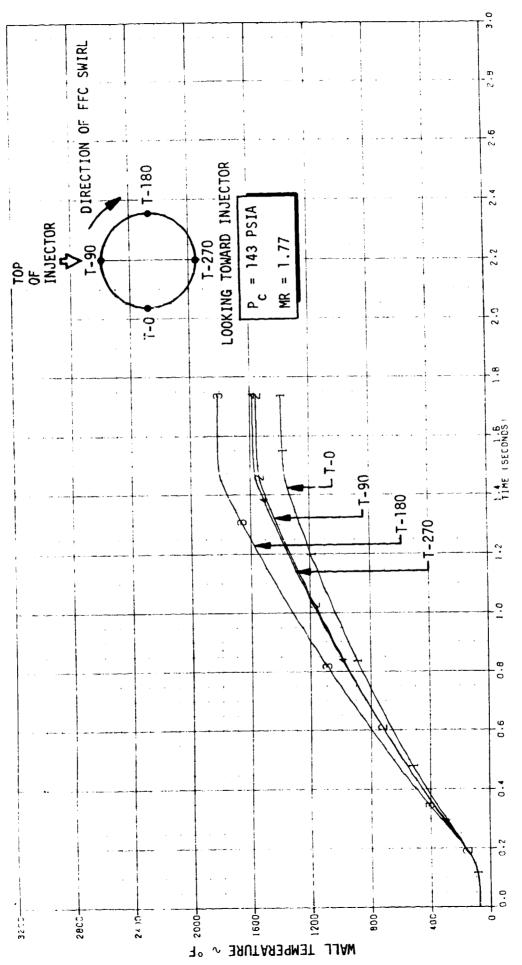


Figure 66. Throat Wall Temperature History - Tangential FFC (Test 135)

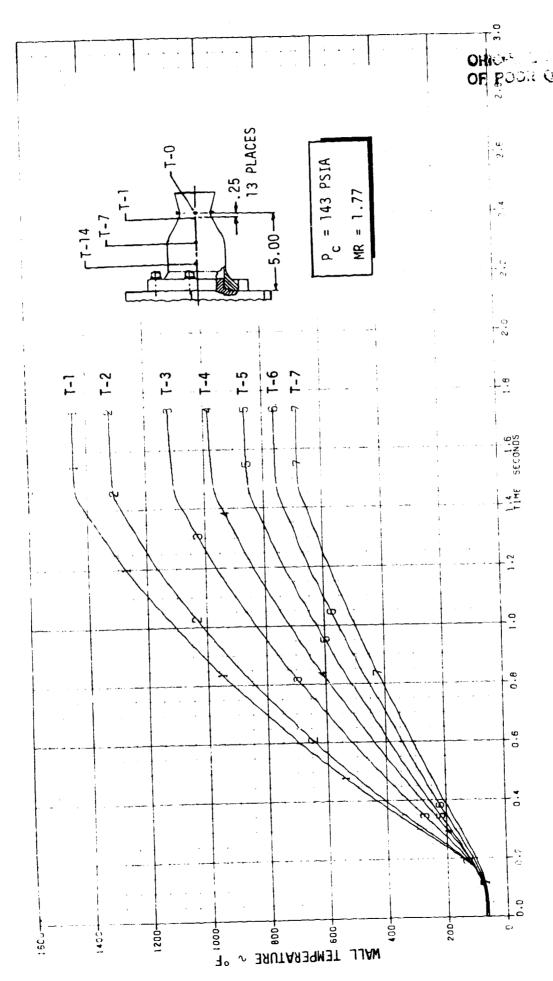
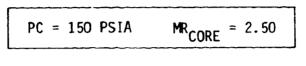



Figure 57. Thruster Wall Temperature Profiles - Tangential FFC (Test 135)

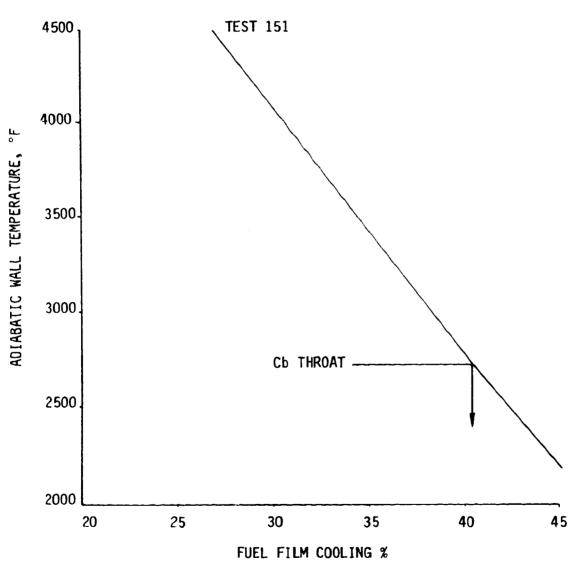


Figure 68. Effect of Fuel Film Cooling on Predicted Thruster Adiabatic Wall Temperature

Examination of the high frequency data show unorganized combustion noise levels of 5-6% of Pc. No organized oscillations were observed. Post-test examination of the hardware showed it to be clean with no evidence of thermal incompatibility. The exhaust plumes were observed to be clear with no evidence of carbon formation.

An oscillograph trace of a typical pulse sequence is shown in Figure 10. The pulse performance data are summarized in Table XXII. The test variables were valve actuation (Gn_2 or GHe), pulse width (valve open to valve close), inlet pressures and inlet temperature (ambient or cold). The first four (4) pulse tests were run with a GN_2 driven actuator. The remaining tests used a GHe driven actuator to speed the valve opening and closing times.

Thruster bit/impulse and bit Isp are plotted versus pulse width (valve open to valve close) in Figures 69-71, for both the $\rm GN_2$ and GHe actuated valves at the thruster nominal inlet pressures and ambient temperatures. The small impulse bits could only be achieved with the faster GHe driven valve. Thruster bit Isp is plotted versus mixture ratio in Figure 70 for a pulse width of 0.080 sec using the GHe driven valve. Cold propellant pulse performance data are plotted in Figures 71 and 72. The cold propellant data show much greater dispersion than the ambient temperature data due to inlet temperature variations. The bit impulse and Isp are lower than for the ambient temperature propellants as expected.

TABLE XXII

PULSE PERFORMANCE DATA SUMMARY

Bit Isp (sec)	217.4	223.1	209.7	184.4	* r	1.77.1	169.0	159.7	162.2	142.0	127.0	178.7	171.1	167.2	162.5	154.4	138.0	128.0	147.3	148.4	,4.3	1,3.2	147.0	133.8	158.4	156.4
· 12 (92)	0.708	0.806	0.439	0.327	•	.340	.304	.259	. 209	. 150	911.	.452	.365	.317	.364	. 320	.154	.123	. 165	.182	.118	.130	.134	. 159	.247	,264
Bit Impulse (1b-sec)	153.9	191.8	92.0	60.3	•	60.3	51.4	41.3	33.8	21.3	15.2	80.8	62.5	53.0	43.0	33.9	21.3	15.7	24.3	27.1	18.2	19.5	19.7	21.3	39.1	41.3
MRE																										
PC (psia)	151	155	155	159		147.5	146.3	144.3	146.6	146.1	142.3	147.5	148.0	147.8	148.0	147.5	147.4	145.2	125.0	125.0	96.1	93.7	102.3	101.1	177.5	175.1
TOTCV (°F)	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb
TFTCV (°F)	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb
POTCV (psia)	370	370	385	395	435	426	430	428	432	428	426	435	460	439	442	445	440	432	435	433	569	192	292	258	610	809
PFTCV (psia)	310	311	312	313	308	318	315	313	316	328	338	315	310	320	320	318	315	330	196	198	201	195	305	308	315	320
Valve Actuation	GNS	GN,	GN,	GN ₂	ъ	SH.	ен В	e E	* 5	ື້ສຶ	т. ф	GH,	H9	9H,	eH.9	H9	e HS	້ ຮ ້	3	a Hg	HS	o Ho	3	e	¥9	9 6H 9
Coast (sec)		•	•	ť	. 943	.943	.940	.936	.941	.936	•	. 936	.941	.839	. 938	. 942	.941		. 938		.940	:	. 936	· 1	. 940	•
Pulse Width (sec)	0.381	0.472	0.238	0.178	.200	.158	.130	901.	.085	.055	. 039	. 204	. 155	. 128	. 106	.085	.055	.041	.081	.083	.081	.082	.080	. 084	.083	.081
(sec)	0.251	0.340	0.110	0.050	-			٠	•	•	360.	.265	.210	. 189	. 162	. 138	. 108	860.	142	.142	140	.140	. 145	.140	140	. 144
Test No.	144	145	146	147	161(1)	(2)	(£)	(4)	(2)	(9)	(7)	162(1)	(2)	(3)	(4)	(2)	(9)	(1)	163(1)	(2)	164(1)	(2)	165(1)	(2)	166(1)	(2)

TABLE XXII (cont.)

PULSE PEPFORMANCE SATA SUMMARY

Bit Isp (sec)	, ,	165.0	33.2	165.0	. •	165.7	163.7	162.2	161.6	162.3	173.9	* 1	163.0	164.6	154.0	164.7	141.8	142.6	•	163.2	165.2	154.2	159.3	143.2	142.5
, 3 (2 b)		. 281	. 202	1221	•	.226	.225	. 228	.234	.235	.222		.228	.227	.164	.153	.132	.133	•	.230	622.	.163	.157	.130	.130
Bit Impulse (1b-sec)		46.4	6.7	36.4	•	37.5	36.9	37.0	37.8	38.1	38.7	ı	37.2	37.4	25.3	25.2	18.7	19.0	,	37.5	37.8	25.2	25.1	18.6	18.6
MRE																									
PC (psia)		195.3	26.3	155.9	•	144.3	140.9	143.1	144.5	142.6	141.8	•	143.7	143.8	141.9	136.2	136.1	136.7		145.2	143.4	136.1	134.1	133.2	131.0
101CV (°F)	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb
1616v (°F)	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Ать	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb	Amb
POTCV (psia)	612	909	432	425	432	430	415	430	434	435	432	442	431	428	410	405	402	410	442	435	422	412	405	396	392
PFTCV (psia)	445	450	433	440	305	320	298	302	310	305	305	301	310	310	305	300	300	36	311	335	305	308	312	290	286
/alve Actuation	e.	Э н 9	ಕ್ರ	GH,	. 5	ĞH,	, "	, H9	, #9	ู้ ผู้	GH ₂	ВН	, ⁸	он. 1) ,	. H3	ੋ ਦ	gH _e	б н	GH,	GH,	В	์ ซึ่	, <mark>"</mark>	, #9 #9
(Sec)	.944	•	. 939	•	990.	.065	070.	990.	. 065	.065		990.	990.	.067	.065	.065	990.	,	990.	.065	.068	990.	990.	990.	ı
ratse ardth (sec)	.084	. 082	. 084	.082	.082	. 100	. 100	660.	00١٠	. 100	660.	.084	. 100	. 100	.070	.070	. 055	.055	.084	660.	101.	690.	690.	.054	.054
(598)	.140	. 136	.142	.137	.140	.140	.140	.140	.140	.140	. 140	.140	.139	.139	.110	.110	.095	960.	.140	.140	.140	.110	.110	.095	.095
Test No.	167(1)	(2)	168(1)	(2)	169(1)	(2)	<u>3</u>	(4)	(2)	(9)			(2)	(3)	(4)	(2)	(9)	(2)	171(1)	(2)	(3)	(4)	(2)	(9)	(1)
											- 12	4/													

TABLE XXII (cont.)

PULSE PERFORMANCE DATA SUMMAE.

1	ı												o	F F	200	तर	Ç											
Bit Isp (sec)	97.0	166.6	151.3	133.4		Data		133.4	141.2	141.5	137.4	139.7	132.2	132.6	134.1	139.7	140.1	135.8	143.5	130.8	125.4	151.6	155.1	155.8	151.7	145.9	144.7	136.8
(1b)	.303	.170	. 164	. 180	40	Program Error - No Data		.124	.143	. 144	. 103	. 105	.084	.084	.142	.160	.160	114	.108	.091	960.	.134	111.	7.11.	.125	.127	. 103	. 106
Bit Impulse (1b-sec)	29.4	28.3	24.8	24.0	4	Program		16.5	20.2	20.3	14.1	14.7	17.11	11.11	19.0	22.3	22.5	15.4	15.6	11.9	12.1	20.3	27.5	27.6	19.0	18.6	14.9	14.5
MRE	1.21	1.37	1.31		*	*	•	1.01	1.01	66.	76.	. 98	.94	.95	.839	.839	.829	.812	.833	.819	.836	1.03	1.08	1.10	1.11	1.10	1.08	1.14
PC (psia)	137	159	172	149	159	151	139	78.8	87.5	87.1	1.78	89.0	87.	84.	95.	94.7	94.5	92.6	93.7	91.1	90.3	109.8	108.6	109.0	107.6	106.0	104.5	106.0
191CV ('F)	-100	-99	-102	-105	-106	-108	-108	-54	-49	-48	-49	-50	-50	-50	-64	-60	-58	-59	-60	09-	09-	-74	-69	69-	69-	-70	-70	-70
(°F)	-2	-32	-61	-75	-91	-99	-102	No Ignition -36	- 55	-93	-102	-103	-105	-107	-32	-61	-91	-97	- ו01	-104	-105	-37	-67	-92	96-	-101	-106	-108
POTCV (psia)	348	350	348	347	338	332	328	214	210	210	802	500	208	20%	218	215	212	211	210	208	509	274	272	592	264	265	566	263
PFTCV (psia)	350	345	350	335	335	312	332	209	202	203	202	218	215	215	270	260	275	265	255	255	258	275	569	262	260	253	252	264
Valve Actuation	eH ₀	ั้นซึ	ัห	ั้	, # ⁸	eH _e	ั้ษ์	, 45 9.45	• หู	ู้ พื่	, Hg	. 85	, 1	์ คื	es Se	т,	ъ.	. H	, 4 5	GH,	В	В	ĞH,	, "	ั้ษี	GH	, 4 5	. H
Coast (sec)	.059	.059	090.	650.	.059	.058		650.	.059	.059	.059	.059	.058	1	.059	. 059	.059	.059	. 059	.059	•	650.	.059	650.	650.	.059	090	ı
Midth (sec)	780'	. 102	. 102	.072	.072	.057	.057	. 084	.102	. 10	120.	120.	950.	.057	.080	. 102	.101	١٢٥.	١.70	.057	.057	180.	.102	. 102	.071	1.00.	. 055	.055
	180(1) .140							181 182(1) .140	(2) ,140	(3) .140	(4) .109	(2)	560· (9)	560. (7)	183(1),140	(2) .140	(3) ,140	(4)	011. (5)	(9)	60. (7)	184(1) .140	(2) .140	(3) .140	(4) ,109	601. (5)	560 (9)	(7) .095

ORIGINAL TOTAL

*Igniter Ox Valve Malfunction

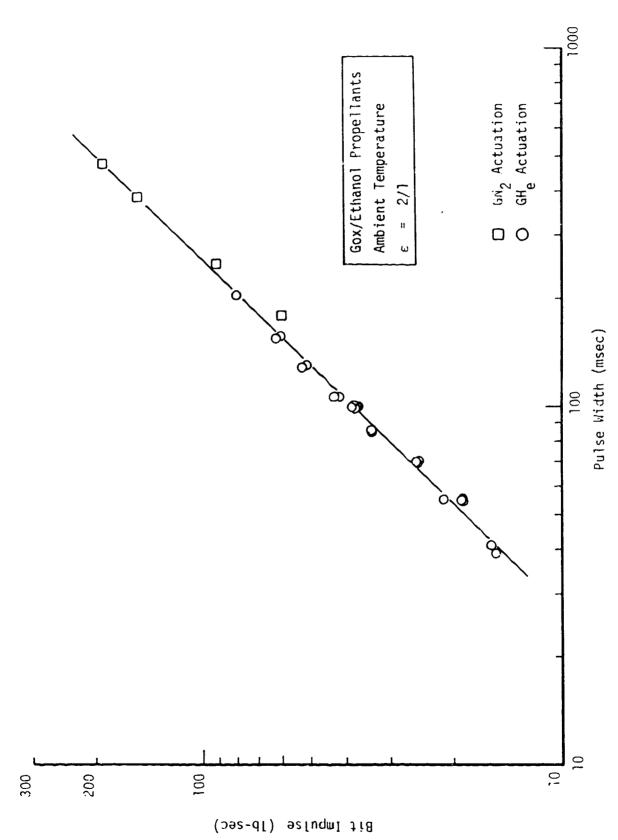


Figure 69. Effect of Pulse Width on Bit Impulse - Nominal Inlet Pressures

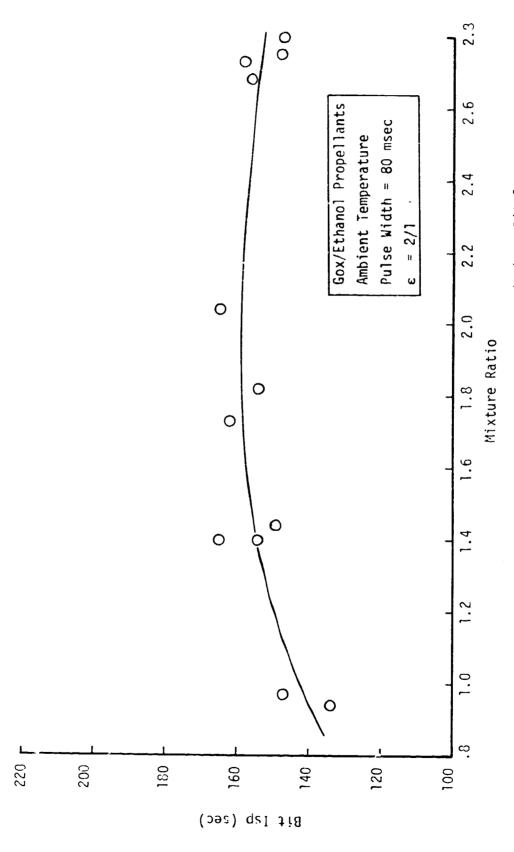


Figure 70. Effect of Inlet Pressures (MR) on 3it Isp

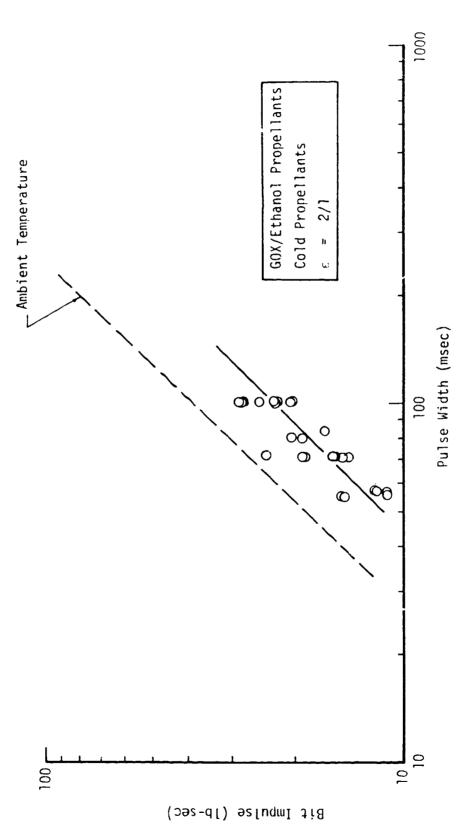


Figure 71. Effect of Pulse Width on Bit Impulse - Cold Propellants

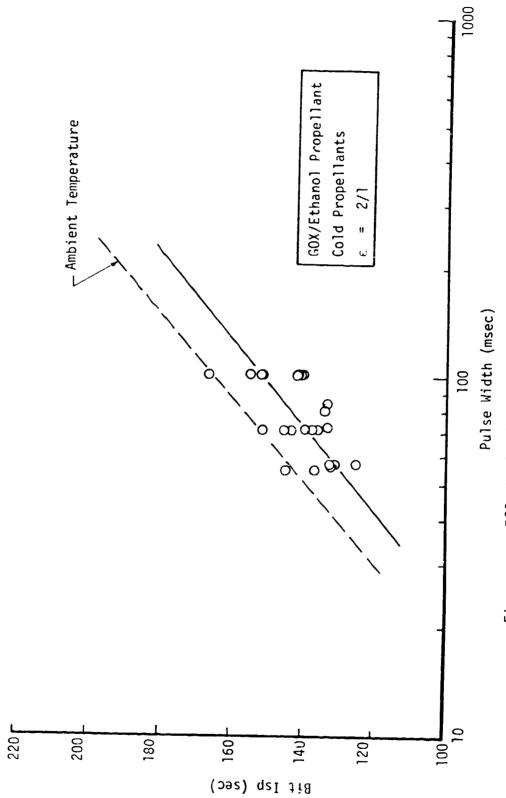


Figure 72. Effect of Pulse Width on Bit Isp - Cold Propellants

· ·

REFERENCES

- 1. Michel, R. W., "Combustion Performance and Heat Transfer Characterization of LOX/Hydrocarbon Type Propellants," Final Report, Contract NAS 9-15859, April 1983, Aerojet TechSystems Company.
- 2. G. F. Orton, T. D. Mark, D. D. Weber, "LOX/Hydrocarbon Auxiliary Propulsion System Study," Contract NAS 9-16305, Report MDC E2548, McDonnell Douglas Astronautics, St. Louis Division, July 1982.
- 3. Lawver, B. R., "Ignition Characterization of LOX/Hydrocarbon Propellants," Task I Data Dump, Contract NAS 9-16639, June, 1983, Aerojet TehSystems Col.
- 4. Lawver, B. R., "Ignition Characterization of LOX/Hydrocarbon Propellants," Task II Data Dump, Contract NAS 9-16639, February 1983, Aerojet Techsystems Co.
- 5. Lawver, B. R., "Ignition Characterization of LOX/Hydrocarbon Propellants," WBS 8.0 Data Dump, Contract NAS 9-16639, May 1983, Aerojet TechSystems Co.
- 6. Lawver, B. R., "Ignition Characterization of LOX/Hydrocarbon Propellants," Task III Data Dump, Contract NAS 9-16639, August 1984, Aerojet TechSystems Co.

END

FILMED

AUG 20 1985