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Ignition conditions for magnetized target fusion

in cylindrical geometry

M.M. Baskoa∗, A.J. Kempb, J. Meyer-ter-Vehnb

a Département de Recherches sur la Fusion Controlée, CEA Cadarache,
St. Paul-lez-Durance, France

b Max-Planck-Institut für Quantenoptik,
Garching, Germany

Abstract. Ignition conditions in axially magnetized cylindrical targets are investigated by examining

the thermal balance of assembled DT fuel configurations at stagnation. Special care is taken to ade-

quately evaluate the energy fraction of 3.5 MeV alpha particles deposited in magnetized DT cylinders.

A detailed analysis of the ignition boundaries in the ρR,T parametric plane is presented. It is shown

that the fuel magnetization allows a significant reduction of the ρR ignition threshold only when the

condition BR & 6 × 105 G cm is fulfilled (B is the magnetic field strength and R is the fuel radius).

1. Introduction

Magnetized target fusion (MTF) is inertial con-

finement fusion (ICF) with a magnetic field intro-

duced into the deuterium–tritium (DT) fuel. The role

of the magnetic field is to reduce the heat conduction

losses from the DT plasma and to retain the 3.5 MeV

alpha particles. The direct impact of magnetic pres-

sure on the implosion hydrodynamics and duration

of the stagnation phase is typically negligible.

The MTF concept has been discussed in the lit-

erature mostly in the context of spherical implosions

[1–4], and to a lesser extent for cylindrical geometry

[5–7]. In this article we focus our attention on mag-

netized DT cylinders. The interest in a cylindrical

MTF stems from the following considerations. First

of all, the cylindrical geometry is generally better

suited for the introduction of an external magnetic

field. In addition, strong motivation comes from iner-

tial fusion driven by heavy ion beams. For relatively

rigid ion beams, which are accelerated, stored and

transported along extended horizontal structures, a

cylindrical symmetry of target irradiation may be

easier to achieve than the spherical one. Ion driven

magnetized cylindrical targets could possibly even be

envisaged in direct drive schemes for inertial fusion

energy [5].

∗ On leave from: Institute for Theoretical and Experimental

Physics, Moscow, Russian Federation.

In the context of the ignition problem, the princi-

pal objective of introducing a magnetic field into ICF

targets is to reduce the threshold value of the fuel ρR

at ignition. In the first place, this is necessitated by

the cylindrical geometry itself because, under sim-

ilar constraints on drive pressure uniformity and

Rayleigh–Taylor instability, cylindrical implosions

are less efficient in compressing fuel than spherical

ones [7]. Secondly, by lowering the fuel ρR at igni-

tion one can reduce considerably the required driver

power — a particularly sensitive issue for a heavy ion

driver.

The latter point can be illustrated by the follow-

ing simple scaling law observed for a quasi-uniform

DT cylinder imploded by a massive liner of mass Ml

(g/cm). The total energy (per unit length) of this

simple configuration can be written as

E =
1

2
Mlv

2

im =
3π

2
PR2 (1)

where vim is the implosion velocity, and R and P

are the fuel radius and the pressure at stagnation,

respectively. By using Eq. (1), we can relate the time

of inertial confinement around the moment of stag-

nation,

tc ∝
(

Ml

P

)1/2

∝ R

vim
≈ tim

Cr
(2)

to the implosion time tim ≈ R0/vim, where R0 is

the initial fuel radius and Cr = R0/R is the radial
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convergence ratio. If we invoke now the break-even

condition

1

4
n2〈σv〉DT EDT tc = 3nT (3)

to evaluate tc, we obtain the following scaling for the

required driver power:

Wdr ∝ E

tim
∝ PR2

Crtc
∝ (ρR)2

Cr
〈σv〉DT . (4)

In Eq. (3) n is the ion number density at peak com-

pression, EDT = 17.6 MeV is the DT reaction energy

and the reaction rate 〈σv〉DT is a function of temper-

ature T only. Equation (4) tells us that, for a fixed

ignition temperature T (which is typically close to

10 keV), the driver power Wdr scales as the square

of the fuel ρR at the ignition threshold.

In this article we investigate the ignition condi-

tions in stagnating uniformly magnetized DT cylin-

ders. Neither the implosion dynamics nor the prob-

lem of confinement are considered here, and only

the thermal balance of assembled fuel configurations

is analysed. The hot DT region is supposed to be

tamped by a cold wall of either dense fuel or exter-

nal liner material. Although the tamper properties

do not appear explicitly in the following analysis,

their presence is tacitly assumed to provide a sink

for the energy carried away by the heat conduction

out of the hot DT core. Our main conclusion is that

a significant reduction in the fuel ρR at the ignition

threshold is only possible when the 3.5 MeV alpha

particles become at least marginally magnetized, so

that their Larmor radius rαL ≃ R. The latter implies

an ignition threshold of ≃6× 105 G cm for the prod-

uct BR, where B is the magnetic field strength in

the compressed state.

2. Energy deposition

by alpha particles

In this section we calculate the energy fraction of

the 3.5 MeV alpha particles, fα, deposited due to

Coulomb collisions with plasma electrons in a uni-

formly magnetized DT cylinder of radius R embed-

ded into a uniform magnetic field B directed along

the cylinder axis. In such a problem, the dimen-

sionless quantity 0 < fα < 1 is a function of two

dimensionless parameters, which we choose to be

R̄ =
R

lα
, b =

R

rαL
= R

ωα

vα0

. (5)

R

r

x

y

z

φ

θ

vα0 B

Figure 1. Co-ordinate system used in Section 2.1 for

calculating the alpha energy deposition fraction fα.

Here lα is the Coulomb range of the alpha parti-

cles, rαL is their Larmor radius at the birth velocity

vα0 = 1.3 × 109 cm/s and

ωα =
2eB

mαc
(6)

is their Larmor frequency. We consider the entire

variation range of 0 < R̄, b < ∞, with a particular

interest for the case of R̄ ≪ 1.

2.1. Method of calculation

We assume that the Coulomb collisions deceler-

ate alphas by means of dynamic friction only, and

that diffusion in velocity space can be neglected.

The friction force is supposed to be directly pro-

portional to the velocity of the alphas, which is a

reasonable approximation for plasma temperatures

1 keV . T . 20 keV [8]. Then, the equations of

motion for an individual alpha particle become

v̇x = ωαvy − ναvx

v̇y = −ωαvx − ναvy (7)

v̇z = −ναvz

where dots denote the time derivative,

να =
vα0

lα
(8)

is the effective collision frequency of the fast alphas,

and the co-ordinate system is shown in Fig. 1 (the

magnetic field B is along the z axis).

For the deceleration law given by Eqs (7), the frac-

tion of the initial energy deposited by an individual

alpha particle after it travels a distance s is given by

fαs = fαs(r, θ, φ) = 2

(

s

lα

)

−
(

s

lα

)2

. (9)
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Here r is the cylindrical radius of the alpha birth

point, θ is the pitch angle and φ is the azimuthal

angle (in the xy plane, with respect to the radius vec-

tor of the birth point) of the alpha birth velocity vα0

(Fig. 1). In Eq. (9) s = s(r, θ, φ) is the path length

of an alpha particle with the birth parameters r, θ, φ

before it either comes to a halt inside the cylinder

or leaves the cylinder by crossing the boundary at

r = R. In our calculations we assumed for simplicity

that, once an alpha particle exits from the cylinder at

r = R, it never returns. Any attempt to account for

the re-entry of gyrating alphas should take into con-

sideration the matter distribution outside the cylin-

der r = R, which would be beyond the scope of this

work. Equations (7) imply that s = lα[1−exp(−ναt)],

and one only has to calculate by integrating Eqs (7)

for the time t at which the particle with the birth

parameters r, θ, φ exits from the cylinder r = R.

Once the function fαs(r, θ, φ) is known, one cal-

culates fα by averaging fαs from Eq. (9) over the

angles θ, φ and the radius r,

fα =
2

R2

∫ R

0

r dr
1

4π

∫ π

0

sin θ dθ

∫

2π

0

fαs(r, θ, φ) dφ.

(10)

This approach is, of course, equivalent to solving the

corresponding transport equation for the distribution

function of alpha particles, as described for example

in Ref. [9].

2.2. Asymptotical behaviour and

numerical results

As a first step, consider the simplest case of B = 0

(b = 0), when the absorbed energy fraction fα is a

function of one parameter, R̄ = R/lα, only. In the

case of a uniform sphere of radius R, all the integrals

in Eq. (10) can be calculated analytically, with the

result given in Ref. [10]. Not so for the cylinder: only

the asymptotic behaviour in the limits of R̄ ≪ 1 and

R̄ ≫ 1 can be established analytically,

fα(R̄, b = 0) =











8

3
R̄ + O(R̄2), R̄ ≪ 1,

1 − 1

6R̄
+ O

(

1

R̄2

)

, R̄ ≫ 1.

(11)

Next, we examine qualitatively the dependence of

fα on the magnetic field strength B in the limit

of R ≪ lα (R̄ ≪ 1). For this, all the alphas born

inside the DT cylinder can be roughly divided into

two groups, namely, those born at large pitch angles

θ ∼ π/2 (propagating nearly radially) and those

born in the narrow ‘capture cone’ 0 < θ . θc ≪ 1,

0 < π − θ . θc ≪ 1. When R ≪ rαL, all the ‘nearly

radial’ alphas escape from the cylinder along almost

straight trajectories, leaving a small fraction fαs ∼ R̄

of their initial energy in the DT plasma. The alphas

born within the capture cone deposit all their energy

in the DT cylinder, so that their contribution to fα is

proportional to the solid angle occupied by the cap-

ture cone, i.e. to θ2
c . The width of the capture cone

can be readily evaluated as

θc ∼















R

lα
, R ≪ lα ≪ rαL

R

rαL
, R ≪ rαL ≪ lα.

(12)

As a result, we infer the following asymptotic

behaviour for the total absorbed energy fraction

fα(R̄, b) ∼






























8

3
R̄ + O(R̄2), R ≪ lα ≪ rαL (b ≪ R̄ ≪ 1)

8

3
R̄ + O(b2), R ≪ rαL ≪ lα (R̄ ≪ b ≪ 1)

1 − O

(

1

b

)

, rαL ≪ R ≪ lα (R̄ ≪ 1 ≪ b).

(13)

In the last limit of a very strong magnetic field,

rαL ≪ R, only a small fraction of alphas born in

a narrow surface layer of width rαL escape from the

DT cylinder.

The dependence of fα(R̄, b) on b, calculated by

integrating numerically Eq. (10), is shown in Fig. 2,

for three different values of R̄. These calculations

are in full agreement with the asymptotic formu-

las of Eqs (13). In particular, it is clearly seen that

the transition from the ‘optically thin’ limit of fα ≈
8

3
R̄ ≪ 1 in the non-magnetized case to a full absorp-

tion with fα ≈ 1 in the limit of strong magnetization

(b ≫ 1) does indeed proceed along the intermediate

asymptote

fα ∝ b2 ∝ (BR)2. (14)

For practical applications, it is important to be aware

of this intermediate asymptotic regime.

2.3. Approximate formula

For practical needs one would prefer to have a

simple approximate formula for fα. Here we propose

Nuclear Fusion, Vol. 40, No. 1 (2000) 61
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Figure 2. Energy fraction fα, which the 3.5 MeV alpha

particles deposit in a uniform magnetized DT cylinder,

as calculated by performing the numerical integration in

Eq. (10) (circles, triangles and diamonds). Approximate

formula (15) is plotted with the solid curves. The three

curves display the dependence of fα on the dimensionless

parameter b for three different values of R̄ (Eq. (5)).

the following expression appropriate for magnetized

DT cylinders:

fα =
xα + x2

α

1 + 13xα/9 + x2
α

(15a)

xα =
8

3

(

R̄ +
b2

√
9b2 + 1000

)

. (15b)

For the zero magnetic field (B = b = 0) this for-

mula conforms to both the limits in Eqs (11) and

never deviates from the numerical results by more

than 3.5% (for the quantity 1 − fα the maximum

deviation amounts to 10%). The dependence on b in

Eq. (15b) is chosen such as to describe both the lim-

its of b ≪ 1 and b ≫ 1 as given by Eqs (13), and to

fit the numerical results shown in Fig. 2. It has two

numerical constants under the square root: the free

term 1000 fits the numerical results along the inter-

mediate asymptote (14), while the coefficient 9 of b2

is chosen on the basis of the diffusion approximation

(see Appendix).

The error of the formula (15) is very small (below

3%) whenever fα < 0.05, but may become as large as

50% for the values of fα = 0.1–0.5. We did not try to

improve the accuracy of Eq. (15) in the latter region,

which corresponds to R ≃ rαL, because this would

make little sense from the practical point of view

due to the re-entry problem of the gyrating alpha

particles. Note that the dependence fα(R̄, b) cannot

be adequately described (especially in the parame-

ter region where fα ≪ 1) by adopting the general

recipe of reducing the alpha diffusion coefficient by

the factor 1+(ωα/να)2, as was for example assumed

in Ref. [3].

A similar problem has been treated earlier by

Gus’kov et al. [9] for a uniform sphere embedded in

a uniform magnetic field. Such a situation is, how-

ever, qualitatively different from the one considered

here: because each field line of the uniform B field

pierces the spherical surface of the DT volume, the

deposited alpha energy fraction fα ∼ R̄ remains

small for R̄ ≪ 1 even in the limit of an infinitely

strong magnetic field. In our case, when the field

lines run parallel to the surface of the DT volume,

fα approaches 1 in a sufficiently strong field for arbi-

trarily small R̄ ≪ 1.

3. Lindl–Widner diagrams

The physical conditions that must be attained

in the DT fuel to achieve ignition in ICF targets

are best illustrated in the ρR, T parametric plane.

An extensive discussion of the physical processes

behind the ρR, T diagrams for non-magnetized DT

microspheres was presented by Lindl [11]. Following

Ref. [4], we call these diagrams the Lindl–Widner

(LW) diagrams. An important fact is that, because

the ignition condition can be expressed as a relation-

ship between the two parameters T and ρR only, a

single ignition curve in the ρR, T plane represents a

two parameter family of similar fuel configurations

having, for example, different temperatures and dif-

ferent masses.

Here we consider how the ignition boundary in the

ρR, T plane for uniform DT cylinders at stagnation

is influenced by the presence of a strong magnetic

field. With one more parameter B to characterize

the fuel state, we expect a single ignition boundary

in the ρR, T plane to become a one parameter fam-

ily of ignition curves. The topology of the ignition

domain depends on the specific choice of the param-

eter (the ignition curve parameter), which is kept

constant along each ignition curve. Figures 3 and 4

illustrate two distinct possibilities for the different

topologies of the LW diagrams for the magnetized

fuel.

In Fig. 3 the ignition curve parameter is taken to

be the ratio B/ρ. This is a natural choice arising from

the functional form of the Braginskii formulas [12] for

the electron and ion heat conduction coefficients. The

curves in Fig. 3 represent the fuel states for which the

62 Nuclear Fusion, Vol. 40, No. 1 (2000)
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Figure 3. Lindl–Widner diagram for magnetized DT

cylinders at stagnation. Solid curves show a series of igni-

tion boundaries in the ρR, T plane calculated for four

fixed values of the parameter B/ρ, given near each curve

in units of G cm3/g. The shaded area is the pure ICF

ignition domain at B = 0. The dotted curve illustrates

the effect of synchrotron radiation losses at ρ = 1 g/cm3,

B = 108 G. Dashed arrows indicate how the fuel states

advance towards the ignition boundary in the process of

a quasi-adiabatic implosion.

net heating rate

c0

dT

dt
= qtn − qbr − qc (16)

is zero. Here

c0 = 1.158 × 1015 [erg g−1 keV−1] (17)

is the heat capacity of the equimolar DT,

qtn = 8.18 × 1040 ρ 〈σv〉DT fα [erg g−1 s−1] (18)

is the rate of the thermonuclear heating by the alpha

particles,

qbr = 3.11 × 1023 ρ T
1/2

keV [erg g−1 s−1] (19)

is the rate of the bremsstrahlung cooling, and

qc =
2(κe + κi)T

ρR2
(20)

is the heat conduction energy loss. The heat balance

equation (16) is written for a DT column surrounded

by either a cold liner or a cold dense DT shell at the
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Figure 4. Alternative version of the LW diagram for

magnetized DT cylinders. A series of ignition boundaries

in the ρR, T plane is calculated for three fixed values of

the product mB = πρR2B. Each curve is labelled by the

corresponding mB value in units of 104 G·g/cm.

time of maximum compression, when the power of

the PdV work done against the hot fuel is zero. In

all practical formulas CGS units are used, and T is

given in kiloelectronvolts.

The magnetic field B enters Eq. (16) through the

coefficients fα, κe and κi. The coefficients of electron,

κe, and ion, κi, heat conduction have been calculated

by using the Braginskii formulas [12], which for a

plasma of hydrogen isotopes with ne = ni = n take

the form

κe =
nTτe

me

11.92 + 4.664x2
e

3.7703 + 14.79x2
e + x4

e

(21)

κi =
nTτi

mi

2.645 + 2x2
i

0.677 + 2.70x2

i + x4

i

(22)

xe = ωeτe, xi = ωiτi. (23)

Here

ωe =
eB

mec
, ωi =

eB

mic
(24)

are, respectively, the electron and ion cyclotron

frequencies, and

τe =
3m

1/2

e T 3/2

4
√

2πe4nLe

, τi =
3m

1/2

i T 3/2

4
√

πe4nLi
(25)
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are the electron and ion collision times as defined

in Ref. [12]. For the corresponding Coulomb

logarithms, fixed values Le = 7 and Li = 9 were

used, which roughly correspond to a DT plasma with

ρ = 1 g/cm3, T = 10 keV. Note that under the con-

ditions of interest here the ion heat conduction is no

less important than the electron one because in the

strongly magnetized case, when ωeτe ≫ 1, ωiτi ≫ 1,

we have κe ≪ κi.

The fraction of the alpha particle energy, fα, left

in the DT region was evaluated from Eq. (15). For

the alpha mean free path lα we used the expression

lα =
3

4
√

2π

mαvα0T
3/2

Z2
αe4nm

1/2

e Lα

= 0.107
T

3/2

keV

ρLα
[cm] (26)

which accounts for the alpha stopping by the free

plasma electrons at temperatures T > 1 keV; the

value of the Coulomb logarithm Lα was fixed at

Lα = 7.

The LW diagram shown in Fig. 3 has a clear phys-

ical meaning: for a target to ignite, the fuel parame-

ters at stagnation must reach the domain dT/dt > 0.

If the ignition domain is reached in the process of

hydrodynamic implosion, the optimum ‘entry point’

corresponds approximately to the minimum of the

triple product ρRT , which occurs at T = 6–8 keV

depending on the strength of the magnetic field. In

this base version of the LW diagram for the mag-

netized fuel no second ignition island (as shown in

Fig. 1 of Ref. [4]) appears at low ρR: the ‘standard’

ICF ignition region expands monotonically towards

lower ρR as the parameter B/ρ is increased, namely,

(ρR)ign ∝ (B/ρ)−1 in the limit of a strong field (this

scaling is explained in the next section). Note that

in the ideal case of a fully trapped magnetic field the

ratio B/ρ is conserved in the process of cylindrical

implosions, so that the point representing the cur-

rent state of the imploding fuel in the ρR, T plane

advances (as indicated by dashed arrows in Fig. 3)

towards a stationary ignition boundary.

Alternative forms of the ignition curve parameter

can be obtained by multiplying the ratio B/ρ by any

combination of powers of T and ρR. Figure 4 shows

a topologically different version of the LW diagram.

Here each ignition boundary is calculated for a fixed

value of the product mB, where m = πρR2 is the

fuel mass per unit cylinder length. For low values

of mB, there are two disconnected ignition regions

with dT/dt > 0, one at large ρR corresponding to the

ICF ignition mode, and the other at low ρR corre-

sponding to the ignition under external (magnetic, in

particular) confinement. For mB > 3 × 104 G/g/cm

the two regions merge, and ignition becomes pos-

sible at any value of the fuel ρR, provided that a

long enough confinement time is ensured. This type

of LW diagram might be appropriate for situations

when, for example,

(a) One chooses a fixed value of the fuel mass m and

studies the dependence of the ignition threshold

on the magnetic field strength.

(b) The experimental conditions impose a fixed

upper limit on the maximum achievable value

of the magnetic field B.

In the LW diagrams of Figs 3 and 4 no account was

taken of the synchrotron radiation losses. Kilcrease

and Kirkpatrick [13] have already argued that the

synchrotron losses are not important in the MTF

case. This is illustrated in Fig. 3 with the dotted

curve calculated for ρ = 1 g/cm3, B = 108 G by

adding the synchrotron loss term [13],

qsyn = 1.50 × 106 TkeV B2

× (1 + 4.9 × 10−3 TkeV ) [erg g−1 s−1] (27)

to Eq. (16). Note that introduction of this term vio-

lates the similarity law which reduces the solution of

the equation dT/dt = 0 to a one parameter fam-

ily of curves in the ρR, T plane because, in con-

trast to the ratios qtn/ρ, qbr/ρ and qc/ρ, the ratio

qsyn/ρ ∝ TB2/ρ cannot be expressed as a function

of the parameters T , ρR and B/ρ only.

4. Ignition criterion for

the MTF mode

The well known ICF ignition criterion for the non-

magnetized DT fuel is usually quoted as a lower

bound on the fuel T and ρR values; for DT cylin-

ders, as inferred from the B = 0 curve in Fig. 3, it

reads
{

T = 5–7 keV

ρR ≥ 0.2 g/cm2.
(28)

The MTF ignition mode aims at igniting the DT

fuel at ρR values considerably lower than the ICF

threshold of 0.2–0.3 g/cm2. Hence, the constraint on

ρR should be replaced by another condition. We find

this condition by taking a closer look at the thermal

balance of stagnating fuel.

First of all, a necessary condition is that

the thermonuclear alpha heating qtn exceeds the
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bremsstrahlung losses qbr . According to Eqs (18) and

(19), this implies

fα > 3.8 × 10−18
T

1/2

keV

〈σv〉DT
. (29)

The function T
1/2

keV /〈σv〉DT has a minimum of 8.1 ×
1015 keV1/2 s cm−3 at T = 40 keV. We, however, are

interested in the temperature interval T ≈ 7–10 keV

(where the optimum ‘entry’ point into the ignition

domain lies), for which Eq. (29) yields

fα > 0.25–0.1. (30)

From Fig. 2 we infer that, in the limit of R ≪
lα, inequality (30) implies a lower bound on the

parameter

b =
R

rαL
> 1.5–1.0 (31)

or, equivalently, a lower bound on the product BR.

In other words, ignition in the MTF regime requires

the 3.5 MeV alpha particles to be at least marginally

magnetized, so that their Larmor radii be at least

about equal to the hot fuel radius R.

The constraint (31) simplifies evaluation of the

role of the heat conduction losses. For temperatures

T & 6 keV inequality (31) implies that the magneti-

zation parameter for the plasma ions [12],

ωiτi >
0.015 g/cm2

ρR
(32)

exceeds 1 for ρR . 0.01 g/cm2. As a consequence,

we can neglect the electron heat conduction because

in the limit of strong magnetization the ratio of the

two conductivities becomes

κe

κi
= 2.33

miω
2

i τi

meω2
eτe

= 2.33

√

2me

mi
≪ 1 (33)

(here the electrons and ions are assumed to

have equal temperatures and Coulomb logarithms).

Adding the conduction cooling,

qc =
2κiT

ρR2
= 1.145× 1024

ρT
1/2

keV

b2
[erg g−1 s−1] (34)

in the limit of ωiτi ≫ 1 to the ignition condition

qtn > qbr + qc (35)

we obtain an inequality,

fα > 3.8 × 10−18
T

1/2

keV

〈σv〉DT

(

1 +
3.68

b2

)

. (36)
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Figure 5. The BR form of the LW diagram: along each

ignition curve the product BR is kept constant at the

corresponding marked value.

In the limit of R ≪ lα, when fα becomes a function

of b only in the relevant parameter range, inequality

(36) can be resolved to yield

b > 2.3–1.5 (37)

(for temperatures T = 7–10 keV). Finally, we arrive

at the following ignition criteria for the magnetized

cylindrical targets:

{

T = 7–10 keV

BR ≥ (6.5–4.5)× 105 G cm
(38)

which replaces the ICF criterion (28). Conditions

(38) must be fulfilled in the DT fuel at stagnation

if the ignition is to occur at a ρR value significantly

below the ICF threshold of 0.2–0.3 g/cm2. As one

can infer from Fig. 2, the error introduced into the

BR threshold by inaccuracy of the approximate for-

mula (15) for fα ≈ 0.1–0.3 is not large (≃20%), and

is comparable to the accuracy of the other assump-

tions made.

The lower bound on the BR product given by

Eq. (38) is in perfect agreement with the numeri-

cal results for B/ρ & 108 G cm3/g shown in Fig. 3.

It explains also the scaling (ρR)ign ∝ (B/ρ)−1 for

the ignition threshold observed in Fig. 3. Note that

inequality (36) implies that there is no regime with

qc ≫ qbr: the bremsstrahlung is always at least

comparable to (if not dominating over) the heat
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conduction as the cooling mechanism near the

ignition threshold of magnetized targets.

One can construct also an LW diagram by assum-

ing the product BR to be constant along the ignition

curves. Figure 5 shows what this diagram looks like.

Its topology is intermediate between the two cases

of Figs 3 and 4. The ignition domain dT/dt > 0 is

always single connected, and for BR < (BR)∗ ≈
3.3 × 105 G cm it looks similar to the ignition

region in Fig. 3. When the BR parameter exceeds

the threshold value (BR)∗, the dT/dt > 0 region

extends to infinitely small ρR and ignition becomes

possible at any ρR value (in the absence of other pos-

sible limiting effects such as Compton or synchrotron

cooling). It is seen also that for the practically inter-

esting case of ignition temperatures around 10 keV

the BR threshold is close to 6 × 105 G cm.

5. Summary and discussion

As already discussed in previous publications

[2, 4], magnetization of thermonuclear fuel opens a

possibility to ignite ICF targets in a new MTF mode

which is characterized by strongly reduced fuel ρR

values (≪0.3 g/cm2) as compared with those of the

usual ICF case. In this article we have analysed the

necessary conditions for achieving the MTF ignition

in uniform DT cylinders with axial magnetic fields.

As a first step, we calculate the energy fraction fα

deposited by the 3.5 MeV alpha particles in a cylin-

drical DT volume as a function of its ρR and the

magnetic field strength B. An approximate formula

for fα is proposed, which agrees fairly well with the

results of numerical simulations.

Having examined the thermal balance of stagnat-

ing DT cylinders, we find that the MTF ignition

threshold corresponds to a lower limit on the prod-

uct BR & 6 × 105 G cm, which replaces the lower

limit on the fuel ρR & 0.2–0.3 g/cm2 in the conven-

tional ICF ignition criterion. The above constraint

on the BR value has a simple physical meaning: to

offset the plasma cooling by the bremsstrahlung and

heat conduction, a large enough alpha energy frac-

tion should be deposited in the fuel volume, which is

possible only when the alpha Larmor radius becomes

of the order of or smaller than the fuel radius R.

An important condition here is that the magnetic

field lines are parallel to the surface of the igniting

DT volume. Evidently, this is easier to arrange for

a cylinder than for a sphere. If the magnetic field

lines pierce the surface (as, for example, in the case

of a DT sphere in a uniform magnetic field), even

an infinitely strong field (cf. Ref. [9]) cannot ensure

ignition conditions in a DT volume with R ≪ lα.

In this respect the MTF ignition mode is similar to

magnetic confinement fusion. We expect that in the

case of spherical targets, once a magnetic field is cre-

ated which is parallel to the surface of a DT sphere,

the MTF ignition criterion should be very similar to

the cylindrical case analysed here.

In our analysis no account has been taken of the

finite time tc of the inertial confinement. For a fuel

volume with parameters ρ, T and R which is sur-

rounded by a heavy cold liner of density ρl, the dwell

time tc of the stagnation phase scales as

tc ∝ R
(ρl

P

)1/2

∝ 1√
T

(

ρl

ρ

)1/2
m

ρR
. (39)

One readily ascertains that the timescale for the

development of a thermonuclear flare,

tf ∝ T

〈σv〉DT

1

ρ
∝ T

〈σv〉DT

m

(ρR)2
(40)

increases faster than tc as one fixes the fuel mass

m and reduces the ignition ρR by magnetizing the

fuel (even when the weak dependences of the fac-

tor (ρl/ρ)1/2 on m and ρR are taken into account).

Hence, so long as one stays within the context of ICF,

the ρR ignition threshold in the MTF mode can be

reduced by only a limited factor (of the order of 3–

10), which is to be determined by the magnetohydro-

dynamics simulations. Ignition at still lower ρR val-

ues (provided that the BR parameter is sufficiently

large) would only be possible under some non-inertial

external (magnetic, for example) confinement.

Another important issue not addressed in this

article is the finite cylinder length in realistic target

configurations. Depending on a specific target design,

the cylindrical section analysed in this work may only

be an initiating (ignition) part of a more complex

configuration (a possible scheme of such a cylindri-

cal target that might be relevant to inertial fusion

energy is given in Refs [5–7]). Clearly, the results of

the present work will be applicable only when the

length of the ignition section is large compared with

its radius. Since heat conduction and alpha transport

in the axial direction cannot be strongly inhibited

by the axial magnetic field, one can expect that the

lower limit on the fuel ρ∆z should be of the order of

the minimum ρR value in the non-magnetized case,

i.e. ρ∆z & 0.3 g/cm2. The impact of non-cylindrical

hydrodynamic perturbations at the ends of the igni-

tion cylinder will be largely determined by specific

features of the overall target design. If, however, the
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ignition section is sufficiently long and the radial

implosion is sufficiently fast, these perturbations are

not expected to seriously distort the one dimensional

results of the present work.

An interesting alternative to the quasi-uniform

axial magnetization would be a cylinder with an

azimuthal (phi) magnetic field. However, a detailed

analysis of such a configuration in the context of

MTF should involve more complex electrodynamics

of the whole target and remains for future work. Note

that the phi field must vanish on the cylinder axis,

i.e. exactly where one expects an igniting hot core of

magnetized fuel to be formed.

Finally, a remark on the possible role of Bohm dif-

fusion. There are at least two arguments why Bohm

diffusion should not affect noticeably the results of

this work. The first is that the Bohm mechanism can-

not be effective under the MTF conditions simply

because the plasma to cyclotron frequency ratio is

large, and the E×B drift in fluctuating E fields has

no time to manifest itself [4]. The second argument

is that, even if the Bohm mechanism were operative,

its effect near the MTF ignition threshold would be

at most to make the electron heat conduction com-

parable to the ion heat conduction. Indeed, from

Fig. 2 one infers that the product ωiτiρR has almost

a constant value of 0.02–0.03 g/cm2 at the ignition

threshold. Hence, for feasible minimum ignition val-

ues of ρR ≈ 0.01–0.03 g/cm2 (cf. the previous para-

graph), the plasma ions are only marginally magne-

tized, i.e. ωiτi ∼ 1. Then, the Bohm enhancement

of the classical electron conductivity is by about

a factor ωeτe = (mi/2me)
1/2 ωiτi ∼ (mi/2me)

1/2,

which brings it to approximately the same level as

the marginally magnetized ion conductivity that has

already been accounted for.

Appendix

Alpha energy transport in the

diffusion approximation

One of the approximate methods of describing the

energy transport by 3.5 MeV alpha particles reduces

to a diffusion equation,

∂Eα

∂t
= ∇ · (Dα∇Eα) − GαEα + ṅαEα0 (41)

for the volumetric energy density Eα [erg/cm3] of the

fast alphas [14, 15]. Here Dα and Gα are, respec-

tively, the diffusion and dissipation coefficients, ṅα =

nDnT 〈σv〉DT is the local alpha birth rate and

Eα0 = 3.5 MeV. For the deceleration law given by

Eqs (7) one calculates [14]

Gα = 2να (42)

Dα =
vα0 lα

18 + 2(ωα/να)2
. (43)

In Eq. (43) Dα is the diffusion coefficient across the

magnetic field.

By solving Eq. (41) for a uniform stationary cylin-

der of radius R, one readily calculates the total alpha

energy fraction deposited in the cylinder,

fα = 1 − 2

xαd

I1K1

I0K1 + I1K0

(44)

=



















1

8
x2

αd

(

1 + 4 ln
2

γxαd

)

, xαd ≪ 1

1 − 1

xαd
+ O

(

1

xαd

)

, xαd ≫ 1

where

xαd = 2
√

9 + (ωα/να)2 R̄ (45)

In = In(xαd) and Kn = Kn(xαd) are modified Bessel

functions, γ = exp(C) = 1.781 . . ., and the dimen-

sionless radius R̄ is defined in Eq. (5).

Generally, the diffusion approximation becomes

asymptotically accurate in the limit of large ‘optical

thicknesses’ (R̄ ≫ 1) and smooth gradients. In our

case, the source term ṅα has a step at the cylinder

boundary r = R. Nevertheless, Eq. (44) reproduces

exactly the asymptotic limit of R̄ ≫ 1 for the quan-

tity 1 − fα when B = 0 (ωα = 0, b = 0), as one

easily verifies by comparing Eq. (44) with Eq. (11).

If we assume now that the second asymptote in

Eq. (44) is exact in the limit of strong magnetiza-

tion (ωα ≫ να ⇔ b ≫ R̄) as well, and then demand

that the approximate formula (15) conforms to this

asymptote, we recover the numerical coefficient for

the term 9b2 in Eq. (15b).
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