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Motivation. Immunoglobulin proteins (IGP) (also called antibodies) are glycoproteins that act as B-cell receptors against external
or internal antigens like viruses and bacteria. IGPs play a signifcant role in diverse cellular processes ranging from adhesion to cell
recognition. IGP identifcations via the in-silico approach are faster and more cost-efective than wet-lab technological methods.
Methods. In this study, we developed an intelligent theoretical deep learning framework, “IGPred-HDnet” for the discrimination
of IGPs and non-IGPs. Tree types of promising descriptors are feature extraction based on graphical and statistical features
(FEGS), amphiphilic pseudo-amino acid composition (Amp-PseAAC), and dipeptide composition (DPC) to extract the graphical,
physicochemical, and sequential features. Next, the extracted attributes are evaluated through machine learning, i.e., decision tree
(DT), support vector machine (SVM), k-nearest neighbour (KNN), and hierarchical deep network (HDnet) classifers. Te
proposed predictor IGPred-HDnet was trained and tested using a 10-fold cross-validation and independent test. Results and
Conclusion. Te success rates in terms of accuracy (ACC) and Matthew’s correlation coefcient (MCC) of IGPred-HDnet on
training and independent dataset (Dtrain Dtest) are ACC� 98.00%, 99.10%, and MCC� 0.958, and 0.980 points, respectively. Te
empirical outcomes demonstrate that the IGPred-HDnet model efcacy on both datasets using the novel FEGS feature and
HDnet algorithm achieved superior predictions to other existing computational models. We hope this research will provide great
insights into the large-scale identifcation of IGPs and pharmaceutical companies in new drug design.

1. Introduction

Immunoglobulins are serum proteins in the human body.
Tese proteins act as an antibody involved in the various
cellular processes such as a decision, binding, or recognition
of the cell. Immunoglobulin signifcantly boosts the immune
system by discovering the dangerous macromolecules that
entered the body [1]. When unfamiliar elements inject into
the body, the immune system has a unique skill to detect the
attacker and then activates B lymphocytes to hide the im-
munoglobulin from invader antigens. For instance, immu-
noglobulins will deactivate the toxin by altering its chemical

structure when averting its appearance. To provide a shield
against bacterial infection, stabilin-2 can attach to both Gram-
positive and Gram-negative bacterial contagions.

Immunoglobulins are linked/related to various disease
treatments [2], such as autoimmune, infammation in the
skin, and Bechet’s diseases [3, 4]. In other words, intrave-
nous immunoglobulin provides a fghting strength to cure
such kinds of diseases for people who have sufered from
muscle problems and systemic swelling in skin infections.
Te use of immunoglobulin for lupus erythematosus der-
matosis in association with the treatment of Bechet’s in-
fection has a great potential without any harmful impact
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[3, 4]. In Ref. [5], it is shown that immunoglobulins have a
better understanding of immunological processes, permit-
ting the development of an enhanced version of drugs to
cure the infection. Considering the medical application of
immunoglobulin proteins, in-depth knowledge of their
functional level is still under development.

Over the past years, immunoglobulin protein classif-
cation and characterization have become a hot topic in
bioinformatics and computational biology. Wet-lab ap-
proaches such as X-ray crystallography and mass spec-
trometry are used to discover immunoglobulin proteins.
However, such laboratory-based approaches are unfav-
ourable due to their high cost and time consumption. In this
regard, researchers have designed various machine learning-
based methods to identify immunoglobulin protein se-
quence analysis. Efcient machine learning-based methods
can quickly and accurately predict unannotated proteins
from large databases. Machine learning techniques are ap-
plied in numerous areas of medicine like diagnostics. Clonal
dynamics and relative frequencies are utilized to develop an
antibody clonal examining framework to explore certain
antigenic human monoclonal antibodies [5–7]. In the var-
ious feld of the healthcare system, immunological and bi-
ological usage, including infection control, immunization
diagnostics, and B-cell detection, is of key signifcance [8, 9].
Te research community has reported numerous studies
related to antigen range that can be selected by specifc
antibodies or by a group of antibodies, e.g., antibody stock
provided by applying a Rep-Seq in many areas [10]. Te said
key observation headed to another and well-defned tech-
nique for tackling the B-cell epitope detection in which the
intellectual purpose of a specifc antibody is detected
[11, 12]. Tis study incorporates optical, electrochemical,
and piezoelectric biosensors to predict complete immuno-
globulin degrees, in which electrochemical is most generally
employed. Several immunoglobulin optical biosensors de-
pend on surface plasmon resonance (SPR) prediction
present in bufer solutions. For an immunoglobulin study,
these available state-of-the-art technologies are useful;
however, conducting the biochemical study is very expensive
in terms of money and time. For accurate and speedy ex-
ecution of a huge amount of protein data, it is a need of time
to develop a computational framework for immunoglobu-
lins. For example, the frst phase declares the purpose of
immunoglobulins proteins which design a useful and in-
expensive framework to predict them efciently. Te re-
search community has designed various frameworks based
on machine learning procedures for protein sequence
analysis and classifcation in the last decades [13–17]. In
bioinformatics, predicting immunoglobulins transforms
protein sequences into feature metrics to uncover the core
formation of proteins.Te essential characteristics of protein
prediction are itemized as follows: feature representation
and key feature selection based on their importance and
classifcation. Amino acid composition (AAC), dipeptides
(Dip), and tripeptides are feature extraction techniques to
extract n-gram features representation, where the occur-
rence of n-length peptides are utilized as feature matrices
[18–20].

Furthermore, another feature extraction method
pseudo-amino acid composition (PseAAC), is commonly
implemented, considering physicochemical properties
among residues [15, 17, 21–23]. Te pseudotype protein
structure led to a protein density drop in dyscalculia; for this
purpose, the notion of pseudo-K-tuple is combined with the
idea of PseAAC [24, 25] to design a framework of AAC
minimized with pseudo-K-tuples amino acid composition
(PseKRAAC) [26]. Tey developed a classifer IGPred by
considering nine (9) physicochemical properties of amino
acid-generated proteins with replica ACC [27, 28]. In Ref.
[29], a predictor was developed via a support vector machine
(SVM) to predict immunoglobulins and non-
immunoglobulins. Tey used PseAAC with nine physical
and chemical characteristics of amino acids; A cross-vali-
dation technique was used to train a model, and they got
96.3% accuracy. However, the performance is good but still
needs an efcient bioinformatics tool to predict immuno-
globulin with a less error rate.

Various feature representations and multifaced predic-
tion methods may produce unnecessary knowledge repre-
sentation [30, 31]. However, to deal with this problem, many
studies suggested feature selection algorithms for elimi-
nating unnecessary information to enhance the performance
of the predictionmethods.Te frst one is PCC, which stands
for Pearson’s correlation coefcient, used to measure the
signifcance of feature representation in a subgroup. In
contrast, the second part is related to computing the rep-
etition among features representation by using Euclidean
distance (ED), cosine distance (CD), and Tanimoto (TO).
Maximum-Relevance-Maximum-Distance in [32, 33] and
Analysis of Variance (ANOVA) in [34] are typical feature
selection approaches. For optimum feature representation,
[35–37] used the principal component analysis (PCA) and
misclassifcation error (MCE) to extract optimal feature
representation for pentatricopeptide-repeat proteins pre-
diction and got 97.9% accuracy. Li et al. in [33] used the
above method to design a model for the prediction of an-
ticancer peptide sequences with 19-dimensional attributes.

Although signifcant contribution has been devoted to
the prediction of IGPs, some shortcomings should be ac-
knowledged in terms of feature-encoding schemes and
learning models. One major limitation of the existing
methods is the lack of feature learning algorithms to extract
the structured pattern information from protein sequences
properly. Secondly, only machine learning classifers are not
accurate enough to discriminate IGPs from non-IGPs.
Tirdly, the developed immunoglobulin predictors only
showed the training dataset results using a cross-validation
test while ignoring the external/independent test results.
Independent test results are signifcant as they show the
trained model’s generalization power.

To our best knowledge, IGPred-HDnet is the frst deep
learning-based predictor for identifying IGPs. IGPred-
HDnet extracts the nominal feature vectors using novel
feature descriptors such as FEGS (extract the graphical
features), AAPse (extracting physicochemical features), and
DPC (sequential features) from the given protein sequence
and fed to the hierarchical deep net model (HDnet) as the
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base classifer for constructing the model.Temodel opts for
deep representations instead of manually extracted hand-
crafted features and aims to perform the classifcation of
IGPs. We have validated the model through exhaustive
methods which shows that the overall prediction on both
training and testing datasets outperformed the existing state-
of-the-art methods. Te study provides great insights into
the large-scale identifcation of IGPs which pharmaceutical
companies can opt for in novel drug design.

2. Materials and Methods

In the subsequent subsections, we will describe the stepwise
approach to the classifcation of IGPs. Figure 1 shows these
stepwise approaches. Firstly, the dataset collection and
preprocessing method will be discussed. Te feature rep-
resentation method will be presented in the next section; the
classifcation framework and model evaluation will be dis-
used in the third stage of the methodology.

2.1. Dataset Construction and Preprocessing. Tis portion
will discuss dataset collection for experimenting, i.e.,
training and evaluating the designed framework. Te dataset
contained the immunoglobulins sequences downloaded
from the UniProt database present in or outside the cell
membrane. Tere are some standard techniques to assure
the quality of the baseline dataset; in the frst stage, we
eliminated the ambiguous residues, i.e., “B,” “J,” “O,” “X,”
“U,” and “Z” from the protein sequences to obtained typical
amino acid sequences [38]. We also eliminate the sequence if
it is the portion of other proteins. We picked the protein
sequences from the human, mouse, and rat categories in the
second stage. We used CD-HIT software to diminish hugely
indistinguishable bias in the last stage, which caused over-
ftting predicted results, and the cutof value is set at 60%:

D � D
+ ∪D

−
. (1)

Our dataset D consists of 302 samples, with 110 positive
D+ and 192 negative D− samples of immunoglobulins for
training the model:

indD � indD
+ ∪ indD

−
. (2)

Our independent dataset indD contains 112 samples to
evaluate our trained model, of which 40 are positive indD+

and 72 are negative indD− samples. Overall, 150 positive and
264 negative samples are provided in Supplementary File S1
and Supplementary File S2, respectively.

2.2. Existing Feature Extraction Schemes. In designing a
computerized framework, a series of steps are carried out to
predict immunoglobulins. Among them, the feature ex-
traction scheme is a challenging and essential step in for-
mulating a biological sequence into some numerical values
[39]. Conventional classifcation learning models, including
K-nearest neighbour (KNN), random forest (RF) [40, 41],
and support vector machine (SVM) [42], are based on fxed-
length statistical values and are unable to handle the vari-
able-length protein sequence; hence, the features repre-
sentation algorithm can tackle this problem by extracting the
fxed-length feature vector form the variable-length se-
quences [43–45]. Several researchers have used diferent
feature encoding schemes [46] as shown in Figure 2;
however, none of them used the proposed method for
extracting vital pattern information from the immuno-
globulins. A detailed description is given in Section 2.3.

2.3. Feature Extraction Based on Graphical and Statistical
Features (FEGS). Herein, we have opted for a novel feature
representation method named Feature Extraction based on
Graphical and Statistical features (FEGS) [47] for immu-
noglobulins sequences, as shown in Figure 3. Te proposed
deep neural network is not novel; however, the extraction of
features through this method is novel. Extracting the hidden
pattern information through graphs is diferent from other
sequence-based feature descriptors. Te main shortcoming
of traditional methods is the loss of sequence order infor-
mation. For example, amino acid composition and reduced
amino acid alphabet cannot retain the protein’s global
correlated properties. Furthermore, the manual extraction of
features requires extensive approaches which can be
somehow not sufcient. Tese handcrafted features are not
that much powerful to discriminate biological sequences as
compared to the deep representations, as shown in [15]. Te
FEGS algorithm was proposed to tackle this issue by
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Figure 1: Stepwise approaches for classifcation of IGPs.
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formulating the biological proteins using a three-dimensional
curve. Te working principle of the FEGS algorithm is that
initially, FEGS employs the graphical depiction of primary
proteins using circular cones in 3D space by extending the
notion of 3D protein paths. Secondly, using the physico-
chemical properties of amino acids that efciently extract the
statistical attributes of protein pairs, FEGS seeks to formmany
circular cones in 3D space. Finally, the 578-dimensional
vector is generated by combining mono-amino acid and
dipeptide compositions for each protein sequence.

Initially, the protein sequences are provided in the
FASTA format as input, and then FEGS starts eliminating
unnecessary indices with identical values and generating 158
space curves for the subsequent protein sequence.

2.3.1. Generation of 3D Graphical Curves for Immunoglob-
ulins Sequences. In this method, the protein sequences are
provided in the FASTA format as input; then, according to
their physicochemical indices, 20 amino acids are frst linked
with 20 points in the 3D area. In the second step, the
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Figure 2: Scatter plot of DPC, APAAC, and FEGS feature extraction methods.
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Figure 3: A brief explanation of the proposed FEGS.
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graphical curve of an immunoglobulins sequence can be
generated by enlarging a 3D protein track centred on a right
circular cone.

(1) Preparation of the 20 Amino Acids and the 400 Amino
Acid Sets. Physicochemical properties (PCP) of amino acids
(AAs) play a vital role in analyzing and characterizing
protein function. We arranged the 20 AAs with respect to
their PCP from lower to higher order. Ten, we organized
them on the circumference of the bottommost of a right
circular cone with a height of 1 by the following formula:

Φ Ai( 􏼁 � cos
2Πi

20
, sin

2Πi

20
, 1􏼠 􏼡, i � 1, 2, . . . , 20. (3)

Te above equation Ai denoted 20 amino acids, whereas
all 400 amino acid pairs are linked to the bottom of the right
circular cone via the formula below:

Φ AiAj􏼐 􏼑 � Φ Ai( 􏼁 +
1
4
Φ Aj􏼐 􏼑􏼐 􏼑, i, j � 1, 2, . . . , 20. (4)

AiAj represents each of the 400 amino acid pairs.

(2) Building 3D Graphical Curves for Protein Sequences.
Consider that we have a protein sequence S having N AA
residues S � s1s2...sN. Constructing the 3D graph for the
protein sequence is quite challenging. Te 3D graphical
curve is generated by enlarging a 3D protein track centred on
a right circular cone as follows. Initiating from the origin
point p0 � (0, 0, 0) broadens it to the subsequent point
p1(x1,y1, z1) in the 3D area, conforming to the frst AA s1
and the second point p2(x2, y2, z3) related to the second AA
s2 and so on till the 3D track is accomplished at the last AA
sN, and via this process, the P path is obtained, coordinating
with a 3D graphical curve of the immunoglobulins sequence
S, whereas Pi(xi, yi, zi) is the ith amino acid Si, and the point
coordinates xi, yi and zi are described in the following
formulas:

Ψ Si( 􏼁 � Ψ Si−1( 􏼁 + 􏽘
A1 ,A2∈ A,C,D,...,Y{ }

fA1A2
.Φ A1A2( 􏼁.

(5)

In the above equation, Ψ(S0) � (0, 0, 0), and fA1A2
is the

number of amino acid sets determined. Te selected 158
physicochemical properties are linked with the exclusive
right circular cone; in this way, we got 158 various 3-di-
mensional graphical curves for every immunoglobulin se-
quence related to the 158 physicochemical properties of
amino acids.

2.3.2. Numerical Features of Protein Sequences. Another
challenging job is to transform the generated graphical
curves into numerical feature vectors for the similarity
analysis of immunoglobulins samples. Here, for each curve,
the L/L matrix denoted by M is calculated, and of-diagonal
values Mi,j(i≠ j) are well-defned as a measure of the Eu-
clidean distance and the sum of geometric lengths of
boundaries between Pi and Pj of the curve. At the same time,
on-diagonal elements are equal to zero. Subsequently, all 158

curves are converted into 158-dimensional feature repre-
sentation matrices as a graphical features representation
described below:

Vg � λ1, λ2, . . . , λ158􏼂 􏼃. (6)

Tere are many other feature extraction techniques in
which AAC and DPC are commonly utilized in protein
sequence analyses. To count the frequency of AA in a given
sequence, normalized by sequence length, AAC is widely
used for this process to extract 20 fxed-length features as
formulated below:

Va � f1, f2, . . . , f20􏼂 􏼃. (7)

Te above equation f represents the number of AA
occurrences in the protein sequence. DPC also counts the
number of occurrences of the 400 AA sets of the given
protein sequence; and it extracts 400 fxed-length features
below:

Vd � f1, f2, . . . , f400􏼂 􏼃, (8)

where f represents the number of occurrences of jth AA sets,
i.e., AA, AC, AD, AE, .YY{ } in the protein sequence. Te
statistical features, i.e., AA Va and DPC Vd are merged with
graphical features represented Vg to get a 578-dimensional
feature vector for the protein sequence S. In general, a
dataset that contains N number of immunoglobulins se-
quences is given to FEGS, then we can get theN× 578 feature
representation matrix, in which every row represents a
feature representation vector of immunoglobulins
sequences.

3. The Proposed Model Workflow

We developed a robust immunoglobulins predictor called
Immunoglobulin Proteins Prediction Hierarchical Deep net
(IGPred-HDnet). Figure 4 illustrates the fow of the pro-
posed framework, in which the main stages of the IGPred-
HDnet framework are shown such as data collection, data
distribution, feature representation computation through
FEGS, and classifcation through HDNet and evaluation. In
feature representation, a novel feature encoding method is
proposed to extract valuable feature representation from
immunoglobulin sequences.

3.1. Hierarchical Deep Net Model (HDnet). Te hierarchical
deep net (HDnet) model is an ensemble-based model in-
spired by [48], which is a substitute for a deep neural
network (DNN) to learn hyperlevel feature representation
using various resources and eforts. In contrast, DNN used
complex architecture, i.e., forward and backward propaga-
tion algorithms, to learn hidden information. In developing
an HDnet classifer, it is crucial to determine the learning
algorithms employed in each layer. In our proposed model,
we set the combination of Extreme Gradient Boost
(XGBoost) [49, 50], random forest (RF) [51–53], and ex-
tremely randomized trees (ERT) [54, 55] classifers which
achieved outstanding performance and feed it with the
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previously computed 578-dimensional vector. HDnet is based
on the deep ensemble method that cascades conventional
classifers, for example, RF, ERT, and XGBoost. Compared to
DNN, HDnet uses decision trees instead of various neural
network (NN) models for feature representation learning in
each layer. Figure 5 shows the generic representation of
HDNet, elaborating that if there are multiple feature vectors
frommultiple encoding schemes, they are concatenated at the
level-N. Tese feature vectors are actually deep representa-
tions learnt at diferent layers, similar to other deep neural
networks. Due to the hierarchical type nature, the HDnet
model allows the training process to be more robust, and it
will be more appropriate for training a limited amount of
protein samples. DNN involves various parameters that need
tunes during training a model, while our proposed model
easily tunes the hyperparameter.

We set the boosting parameter value k� 20 for the XGBoost
classifer. For RF and ERT, the number of decision trees is also
set at 20, and the node values are picked by randomly picking
features. In our model, every layer is an ensemble of diverse
learners (e.g., six XGBoost, six RF, and six ERT) who accept the
feature representation processed by previous layer classifcation
models. Te outcome of the previous layer is the input for the
subsequent layer for processing. To produce the enhanced
feature representation related to the multivariate class vectors,
we have integrated, stacked, and summed output as a supreme
probability score. Te process of training is terminated if en-
hancement is not observed in performance. Figure 5 reveals the
layer-by-layer framework of the HDnet.

4. Performance Evaluation

In this research, we utilized four performance evaluation
measures, e.g., accuracy (ACC), specifcity (SP), sensitivity
(SN), and Matthew correlation coefcient (MCC), to fgure
out the achievement rate of our proposed prediction models
described as

ACC �
TP + TN

TP + FP + TN + FN
,

SP �
TN

TN + FP
,

SN �
TP

TP + FN
,

MCC �
TP∗TN − FT∗ FN

�����������������������������������������
(TP + FP)∗ (TP + FN)∗ (TN + FP)∗ (TN + FN)

􏽰 .

(9)

In the above equations, TP represents True-IGPs, which
are correctly predicted as positive instances, whereas TN
corresponds to true non-IGPs, which are correctly classifed
as negative samples. FN indicates non-IGPs, which the
model incorrectly predicts as immunoglobulins.

Te performance above measures containing the MCC is
dependent on the threshold, which delivers the compre-
hensive evaluation for the binary class classifcation. Fur-
thermore, to describe the model performance on a large
scale, we utilized the Area Under the ROC (Receiver Op-
erating Characteristic) Curve (AUC), which is in the shape
of an independent threshold analysis like a further essential
assessment of the model.

5. Proposed Framework Evaluation

In machine learning (ML), the model performance is nat-
urally assessed via cross-validation (CV). Tere are three
tests in the research community to determine the dis-
criminatory power of the designed framework: K-fold also
called subsampling, Jackknife, i.e., leave-one-out and in-
dependent tests [56, 57]. Te Jackknife test provides ex-
ceptional and encouraging results to train a model [58];
however, the main cons are computational cast due to a large
number of calculations [59]. To overcome the weakness of
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the Jackknife and improve the simplifcation power, we
implemented the K-Fold CV test to train our model and test
the performance [60]. In this method, we randomly divided
the train data intoK-folds (subsets), in whichK− 1 is utilized
to train the proposed model, and the leftover is utilized to
test the model [61]. Subsequently, for the particular ap-
proximation, the obtained results are averaged. We set the
value of K to 10 after conducting various experiments.

5.1. Predictive Performance of Hypothesis Learners Using
Various Feature Encoding Schemes onTrainingDataset Dtrain.
In this section, we experimentally determine the prediction
performance of various classifers, i.e., KNN [62], DT [63],
SVM [46, 64], and HDnet using various descriptors, i.e.,
APAAC (physicochemical features), DPC (sequential fea-
tures), and FEGS (graphical features), as shown in Figure 6.
Each learning engine is computed by conducting a ten-fold

CV test on the training dataset Dtrain with four evaluation
measures ACC, SN, SP, and MCC. In the case of APAAC
feature vectors, the SVM classifer secured the worst
AAC� 89.72% and MCC� 0.786, while HDnet achieved a
higher ACC of 95.69% and MCC of 0.909 points. Similarly,
in the case of the DPC method, again the HDnet classifer
produced 0.33% high ACC and 0.007 points MCC, re-
spectively. Furthermore, in the case of the FEGS feature
method, the highest performance is obtained by the HDnet
classifer, which is ACC� 98.00%, SN� 94.55%, SP� 100%,
and MCC� 0.958. Te second-best predictor is KNN which
achieved 90.41% ACC and 0.809 points MCC, while SVM
comparatively produce good predictions on all feature
methods.

Several judgements are made on the reported results of
all classifers in Table 1. First, the HDnet model consistently
produced the best outcomes among the classifcation al-
gorithms compared to other machine-learning classifers for
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all feature encoding schemes. Te main reason is due to the
high learning potential of a deep neural network as com-
pared to the conventional classifers. Te internal structure
of the HDnet classifer is based on decision trees that enable
the model to predict the extracted features better [65].
Further, it is evident in the literature that deeper networks
have more learning potential as compared to conventional
neural networks [15, 66, 67].

Secondly, among the feature representation approaches,
FEGS (graphical features) produced the best results for
overall hypothesis learners (classifers) than other feature
vectors such as DPC and APAAC. Te underlyingreason for
the high prediction rate of FEGS methods is that FEGS
extracts the conserved local and global graphical, physi-
cochemical and statistical attributes from a protein se-
quence. As in Figure 1, the visualization infuence of the
extracted features through t-distributed stochastic neigh-
bour embedding (t-SNE) can be seen. Te red colour

represents the IGPs class, and the green colour represents
the non-IGPs class. Te features with a high correlation,
like DPC and APAAC, cannot incorporate the correct
predictions of immunoglobulins. In contrast, the novel
features of FEGS are less correlated enabling the classifers
to produce high performance.

5.2. Predictive Performance of Hypothesis Learners Using
VariousFeatureEncodingSchemeson theTestingDatasetDtest.
In this subsection, we examine the success rates of our model
via an independent test to show its generalization power. It
was ensured that the samples in the independent test Dtest
were unseen, and none of the immunoglobulin samples was
used in training the model. Table 1 depicts the prediction
outcomes of all classifers using the APAAC, DPC, and FEGS
feature methods. Comparative analysis reveals that our
proposed learning model HDnet using novel feature FEGS
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Figure 6: Training parameter metric performances evaluation and AUC-ROCs of KNN, DT, SVM, and the proposed HDnet via APAAC,
DPC, and the proposed FEGS feature extraction methods.
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Table 1: Analysis of various classifers using feature encoding schemes on training and testing datasets Dtrain and Dtest.

Feature-encoding
methods Classifers

Benchmark dataset Independent dataset
ACC
(%) SN (%) SP (%) MCC F-measure

(%)
ACC
(%) SN (%) SP (%) MCC F-measure

(%)

APAAC

KNN 95.01 94.55 95.26 0.898 92.95 88.93 97.50 83.33 0.777 85.71
DT 90.70 87.27 92.66 0.802 86.92 91.96 92.50 91.66 0.829 89.15
SVM 89.72 86.36 91.66 0.786 85.61 81.25 82.50 80.55 0.612 75.86
HDnet 95.69 91.82 93.75 0.909 93.83 90.17 87.50 91.66 0.787 86.41

DPC

KNN 90.41 91.82 89.63 0.809 86.77 92.85 97.50 90.27 0.854 90.69
DT 89.39 85.45 91.66 0.771 85.11 93.75 92.05 94.44 0.864 91.35
SVM 90.23 96.36 45.58 0.467 69.67 83.03 100 73.61 0.706 80.80
HDnet 96.02 90.00 99.47 0.916 94.18 91.96 77.50 100 0.829 87.32

FEGS

KNN 93.03 90.00 94.78 0.856 89.71 94.64 100 91.60 0.890 93.00
DT 91.93 87.27 93.74 0.817 87.95 93.75 97.50 91.60 0.871 91.76
SVM 94.72 94.55 94.85 0.889 92.96 93.75 100 90.27 0.876 91.95
HDnet 98.00 94.55 100 0.958 96.94 99.10 97.50 100 0.980 98.73
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Figure 7: Training parameter metric performances evaluation and AUC-ROCs of KNN, DT, SVM, and the proposed HDnet via APAAC,
DPC, and the proposed FEGS feature extraction methods.
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achieved outstanding results in terms of all performance
metrics, likewise ACC� 99.10%, SN� 97.50%, SP� 100%,
and MCC� 0.980 points, respectively. In contrast, the same
learning engine using the APAAC feature produced the
worst results as shown in Figure 7.

5.3. Predictive Performance of the Proposed Predictor with
Existing Methods on Training and Testing Datasets. In this
section, we theoretically compare the efcacy of our pro-
posed model with the three developed approaches such as
CC-PSSM [39], IGPred [19], and Ghulam et al.’s approach
[68] on training and testing datasets. Te results in Table 2
are extracted from the previous literature [69]. It is worth
noting that none of the existing predictors generated the
prediction outcomes on independent tests to show the
generalization power of their model. Driven by the novel
feature descriptor FEGS with the intelligent deep learning-
based algorithm HDnet, IGPred-HDnet outperformed the
existing methods for IGs identifcation in terms of all
performance metrics, i.e., ACC, SN, SP, MCC, and AUC. On
the training benchmark dataset, our method notable in-
creased ACC by 1.9%, SN by 1%, SP by 1.5%, and MCC by
0.026 points over the second-best performer XGBoost. An
independent test was performed to investigate further the
IGPred-HDnet model’s predictive capability on unseen data.
Both the ACC and AUC results are 0.99 and 1.00, as shown
in Table 2 and Figure 8.

Te underlying reason for achieving high predictions is
to extract the graphical-based, physicochemical-based, and
sequence-based attributes. Also, the hierarchical type
structure of the HDnet classifer enables a better forecast of
the IGs samples from the extracted attributes [65].

6. Conclusion and Future Work

IGPs are a crucial constituent of the immune system.
Understanding deep insight IGPs can provide useful hints
in drug discovery for disease treatment. Tus, the objective
of this research was to construct a novel sequence-based
computational method for predicting and analyzing IGPs.
Te proposed theoretical model “IGPred-HDnet” is su-
perior to other advance immunoglobulin-based predictors
due to several reasons. Firstly, we designed an innovative
graphical algorithm FEGS to capture structured informa-
tion buried in the protein sample. Te structure features
produced better results than the other feature schemes.
Secondly, we implemented a deep learning model called
HDnet for the frst time as a learning model for recognizing
IGPs.

Despite enhancing the model’s overall performance,
further gaps still exist for future, such as several previous
publications like Tang et al. [27] established public web-
servers that can enrich the applicability of the anticipated
model. Also, using novel feature selection algorithms is vital
to avoid overftting and improve the generalization power of
the trained model. We hope that the proposed IGPred-
HDnet will become a potential tool for large-scale IGPs
characterization in particular and other protein problems in
general.
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Table 2: Analysis of various classifers using feature encoding schemes on training and testing datasets Dtrain and Dtest.

Dataset Predictor ACC SN SP MCC Pre NPV F1 AUC

Training

CC_PSSM 0.960 — — 0.921 0.961 — — 0.994
IGPred 0.969 0.963 0.975 — — — — 0.994
XGBoost 0.972 0.945 0.985 0.950 0.980 — — 0.970

IGPred-HDnet 0.980 0.945 1.000 0.958 1.000 1.000 0.971 0.998

Testing

CC_PSSM 0.883 — — 0.847 0.884 — — 0.914
IGPred 0.891 0.886 0.897 — — — — 0.914
XGBoost 0.894 0.869 0.906 0.874 0.902 — — 0.892

IGPred-HDnet 0.991 1.000 0.986 0.980 0.9750 1.000 0.987 1.000
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Figure 8: Comparison of the proposed method with the existing
methods.
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Supplementary Materials

Supplementary File S1 contains the positive samples (im-
munoglobulins sequences). Supplementary File S2 contains
the negative samples (nonimmunoglobulins sequences).
(Supplementary Materials)
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