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Abstract

In anatomic pathology, immunohistochemistry (IHC) serves as a diagnostic and prognostic method for identification of
disease markers in tissue samples that directly influences classification and grading the disease, influencing patient
management. However, till today over most of the world, pathological analysis of tissue samples remained a time-
consuming and subjective procedure, wherein the intensity of antibody staining is manually judged and thus scoring
decision is directly influenced by visual bias. This instigated us to design a simple method of automated digital IHC image
analysis algorithm for an unbiased, quantitative assessment of antibody staining intensity in tissue sections. As a first step,
we adopted the spectral deconvolution method of DAB/hematoxylin color spectra by using optimized optical density
vectors of the color deconvolution plugin for proper separation of the DAB color spectra. Then the DAB stained image is
displayed in a new window wherein it undergoes pixel-by-pixel analysis, and displays the full profile along with its scoring
decision. Based on the mathematical formula conceptualized, the algorithm is thoroughly tested by analyzing scores
assigned to thousands (n = 1703) of DAB stained IHC images including sample images taken from human protein atlas web
resource. The IHC Profiler plugin developed is compatible with the open resource digital image analysis software, ImageJ,
which creates a pixel-by-pixel analysis profile of a digital IHC image and further assigns a score in a four tier system. A
comparison study between manual pathological analysis and IHC Profiler resolved in a match of 88.6% (P,0.0001, CI = 95%).
This new tool developed for clinical histopathological sample analysis can be adopted globally for scoring most protein
targets where the marker protein expression is of cytoplasmic and/or nuclear type. We foresee that this method will
minimize the problem of inter-observer variations across labs and further help in worldwide patient stratification potentially
benefitting various multinational clinical trial initiatives.
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Introduction

Identification of various marker proteins in human tissue sample

has been an important prerequisite in the clinical management of

various diseases including cancer. Staining of various marker

proteins located either in the cell nuclei, cytoplasm or membrane

are often considered as pathological determinants for classifying

and grading the disease. For identifying the presence and the

extent of expression of such proteins, qualitative assessments is

commonly done following techniques such as immunohistochem-

istry (IHC), immunocytochemistry (ICC) and immunofluorescence

(IF) [1]. The basic underlying principle of these techniques is the

staining of the biopsy tissue samples with antibodies specific to the

molecular marker of interest. In IHC method, visualization of the

antibody-antigen reaction is accomplished by the use of a

secondary antibody conjugated to an enzyme, such as peroxidase,

which catalyses a brown color-producing reaction. The processed

sample slides are generally judged under a light microscope by a

trained pathologist to assign a score based on the visual parameters

set.

Originally, McCarty et al. (1986) developed the H scoring

system [2], which was widely used until the introduction of a more

recent, but a different scoring system by Allred et al. (1998) under

the name of Allred or quick score [3]. Since both of these methods

are manual, the issue of visual perception bias remains

unanswered in addition to the time consumption which makes

these methods low throughput to meet the growing need of large

cancer hospitals. The existing clinical scoring process is based on

two characteristics: overall stain intensity and the proportion of

neoplastic tissue stained. The pattern of the stain is broadly

categorized on the basis of the percentage of cells stained i.e. .

75% – uniform; 25–75% – variable; and 0–25% – rare. The

overall score of the staining intensity typically has four tiers

ranging from 0 to 3 [4]. One major problem in determining the

standard by this approach is the amount of variability due to visual

perception on a hematoxylin counter-stained tissue section [5,6].

With the introduction of advanced digital image processing

systems, the emergence of a number of both, commercial as well as

freely available computer-assisted softwares have been introduced in
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order to rally the high volume IHC analysis and scoring [1,5,7–14].

Amajority of themodern cellular imaging systems are accompanied

by proprietary software that offers a diversity of quantitative

information about the acquired images, but in order to perform

scoring calculations, users need to specify the intensity threshold and

frequency of stained cell within the image areas. The choice and

determination of threshold being a critical step for all subsequent

quantification can itself be subjective and thus leads to a user-

dependent discrepancy in tissue sample scoring. Additionally, the

high cost of the commercially available softwares often limits the

application of such automated IHC scoring in research organiza-

tions or hospitals. On the other hand, the available free tools are yet

to arrive to a consensus depicting the accuracy standards.Only a few

studies have compared the visual human interpretation to that of the

computer aided vision of IHCexpression levels with reverence to the

clinically significant factors and endpoints, such as determining the

outcome of a disease [14–17].

Keeping in view the above mentioned limitations of various

analytical methods, we report here, the development of an open

source plugin named IHC Profiler, which is compatible with the

ImageJ software and demonstrate the method for IHC analysis

using color deconvolution and computerized pixel profiling

leading to the assignment of an automated score to the respective

image. This comprehensive method demonstrated here has been

thoroughly validated using high volume IHC digital dataset

representing multiple protein markers which have shown either

cytoplasmic or nuclear expression.

Materials and Methods

Ethics Statement
The clinical study protocol was reviewed and approved by the

TMC-ACTREC Institutional Review Board. For several exper-

iments paraffin embedded tissue blocks were obtained for use from

our tumor tissue repository and thus patient consent waiver was

obtained.

The Human Protein Atlas
Immunohistochemistry images of various human tissue samples

stained with a variety of marker protein (antibody) were also

obtained from the human protein atlas (http://www.proteinatlas.

org/) with permission [18,19]. Scoring was performed and the

data was matched for similarity.

Immunohistochemistry
Standard IHC protocol was followed to stain the tumor tissue

samples using the mouse monoclonal antibody against hNIS

(human Sodium Iodide Symporter) (Abcam, ab17795), ER

(Estrogen Receptor) (Abcam, ab16660, ab288). Briefly, 5 mm

sized paraffin embedded tissue sections were de-paraffinized with

xylene and endogenous peroxidase activity was quenched with 3%

H2O2 in methanol for 30 minutes in the dark. Tissue sections were

dehydrated through graded alcohols and subjected to antigen

retrieval using 10mM sodium citrate. Sections were washed with

TBST (Tris Borate Saline Tween-20) and then blocked with 5%

BSA (Bovine Serum Albumin) for one hour. Slides were incubated

with the respective mouse monoclonal primary antibody diluted

with TBS. Slides were then washed for 5 minutes in TBST and

incubated for 1 hour with the respective HRP (Horse Raddish

Peroxidase) conjugated anti-mouse secondary antibody diluted

with TBS in a ratio of 1:200. After washing, slides were incubated

with DAB (3,39-diaminobenzidine tetrahydrochloride) (Sigma) and

immediately washed under tap water after color development.

Slides were then counter stained with hematoxylin. Slides were

mounted with DPX (dibutyl phthalate xylene) and were then

observed under a light microscope (Carl Zeiss).

Image Acquisition
Images were captured using the Zeiss Imager.Z1 upright

microscope (Zeiss, Germany) equipped with an AxioCam MRc5

camera (Zeiss, Germany), interfaced with an IBM Think Centre

computer (International Business Machines Corporation, USA).

Light and camera settings were controlled using the AxioVision

V4.6 (Zeiss, Germany) software, resulting in average background

values of 63613 milliseconds (mean 6 standard deviation) for the

red, green and blue channels. Images were captured at 10X, 20X,

and 40X objective lenses.

Optical Density Vector Determination
To determine the correct optical density (OD) vectors for the

RGB channel of Hematoxylin and DAB, we followed the protocol

as previously described by Ruifrok et al. [1]. Since the optical

density is proportional to the concentration of the stain, the

amount of stain present will be a factor determining the optical

density at a wavelength specific to the stain as per the Lambert-

Beer law [20]. In brief, the OD for each channel is defined as,

ODC~{log10 IC=I0,Cð Þ~A � cC

Table 1. List of the cancer samples and immunogens tested during the current study.

Cancer Type Markers Analysed

Breast cancer hNIS, ER, PR, p53, STAT3, Ki-67, BRCA1, BRCA2, VEGF, Cyclin D1

Colon Cancer Lamin A/C, myc, VEGF

Cervical Cancer STAT3

Liver Cancer BPDE-DNA adducts, VEGF, Cyclin D1

Lung Cancer Akt-ser, Akt-Thr, Bax, Bcl-2, BPDE-DNA adducts

Melanoma BRAF, Fascin, MMP3

Thyroid Cancer hNIS

Oral Cancer Bax, Bcl-2, Cox2, PCNA, Survivin, Jnk, p38, p-Jnk, Akt, Vimentin, CK5, CK8, CK18

Ovarian Cancer p53, HOXA9, HOXA10, HOXA13

doi:10.1371/journal.pone.0096801.t001
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Figure 1. Representation of color deconvolution using the old and the new optical density (OD) vectors. A: Color deconvolution using
the old OD vectors. B: Color deconvolution using the new OD vectors. C: Scatter plot comparing the intensities on the complimentary image with the
old OD vectors (blue) and the new OD vectors (red). D: Plot comparing the number of pixels with the intensity value of 255. An improvement
between 2 to 10 fold is shown using 7 different samples. Each data plot represents an individual sample with its respective pixel count of the intensity
value of 255.
doi:10.1371/journal.pone.0096801.g001
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Wherein, OD is the optical density, I is the transmitted light and

IC being the intensity of the detected light after passing through

the specimen, I0,C is the intensity of light entering the specimen,

and A is the amount of stain with an absorption factor c. The

subscript c indicates the detection channel. The detected

intensities of light transmitted through a specimen is as described

by the Lambert-Beer’s law [20].

Image Analysis
The IHC images used were stained with DAB and hematoxylin.

The result of color deconvolution leads to the production of three

images, namely, DAB, hematoxylin and a complimentary image.

In a previous study, we reported development of an ImageJ

compatible plugin for analyzing cytoplasmic staining pattern by

assigning a histogram profile for the deconvoluted DAB image

[21]. Now, within the scope of the current plugin development, we

envisioned automating the whole process by integrating deconvo-

lution, histogram profiling and scoring by a simple choice of the

program menu. Additionally, it integrates methods with a wider

scope of analyzing various marker proteins displaying cytoplasmic

or nuclear staining patterns (Table 1).
In digital image analysis, the pixel intensity values for any color

range from 0 to 255, wherein, 0 represents the darkest shade of the

color and 255 represent the lightest shade of the color as standard.

A total of 1703 images were analyzed independently with the help

of two expert pathologists and were assigned a score as high

positive (3+), positive (2+), low positive (1+) and negative (0). In the

current method development, the next step was assigning a

histogram profile which is a plot between the intensity values of the

pixels (X axis) vs. the number of pixels representing the intensity (Y

axis). Keeping in view the standard grading procedure, the

histogram profile was divided into 4 zones, viz. high positive,

positive, low positive and negative. These four zones were equally

divided on the pixel color intensity bar (as indicated in

Figure S1A).

Figure 2. Representative histogram profile and score of a cytoplasmic and nuclear stained image using IHC Profiler. A: Profiling of
the DAB stained cytoplasmic image sample. The histogram profile corresponds to the pixel intensity value vs. corresponding number counts of a
pixel intensity. The log given below the histogram profile shows the accurate percentage of the pixels present in each zone of pixel intensity and the
respective computed score. B: Profiling of the DAB stained nuclear stained image sample. The red spots on the DAB image indicate the threshold
selection of the nucleus areas using the threshold function of ImageJ. The representative histogram profile corresponds to the number of pixels vs.
the corresponding value at which the pixel of the respective intensity is present.
doi:10.1371/journal.pone.0096801.g002
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The zones were visually identified by using the threshold feature

of Image menu of the ImageJ program [22]. To begin with, the

intensity values were grouped into bands of 10 and the

corresponding regions in the image were confirmed by using the

threshold feature. Thus initially all the intensities from 0 to 10

were turned red on an image with a known pathological score of

high positive. Then, in addition to the previous band, the next

band, from 11 to 20 were turned red and the same was continued

until all the pixels of the brown shades were assigned a threshold

and the range for the high positive zone was determined.

Similarly, zone containing the lightest color shade of pixel

intensities was also determined using an image with a known

pathological score of negative. This was because once the highest

intensity (high positive) and the least intensity (negative) zones

were determined, it would help towards the better determination

of the size of the intermediate (positive and low positive) zones. It

was found that the region between 0 and 60 contained pixels of the

high positive stained images. Similar was noted on samples with

known pathological lower scores to optimize the correct range.

The process was repeated for at least 70 images of same intensity

of the color shade. The intensity range for the positive zone was

found to be ranging from 61 to 120; 121 to 180 for the low positive

zone; and 181 to 235 for the negative zone, respectively

(Figure S1). It was determined that the pixels with intensity

values ranging from 235–255 predominantly represent fatty tissues

which are occasionally present but do not typically contribute to

pathological scoring and were therefore excluded from the score

determination zones. The intensity ranges determined visually

were confirmed by plotting a histogram using Microsoft Excel

(data not shown).

Score Calculation
A simple algebraic formula was conceptualized for score

assignment to the IHC images.

Score~
(Numberofpixelsinazone)|(Scoreofthezone)

Totalnumberofpixelsintheimage

Wherein, the score of the zone is assigned as 4 for the high positive

zone, 3 for the positive zone, 2 for the low positive zone and 1 for

the negative zone. Also, any image containing 66% or more

percentage of pixels in a zone are directly assigned a score of that

zone, eliminating the need to apply the formula. However, in case

an image lacks the majority (lesser than 66%) for any particular

zone, the above formula will operate to determine the score.

IHC Profiler
The current plugin named as IHC profiler, integrates options

for quantitative analysis of digital IHC images stained for either

cytoplasmic or nuclear proteins. Demonstration video to perform

quantitative scoring analysis of the cytoplasmic stained sample

(Movie S1) and that of the nuclear stained sample (Movie S2)
can be found in supplementary data. IHC profiler can be freely

downloaded from Sourceforge website (https://sourceforge.net/

projects/ihcprofiler/). IHC profiler is currently compatible for use

with Microsoft Windows operating system. Guidelines pertaining

to the use of IHC profiler and embedding it to the Windows based

ImageJ program can also be found in the package.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6

software (GraphPad Software, La Jolla California USA). To

evaluate the agreement between the manual and automated

scoring methods, we split the scores into the groups of high

positive, positive, low positive, and negative. The significance of

difference was obtained by performing the two tailed chi-square

test and CI set at 95%. Value of P lesser than 0.05 were considered

significant and that lesser than 0.001 were considered highly

significant. For the comparison of the two grading methods, kappa

statistical analysis was performed.

Results

Optical density vector optimization
As a first step, we attempted color deconvolution of IHC images

using the set optical density vectors for DAB and hematoxylin (H

DAB as mentioned in the plugin) in the color deconvolution plugin

Figure 3. Flow chart demonstrating the computing steps
involved in the working algorithm.
doi:10.1371/journal.pone.0096801.g003
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for ImageJ developed by Ruifrok et al. [1]. When the two stains

(i.e. blue color representing hematoxylin and brown representing

DAB) were separated from an image, the third complimentary

image, contained shades of both DAB and hematoxylin

(Figure 1A). Therefore, in order to rectify we analyzed multiple

different images of varying staining pattern to determine the

correct optical density (OD) vectors for hematoxylin and DAB.

The images produced upon color deconvolution by the new OD

vectors are represented in the figure (Figure 1B). We observed a

substantial improvement in intensity distribution of pixels on the

complimentary images as represented in Fig. 1A and Fig. 1B

(Figure 1C). This improvement was based on the correction of

the vectors that resulted in the loss of a large amount of pixels in

the complimentary image. To verify the utility and accuracy of the

new OD vector in deconvoluting various antibody stained IHC

samples, 147 different samples of cancer tissue stained with various

antibodies were attempted. Intensity values were analyzed and

compared for both, pre- and post-correction OD values. Finally,

depending on the IHC staining procedure followed, a 2–10 fold

variation in complimentary image was observed (Figure 1D).

Automated image scoring for cytoplasmic and nuclear
protein targets
To automate the scoring process, we developed a new macro

compatible for use with ImageJ program that generates a

histogram profile of the DAB image and applies the scoring

formula as described previously. This program named ‘IHC

Profiler’ has been embedded under the plugin menu of the ImageJ

software. The scoring method is optimized by analyzing over 800

Figure 4. Impact of magnification on image scoring. A: Analysis of a 10X image area where a significant amount of stroma and fatty tissue is
present. After color deconvolution, the score assigned by IHC profiler on the DAB image was determined as low positive. B: Scoring analysis of the
same tissue area where image captured was by using a 20X lens in the marked area, focusing more on the actual tumor mass resolute a score of
positive. C: Scoring analysis of the same tissue area wherein the image was captured using a 40X lens, focusing more on eliminating the stromal and
fatty tissue region increases the percentage of the positive pixels in the positive and high positive zones.
doi:10.1371/journal.pone.0096801.g004
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stained IHC images with a predominantly cytoplasmic staining

pattern. As a general procedure, images are opened in ImageJ,

followed by deconvolution using the newly optimized color

deconvolution plugin. With the selection of the ‘H DAB’ vector

on the color deconvolution popup window, IHC profiler

automatically plots a histogram profile of the DAB image and

the corresponding scoring log is displayed on the screen as shown

in Figure 2A.

Similarly, for images with nuclear staining pattern, over 900

images are analyzed. As the deconvoluted DAB staining pattern

for nuclear proteins are confined primarily to the nuclei, the

‘threshold’ feature of the ImageJ program is used to select the

positively stained areas with brown stained pixels and further the

‘create selection’ option from image menu is used to mark a

selection around them. Once this selection is applied on the image,

IHC profiler assigns a histogram profile as well as its correspond-

ing log to the respective image (Figure 2B). The flow chart

representing the functioning of the algorithm designed for the

macro is shown in Figure 3.

Automated IHC scoring macro improves accuracy and
decreases observer bias
By analyzing over 1700 cytoplasmic and nuclear stained IHC

images, scores obtained using the IHC profiler are then compared

with the scores assigned by expert pathologists. Our findings with

the automated scoring macro resulted in an 88.6% match with

that of the pathologically scored data (P,0.0001, CI = 95%)

(Table 2). Additionally, the agreement of scores between IHC

profiler and the manual analysis process has been shown in

Table 3 (Kappa = 0.843). Discrepancies in the verdict of a

pathologist may vary that from one pathologist to another

depending on his/her experience in the discipline. To achieve

stronger confidence in our findings, we added a third pathologist

to the study. The strength of agreement in the inter-observer

comparisons reveal that the opinions of observer 1 and 2 is found

to be worse than what one would expect to see by chance alone

(Kappa =20.669) (Table 4) and that in between observer 2 and

3 is considered to be ‘poor’ (Kappa = 0.011) (Table 5). However,

the strength of agreement is considered to be ‘good’ in between

observer 1 and 3 (Kappa = 0.715) (Table 6). Further accuracy

analysis shows that majority of the cases where the automated

IHC scoring differs by 1 or 2 degrees from that of the manual

scoring, are mostly the cases where the ratio of tumor tissue to

stromal tissue is low. This is mainly because a high percentage of

pixels present in stroma represents low intensity values (pixel value

,200), and are responsible for a lower average score thus

assigned. However, when a pathologist reads the slide, they ignore

stromal staining and assigns a score value primarily based on

tumor tissue staining intensity. In an automated process, this is

difficult to achieve and may require manual supervision. To

address this issue in 15–20% cases where low tumor to stroma

Table 2. Comparison chart showing automated vs. manual scoring.

Total number of high positive (3+) cases 312

Total number of positive (2+) cases 481

Total number of low positive (1+) cases 572

Total number of negative (0+) cases 338

Total number of cases studied 1703

Number of cases where inter-observer score does not match 383

Number of cases where inter-observer scores match but differ from automated analysis 150

Number of cases where automated scores and manual scores differ

due to higher stroma to tumor ratio

124

Percentage match between manual and automated scoring before stroma to tumor ratio

corrections by higher magnification

77.5%

Percentage match between manual and automated scoring after stroma to tumor ratio

corrections by higher magnification

88.6%

Table shows the distribution of samples and a comparison study between the automated and the manual scoring. Total number of cases determines the sample size
taking into account for the study. The difference of significance was obtained by two-tailed chi-square test resulting into values of P,0.0001 (CI = 95%).
doi:10.1371/journal.pone.0096801.t002

Table 3. Agreement of scores between manual vs. IHC Profiler assessment.

Manual

High Positive Positive Low Positive Negative Total

IHC Profiler High Positive 250 22 0 0 272

Positive 17 416 43 0 476

Low Positive 0 39 327 16 382

Negative 0 1 12 177 190

Total 267 478 382 193 1320

Table summarize the agreement of scores between the manual scoring process vs. IHC profiler assessment. This table excludes the samples wherein the inter-observer
score did not match with each other. Kappa statistics was performed and the value of Kappa = 0.843 (95% CI: From 0.819 to 0.867).
doi:10.1371/journal.pone.0096801.t003
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ratio is observed, we applied zoom, wherein images captured using

higher magnification are used thereby showing significant

improvements in achieving correct pathological scoring

(P=0.002, CI = 95%) (Figure 4).

Discussion

Arriving at a common consensus in the quantitative analysis of

immunohistochemistry images is still an issue in clinical pathology.

Since the IHC slides are predominantly stained with DAB and are

counterstained with hematoxylin, discrepancies in the verdict of

the accurate color intensity turns out to be a problem and thus

often leads to inter-observer variations. Assessment of the

percentage of areas stained has a varying (poor to good) rate of

reproducibility [23], even if the derived data by a pathologist have

good to excellent inter-observer reproducibility [23,24].

Due to the above mentioned limitations of visual estimation,

means of automated quantitation of IHC images may provide the

necessary detailing to improve IHC data quality across the globe.

This is important as the practice of clinical decision making

processes across the world will ensure best patient benefit.

Numerous models have been presented using diverse systems of

image color modes. Apart from quantitative image analysis by

color deconvolution [1], there have been reports pertaining the use

of the red-green-blue (RGB) method [9], the cyan-magenta-

yellow-black (CMYK) method [13], the hue-saturation-intensity

(HSI) method [25], and the CIE Luminance U-chromatic

component 1 V-chromatic component 2 (CIELUV) method

[17]. Despite the fact that these studies provided with reasonably

good results in chromogen discrimination over the background,

most of them, however, make use of rather sophisticated softwares,

and lengthy protocols and algorithms which make them compli-

cated for routine use in clinic and research laboratories handling

large volume of patient samples.

In this study, we therefore focused on developing an automated

portal linked to a open source analysis software (i.e. ImageJ) to

quantify the staining on IHC images which requires minimal

supervision for analysis of both cytoplasmic and nuclear protein

markers in patient sample cases. The proposed algorithm results in

the assignment of a score along with a detailed histogram profile of

the image on the basis of the pure DAB stain intensity obtained

through color deconvolution. The currently available color

deconvolution procedure by Ruifrok et al. [1] majorly takes the

stain separation into account and does not emphasize more on the

pixels lost in the complimentary image generated. This generally

results in a false positive stain separation of DAB and thus may

lead to improper judgment of the score value. The main

advantages of the method developed are that, i. it is compatible

with an open source and widely used digital image analysis

program ImageJ unlike a few tools that require a separate platform

to perform the desired operation [5,11]; ii. requires only the

sample image photographs and returns a full pixel analysis report

of the entire image area; iii. eliminates inter-observer visual

perception bias; iv. can significantly improve the throughput by

reducing the time burden of high volume sample analysis

compared to that of traditional manual scoring process and

distinct from the quantitative image analysis study by Tuominen

and colleagues wherein the higher volume of samples can be a

hurdle in the time consumed [11]; v. simple, requiring only couple

of steps to follow to analyze each sample through it; vi.

Table 4. Variability of scores in between the pathological opinions.

Observer 2

High Positive Positive Low Positive Negative Total

Observer 1 High Positive 0 0 0 0 0

Positive 0 0 52 0 52

Low Positive 0 48 0 153 201

Negative 0 0 127 0 127

Total 0 48 179 153 380

Table summarizes the inter-observer variability of two pathologists whose opinions were taken into consideration during this study (383 cases as shown in Table 2).
Sample number was rounded off to 380 for statistical comparison between the two groups. Kappa statistics was performed and the value of Kappa =20.669 (95% CI:
From 20.702 to 20.637) indicates the strength of agreement is worse than what one would expect to see by chance alone.
doi:10.1371/journal.pone.0096801.t004

Table 5. Variability of scores in between the pathological opinions.

Observer 3

High Positive Positive Low Positive Negative Total

Observer 2 High Positive 0 0 0 0 0

Positive 0 0 07 0 07

Low Positive 0 12 111 57 180

Negative 0 0 123 70 193

Total 0 12 241 127 380

Table summarizes the inter-observer variability of two pathologists whose opinions were taken into consideration during this study (383 cases as shown in Table 2).
Sample number was rounded off to 380 for statistical comparison between the two groups. Kappa statistics was performed and the value of Kappa = 0.011 (95% CI:
From 20.078 to 0.099) indicating the strength of agreement is considered to be ‘poor’.
doi:10.1371/journal.pone.0096801.t005
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significantly eliminates the severe dependency on a trained

pathologist contrasting reports by Turbin et al. and by Gokhale

et al. wherein inputs from a trained pathologist are crucial [26,27].

Alternatively, the vast applicability of IHC profiler helps it stand in

line with the ‘‘gold standard’’ commercially available tools

(Table 7). IHC profiler is independent of the need to select a

threshold where the marker protein is cytoplasmic in nature.

However, in cases where the marker protein is nuclear by nature,

scoring the entire image will obviously lead to inaccurate results, a

secondary step has been added to make use of ImageJ program’s

threshold feature in a user defined manner to select the DAB

stained nuclear areas and mark them by the ‘create selection’ tool

to specify areas for automated analysis. By testing several hundreds

of samples of each type, we obtained good confidence on the

assigned score.

Further, an accuracy comparison study was also performed,

which designate that 88.6% of the scoring assigned by IHC

profiler are in fair agreement with blinded manual scoring by

pathologists (P,0.0001, CI = 95%) (Table 2). Keeping in view

the biological variations in human tissue samples, unsupervised

scoring analysis demonstrating such a high percentage match with

the traditional analysis would seem to be an important achieve-

ment. Additionally, a lot of previously demonstrated softwares

were confined to score only specific target proteins and were not

Table 6. Variability of scores in between the pathological opinions.

Observer 3

High Positive Positive Low Positive Negative Total

Observer 1 High Positive 0 0 0 0 0

Positive 0 33 02 0 35

Low Positive 0 17 173 37 227

Negative 0 0 07 111 118

Total 0 50 182 148 380

Table summarizes the inter-observer variability of two pathologists whose opinions were taken into consideration during this study (383 cases as shown in Table 2).
Sample number was rounded off to 380 for statistical comparison between the two groups. Kappa statistics was performed and the value of Kappa = 0.715 (95% CI:
From 0.651 to 0.778) indicating the strength of agreement is considered ‘good’.
doi:10.1371/journal.pone.0096801.t006

Table 7. Comparison of IHC profiler with available IHC image analysis tools.

Software Name Pros Cons

IHC Profiler N Freely available
N Open source, ImageJ compatible
N Easy to learn and use
N Bias-free analysis
N Time saving (takes about 1–2 min to analyse an
image depending on the user experience)

N Compatible with various image file formats
(JPEG, PNG, TIFF, BMP)

N Can analyse both cytoplasmic and nuclear
stain immunomarkers

N Can be used for the analysis of wide-range
of markers and cancers

N Users capable of analysing the whole image
or a region of interest

N Analysis do not support membrane immunomarkers with
stains in the cell membrane

N May require an experts supervision for identification of non-
neoplastic cells and tissue necrosis

ImmunoRatio N Freely available
N Web based application and runs within the web browsers
N Bias-free analysis
N Users capable of analysing the whole image or
a region of interest

N Compatible with various image file formats
(JPEG, PNG, TIFF, BMP)

N Cross-platform compatibility
N Available with two modes of analysis (basic and advanced)

N Time consuming for larger sized image files
N Can analyse only nuclear immunogen staining
N Demonstrated capability of quantitation of ER, PR, and Ki-67
markers for breast cancer

TissuemorphDP N Can be used for the analysis of multiple markers and cancers
N Can analyse membrane, cytoplasmic, and nuclear stain immunomarkers
N Bias-free analysis
N Uses apps for analysis of various immunostains
N Can analyse the entire slide at the same time

N Commercial, cost-effective
N Additional cost for purchasing apps
N Time consuming (analysis time of 10–20 min/image
depending on user experience)

N May require an experts opinion for identification of non-
neoplastic cells and tissue necrosis

N Requires whole slide scanner
N Requires dedicated learning/learning time and customer
support

doi:10.1371/journal.pone.0096801.t007
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verified accuracy for a wide spectrum of biological targets and/or

samples [11,14,16,17,28,29]. We have demonstrated the use of

our algorithm on various cancer types and several protein targets

with their expressions confined either to the cytoplasmic region or

the nucleus region (Table 1). The demonstrated scoring capacity

of the current method would thus help to achieve a universal

standard in IHC scoring (Figure S2). Furthermore, of all the

cases where the scores differ by 1 or 2 degrees are generally those

where tumor to stroma ratio is low. In cancer tissue samples, this

type of variation is quite common, where experts reading the slide

ignore the stromal staining and consider only the staining intensity

of the tumor cells. For such cases, a manual judgment decision to

use higher magnification images (40X) for analysis will certainly

provide a more accurate score as this minimizes the averaging

effect. Alternatively, an averaging method can also be attempted,

where multiple images captured at different field of view of the

same sample can help to achieve a true reflection for the entire

tissue section. Additionally, studies concerned with the grading of

the nuclear region also recommend an image taken using a 40X

objective due to the small size of the nucleus and the need to select

the threshold manually. Furthermore, it is important to note that

the pixel count of each image scored can vary depending on the

resolution of the camera used to capture the image, and this

variation does not bias the scoring decision as it is not a bar to

obtain a uniform score (Figure S2).
Staining of non-neoplastic cells, problems concerning with tissue

necrosis, uneven fixation of the tissue samples, etc., are amongst

the technical errors which is beyond the scope of the IHC profiler

method. Such cases would also require the opinion of a trained

pathologist in order to identify the neoplastic region. Future

developments in automated digital image capture, making it

compatible to the Macintosh (Apple Inc.) and Linux operating

systems, and modifications in the method to adapt it for the

receptor proteins being expressed on the cell boundaries only are

possible. Forthcoming analysis systems may also facilitate an

automated evaluation of the whole-tissue sections by integrating

this method with software controlled stage movement and thereby

dramatically reducing the time involvement in accumulating and

evaluating images.

Conclusion

This study demonstrates development and utility of an open

source plugin that is ImageJ compatible towards automating

quantitative IHC analysis and scoring. IHC Profiler can be

utilized in the screening of various prognostic biomarkers across

various types of cancers and normal tissues. The analysis method

developed demonstrated high confidence with manual patholog-

ical analysis, and thus we conclude that this method holds the

potential in developing fast and unsupervised analysis of IHC

slides in various clinical and research laboratories.

Supporting Information

Figure S1 Different zones assigned for the scoring of the

DAB stained image. A: Shows the reference bar distributing

the various zones ranging from 0 to 235. 235 to 255 pixel values

are generally found to represent fatty tissues or blank areas and

thus kept out of range for zone considerations. B: High positive

(3+) image with its corresponding reference bar. C: Positive (2+)

stained image with its corresponding reference bar. D: Low

positive (1+) stained image with its corresponding reference bar. E:

Negative (0) stained image with its corresponding reference bar.

(TIF)

Figure S2 Demonstration of wide applicability of IHC

profiler in various cancer and normal tissue types.

Respective image analysis output and the score assigned using

IHC Profiler is also shown for each image. Duly note, the varying

number of pixels is solely due to the resolution of the microscope

camera at which they were captured.

(TIF)

Figure S3 Qualitative measurement of IHC profiler

accuracy. Qualitative measurement of IHC profiler accuracy

and its comparison with pathological analysis post assessment of

IHC profiler. Red arrow markings indicate overdeveloped regions

of the sample as indicated by pathological assessment.

(TIF)

Movie S1 Scoring of a sample cytoplasmic stained

image using IHC profiler.

(AVI)

Movie S2 Scoring of a sample nucleus stained image

using IHC profiler.

(AVI)
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