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ABSTRACT:  

CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be 

one of the promising devices for high performance and low power integrated systems in 

the future technology nodes, because of the enhanced carrier transport properties. In 

addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the 

most important steep slope devices for the ultra-low power applications. In this paper, 

we address the device and process technologies of Ge/III-V MOSFETs and TFETs on 

the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate 

stack engineering are introduced for satisfying the device requirements. The plasma post 

oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. 

Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined 

with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also 
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demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n 

source junction formation with steep impurity profiles is a key for high performance 

TFET operation. 

 

Index Terms: MOSFET; Tunneling FET; Germanium; III-V semiconductors; 

Metal-Oxide-Semiconductor; Mobility; Interface states 
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1.  INTRODUCTION 

Low power consumption is of paramount importance for advanced CMOS 

(Complementary Metal-Oxide-Semiconductor)-based logic LSI (Large-Scale Integrated 

circuits) and integrated systems mainly because of the difficulty in supply voltage (Vdd) 

reduction under realistic CMOS device design. Actually, the Vdd lowering is the most 

effective way in reducing the power consumption of CMOS, Pconsum, seen in (1).  

             (1) 

where a, f, Cload, I0, S and Ileak are a constant value, the operating frequency, the load 

capacitance, the drain current at Vg = Vth, the sub-threshold slope and the additional 

leakage currents including gate and junction leakages, respectively [1]. Here, the first 

term corresponds to the dynamic power, while the second and third terms correspond to 

the static power. In both components, the lowering of Vdd can effectively reduce the 

power consumption.  

While the steady progress in suppression of short channel effects and reduction in 

equivalent oxide thickness can contribute to lowering Vdd to some extent, the significant 

reduction in Vdd is difficult for Si CMOS. Here, there are two possible strategies to 

further reduce Vdd. These strategies are schematically shown in Fig. 1. One way is to 

employ channel materials with higher source injection velocity such as Ge and III-V 

compound semiconductors. Under ballistic transport limit, on-current, Ion, can be simply 

represented [2-5] by 

             (2) 

where q, Ns, vinj, Cg and Vth are elemental charge, surface carrier concentration at source 

edge, carrier injection velocity at source edge, gate capacitance and threshold voltage, 

respectively. Since semiconductor channel materials with lower effective mass such as 
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Ge and III-Vs are known to lead to higher injection velocity, higher Ion can be obtained 

at a given value of Vdd [6, 7]. As a result, the III-V/Ge MOSFETs can reduce Ns under a 

given Ion value, resulting in the reduction in Vdd, as shown in (2) and Fig. 1. This 

strategy can contribute to reduction of gate overdrive.  

  The typical CMOS structures composed of III-V/Ge channels are schematically 

shown in Fig. 2 [8-10]. Here, Ge with the significantly light hole and light electron 

effective mass is suitable for p-channel MOSFETs or CMOS applications. In particular, 

Ge CMOS is plausible in terms of the simplicity of the process/material integration, 

because the CMOS is composed of a single material. Also, In-based III-V 

semiconductors such as InGaAs, InAs and InSb with the quite light electron effective 

mass are suitable for n-channel MOSFET applications, while Sb-based III-V 

semiconductors such as GaSb, InGaSb and InSb with the light hole effective mass are 

suitable for p-channel MOSFETs or CMOS applications. Although III-V CMOS is 

another possible CMOS structure, there can still be many choices of materials for 

CMOS. This is because III-V materials suitable for n-MOSFETs and p-MOSFETs are 

different in most cases. Among them, one of the ultimate CMOS structures can be the 

co-integration of an In-based III-V n-MOSFET and a Ge p-MOSFET [8, 9], because of 

the superior physical properties including the carrier transport ones as well as the 

contact resistance with metals.  

  On the other hand, the other strategy for the reduction in Vdd is to introduce devices 

with steep slope of the channel current change in sub-threshold region. This way can 

contribute to the reduction in Vdd by decreasing the gate voltage swing in the 

sub-threshold region, as also shown in Fig. 1. Here, the inverse of the slope of the 

channel current change with respect to gate voltage, Vg, defined as the sub-threshold 
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slope (S.S.), which is the Vg change necessary to change channel currents by one order 

of the magnitude, is known to have the minimum value of ~60 mV/dec. at room 

temperature for conventional MOSFETs dominated by thermionic current in 

sub-threshold region. Thus, any new device operation mechanisms are needed to realize 

sub-threshold slope lower than this minimum value.  

One of the most promising steep slope devices can be tunneling FETs (TFETs) 

[11-14], where tunneling probability and resulting tunneling current are modulated by 

Vg. Typical TFET structures are also shown in Fig. 2. This is because a variety of 

simulation results have reported the excellent performance of TFETs with the steep 

slopes [11, 13] and, actually, the device operations with sub-threshold slope less than 60 

mV/dec. in a low Vdd region typically less than 0.5 V, have already been demonstrated 

without large hysteresis [15-22]. Also, fabrication of some of TFETs can be regarded as 

highly compatible with the Si CMOS platform. However, one of the drawbacks in 

TFETs is the low current drive [11-14], attributed to low tunneling probability. 

Particularly, Si-based TFETs are known to have the essential limitation in Ion and S.S. 

[11-14], because of the high bandgap energy, Eg, and the indirect bandgap. Thus, 

III-V/Ge is promising for the materials used in TFETs as well, because of lower Eg, 

direct bandgap in III-V and various possible combinations of the hetero-structures, 

which lead to the higher tunneling probability. Here, it is known that the source/channel 

junctions composed of type-II hetero-structures are effective in enhancing Ion of TFETs 

with maintaining low off current. It has been recognized from this viewpoint that 

InxGa1-xAs/GaAsySb1-y and Si/Ge hetero-interfaces are suitable for advanced TFETs. 

As a result, the heterogeneous integration of III-V/Ge with the Si CMOS platform is 

a promising direction for realizing ultra-low power CMOS and TFETs along More 
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Moore and Beyond CMOS approaches, respectively, in the 10 nm technology nodes and 

beyond, where ultra-low power integrated systems are indispensable. In addition, a 

combination of III-V/Ge-based photonic devices with advanced CMOS can also provide 

another possible system solution through optical interconnect for minimizing the power 

consumption of the interconnect under a given system performance, though this aspect 

is not touched on in this paper. 

On the other hand, there are still many critical issues and difficult challenges for 

realizing III-V/Ge-based CMOS and TFETs on the Si platform [8-10, 14], which are 

schematically shown in Fig. 3. These include (1) formation of high-crystal-quality 

Ge/III-V films on Si substrates, where ultrathin body III-V-OI/GOI structures are 

needed with combination of any carrier transport booster technologies (2) gate stack 

technologies to realize superior MOS interface quality, leading to MOS gate stacks with 

ultrathin equivalent oxide thickness (EOT) and low densities of interface states and 

border traps, high channel mobility and high gate stack reliability including long term 

threshold voltage (Vth) stability (3) the formation of source/drain (S/D) with low 

resistivity and low leakage current for MOSFETs as well as the steep impurity profiles 

for TFETs (4) fabrication of ultra-short channel devices, including the optimum channel 

design and the formation of ultrathin body, Fin or nano-wire (NW) channels with high 

uniformity of the channel thickness/radius and small surface roughness and (5) total 

CMOS process integration including an appropriate choice of n- and p-channel 

MOSFETs and compatibility with the Si CMOS platform. 

In this paper, we review the recent progress in device and process technologies of 

III-V/Ge MOSFETs and TFETs for solving the above critical problems on the basis of 

our recent research activities. We emphasize the channel formation technologies, MOS 
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gate stack technologies and channel engineering technologies for III-V MOSFETs. Also, 

viable technologies for the superior MOS gate stack and the MOSFET performance 

enhancement are addressed for Ge MOSFETs. Next, we discuss key challenges for 

TFETs, including the appropriate material choice and the formation of the steep and 

high quality source junctions, which can provide both high tunneling current and low 

off current. We mainly present two types of planar TFETs utilizing the InGaAs channels 

and the Ge/strained Si hetero-structures, where Zn-diffused p+ InGaAs source junctions 

and in-situ doping p+ Ge/sSi, respectively, are employed for realizing steep and 

defect-less tunnel junction formation. 

 

2. LOW POWER ADVANCED CMOS TECHNOLOGIES  

2-1 III-V MOSFET Technologies 

The main critical issues of the present III-V MOSFETs for the logic device 

applications can be high quality III-V channel formation on Si substrates, the fabrication 

process compatibility with the Si CMOS platform, gate stack reliability including the 

long term Vth stability, realization of high performance III-V p-MOSFETs and 

establishment of integration scheme as CMOS. For III-V n-MOSFETs, high 

performance scaled MOSFETs have already been demonstrated at lower Vdd for 

MOSFETs using In-based-channels such as InGaAs and InAs [23-48]. However, most 

of the devices have been fabricated with the recessed-channel structures on bulk III-V 

substrates [23, 26-29, 32-37, 40, 42, 43, 46, 48], which are not simply compatible with 

advanced CMOS logic technologies. While multi-gate III-V MOSFETs have also been 

demonstrated [25, 26, 37-39, 46-48], no clear evidence of higher performance of 

fully-scaled NW III-V MOSFETs, strongly expected beyond 10 nm technology nodes, 
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has been presented yet. Also, the long term reliability of MOS gate stacks on III-V 

semiconductors can be regarded as a critical issue [49, 50], because of the existence of a 

large amount of slow traps.  

On the other hand, the high performance of III-V p-MOSFETs with high Ion and low 

Ioff has not been demonstrated yet, which is mainly attributable to the poor MOS 

interface properties and low material qualities of Sb-based channels. As a result, viable 

CMOS structures using only III-V channel materials have not been fully identified yet, 

though several III-V CMOS devices have been reported so far [53-58]. 

 

2-1-1 III-V channel formation on Si substrates 

Among a variety of difficult challenges in III-V MOSFETs listed above, one of the 

most difficult ones can be high quality III-V channel formation. One of the promising 

techniques is direct growth of III-V channels on Si substrates [59-63]. Particularly, the 

selective growth of limited regions of Si active regions [41, 46, 64-72], called an aspect 

ratio trapping (ART), is expected to provide a III-V channel formation process 

compatible with Si CMOS fabrication. Actually, the operation of InGaAs n-MOSFETs 

fabricated by this ART process has been demonstrated [41, 46, 71]. One of the present 

problems of III-V channels formed by this selective growth on Si can be inferior quality 

of materials including buffers, leading to high leakage current and low electron mobility 

[41].  

Another promising approach to form III-V channels on Si is direct wafer bonding of 

III-V thin films on Si substrates with interfacial insulating layers working as buried 

oxides (BOX) [24, 30, 53, 56, 73-99]. We have proposed and demonstrated ultrathin 

body InGaAs-based channel formation by using direct wafer bonding [24, 30, 73-76, 



 9

79-85, 87, 89-95, 96]. As ultrathin body (3.2 nm In0.53Ga0.47As)/ultrathin BOX (Al2O3 

(4.4 nm)/SiO2 (3.3 nm)) channels have been realized with high material quality on Si 

[24, 76]. Here, the lattice-matched In0.53Ga0.47As channel was epitaxially grown on a 

4-inch InP substrate with interfacial In0.53Ga0.47As/InP super-lattice layers as etching 

stop, meaning that the high material quality of the In0.53Ga0.47As channel can be 

guaranteed. Thin atomic layer deposition (ALD) Al2O3 and SiO2 films were formed on 

the In0.53Ga0.47As/InP substrate and a Si substrate, respectively. The ALD Al2O3 layer is 

suitable for the buried oxide layer of III-V-on-insulator structures, because of the strong 

bonding property as well as better MOS back interface properties of III-V channel 

layers. After bonding of the two wafers in air, the InP substrate was selectively etched 

by HCl, which can provide quite high difference in the etching rate between InP and 

InGaAs, allowing us to realize ultrathin InGaAs-on-insulator (-OI) structures with high 

thickness uniformity. We have already confirmed high electron mobility and excellent 

performance of MOSFETs using InGaAs-OI fabricated by the direct wafer bonding [24, 

30, 73-76, 79-85, 87, 89-95, 96]. 

This wafer bonding process is also applicable to other III-V channels. We have 

successfully fabricated GaSb-OI structures on Si by employing the similar wafer 

bonding technology [56, 98, 100]. The process flow and cross-sectional transmission 

electron microscope (TEM) images of the fabricated GaSb-OI on Si structure are shown 

in Fig. 4(a) and (b), respectively. Here, GaSb films grown on 2-inch (100) InAs wafers 

were used as the initial substrate. The Al2O3 BOX layers were deposited on both 

GaSb/InAs and Si wafers by ALD. After manually bonding the wafers in air, the InAs 

substrates were selectively etched from GaSb, resulting in formation of a 23-nm-thick 

GaSb/Al2O3/Si structure with excellent GaSb thickness uniformity and smooth GaSb 
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front and back interfaces. We have also confirmed the operation of p-MOSFETs using 

the bonded GaSb-OI structure on Si [56, 98, 100]. These results suggest the versatility 

and the effectiveness of direct wafer bonding in terms of high quality III-V channel 

formation on Si substrates. 

On the other hand, one essential drawback of the above process is the limited wafer 

size, because III-V channel layers are grown on small size III-V substrates like InP and 

InAs with a diameter of typically 2-4 inch. This limited wafer size makes an essential 

difficulty in transferring the channel layers to Si substrates with a diameter of 12 inch 

and beyond. In order to solve this essential problem, we have proposed and 

demonstrated a fabrication process of InGaAs-OI by wafer bonding of an InGaAs layer 

grown on a Si donor wafer instead of the one grown on an InP donor wafer [99, 101]. 

By using III-V channels grown on Si, III-V-OI structures on Si substrates with any 

available wafer size can be prepared. Recently, the similar technology has also been 

reported by the other group [44, 102, 103]. 

Fig. 5(a) shows the process flow of InGaAs-OI wafers by the direct wafer bonding 

technique newly developed. Here, 4-inch Si wafers were used for the proof-of-concept 

demonstration of the proposed fabrication process. However, the same process is also 

applicable to 12-inch Si wafers. First, InGaAs channels were grown on Si wafers with 

InAlAs/GaAs buffer layers by Molecular Beam Epitaxy (MBE). Here, 

50-nm-thick-InGaAs films on Si show Hall electron mobility of 6550 cm2/Vs at 300 K 

with an electron concentration of 1.5×1017 cm-3, suggesting that the good film quality is 

obtained even on Si wafers. ALD Al2O3 was deposited on the III-V/Si wafers, followed 

by chemical mechanical polishing (CMP) for the surface smoothing, which is necessary 

for wafer bonding. After HfO2 deposition on both Al2O3/III-V/Si and Al2O3/Si wafers, 
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the two wafers were bonded to each other. Finally, InGaAs-OI on Si wafers were 

formed by etching the top Si, the GaAs and the InAlAs buffer layers by 

tetra-methyl-ammonium hydroxide (TMAH), citric acid and HCl based solutions, 

respectively. Fig. 5(b) and (c) show cross-sectional TEM images of the bonded 

InGaAs-OI wafer with body thickness (Tbody) of 10 nm before and after wafer thinning, 

respectively. It is found that high quality and uniform 10-nm-thick InGaAs-OI, 

transferred from a Si donor wafer, can be formed on a Si substrate. 

In order to evaluate the electrical properties of MOSFETs using the present 

InGaAs-OI layers on Si, InGaAs-OI MOSFETs were fabricated with a gate stack 

composed of 10 nm Al2O3 and Ta gate metal and Ni-InGaAs metal S/D. The Id-Vg 

characteristics of InGaAs-OI MOSFETs with Tbody of 9 nm and LG of 1 μm are shown in 

Fig. 6(a). Very good transfer curves were obtained with S.S. of 100 mV/dec and Ion/Ioff 

ratio higher than 106. Fig. 6(b) shows the comparison in μeff of InGaAs-OI MOSFETs at 

Ns of 1012 cm-2 between InP and Si donor wafers as a function of Tbody. InGaAs-OI 

MOSFETs fabricated from the Si donor wafer exhibit high mobility comparable to that 

from the InP donor wafer, indicating that the present wafer fabrication process can 

realize sufficiently-high quality InGaAs-OI on Si wafers with the same level as those 

obtained from the InP donor wafer. Fig. 6(c) shows the cumulative distribution of 

leakage current (Ileak) of the InGaAs-OI MOSFETs fabricated from both the Si and InP 

donor wafer at LG of 1 μm and Vd of 0.05 V. Here, Ileak of MOSFETs is very sensitive to 

the quality of channel layers. It is found that Ileak of MOSFETs fabricated from the Si 

donor wafer is very uniform and even lower than that from the InP donor wafer, 

indicating low defect density and high material quality of fabricated InGaAs transferred 

from the Si substrate. These results clearly demonstrates that the proposed direct wafer 
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bonding from III-V channel layers grown on Si can provide excellent scalability of 

III-V-OI wafer up to Si wafers with a diameter larger than 300 mm while maintaining 

high device quality.  

 

2-1-2 III-V MOS gate stack technology 

Formation of III-V gate stacks with thin EOT, low interface defects and realization of 

the sufficient long-term reliability are also quite challenging requirements. Among the 

long history of III-V MOS interface studies [104, 105], one of the important 

achievements recently obtained is the formation of better MOS interface properties of 

III-V channel materials such as GaAs, InGaAs and GaSb with ALD Al2O3 and HfO2 

films as gate insulators in terms of the reduction in interface state density (Dit) 

[106-114]. These improved MOS properties have been often attributed to low 

temperature and soft deposition by the ALD process and the self-cleaning effects of the 

metal-organic ALD sources on III-V native oxides or III-V surfaces [106-110], though 

universal understanding of the physical origin of the interface states at III-V MOS 

structures has not been fully obtained yet. On the other hand, the effectiveness of the 

ALD process on the III-V gate stack formation can contribute significantly to realizing 

scaled III-V MOSFETs, because of potential ultrathin EOT, applicability to multi-gate 

structures and mass-production friendliness.  

ALD Al2O3 films can be regarded as quite suitable for InGaAs MOS interface 

stabilization. Thus, HfO2/Al2O3 stack gate insulators have been often used for InGaAs 

in order to simultaneously realize thin EOT and superior MOS interface properties [37, 

41, 114-116]. Since thinner Al2O3 thickness is better in this gate stack in terms of EOT, 

we have studies how thin Al2O3 can effectively reduce Dit by systematically changing 
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the thickness of Al2O3 in the ALD Al2O3/HfO2 gate stacks [113]. As a result, it has been 

found that the insertion of only 0.2-nm-thick ultrathin Al2O3 interfacial layers (ILs) for 

HfO2/InGaAs interfaces can effectively reduce Dit down to the level for 

sufficiently-thick Al2O3/InGaAs interfaces [113, 114]. This gate stack allows us to 

realize HfO2(2nm)/Al2O3(0.2nm)/InGaAs MOS capacitors with capacitance effective 

thickness (CET) of 1.08 nm and gate leakage current of 2.4×10-2 A/cm2.  

On the other hand, the remaining issues on the III-V gate stacks can be (1) the 

minimum Dit values at InGaAs MOS gate stacks with Al2O3 ILs are typically still 

around in lower half of 1012 cm-2eV-1 order, which are higher than in Si and Ge MOS 

gate stacks (2) MOS interface properties on Sb-based materials such as GaSb, GaAsSb 

and InGaSb are still poor (3) MOS gate stack reliability such as PBTI reliability seems 

not to be able to satisfy the realistic criterion [49-52]. While the examination of the 

MOS reliability and possible physical origins of reliability degradation is on-going, 

appropriate choices of gate stacks and treatments are still needed.  

For further reduction in Dit at InGaAs MOS interfaces, recent studies have revealed 

that ALD La2O3/InGaAs MOS interfaces can provide lower Dit than Al2O3/InGaAs ones 

[117, 118], which can provide a new MOS interface engineering scheme. Also, it has 

been reported that trivalent oxides such as Al2O3, Y2O3, and La2O3 can provide better 

interfaces with III-V semiconductors than HfO2, because of the well-arranged chemical 

bonding and the abrupt interfaces [119]. Thus, we have systematically examined the 

InGaAs MOS interface properties by using ALD La2O3, InGaAs [118]. Fig. 7 shows the 

comparison in C-V curves of Al2O3 (3.5 nm)/InGaAs, Al2O3 (3.5 nm)/La2O3 (0.4 nm (10 

cycles))/InGaAs and Al2O3 (3.5 nm)/La2O3 (2.9 nm (40 cycles))/InGaAs MOS gate 

stacks with Au gate electrodes, where post metallization annealing (PMA) in N2 at 300 
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oC for 1 min was performed. Here, La(iPrCp)3 and H2O were used as the precursors for 

La2O3. The ALD mode deposition rate at 150 oC was 0.1 nm/cycle with incubation of 

around 7 cycles.  

Fig. 8 shows Dit of Al2O3 (3.5 nm)/La2O3/InGaAs at the surface energy of 0.1 eV 

from the midgap as a function of the La2O3 ALD cycle number, corresponding to the 

change in the La2O3 thickness from 0 nm to 2.9 nm. Here, data of La2O3 (2.9 nm (40 

cycles))/InGaAs MOS gate stacks without Al2O3 has also been added in the Fig. 8. The 

Dit values were determined by the conductance method. It is found that quite low Dit of 

~ 3×1011 cm-2·eV-1, which is lower than that in the TiN/W/La2O3/InGaAs gate stacks 

reported in [117], is obtained for La2O3 (2.9 nm (40 cycles))/ InGaAs MOS. However, 

the hysteresis of the C-V curves becomes larger with an increase in the La2O3 thickness, 

shown in Fig. 7(b), suggesting the existence of a high density of slow traps in La2O3. On 

the other hand, reducing the La2O3 ILs can decrease in the hysteresis. Also, Dit of Al2O3 

(3.5 nm)/La2O3 (0.4 nm)/InGaAs is lower than that of Al2O3/InGaAs, though Al2O3 

ALD increases Dit even for 2.9-nm-thick La2O3 IL, presumably due to a reaction of 

Tri-methyl-aluminium (TMA) with the La2O3 ILs. These results indicate that ALD 

La2O3 ILs, combined with Al2O3, can compromise the reduction in both Dit and slow 

trap density and, thus, that La2O3 can work as a promising high-k IL for InGaAs gate 

stacks.  

From the viewpoint of the realization of III-V p-MOSFETs or CMOS, on the other 

hand, MOS structures of Antimonide-based channels such as GaSb [30, 96, 120-127], 

InGaSb [53-55, 88, 100, 125, 128, 129] and InSb [130-132] have stirred a strong 

interest. While some of the Sb-based devices have shown the high hole mobility, the 

MOS interface properties are still much poorer than those of InGaAs, which must be a 
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critical issue for high performance devices. In particularly, Sb-based materials with 

lower energy difference between the valence band edge and the vacuum level are also 

promising for the application of TFETs employing type-II hetero-structures, which will 

be described in the next section. Thus, the improvement in the MOS interfaces of the 

Sb-based materials is a key issue for realizing high performance of TFETs. 

It is known for GaSb gate stacks that ALD Al2O3/GaSb MOS interfaces have much 

higher Dit than Al2O3/InGaAs ones, suggesting that the effect of the TMA cleaning 

effect might not be effective for GaSb surfaces. It has been reported [133] that the GaSb 

MOS Interface properties are sensitive to the ALD temperature, which must be lower 

than 200 oC for obtaining better MOS interfaces. In addition, one of the promising ILs 

for passivating GaSb surfaces is ultrathin InAs layers [134-136]. Here, the choice of the 

InAs thickness is important, because too thick InAs can simply work as an InAs channel. 

In addition, the ultrathin InAs can change from the broken band lineup of InAs/GaSb to 

the type-II staggered one because of the quantum confinement effect of electrons in the 

conduction band of InAs, leading to suppression of a leakage path through the 

broken-gap InAs/GaSb interface [56]. Fig. 9 shows the C-V curves of the 

Al2O3/InAs/p-GaSb MOS capacitors with the InAs thickness of 0, 0.5, 1.5 and 3 nm, 

measured at room temperature. Here, the unintentionally-doped InAs layers were grown 

on p-type (100) GaSb wafers with carrier concentration (NA) of ~1×1017 cm-3 by metal 

organic chemical vapor deposition (MOCVD). After that, 5-nm-thick ALD Al2O3 layers 

were deposited on the InAs/GaSb wafers at 150 ºC, after the pre-cleaning using an 

(NH4)2Sx solution. The capacitance modulation with changing gate voltage is limited for 

the MOS capacitors with 0- and 0.5-nm InAs passivation, suggesting large Dit. On the 

other hand, the C-V curves are found to improve with an increase in the InAs thickness 
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up to 1.5 nm, demonstrating the effectiveness of the InAs passivation on the GaSb MOS 

interface properties.  

Fig. 10 shows the relationship between Dit and the surface energy from the midgap 

energy as a parameter of the InAs thickness of 0, 0.5, 1.0, 1.5, and 2.0 nm. Here, Dit was 

evaluated from the 1 MHz C-V curves at 100 K by using the Terman method. The 

Al2O3/InAs (1.5 nm)/p-GaSb MOS capacitors exhibits the lowest minimum Dit of 

~6.6×1012 cm-2eV-1 at -0.24 eV, which is reduced by ~50% from that of ~1.4×1013 

cm-2eV-1 in the Al2O3/p-GaSb MOSCAPs. These results indicate that InAs ILs with an 

appropriate thickness can significantly improve the GaSb MOS interface properties, 

probably due to suppression of GaSb surface oxidation and/or Sb sublimation from the 

surfaces by the InAs ILs. However, further careful optimization of the gate stack 

formation process and the demonstration of much lower Dit and higher effective 

mobility are still strongly needed for convincingly proving that GaSb-based MOS 

devices are really promising for future logic applications. 

 

2-1-3 III-V channel engineering technology 

In order to apply III-V channels to the scaled CMOS, suppression of short channel 

effects (SCE) is mandatory, in addition to high carrier injection velocity. Form this 

viewpoint, ultrathin body structures as well as multi-gate structures like FinFETs and 

NW FETs must also be embodied by III-V channels on Si without any degradation of 

the material and interface qualities. Actually, there have recently been many reports on 

III-V-channel FinFETs [37, 44], Tri-gate MOSFETs [25, 37-39, 41] and NW MOSFETs 

[26, 46-48, 71]. We have focused on ultrathin-body III-V-OI structures on Si wafers [8, 

24, 30, 31, 38, 39], fabricated by wafer bonding, with thickness below 10 nm. One of 
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the strong concerns in such thin channels is the mobility reduction with decreasing Tbody, 

attributable to the body thickness fluctuation scattering [137, 138]. In order to mitigate 

this mobility degradation due to thickness fluctuation of a single InGaAs-OI layer, two 

types of channel structure engineering have been employed [30, 38, 87, 94, 139]. One 

consists in increasing the In content of main InGaAs channels up to pure InAs and the 

other is the introduction of MOS interface buffers, where the higher-In-content main 

channels are sandwiched by lower-In-content InGaAs buffers having front and back 

MOS direct interfaces. By employing this quantum well (QW) channel structure, the 

wave function of electrons can be confined more into the center of the channels with 

higher In content, resulting in higher mobility due to lower effective mass in the InGaAs 

channel with higher In content, reduction in Coulomb scattering by MOS interface 

charges and mitigation of the influence of the QW total thickness fluctuation [94, 139]. 

It has been found that n-MOSFETs with an In0.3Ga0.7As (3nm)/InAs (3nm)/ In0.3Ga0.7As 

(3nm)-OI channel, fabricated on Si substrates, provides high electron mobility of 3180 

cm2/Vs at 300 K. We have also demonstrated operation of MOSFETs with the channel 

length (Lch) of 20 nm using this channel structure on Si, exhibiting high Ion of 2.4 

mA/m at Vdd of 0.5 V [31, 140]. 

In order to realize high performance InAs MOSFETs with further improved SCE 

immunity, Tri-gate In0.3Ga0.7As (3nm)/InAs (3nm)/ In0.3Ga0.7As (3nm)-OI QW 

MOSFETs have been fabricated by narrowing the gate width of the InGaAs-OI channels 

[38, 39]. Fig. 11 shows the device structure and the schematic process flow. A Fin-like 

tri-gate channel structure with top gate width (WG) of down to 36 nm and (111) facet 

side channel surfaces were formed by chemical wet etching of InGaAs layer. A top view 

Scanning Electron Microscope (SEM) photograph of a tri-gate MOSFET with a narrow 
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channel width is also shown in Fig. 11. Here, Ta/Al2O3 gate stack and Ni-InGaAs metal 

S/D were employed. 

Fig. 12(a) shows the Id-Vg characteristics of the In0.3Ga0.7As/InAs/In0.3Ga0.7As-OI 

tri-gate MOSFETs with Lch of 20 nm as a parameter of WG of 40, 50, 140, and 360 nm.  

Severe SCEs were observed in the MOSFETs with WG wider than 100 nm, whereas 

SCEs were effectively suppressed in MOSFETs with narrower WG. The effect of the 

tri-gate structure on SCE is more clearly seen in drain-induced barrier lowering (DIBL) 

of MOSFETs. Fig. 12(b) shows the characteristics of DIBL with different WG as a 

function of Lch. While the severe DIBL is observed for the InGaAs-OI tri-gate 

MOSFETs with wide WG in Lch less than 100 nm, DIBL becomes much reduced with 

WG narrower than 50 nm. These results strongly indicate that the side gate effect with 

narrow WG in tri-gate MOSFETs can significantly suppress SCEs in Lch less than 50 nm. 

Fig. 12(c) shows Ion at Vdd of 0.5 V and Ioff of 100 nA/μm characteristics with 

different WG as a parameter of Lch. Here, the gate voltage was shifted from the measured 

ID-VG characteristics so as to provide Ioff of 100 nA/μm. Ion of ~380 A/m has been 

obtained under Vd and Vg of 0.5 V. On the other hand, the saturation behavior of Ion in 

short Lch is attributed to relatively large S/D resistance of 410 Ωμm in the present 

devices, caused by the long distance between the gate and the pad electrodes, and 

unintentional thinning of the Ni-InGaAs S/D layers due to over etching of unreacted Ni 

during the device fabrication. Thus, the optimizations of the device geometry and the 

process conditions are expected to provide further enhancement of device performance. 

Fig. 13 shows a benchmark of Ion at Vd of 0.5 V with gate overdrive of 0.5 V, taken 

from the present In0.3Ga0.7As/InAs/In0.3Ga0.7As-OI tri-gate MOSFETs [38, 39] and 

reported advanced InGaAs MOSFETs [25-29, 32, 35-37, 40-48]. Here, Vg has been 
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shifted so that Ioff at gate overdrive of 0 V amounts to 100 nA/m in order to guarantee 

the suppression of SCEs. The present devices are found to exhibit high level Ion, 

obtained among the advanced InGaAs MOSFETs with shorter Lch. 

 

2-2  Ge MOS Technologies 

2-2-1 Ge MOSFET technologies 

Ge MOSFETs have been intensively studied in recent years and more mature device 

technologies have been demonstrated, compared to the III-V ones. In particular, Ge 

p-MOSFETs seem close to real applications, because good performance of 

short-channel Ge and high-Ge content SiGe FinFETs have already been demonstrated 

[141-149]. The relatively high Ioff can be one of remaining problems as low power 

applications. Also, higher performance of NW MOSFETs [149-152] would need to be 

demonstrated for future scaled technology nodes.  

In contrast, Ge n-MOSFETs and resulting CMOS are still suffering from lower Ion 

and poorer MOS gate stack reliability, though intensive developments on Ge 

n-MOSFETs and CMOS have been conducted [153-185]. Here, a key technology to 

realize high performance Ge n-MOSFETs with high Ion is superior MOS interface 

control and gate stack technologies satisfying the requirements of thin EOT, high 

channel mobility, low S.S. and high gate stack reliability. Among them, MOS gate stack 

reliability can also be regarded as a critical problem for Ge p-MOSFETs without any Si 

passivation. As a result, MOS interface control engineering is still of paramount 

importance for Ge MOSFETs. 

 

2-2-2 Ge MOS gate stack technology 
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Among a variety of gate insulators and/or interface control layers on Ge, attention has 

recently been paid to GeO2/Ge-based interfaces [150-156, 158-176, 179-183, 185-213], 

because of the superior interface properties and resulting high carrier mobility in Ge 

MOSFETs. Particularly, high electron mobility can be obtained only for Ge 

n-MOSFETs with GeO2/Ge interfaces [153-156, 158-176, 179-183]. In order to realize 

low Dit and thin EOT at the same time for Ge-oxide-based ILs, we have proposed an IL 

formation process employing Electron cyclotron resonance (ECR) oxygen plasma to 

form GeOx ILs after thin ALD HfO2/Al2O3 stacks [162-164, 166, 204-207]. The basic 

process flow is shown in Fig. 14. Here, Al2O3 serves as a sufficient oxygen barrier that 

suppresses the growth of unnecessarily-thick GeOx IL, thanks to its intrinsic oxygen 

permeability, as well as a passivation layer that prevents Ge MOS interfaces from ECR 

plasma damages and process damages during the successive fabrication processes. 

Figure 15 shows EOT and Dit of the Au/HfO2 (2.2 nm)/Al2O3 (0.2 nm)/GeOx/Ge 

MOS capacitors at -0.2 eV from the midgap as a function of the plasma post oxidation 

time. It is found that high Dit of ~1012 cm-2eV-1 in the HfO2/Al2O3/Ge gate stack without 

plasma post oxidation rapidly decreases even with a very short term plasma exposure of 

5 s and continuously decreases with an increase in the plasma oxidation time. In 

contrast, EOT increases only from 0.72 to 0.82 nm with the plasma post oxidation of 25 

s. As a result, ECR plasma oxidation can sufficiently reduce Dit at small expense of the 

increase of EOT less than 0.1 nm.  

It has been observed, on the other hand, that ECR plasma oxidation of HfO2/Ge direct 

stacks provides inferior MOS interface properties with high Dit, attributed to the 

inter-mixing of HfO2 and GeOx, and the higher Hf content at MOS interfaces. Thus, the 

insertion of ultrathin Al2O3 films is needed as an inter-diffusion control layer against 
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HfO2. The results of Fig. 15 indicate that 0.2-nm-ultrathin Al2O3 can suppress the 

inter-diffusion and form GeOx ILs between Al2O3 and Ge, maintaining the effectiveness 

of ECR post plasma oxidation even for HfO2-based gate stacks.  

One of the remaining critical issues for the Ge MOS gate stacks is the existence of a 

large amount of slow traps and the resulting poor BTI (bias-temperature instability) 

characteristics [49, 50, 162, 214], as described above. Fig. 16 shows examples of the 

influence of slow traps on MOSFET characteristics. The amount of hysteresis in 

forward and backward scan sweep of Id-Vg characteristics of Ge n- and p-MOSFETs 

with Al2O3/GeOx/Ge gate stacks and the time dependence of Id are shown in Fig. 16(a) 

and (b), respectively. The larger hysteresis and larger current drift are observed for 

n-MOSFETs, meaning that a larger amount of slow traps exist near the conduction band 

edge of Ge than the valence band edge.  

While the physical origin of these slow traps is attributable to any structural defects 

in gate insulators including Ge oxides, Al2O3 [49, 50] and/or HfO2, it has not been 

identified yet. However, the reduction in the amount of slow traps responsible for BTI 

and the significant improvement in the reliability lifetime are mandatory for applying 

Ge MOSFETs to real applications. It has been recently reported that Y-doped GeOx 

interface layers fabricated by sputtering can provide the MOS interface properties with 

small hysteresis and low Dit [168, 169, 183, 215]. These results suggest that appropriate 

doping of Y atoms into Ge oxides and Al2O3 near Ge interfaces can reduce the slow trap 

density and improve the BTI reliability. Thus, we have examined the impact of ALD 

Y2O3 and AlYO3 gate stacks on the slow trap density [216].  

Fig. 17 shows C-V curves of 1.5-nm-thick Al2O3/GeOx/p-Ge with plasma post 

oxidation, 1.5-nm-thick AlYO3/p-Ge MOS capacitors without plasma post oxidation 
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and 1.5-nm-thick AlYO3/GeOx/p-Ge MOS capacitors with plasma post oxidation. Here, 

AlYO3 was deposited as an ALD mode by alternatively supplying Al(CH2)3 and 

(CpMe)3Y cycle by cycle. Since pure Y2O3/Ge gate stacks with and without plasma post 

oxidation were observed in this study to exhibit large hysteresis and thus have no 

improvement in the slow trap density, the properties of AlYO3/Ge gate stacks were 

mainly studied. It is observed in Fig. 17 that AlYO3/GeOx/Ge has smaller hysteresis 

than Al2O3/GeOx/Ge with plasma post oxidation and 1.5-nm-thick AlYO3/Ge MOS 

capacitors without plasma post oxidation.  

Dit and slow trap areal density, Nfix, were quantitatively compared among these three 

MOS interfaces by the conductance method and the hysteresis measurement [49, 50], 

respectively. Fig. 18(a) shows the energy distribution of Dit at the AlYO3/Ge MOS 

interface before and after plasma post oxidation. It is confirmed that plasma posit 

oxidation is also effective in reducing Dit at the AlYO3/Ge MOS interface down to 

almost the same level of as that in the conventional Al2O3/GeOx/Ge interfaces with 

plasma post oxidation. Fig. 18(b) also shows Nfix of 1.5-nm-thick AlYO3/GeOx/p-Ge 

and n-Ge MOS capacitors and 1.5-nm-thick Al2O3/GeOx/n-Ge and p-Ge MOS 

capacitors as a function of the effective electric field across gate insulators, Eox given by 

(|Vgmin-VFB|)/ CET). Here, Nfix was evaluated from the amount of hysteresis in C-V 

curves with changing the minimum gate voltage, Vgmin, with keeping the maximum 

voltage constant, according to [49, 50]. It is found that Nfix of the AlYO3/GeOx/p-Ge 

interface becomes lower than that of Al2O3/GeOx/p-Ge interface, while the reduction in 

Nfix for n-Ge is small for the AlYO3/GeOx/Ge interface. These results mean that 

AlYO3-based gate stack can reduce the amount of slow traps near the valence band of 
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Ge against the conventional Al2O3/GeOx/Ge interfaces. It is also confirmed that the slow 

trap density near the conduction band edge is much higher than that that near the 

valence band edge. Thus, further improvements on the Ge gate stacks are still strongly 

needed to reduce the slow trap density, particularly, near the conduction band edge. 

 

2-2-3 Ge MOSFET performance improvement 

Thanks to the recent progress in Ge gate stack technologies, high mobility and high 

on-current of Ge n- and p-MOSFETs have been demonstrated by many groups. Among 

them, the gate stacks with Ge-oxide-based ILs can be regarded as the unique MOS 

interfaces leading to high electron mobility in Ge n-MOSFETs, attributed to lower Dit 

and interface defects near the conduction band edge. Note that Si-passivation ILs 

[217-222], well known as effective in high hole mobility in p-MOSFETs, would not 

seem to work well for n-MOSFETs, because of quite small conduction band 

discontinuity and no electron confinement at Si/Ge interfaces, though the improvement 

of Ge n-MOSFETs with Si-passivated MOS interfaces has been still pursued [184]. We 

have also demonstrated the operation of n- and p-MOSFETs with the 

HfO2/Al2O3/GeOx/Ge gate stacks, shown in Fig. 16, under EOT of 0.76 nm [164, 166]. 

Fig. 19 shows Id-Vg characteristics of (100) Ge p- and n-MOSFET with the HfO2 (2.2 

nm)/Al2O3 (0.2 nm)/GeOx (0.35 nm)/Ge gate stack having EOT of 0.78 nm at Vd of 50 

and 200 mV. Well-behaving Id-Vg curves are demonstrated for these MOSFETs, with 

Ion/Ioff ratio of ~104 for both p- and n-MOSFETs. The values of S.S. of the p- and 

n-MOSFETs are 90 and 85 mV/dec, respectively, indicating the sufficient passivation of 

interface traps on the GeOx/Ge MOS interfaces 

We have confirmed that high electron and hole mobility are obtained in comparison 



 24

with the thick GeO2/Ge mobility and the Si mobility, particularly in high Ns region, in 

spite of this ultrathin EOT. The peak electron and hole mobility of 689 and 546 cm2/Vs 

have been obtained. These results strongly demonstrate that HfO2/Al2O3/GeOx/Ge gate 

stacks can realize high performance Ge n- and p-MOSFETs with minimal mobility 

degradation under aggressive EOT scaling.  

Recently, we have found two important factors for further improving the effective 

mobility of Ge MOSFETs with GeOx ILs. One is the relationship between the plasma 

oxidation temperature and MOS interface roughness. TEM analyses and the comparison  

with the theoretical surface roughness mobility through the experimental MOS interface 

geometry taken from the real TEM data [164, 170, 173, 223] have revealed that plasma 

oxidation at room temperature reduces GeOx/Ge MOS interface roughness, leading to 

the increase in the effective mobility in high Ns region, where surface roughness 

scattering is dominant. By lowering plasma post oxidation temperature from 300 oC to 

room temperature, the electron and hole effective mobility at Ns of 1013 cm-2 have been 

improved by 20 % and 25 %, respectively, as a consequence of the reduction in the 

MOS interface roughness.  

The other finding is the effectiveness of atomic deuterium (D) annealing on the 

reduction in Dit inside the conduction and valence bands [164, 173] and the resulting 

increase in the effective mobility [167, 185]. Fig. 20(a) shows the effective and Hall 

electron mobility in Al2O3/GeOx/Ge n-MOSFETs after post deposition annealing (PDA) 

at 400 °C, in N2 ambient or with atomic D, in comparison with the effective mobility 

reported previously [159, 160, 168]. It is found that the electron effective mobility in the 

high Ns region is enhanced after the atomic D PDA. On the other hand, the Hall mobility, 

which is much higher than the effective mobility, does not change with and without 
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atomic D PDA, indicating that the carrier transport properties and scattering probability 

do not change with atomic D PDA. Note that the effective mobility determined by the 

split C-V method is affected by trapping of carriers into traps under the inversion 

condition, while Hall measurements allow us to directly evaluate free electron 

concentration.  

Actually, we can quantitatively evaluate the trapped electron concentration as a 

function of surface potential by comparing Ns evaluated by the split C-V and Hall 

measurements under an assumption of the Hall factor of unity. Fig. 20(b) shows the 

energy distributions of Dit inside the conduction band, evaluated by Hall measurements 

for Al2O3/GeOx/Ge n-MOSFETs with PDA in N2 and atomic D ambient. It is found that 

a large amount Dit exist inside the conduction band, which leads to the significant 

reduction in the effective mobility in high Ns region. The existence of similar amounts 

of Dit inside the band has been confirmed in the Ge valence band [164, 173] and 

InGaAs conduction band [224-226], which has been regarded as one of the important 

mobility degradation factors in high Ns region. It is found that atomic D PDA can reduce 

the amount of Dit, which is the origin of the increase in the effective mobility with 

atomic D PDA. These results strongly suggest that further deeper understanding of the 

mechanisms limiting the inversion-layer mobility in Ge MOSFETs or any MOS 

interface is still necessary, and possible mitigation of these limiting factors is expected 

to further enhance the performance of Ge MOSFETs. 

 

3. Tunneling FET TECHNOLOGIES 

3-1 Importance and critical issues of Tunneling FETs (TFETs) 

  As described in the introduction, devices enabling steeper slopes than conventional 
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MOSFETs are also strongly required to realize ultralow power circuit operation with 

much reduced Vdd. Among a variety of the proposals on such steep slope devices, TFETs 

based on the band-to-band tunneling mechanism can be regarded as one of the most 

promising ones. This is because the principle of the device operation can promise 

TFETs to reduce S.S. down to less than ~60 mV/dec. at room temperature, the minimum 

value of MOSFETs, through the combination of the tunneling distance modulation by 

gate voltage with the filtering effect of the tunneling electron energy due to the 

necessity of overlapping the energy distributions of density-of-states (DOS) between the 

conduction and valence bands of semiconductors [11-13]. In addition to the many 

simulation results verifying this concept, [11-13, 227] the operations with S.S. less than 

60 mV/dec. have been experimentally demonstrated at low Vdd (< typically 0.5V) 

without hysteresis. Also, while many TFET structures have been proposed, the typical 

ones are composed simply of reversed p-n junctions of homo- or hetero-interface 

semiconductors with MOS gate stacks, which can be compatible with the present 

CMOS platform. 

However, the present TFETs have still hold many problems and challenges listed as 

follows; (1) Si TFETs have lower Ion because of the comparatively high bandgap and 

reduced tunneling probability due to indirect tunneling (2) In p-n junction type TFETs, 

the tunneling distance is not sufficiently small in some cases because of the graded 

source impurity profiles, leading to lower Ion (3) Generation-recombination centers in 

semiconductors, interface defects at MOS interfaces and tail states within the bandgap 

of semiconductors, existing in real TFETs, significantly degrade S.S and Ioff through 

Shockley-Read-Hall (SRH) carrier generation mechanism and trap-assisted tunneling 

(TAT). In particular, this issue is serious for any other new materials including III-V/Ge 
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and 2-dimensional materials than Si. (4) Insensitive and ineffective control of channel 

potentials at tunneling points by gate voltage due to un-optimized device structures 

and/or higher MOS interface defects also significantly degrades S.S. The increase in 

controllability of channel potential by gate potential can be basically realized by similar 

device engineering as used to suppress SCE in advanced CMOS devices, such as such 

ultrathin body structures, multi-gate structures and thin EOT of gate stacks.  

As a consequence, the drive current level of reported TFETs exhibiting S.S. less 

than 60 mV/dec [15-22] is still quite low and resulting averaged S.S. over drive current 

range needed for realistic applications is still too high. Also, TFETs with comparatively 

high drive current have a tendency to yield higher Ioff and S.S. values. Note that low Ioff 

and high Ion/Ioff ratio are quite critical to ultra-low power applications at which TFETs 

are aiming. Thus, any-TFET-specific engineering for achieving the optimum materials, 

device structures and fabrication process must be strongly pursued for simultaneously 

realizing both low S.S. of sub-60 mV/dec. over a wide range of the current level, low Ioff 

and high Ion/Ioff ratio.  

  Fig. 21 schematically summarized our device/material engineering for solving these 

critical issues and challenges of TFETs [14]. One of the key issues is the channel 

material engineering for enhancing tunneling current with maintaining low Ioff. Since the 

sufficient tunneling current would not be able to be obtained for Si with the large Eg and 

the indirect bandgap allowing phonon-assisted tunneling, other semiconductors with 

narrower bandgaps like Ge, InGaAs and InAs are promising for increasing Ion, because 

of the higher tunneling probability due to narrower Eg and the direct bandgap for III-V 

semiconductors. On the other hand, one of possible drawbacks with source 

homo-junction TFETs with narrower Eg is the increase in Ioff and the degradation in 



 28

Ion/Ioff due to the higher generation-recombination rate.  

In order to solve this trade-off problem in the bandgap, a type-II hetero-structure 

source junction is effective in reducing tunneling distance and increasing Ion without 

reduction of the bandgap in the drain junction, which would lead to the increase in Ioff. 

Fig. 22(a) and (b) schematically show the band lineup of the type-II hetero-structure and 

a band diagram of the source p-n junction region composed of the type-II 

hetero-structure. It is confirmed here that the potential barrier against electrons 

tunneling from the source semiconductor to the channel semiconductor (effective 

bandgap), Egeff, can be reduced from both bandgaps of the source and channel 

semiconductors, Eg1 and Eg2, thanks to the valence and conduction band discontinuity in 

the type-II hetero-structure, Ec andEv, indicating that higher tunneling probability is 

expected with maintain low source and drain junction leakage currents, directly 

associated with Eg1 and Eg2.  

  The second important engineering issue is to demonstrate a superior MOS gate stack 

formation yielding thin EOT and low MOS interface defect density at the same time. 

While this engineering is basically similar to that in advanced CMOS technologies, the 

realization of such gate stacks is still challenging for semiconductors other than Si. In 

addition, a novel requirement of the gate stacks specific to TFETs with type-II 

hetero-structures is to realize thin EOT and low MOS interface defect density for two 

different materials of the source and the channel such as Ge/Si [19] and 

GaAsSb/InGaAs [228-232] by employing the same gate stack formation process, which 

is not trivial under the different MOS interface physics and chemistry of the two 

semiconductors. Also, the requirement of low MOS interface defect density could be 

more stringent in TFETs than in MOSFETs, because MOS interface defects can degrade 
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S.S. and Ioff through two mechanisms of the reduction of gate potential control over 

MOS surface potential as well as the increase in TAT and SRH currents via the 

interface defects. 

  The third engineering is related to source p-n junction formation, which has peculiar 

requirements in p-n junction type TFETs. Here, the high steepness of the source 

impurity profile with low defect density around p-n junctions are strongly required in 

terms of the thin tunneling distance and low SRH current, which significantly contribute 

to high Ion and low Ioff, respectively. Finally, the drain junction engineering is also 

important for suppressing ambipolar current and reducing Ioff. When gate potential is 

biased to form the accumulation region near MOS interfaces, the drain/channel 

junctions can induce tunneling current as the ambipolar current, which limits the Ioff 

level. Thus, it is necessary to minimize this ambipolar current for suppressing Ioff and 

increasing Ion/Ioff ratio through any optimization of the drain structure and/or graded 

profiles of drain impurities. 

  In this paper, we emphasize the channel material engineering and the source junction 

engineering. For the channel material engineering, we have examined TFETs using an 

In0.53Ga0.47As channel as a low and direct band gap material [14, 233, 234], and TFETs 

using a combination of a Ge source and a strained-Si channel [14, 235, 236] as a type-II 

hetero-junction TFET in order to enhance Ion. We have realized these devices as the 

planar structure, which is still effective in easy fabrication under standard CMOS 

processes and integration with conventional Si CMOS. We have developed novel 

source junction engineering for InGaAs TFETs. Diffusion of solid phase Zn diffusion 

into InGaAs is introduced for realizing source junctions with steep Zn profiles and low 

defect density.  
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3-2  InGaAs TFETs 

InGaAs can be regarded as one of promising materials of TFETs, because of the high 

tunneling probability due to the narrow and direct bandgap, and recent progress in 

InGaAs MOSFET technologies. Here, formation of the source junctions with defect-free 

and steep impurity profiles is mandatory for InGaAs TFETs. In general, it would not be 

too easy to form such defect-less p-n junctions with steep impurity profiles by ion 

implantation, because of the difficulty in complete re-crystallization of ion-implanted 

III-V semiconductors by thermal annealing without significant impurity diffusion and 

defect generation. From the viewpoint of these requirements, we have introduced 

solid-phase Zn diffusion in InGaAs because of the extremely-steep profiles coming 

from the inherent diffusion property of Zn in InGaAs and the defect-less process [233, 

234, 237, 238].  

It is known that Zn diffuses in InGaAs as interstitials. Here, the following balance 

equation holds [238].  

[Zn]- + 2h  [Znint]+ + [III vacancy]     (3) 

where [Zn], h, [Znint] and [III vacancy] are substitutional Zn concentration, hole 

concentration, interstitial Zn concentration and column-III-element-vacancy 

concentration in InGaAs, respectively. As a result, the diffusion constant of Zn is in 

proportion to [Zn]2. In order to examine the effect of the [Zn] dependence of the 

diffusion constant on the profile, the Zn diffusion profiles are simulated for three types 

of hypothetical diffusion coefficients, which are assumed to be constant, proportional to 

[Zn] and proportional to [Zn]2 ones for simplicity.  
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Fig. 23 shows the calculated Zn profiles under the three diffusion constant models. It 

is found that the diffusion coefficient proportional to [Zn]2 yields the steepest Zn profile. 

This abrupt change of the Zn concentration can be easily understood by the sharp 

decrease of the diffusion coefficient proportional to [Zn]2 with decreasing [Zn], leading 

to the box-like Zn profile under this diffusion constant. These simulation results 

strongly suggest that InGaAs p+-n junctions formed by Zn diffusion have an inherently 

steep Zn profile. In addition, solid phase diffusion by using Zn-doped spin-on-glass 

(SOG) films is expected to provide p-n junctions with a low defect density, because of 

the damage-less nature of this doping process in comparison with ion implantation. As a 

result, the Zn solid phase diffusion by SOG is promising for the formation of source 

junctions in InGaAs TFETs. 

Zn diffusion from the Zn-doped SOG was driven by rapid thermal annealing (RTA) at 

500 oC for 1 minute in a N2 ambient [233, 234]. Be and Zn ion implantation was also 

carried for comparison [239]. Fig. 24(a) shows the Secondary Ion Mass Spectrometry 

(SIMS) profiles of diffused Zn and implanted Be atoms. It is found that the steepness of 

the Zn profile is 3.5 nm/dec., which is much steeper than that of the Be profile formed 

by Be implantation with the energy of 2 keV and the dose of 1x1015 cm-2, 36 nm/dec. 

This result is consistent with the profile calculated using the model that the diffusion 

constant of Zn in InGaAs is proportional to the square of the Zn concentration, also 

shown in Fig. 24(a), confirming that the steep impurity profile can be automatically 

obtained by solid phase Zn diffusion. Actually, the real steepness can be less than 3.5 

nm/dec., which could be determined by atom mixing during the SIMS analysis, as 

expected in the simulation result.  

Fig. 24(b) shows the I-V characteristics of Zn-diffused, Zn-implanted and 
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Be-implanted In0.53Ga0.47As p+-n junctions. Here, Be ion implantation was carried with 

the energy of 10 keV and the dose of 1x1015 cm-2, and Zn ion implantation was carried 

with the energy of 25 keV and the dose of 2x1014 cm-2. The activation annealing for Be 

and Zn ion implantation was carried by RTA at 600 oC and 650 oC, respectively, for 1 

minute. The Zn-diffused and Be-implanted junctions show the lower ideal factor of 1.2, 

while the Zn-implanted diode shows the higher ideal factor of 1.7. Also, the minimum 

current under the reverse bias condition is lowest for the Zn-diffused junctions. These 

results mean that the Zn diffusion introduces fewer defects than ion implantation for p-n 

junction formation. 

Planar-type In0.53Ga0.47As n-channel TFETs with source regions formed by the 

present Zn diffusion process were fabricated on semi-insulating InP substrates [233, 

234]. The device structure is shown in the inset of Fig. 25(a). A Ta/ALD Al2O3 (3 nm) 

gate stack and a Ni-InGaAs metal-drain were employed. Fig. 25(a) and (b) show the 

ID-VG characteristics at VD of 150 mV and the ID-VD characteristics, respectively, of the 

In0.53Ga0.47As TFETs with source regions formed by Zn diffusion at 500 oC for 1 min. It 

is found in Fig. 25(a) that the In0.53Ga0.47As TFETs exhibit the small minimum S.S. of 

64 mV/dec. and the high Ion/Ioff ratio of ~2x106 at the same time as the planar-type III-V 

TFETs with EOT of 1.3 nm. Also, the good drain current saturation is clearly observed 

in Fig. 25(b). The comparatively low S.S. values and high Ion are also attributable to 

narrow tunneling distance in the source p-n junctions with the steep Zn profile and 

resulting high tunneling probability. Also, the comparatively low Ioff and high Ion/Ioff are 

attributable to low source junction leakage current coming from the defect-less p-n 

junctions formed by Zn diffusion process. Actually, similar promising electrical 

characteristics of InGaAs TFETs with Zn-diffusion sources have recently been 
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confirmed by another research group [240]. 

Actually, the low leakage current in the present p-n junctions due to SRH and/or TAT 

is evident in the temperature dependence of the Id-Vg characteristics. Fig. 26 shows the 

temperature dependence of Id-(Vg-Vth) characteristics at VD of 150 mV of an InGaAs 

TFET with the source region formed by Zn diffusion at 500 oC for 1 min from 6 K to 

292 K. Here, Vth was defined as Vg at Id of 10-7 A/m. Measurement temperatures were 

varied from 6 K, 50 K, 171 K, 227 K, 254 K to 292 K. Almost no temperature 

dependence was observed in the subthreshold region, which means that S.S. is almost 

free from trap-related SRH and TAT currents. This point is quite important, because 

many previous works on III-V TFETs have reported that the S.S. values have strong 

temperature dependence and, thus, have been severely degraded by the existence of 

defects and traps included in source p-n junctions and MOS interfaces. As a 

consequence, the result of the temperature dependence also supports the fact that the 

superior p+-n source junctions suitable for TFETs can be formed by Zn solid phase 

diffusion in InGaAs.  

In addition, the results of Fig. 26 indicate that band-to-band tunneling dominates the 

current of the present TFETs. We have observed the negative differential resistance 

under the negative drain bias, which is another evidence of the dominance of tunneling 

mechanism on the carrier transport. Actually, such a weaker temperature dependence of 

the drain current can be one of possible advantages of TFETs, particularly for 

applications requiring device operation under a wider temperature range, in comparison 

with conventional MOSFETs. 

 

3-3  Ge/strained-SOI TFETs  
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As emphasized in the section 3-1, the source-channel structures composed of type-II 

staggered hetero-interfaces, shown in Fig. 22, are quite effective in enhancing the 

performance of TFETs. Thus, several TFETs using type-II hetero-interfaces such as 

InxGa1-xAs/GaAsySb1-y [228-232] and InAs/Si [20, 241, 242] have been intensively 

studied. We have recently proposed a novel type-II hetero-interface TFETs using 

Ge/tensily-strained Si interfaces [235, 236]. Fig. 27(a) shows the schematic band 

diagram of the hetero-interface of Ge and tensile strain Si. The higher valence band 

edge (EV) of the Ge-source and the lower conduction band edge (EC) of tensile strain Si 

result in reduction in Egeff, leading to the increase the tunneling probability and Ion and 

the reduction in S.S. with maintaining the relatively large Eg of strained-Si in the drain 

regions, which can suppress the ambipolar leakage current. It has already been reported 

that pure Ge sources grown on Si have provided Si TFETs with minimum S.S. lower 

than 60 mV/dec. Also, tensily-strained Si has been regarded as one of the promising 

materials for TFET channels, because of the smaller bandgap. Actually, tensily-strained 

Si TFETs with SiGe sources [243, 244] or NW structures [18, 245] have already been 

reported. Thus, we have combined the Ge source and strained-SOI channels in order to 

realize the type-II hetero-structure TFETs.  

The Ge/strained Si TFET structure, fabricated in this study, is shown in Fig. 27(b) 

[235, 236]. In order to examine the impact of tensile strain on the TFET performance, 

unstrained SOI and two types of strained SOI substrates with 0.8 and 1.1 % biaxial 

tensile strain were employed. In-situ boron-doped Ge layers were grown at 200 oC on 

the source regions of the substrates by MBE. Here, low temperature in-situ doping can 

lead to steep boron profiles with high boron concentration of as high as 1.3×1020 cm-3. A 

3-nm-thick Al2O3/GeOx/Ge gate stack with EOT of 2.5 nm was formed by ALD 
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combined with ECR plasma post oxidation in order to realize the high quality MOS 

interfaces between Al2O3 and Ge [8, 9], as described in the section 2-2-2. Ta was 

deposited as the gate metal, followed by Ni and Al deposition for the source contact and 

the contact pad, respectively. It was found that one of the key processes is PMA at 400 

oC in N2 for 30 minutes. 

Fig. 28 shows the Id-Vd characteristics of Ge-source TFETs fabricated on un-strained 

SOI, 0.8 and 1.1 % strained SOI substrates. It has been found that an increase in strain 

leads to the increase in Ion. It has also be observed that gate current and resulting Ioff 

decrease with an increase in the amount of tensile strain, because of the increase in the 

barrier height in EC between insulators and strained Si [246], resulting in higher Ion/Ioff 

with increasing the amount of tensile strain. Here, we have observed that PMA 

temperature strongly affects the electrical properties of TFETs. PMA at 400 oC can 

maximize the Ion/Ioff ratio, which amounts to 4.4, 2.2 and 3.7x107 for the unstrained, 0.8 

and 1.1 % strained SOI TFETs, respectively, and can significantly reduce the S.S. values, 

which amount to 55, 49 and 29 mV/dec. as the minimum value at room temperature for 

unstrained, 0.8 and 1.1 % strained SOI TFETs, respectively. This improvement in the 

TFET performance with increasing PMA temperature is attributed to reduction in Dit at 

the Si MOS interfaces, while Dit at the Ge MOS interfaces does not change with PMA 

[247]. These results mean that the combination of plasma post oxidation through Al2O3 

and optimized PMA can simultaneously realize the appropriate MOS interface 

properties for both the Ge source and the strained-Si channel.  

Fig. 29 shows a benchmark of the present n-channel TFET performance [233, 234, 

236] in terms of Ion/Ioff ratio versus the minimum S.S. value with other reported ones 

[18-20, 243, 248-254] with a variety of channel materials. It is found that the high Ion/Ioff 
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ratio under the low minimum S.S. can be obtained for the present InGaAs and 

Ge/strained SOI n-channel TFETs. Further improved performance of these TFETs can 

be expected by employing thinner EOT gate stacks, optimized drain junctions and 

multi-gate/NW channel architectures. As a consequence, the InGaAs and Ge 

source/strained-Si TFETs can be regarded as ones of the superior TFET structures for 

realizing low Ioff and high Ion at the same time. 

 

4. CONCLUSIONS   

We have addressed critical issues and challenges for enhancing the performance of 

Ge/III-V MOSFETs and TFETs, which are strongly expected as devices for realizing 

ultralow power integrated systems. In order to solve these problems, viable technologies 

have been presented in this paper. For realizing high performance Ge CMOS, GeOx IL 

formation by plasma post oxidation and atomic D annealing were developed. 

HfO2/Al2O3/GeOx/Ge gate stacks formed by this method have realized high 

performance Ge n- and p-MOSFETs with EOT of 0.76 nm having Dit of ~3x1011 

cm-2eV-1, whose peak electron and hole mobility amount to 689 and 546 cm2/Vs, 

respectively. The InGaAs/InAs/InGaAs-OI QW channels combined with Tri-gate 

structures have been introduced for the technologies enhancing the performance of III-V 

n-MOSFETs. The InGaAs/InAs/InGaAs-OI QW Tri-gate n-MOSFETs with the Fin 

width of ~40 nm have offered Ion of ~380 A/m at Vd and Vg of 0.5 V under Ioff of 100 

nA/μm. A fabrication technique of the InGaAs ultrathin body channels on large size Si 

wafers has also been demonstrated. Also, the effectiveness of Ge/III-V materials on 

TFETs through the enhancement of tunneling probability has been demonstrated. 

Superior junction formation and MOS interface control technologies are key factors to 
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realize TFETs using Ge/III-V. The p+-n junction formation in InGaAs using Zn diffusion 

has realized excellent planar In0.53Ga0.47As n-TFET characteristics, because of the 

defect-less source junctions with steep Zn profiles. Ge/tensily-strained Si n-TFETs with 

the type-II hetero-interfaces have also been found to exhibit high Ion/Ioff ratio and low 

minimum S.S., because of reduction in effective Eg, steep B profiles by in-situ B doping 

in Ge and improved MOS interface properties with both Ge and strained Si. 
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FIGURE CAPTIONS 

Fig. 1: Two possible strategies to further reduce Vdd.  

Fig. 2: Possible structures for advanced MOSFETs and TFETs using III-V/Ge devices 

on Si platform through heterogeneous integration 

Fig. 3: Critical issues for realizing III-V/Ge MOSFETs and TFETs on the Si platform 

Fig. 4: (a) Fabrication process of GaSb-OI substrates (b) Cross-sectional TEM images 

of 23-nm-thick GaSb-OI on a Si wafer 

Fig. 5: (a) Fabrication process of InGaAs-OI wafer by direct wafer bonding technique 

using InGaAs on a Si donor wafer. InGaAs/InxAl1-xAs/GaAs layers are epitaxially 

grown on Si substrates. After Al2O3 deposition as a BOX layer, CMP has been carried 

out for surface smoothing for Al2O3/III-V/Si wafer and wafers were bonded each other. 

Subsequent wet etching thinned the top Si and the III-V buffer layers, resulting in the 

formation of InGaAs-OI on Si substrates. (b) Cross-sectional TEM image of the bonded 

Si/III-V/BOX/Si wafer before top Si, III-V buffer etching. (c) Cross-sectional TEM 

image of InGaAs-OI on Si after top Si, III-V buffer etching. A high resolution image is 

also shown. 

Fig. 6: (a) Measured Id-Vg characteristics of InGaAs-OI MOSFETs using an InGaAs 

layer on a Si donor wafer (b) eff-Tbody characteristics of InGaAs-OI MOSFETs on the 

wafer from an InP and a Si donor wafer (c) Cumulative distribution of the leakage 

current at LG of 1 m and VD of 50 mV.  

Fig. 7: C-V curves of (a) Al2O3 (3.5 nm)/InGaAs, (b) Al2O3 (3.5 nm)/La2O3 (0.4 nm (10 

cycles))/InGaAs and (c) Al2O3 (3.5 nm)/La2O3 (2.9 nm (40 cycles))/InGaAs MOS gate 

stacks with Au gate electrodes 
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Fig. 8: Dit of Al2O3 (3.5 nm)/La2O3/InGaAs at the surface energy of 0.1 eV from the 

midgap as a function of the La2O3 ALD cycle number, corresponding to the change in 

the La2O3 thickness from 0 nm to 2.9 nm. Here, data of La2O3 (2.9 nm (40 cycles))/ 

InGaAs MOS gate stacks without Al2O3 has also been added 

Fig. 9: C-V curves of the Al2O3/InAs/p-GaSb MOS capacitors with the InAs thickness 

of (a) 0, (b) 0.5, (c) 1.5 and (d) 3 nm, measured at room temperature. 

Fig. 10: Energy distribution of Dit of the Al2O3/InAs/p-GaSb MOS capacitors with the 

InAs thickness of 0, 0.5, 1.0, 1.5, and 2.0 nm. The surface energy is taken from the 

midgap energy of GaSb. Here, Dit was evaluated from the 1 MHz C-V curves at 100 K 

by using the Terman method. 

Fig. 11: Device structure and the schematic process flow of InGaAs-OI tri-gate 

MOSFETs using In0.3Ga0.7As (3nm)/InAs (3nm)/In0.3Ga0.7As (3nm)-OI QW channels. A 

top view Scanning Electron Microscope (SEM) photograph of a tri-gate MOSFET with 

a narrow channel width is also shown. 

Fig. 12 (a) Id-Vg characteristics of the In0.3Ga0.7As/InAs/In0.3Ga0.7As-OI tri-gate 

MOSFETs with Lch of 20 nm as a parameter of W of 40, 50, 140, and 360 nm (b) DIBL 

characteristics with different WG as a function of Lch (c) Ion at VDD of 0.5 V and Ioff of 

100 nA/μm characteristics with different WG as a parameter of Lch 

Fig. 13: Benchmark of Ion at Vd of 0.5 V with gate overdrive of 0.5 V, taken from the 

present In0.3Ga0.7As/InAs/In0.3Ga0.7As-OI tri-gate MOSFETs and reported advanced 

InGaAs MOSFETs. Here, Vg has been shifted so that Ioff at gate overdrive of 0 V 

amounts to 100 nA/m. 

Fig. 14: Proposed Al2O3/GeOx/Ge and HfO2/Al2O3/GeOx/Ge gate stack formation 

process by oxidation using ECR oxygen plasma through a thin Al2O3 and a thin 
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HfO2/Al2O3 layer, respectively, by ALD 

Fig. 15: EOT and Dit of the Au/HfO2 (2.2 nm)/Al2O3 (0.2 nm)/GeOx/Ge MOS capacitors 

with different plasma post oxidation times at 0.2 eV from the midagap 

Fig. 16: (a) Hysteresis in forward and backward scan sweep of Id-Vg characteristics of 

Ge n- and p-MOSFETs with TiN/Al2O3/GeOx/Ge gate stacks (b) time dependence of Id 

of the Ge n- and p-MOSFETs with GeOx thickness of 0.27 and 1.2 nm at constant Vd 

and Vg values 

Fig. 17: C-V curves of (a) 1.5-nm-thick Al2O3/GeOx/Ge with plasma post oxidation, (b) 

1.5-nm-thick AlYO3/Ge MOS capacitors with plasma post oxidation and (c) 

1.5-nm-thick AlYO3/GeOx/Ge MOS capacitors with plasma post oxidation. The 

measurement frequency was varied from 1 K, 10 K, 100 K to 1 MHz. 

Fig. 18: (a) Energy distributions of Dit at 1.5-nm-thick AlYO3/Ge MOS interfaces with 

and without plasma post oxidation (b) Relationship between Eox and Nfix of 

1.5-nm-thick AlYO3/GeOx/p-Ge and n-Ge MOS capacitors and 1.5-nm-thick 

Al2O3/GeOx/n-Ge and p-Ge MOS capacitors. 

Fig. 19: Id-Vg characteristics of (100) Ge p- and n-MOSFET with the 

HfO2/Al2O3/GeOx/Ge gate stack having an EOT of 0.78 nm 

Fig. 20: (a) Effective and Hall electron mobility of Al2O3/GeOx/Ge n-MOSFETs with 

N2 and atomic deuterium PDA in comparison with the effective mobility reported 

previously [159, 160, 168] (b) Dit inside the conduction band, evaluated by Hall 

measurements for Al2O3/GeOx/Ge n-MOSFETs with PDA in N2 and atomic deuterium 

ambient.  

Fig. 21: Device/material engineering for solving these critical issues and challenges of 

p-n junction-type TFETs 
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Fig. 22: (a) Schematic band lineup of the type-II hetero-structure and (b) band diagram 

of the source p-n junction region composed of the type-II hetero-structure. 

Fig. 23: Calculated Zn profiles under the three diffusion constant models, where 

diffusion coefficients are constant, proportional to [Zn] and proportional to [Zn]2 ones. 

Fig. 24: (a) SIMS profiles of diffused Zn and implanted Be atoms in InGaAs. Here, Zn 

was diffused at 500 oC for 1 minute in a N2 ambient. Be was introduced by Be 

implantation with the energy of 2 keV and the dose of 1x1015 cm-2. Also, the solid curve 

shows the profile calculated using the model that the diffusion constant of Zn in InGaAs 

is proportional to the square of the Zn concentration. (b) I-V characteristics of 

Zn-diffused, Zn-implanted and Be-implanted In0.53Ga0.47As p+-n junctions.  

Fig. 25: (a) Id-Vg characteristics at Vd of 150 mV of an In0.53Ga0.47As TFET with source 

regions formed by Zn diffusion at 500 oC for 1 min. Inset is the schematic structure of 

the In0.53Ga0.47As TFET (b) Id-Vd characteristics of the In0.53Ga0.47As TFET. 

Fig. 26: Temperature dependence of Id-(Vg-Vth) characteristics at Vd of 150 mV of an 

InGaAs TFET with the source region formed by Zn diffusion at 500 oC for 1 min from 6 

K, 50 K, 171 K, 227 K, 254 K to 292 K. Here, Vth is defined as Vg at Id of 10-7 A/m. 

Fig. 27: (a) Schematic band diagram of the hetero-interface of Ge and tensile strain Si 

(b) fabricated Ge/strained Si TFET structure 

Fig. 28: Id-Vd characteristics of Ge-source TFETs fabricated on un-strained SOI, 0.8 and 

1.1 % strained SOI substrates 

Fig. 29: Benchmark of the present n-channel TFET performance in terms of Ion/Ioff ratio 

versus the minimum S.S. value with other reported ones [18-20, 243, 248-254] with a 

variety of channel materials 
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