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IIR Filter Models of Haptic Vibration Textures
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Abstract—Haptic tactile feedback is a widely used and effective
technique in virtual reality applications. When an object’s surface
is explored by stroking it using fingers, finger nails or a tool, a
vibration response is sensed. The vibrations convey information
about the surface finish and patterns in the surface structure, and
they may help to identify the surface. We study characteristics
of real-world, physical objects based on actual measurements.
We propose novel techniques for modeling haptic vibration
textures using digital filters which can simulate both stochastic
and patterned textures of objects. The modeling is based on
a spatial distribution of infinite-impulse-response filters which
operate in the time domain. We match the impulse response
of the filters to acceleration profiles obtained from scanning of
real-world objects. The results show our modeling is efficient in
representing varying roughness characteristics of both regular-
patterned surfaces and stochastic surfaces unlike prior methods
based on a parametric decaying sinusoid model. Our experiments
employ an existing hand-held mobile scanning set-up with a
visually-tracked probe, which provides acceleration and force
profiles. Our simple capturing devices also remove any need for
a robotic manipulator.

Index Terms—Virtual reality, user interfaces, vibrations, IIR
digital filters, haptics, texture modeling.

I. INTRODUCTION

Haptic perception is one way for humans to become aware

of their physical surroundings. Our research interest lies

in assisting haptic perception in virtual environments when

a user touches a virtual object. In this paper, we discuss

parameterization of vibrotactile feedback in haptic rendering

of texture scans. Vibrotactile feedback in reality-based vir-

tual environments increases realism [1]. Reality-based models

are created using data acquired from real environments by

employing various sensors [2]. We focus on modeling of

vibrotactile signals based on measurements, and in particular, a

modeling method which is applicable to an extended range of

object categories. The goals of modeling are to extract texture

characteristics of an object which distinguish it from other

objects and to have flexibility in rendering. Our models can

render different paths, with various traversal speeds and user

forces and in combination with modified or enhanced haptic

object characteristics, e.g., object deformations or friction.
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Vibration signals contribute significantly to tactile percep-

tion when we have physical contact to our environment

through a tool as shown by Klatzky and Lederman [3].

Vibrations are generated, e.g., as we scan across a surface

which activates somatosensory receptors in the skin, e.g., the

Pacinian corpuscle with a peak sensitivity of 250 Hz. Vibration

feedback can also be generated with very simple means and it

is used in game controllers, cellphones and mobile devices be-

cause of its efficacy [4]. In early work, Wellman and Howe [5]

recorded vibration waveforms during tapping on surfaces and

played the waveforms back through a haptic interface. The

pervasiveness of vibrations has motivated Okamura et al. [6]

to extend the above vibrotactile model to a wider array of

material interactions from tapping to membrane puncture in

medical training applications and to stroking textures with a

stylus. They showed that the vibration feedback model alone

enhanced the realism of haptic textures. Since then tapping,

e.g., Kuchenbecker et al. [7] and needle insertion [8] have

received a great amount of attention. However, despite the fact

that Okamura et al. had reported that their subjects perceived

vibration-based textures as most realistic, vibrotactile textures

have only been further investigated in our work [9] and in

the parallel work of the research group of Kuchenbecker et

al. [10], [11].

Okamura et al. [6] classify haptic textures as either general

or patterned. General textures are stochastic without any dis-

cernible features, e.g., sandpaper, while patterned textures have

regular distinguishable features, e.g., grooves. Okamura et

al. fit a decaying sinusoid to the acceleration profile in the time

domain generated by stroking over a surface groove. They also

identify the major frequency in the acceleration profile for gen-

eral textures. Our experiments confirm their observation that

features cause a decaying impulse-response when stroking a

surface. However, we develop a novel unified filtering method

for both kinds of surfaces, general and patterned. Instead of

a decaying sinusoid to model the accelerations, we use an

infinite-impulse filter (IIR). This allows the use of a higher

order filter to capture more than just the major frequency of

the response, as well as to extend the haptic texture model

to arbitrary surfaces including stochastic textures. Our unified

model works for any surface and is simple to render with low

latency because of the computational simplicity of IIR filters.

We estimate our IIR model parameters from profiles of force

and acceleration collected by stroking real-world surfaces

with a wireless haptic texture sensor, the WHaT [12] with

integrated visual tracking [13]. We utilize a scanning approach
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Fig. 1. Scanning with the WHaT.

developed by Lang and Andrews [14] for our novel vibrotactile

measurements and modeling, which is not the subject of this

paper. Most importantly, our scanning set-up has the ability to

collect force and acceleration profiles from free-form surfaces

and our models can be estimated from surfaces measured on-

site (see Figure 1).

This paper is a greatly extended version of our preliminary

workshop paper [9] and our main contributions and improve-

ments are: (i) We present a new segmentation method of the

scanned acceleration signal where most segments correspond

to an intuitive part of a texture scan without over- or under-

segmentation. This results in many fewer IIR filters needed

to model the same section of the surface compared to the

previous method presented in the workshop. (ii) We have

conducted many more experiments where we scanned different

objects with different tangential velocities and modeled the

velocity dependency of the acceleration response.

The remainder of this paper is organized as follows: Sec-

tion II provides a discussion of haptic textures. We present

in Section III our IIR-lter-based haptic texture model along

with a discussion of rendering approaches. Section IV details

the estimation of IIR-filter parameters from our measurements,

both, for a single feature of a texture and for a complete profile.

Section V presents estimated profiles for different types of

surfaces. We conclude our paper in Section VI with some

future directions.

II. BACKGROUND AND RELATED WORK

Haptic textures are a common part of virtual environments

and many different modelling and rendering approaches exist.

Tactile sensing may also be used for other tasks, e.g., recog-

nition [15] and geometric profiling [16]. In their sandpaper

system, Minsky et al. [17] render forces based on the gradient

of the local surface. The surface texture is either represented

procedurally or by an image. Since then, many different

approaches have been suggested. Siira and Pai [18] use normal

variations derived from surface roughness parameters for their

stochastic textures. Basdogan et al. [19] model textures as

bump maps which are either derived procedurally or from

images similar to computer graphics. Wall and Harwin [20]

employ Fourier series to represent a spatial frequency re-

sponse measured during surface profiling while Costa and

Cutkosky [21] simulate surface height profiles with fractals.

We are motivated to explore vibrotractile textures by Klatzky

and Lederman [3] who state that their “findings support the

use of vibrotactile cues to roughness in environments in which

direct skin contact is precluded”. Commercial pen-like haptic

devices do not simulate skin contact and hence our pursuit of

vibrotactile textures.

Wellman and Howe [5] studied ways to convey the stiffness

of virtual objects based on measured vibration waveforms

during a tapping experiment. Their work demonstrated that

high frequency vibrotactile feedback can effectively alter the

way objects are perceived in a virtual environment. Okamura et

al. [6] extended the vibrotactile model to acceleration profiles

sensed during stroking of a surface. Their model is a decaying

sinusoid which is fit in the time-domain to an acceleration

profile acquired when passing a groove in the surface. We

extend in our work the vibration feedback model to arbitrary

surfaces using a more general decaying impulse response

represented by an IIR filter. McMahan et al. [22] have very

recently shown that acceleration feedback enhances realism

when remotely probing textures as long as some stiffness

is rendered as well. In their study users rated vibration-

augmented rendering of samples as more realistic than position

controlled interactions. The most closely related work to ours

is the simultaneous work by Kuchenbecker et al. [10] who also

fit the coefficients of digital filters to acceleration waveforms.

In their work, they adapt an approach from audio processing

where the output of a linear predictor in response to a white

noise input is matched to a measured signal. Although the

work reported in [10] does not contain a segmentation method

of the acceleration waveforms, the same research group has

been working on a more general texture modeling technique

simultaneously to us [11].

Our model is also closely related to the earlier event-based

haptics approach by Kuchenbecker et al. [7] who model the

vibrations during tapping by acceleration matching based on

measurements. In acceleration matching the transfer function

between force and accelerations is estimated from tapping on

samples with the stylus of an instrumented haptic device. Dur-

ing rendering with the same stylus-based device the transfer

function is used to generate open-loop vibration transients.

We render our vibration textures also with standard stylus-

based haptic devices, but simpler devices based on a tractor or

inertial motor may be effective as well. According to Hayward

and MacLean [4] these types of vibrotactile devices are the

most common way to render vibrotactile feedback today and

can be found in pagers, cellphones and game controllers.

McMahan et al. [1] augment a consumer haptic device, a

Phantom Omni R©, with a linear actuator enabling the rendering

of vibration waveforms in addition to haptic rendering of tool

contact.

III. IIR FILTER MODEL

We designed our haptic texture model based on the force

and acceleration profiles which we have observed in scanning

surfaces with the WHaT [18]. The WHaT is a stylus-like

instrument which records three-dimensional accelerations and
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Fig. 2. Measured Acceleration Profiles. (Time scale is variable.)

�

(a) Filter locations and amplitude (b) Constant velocity response

Fig. 3. Haptic texture model with filters due to surface features located in
space and damping over time (tutorial figure showing damped sinusoids with
amplitudes A = ±1m/s2).

the force along its major axis. The values are transmitted via a

wireless link to a host PC at about 500 Hz. Simultaneously, we

visually track fiducial markers on the pen (see Figure 1) with a

stationary camera at about 100 Hz. The system is described in

detail in [13], [14] and has several advantages over commer-

cial profilers and vibration testers. Mobile profilers measure

surface height variations for roughness determination but typi-

cally do not record accelerations while mobile vibration testers

are meant to be kept stationary and both types of instruments

do not record forces.

Figure 2 shows three different acceleration profiles normal

to the surface that resulted from scanning a rubber mat, a

CD jewel case, and sandpaper (80 grit). We selected these

objects because they are representative of different types of

surfaces. A CD jewel case contains regular ridges and grooves

on the scanned thin side and these are recognizable in the

acceleration profile in Figure 2(a). The rubber mat consists

of a pattern of repeating shapes which are discernible in the

acceleration profile in Figure 2(c) but mixed with a more

stochastic pattern. The accelerations when scanning sandpaper

in Figure 2(e) are stochastic without any repeatable pattern.

The measured profiles have already been processed, i.e., the

x, y and z accelerometer readings combined with the measured

orientation of the WHaT have been used to estimate the

acceleration normal to the scanned surface (see [13] for a

system description). The profiles have also been normalized

for variations in applied force. We use the linear coefficients

kc of Lang and Andrews [14] which relate the root-mean-

squared accelerations aRMS to the lowpass-filtered measured

force flowpass by

aRMS = kc ∗ flowpass + a0. (1)

Lang and Andrews [14] have shown that the proportionality

constant kc is related to the reduced Young’s modulus of

compliant material measured during compression. They report

kc = 0.117 for the rubber mat and kc = 0.526 for the tire

tread. We use kc = 1.0 for rigid surfaces, i.e., the jewel-case

as well as for the different sandpapers. The mean forces in

the scans shown in Figure 2 are f̄ = 0.443 N, f̄ = 0.874 N

and f̄ = 0.353 N for the rubber mat, CD jewel-case and the

sandpaper, respectively.

Okamura et al. [6] have shown that the amplitude of the

transient accelerations observed during tapping is linearly

related to the “attack velocity”. We experimentally observe

similar behavior for the relationship between the RMS accel-

eration and the tangential velocity during surface stroking. We

extend Equation 1 to include this relationship and hence

ãRMS = kv ∗ vt + kc ∗ flowpass + ã0. (2)

We find values for ã0 and kv by linear regression based on

multiple scans of the same surface with different velocity.

We use the same proportionality constant kc as Andrews and

Lang [14]. Our results are detailed in Section V.

When a surface is scanned with the probe, an acceleration

pulse occurs at locations of texture features on the surface.

Inspired by Okamura et al. [6], we model such a pulse as

the initial peak of a decaying vibration wave, i.e., the feature

triggers a vibration at a certain location on the surface which

then diminishes over time. Okamura et al. used a decaying

sinusoid to represent this relation in the time domain as

a(t) = Ae−βt sinωt (3)

where A, β and ω = 2πf represent the amplitude, the decay

rate and the angular frequency of the waveform, respectively.

They applied their model only to surfaces with features

(grooves). Decaying impulse responses over time are located at

feature locations in space. Figure 3 shows a synthetic example

of our interpretation of such a haptic texture model. The

model consists of ten filters, each with a response according

to Equation 3. Figure 3(a) depicts the distribution of the

filters over the surface. Figure 3(b) shows the corresponding

acceleration profile if the surface is traversed with constant

speed.
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Instead of using the continuous relationship of Equation 3,

we use the impulse response of a discrete filter to represent

the acceleration signal because when rendering haptic textures,

the impulse response will be created in software. We model

the system with a discrete IIR filter with a sampling period T .

Assuming that the vibrations can be described by a decaying

sinusoid, then the Z-transform of the IIR filter is given by

H(z) = A
ze−βT sin(ωT )

z2 − 2ze−βT cos(ωT ) + e−2βT
(4)

The filter generates the desired vibration pattern at each feature

location by simply putting an impulse into the filter. The

coefficients of the IIR filter model can be chosen differently

from Equation 4. We design the IIR filter such that its impulse

response matches the acceleration profile which we have

measured stroking the surface with the WHaT. We discuss

how to find the filter coefficients in Section IV.

A. Haptic Texture Rendering

For haptic rendering of our texture, we adapt the model

of Andrews and Lang [23] in which a scanning profile is

registered with a triangular surface mesh. A point on the

surface is parametrized as a position along the 1D scanning

profile and a distance normal to the profile. Haptic rendering

employs a penalty-based approach where the penalty force is

composed of a rigid body constraint force plus a texture force

normal to the surface plus a tangential frictional force. We use

the same force terms as Andrews and Lang [23] but instead of

a texture force based on rendering a height profile, we directly

use the scaled acceleration profile generated by the IIR filter

as texture force. Our texture force is the sum of K currently

active filters scaled by Ak. A filter becomes active once the

haptic interaction point has traversed the filter location xk on

the profile at a discrete time prior to the current sampling

time. The kth filter response must therefore be shifted by

−tk = −cT and the overall normal texture force is then given

by

Ft(z) =

K∑

k=0

Akz−tk/T Hk(z) (5)

where

Hk(z) =

∑Mk

i=0
bikz−i

∑Nk

i=0
aikz−i

with Mk ≤ Nk and a0k = 1 for all filters.

We attempted to render our texture with a stylus-based

haptic device with a haptic update rate close to 1 kHz.

However, the actual upper frequency which can be felt by

the user is much lower due to the limited bandwidth of the

device. We believe that the use of a separate voice-coil vibrator

as proposed by McMahan and Kuchenbecker [10] is a superior

approach. The open-loop rendering method by Kuchenbecker

et al. [7] could also be adapted to render the accelerations

without augmenting the handle of the haptic device.
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Fig. 4. Estimation of IIR filter model. Bandpass filtered measurements are
marked with a cross, the solid lines are filter responses. The result of a time
domain estimation for a decaying sinusoid is shown in 4(a), the result of
Prony’s method with N = M = 11, N = M = 16 (bold), and N = M =
106, respectively are shown in 4(b). The IIR filter with N = M = 16 is
the one used in our approach since it is the filter with the smallest number
of coefficients for an average absolute sum of acceleration error of less than
0.153 m/s2 and N = M .

IV. MODEL ESTIMATION

In this section, we discuss the procedure of designing a

set of space-sequential IIR filters with a combined impulse

response that approximates the acceleration profile over time.

We proceed by segmenting the acceleration profile into sec-

tions which have a decaying waveform. We interpret the

individual sections as the impulse response from a single

filter and find the corresponding IIR filter coefficients with

Prony’s method [24]. We start our description by considering

a single section before introducing our segmentation method.

We will illustrate our approach with the acceleration profile

from stroking the rubber mat shown in Figure 2(c).

A. Matching the Filter Response to a Segment Profile

Figure 4 shows a section of the acceleration profile over

time. The section’s start- and endpoint have been selected such

that the absolute heights of the local extrema are decreasing,

i.e., the overall acceleration wave is decaying. Following the

method of Okamura et al. [6], we fit a decaying sinusoid to this

waveform in the time-domain for comparison. As discussed

earlier, we employ an IIR filter to represent the segment

and the decaying sinusoid can be represented as the impulse

response of a filter based on Equation 4. Figure 4(a) shows

the impulse response of the decaying sinusoid filter. While the

decaying sinusoid describes the overall nature of the wave, the

fit is quite poor.
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Fig. 5. Segmentation of acceleration profile. The result for segment 10 of
the rubber mat (see Figure 2(c)) is shown.

A closer fitting impulse response can be obtained by higher

order IIR filters. We employ Prony’s method [24] to design

such a filter based on the acceleration data. Prony’s method

is a time domain method for the calculation of the filter

coefficients based on the desired impulse response of the filter.

The filter corresponds to a Prony’s series which is a sum of

damped complex exponentials and hence the series is a natural

generalization of the decaying sinusoid model. The number of

samples of the impulse response required by Prony’s method

is greater than the sum of the order plus one of the numerator

M and denominator N of the filter. However, higher order

filters can be used with the help of zero-padding the impulse

response. Figure 4(b) shows two results of Prony’s method

for the same acceleration profile segment as above. The looser

fitting curve was estimated by Prony’s method with filter order

M = N = 11, while the tighter fitting curve shown in bold

was estimated with a filter order M = N = 16. In our method,

we start with a filter order equals to the number of extrema

of a segment. We increase the order of the filter until the

error falls below 1 bit or 0.153 m/s2 (see Section IV-B for

a discussion of sensor quantization noise). A filter order of

N = M = 109 results in a fit with an error below 1 mm/s2

which is visually indistinguishable from the original samples

in Figure 4(b). As an error measure we use the sum of absolute

differences normalized by the number of samples.

B. Segmentation of Acceleration Waveforms

In Section IV-A, we have assumed the existence of a time

segment of the acceleration profile consisting of a decaying

wave. We have also defined a segment as a section of the

profile where the absolute heights of the local extrema are

decreasing. It is reasonable to assume that each extremum with

a larger absolute magnitude than its predecessor is due to a

different surface feature from its predecessor. This assumption

is also consistent with the decaying sinusoid model. We

therefore segment the acceleration profile (cf. Figure 2) into

sections with decaying waveforms.

We find the local extrema of the absolute value of the

acceleration profile. The maxima will be the extrema of the

signal and since the acceleration profiles are zero-centered, the

minima are the start and end locations of a peak (illustrated

by the squares in Figure 5). The absolute mimima locations
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Fig. 6. Acceleration Power Spectrum for Stochastic Texture (Sandpaper).

determine the length of a segment. Each segment starts with

the mimima before an absolute peak larger than the previous

absolute peak and a segment ends with the minima before

an absolute peak larger than the previous absolute peak (see

Figure 5). The segmentation criteria are then summarized by

|ai,1
peak| > |a

i−1,jmax(i−1)

peak | and |a
i,jmax(i)

peak | < |ai+1,1
peak | where i is

the ith segment in the profile and j is jth absolute maximum

within a segment.

Applying the segmentation criteria without taking the noise

in the acceleration signal into account leads to a drastic

oversegmentation of the acceleration profile. The quantization

of the acceleration measurement is one source of noise. The

accelerometers used in the WHaT have a range of ±2g where

g = 9.81 m/s2 is the gravitational acceleration which is

quantized into 8 bit values. We modify the criteria for the start

of a new segment to include a deadband d = 0.3066 m/s2 of

2 bits as follows: |ai,1
peak| > |a

i−1,jmax(i−1)

peak |+d. The deadband

is effective in avoiding the creation of short segments in noisy

low-signal regions of the scan.

Another source of error consists of inaccuracies in force

normalization and the limited bandwidth of the force and

acceleration sensors. As a result, the signal during the scanning

of a surface feature may result in a too low initial peak in

the corresponding acceleration signal. This would result in

leading peaks being segmented off a segment corresponding

to a feature. We avoid this by using a relative error threshold

|ai,1
peak| > |err ∗ a

i−1,jmax(i−1)

peak |. This works effectively for

surface with regular patterns but not for surfaces with stochas-

tic textures. Stochastic textures may have many similar sized

peaks (see Figure 2(f)) and a relative error threshold would

lead to overly long segments, i.e., it would lead to an under-

segmentation. We balance the two competing requirements by

reducing the relative error threshold err based on the number

of peaks from the beginning of the segments. We choose an

exponential decay err(j) = α∗e−βj . We experimentally found

values of α = 1.0 and β = 0.05 to work well for all textures

captured by us.
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Fig. 7. Acceleration Power Spectrum for Regular Texture.

C. Filtering of Scan Data

The scan data contains high frequency noise and potentially

some low frequency drift. The power spectra of the acceler-

ation profiles (see Figures 7 and 6) all exhibit a somewhat

similar shape for different textured surfaces but the frequency

range and peak frequencies are different. Stiffer material will

have more energy in higher frequencies than soft materials due

to material damping. We use a bandpass filter to rule out high

frequency noise and any remaining low-frequency drift in the

acceleration signal. We select the upper limit of the bandpass

filter such that at least 75% of the power of the original signal

is captured and that no frequency with power larger than 10%
of the peak is excluded. Effectively our bandpass filtered signal

is now a truthful representation of the measured signal. The

upper cutoff frequency is found automatically by low-pass

filtering the spectrum and then calculating an upper frequency

where ∫ fupper

flower
|Y (f)|df

∫ f1/(2T )

flower
|Y (f)|df

> 0.75 (6)

and

∀f > fupper : |Y (f)| < 0.1|Y (fmajor)|. (7)

The major frequency fmajor is the frequency of the peak in

the single-sided power spectrum of the acceleration signal after

smoothing.

V. RESULTS

We present results for two stochastic surface textures and

three textures with a regular pattern, an overview of the raw

profiles is shown in Figure 2. We would like to emphasize

that these results were obtained by a mobile scanning set-up

without any requirement for sampling of the surface. The user

follows a free path over the surface and the path is registered

with the surface of the object through the visual tracker. Details

of the registration process can be found in [13]. The visual

tracker results in a position variance between 0.0821 mm and

0.345 mm depending on the measurement direction relative to

the camera for a typical scanning set-up [14]. Because of the

free scanning no two scans of a surface will exactly follow the

same path. This limits our ability to compare repeated scans

but we can still observe great similarity between scans of the

same surface along similar paths. Below, we will first compare

IIR filter models for scans of different materials followed by an

analysis of the performance of our model at different rendering

velocities. Finally, we give some statistics on the variation of

models obtained from repeated scans.

A. IIR Filter Models for Various Surfaces

As discussed in Section IV-B, we first employ a bandpass

filter to the raw acceleration profiles. The bandpass filter is a

4th-order Butterworth filter and the upper cutoff frequencies

are shown in Table I (lower cutoff is always at 0.122 Hz).

We segment the acceleration profile and fit an IIR filter with

Prony’s method to each segment. The IIR filters obtained

with Prony’s method have varying degrees depending on the

number of extrema per segment and the quality of fit.

The results for surfaces with a regular texture pattern are

shown in Figure 8 and the properties of the fit are listed in

Table I. The frequency spectrum of the scans varies depending

on the stiffness of the scanned surfaces as expected. The rubber

mat in Figure 8(c) is the most compliant surface, the tire

tread in 8(b) is less compliant while the CD jewel-case in

8(a) is rigid. Correspondingly, our automatic bandpass filter

method selects upper cut-off frequencies of 78.6 Hz, 158 Hz

and 322 Hz respectively. (The linear coefficients used during

force scaling kc are 0.117, 0.526 and 1.0, respectively, as

stated in Section III). The number of segments detected by our

method is determined by the approximate number of features

encountered during the surface scan. The rim of the CD jewel-

case has a very dense texture with ridges located about 1
mm apart while the tire tread and the rubber-mat have bigger

features located further apart. However, we will not see these

exact distances in our scans since it is practically impossible

to scan a textured surface in a straight line by hand. Our novel

segmentation routine (Section IV-B) is successful in breaking

up the acceleration signal into reasonable segments. For the

most part, a single feature corresponds to a single segment

and a single filter. Table I shows that the average number of

segments per mm is higher for the CD jewel-case than for the

tire tread and the rubber mat.

Table I also shows that the residual of our model fit

compared to the band-pass filtered profile as well as to the

measured complete signal are low. Our fitting approach en-

sures that the normalized sum of absolute differences between

the IIR filter and the bandpass signal of each segment is less

than 0.153 m/s2 which corresponds to 1 bit of the acceleration

sensors of the WHaT. While our previous approach [9] of a

narrow bandpass filter made it possible to fit the bandpass

signal well below the resolution of the sensor with low-order

filters, the difference to the measured signal was large because

of the many frequencies excluded by bandpass-filtering.

We report our study of stochastic textures based on sand-

paper of different grit sizes. The same procedure is used to
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Fig. 8. Patterned haptic textures rendered with the IIR filter model. The IIR filter output is rendered in bold. The measured acceleration data from the WHaT
is shown by crosses. The error between bandpass-filtered signal (not shown) and the IIR filter is guaranteed to be less than 0.153m/s2 by the Prony’s series
fit. See also Table I.

TABLE I
RESULTS FOR THE ESTIMATION OF THE IIR FILTER MODEL.

Object Texture pattern fmax fmajor Segment/distance M̄ + 1 = SADbandpass SADoriginal v̄t force
[Hz] [Hz] [1/mm] N̄ + 1 [mm/s2] [mm/s2] [mm/s] [N]

Jewel-case
regular

322.8 69.5 1.548 29.5 51.7 84.0 8.2 0.874
Tire tread 133.2 20.6 0.317 35.5 88.9 110.2 20.7 0.511
Rubber mat 78.6 17.8 0.316 29.4 103.9 133.2 21.4 0.443

SP 120 grit
stochastic

285.5 12.6 1.325 12.3 56.3 167.4 23.3 0.636
SP 80 grit 208.0 42.3 1.011 16.7 84.4 110.7 19.9 0.353
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(b) 120 Grit

Fig. 9. Stochastic haptic textures for sandpaper rendered with the IIR filter
model. The IIR filter output is rendered in bold. The measured acceleration
data from the WHaT is shown by crosses. The error between bandpass-filtered
signal (not shown) and the IIR filter is guaranteed to be less than 0.153 m/s2

by the Prony’s series fit. See also Table I.

obtain the IIR filters for sandpaper as for the surfaces with

regular patterns. Our segmentation routine succeeds with the

stochastic textures and breaks up the acceleration profiles

despite their inherent stochastic nature. The finer the grit of the

sandpaper, the denser the IIR filters should be placed on the

surface because the finer grit size results in a larger number

of sand particles encountered over a fixed distance. Table I

shows that the finer grit sandpaper with 120 grit has a larger

number of segments per distance than the coarser 80 grit paper.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5
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a
 [
m

/s
2
]

Fig. 10. Dependency of acceleration on tangential velocity during scanning
of a rubber mat.

We have also scanned 220 grit sandpaper but found the grit

to be beyond the spatial resolution of our scanning device.

Table I also shows that the stochastic textures result in low-

order IIR filter models. The acceleration waveform in each

segment can be easily approximated by combining only a few

complex exponentials during the Prony’s series fit.

In summary, our IIR modelling approach with our fitting

method succeeds for all three of the regular pattern profiles

shown in Figure 8 and the stochastic textures in Figure 9, in-

dependent of their characteristics. Nevertheless, some sources

of error exist due to the hand-held scanning and also due to

the lack of resolution of the sensor. Next, we discuss texture

simulation based on our IIR filter model including tangential

velocity variations during scanning and rendering as well as

the effect of time-aliasing.
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(a) Scanning: Avg. tangential velocity vt = 23.7 mm/s
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(b) Scanning: Avg. tangential velocity vt = 53.7 mm/s
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(c) Scanning: Avg. tangential velocity vt = 150.3 mm/s
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(d) Simulation: Constant velocity ct = 23.7 mm/s
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(e) Simulation: Constant velocity ct = 53.7 mm/s
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(f) Simulation: Constant velocity ct = 150.3 mm/s

Fig. 11. Influence of tangential velocity on scanned profiles and on haptic textures for the rubber mat. Figures 11(a), 11(b), and 11(c) show scan profiles of
the same approximate area on the rubber mat surface with different tangential velocities. Figures 11(d), 11(e), and 11(f) show our haptic texture model for
the surface rendered with different velocities. A constant force (0.443 N) is used in the simulation.
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(a) Scanning: Avg. tangential velocity v̄t = 29.2 mm/s
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(b) Scanning: Avg. tangential velocity v̄t = 78.0 mm/s
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(c) Scanning: Avg. tangential velocity v̄t = 172.1 mm/s

0 0.1 0.2
−4

−2

0

2

4

t [s]

a
 [

m
/s

2
]

0 10 20
−4

−2

0

2

4

x [mm]

a
 [

m
/s

2
]

(d) Simulation: Constant velocity ct = 29.2 mm/s
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(e) Simulation: Constant velocity ct = 78.0 mm/s
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(f) Simulation: Constant velocity ct = 172.1 mm/s

Fig. 12. Influence of tangential velocity on scanned profiles and on haptic textures for 80 grit sandpaper. Figures 12(a), 12(b), and 12(c) show scan profiles
of the same approximate area on the sandpaper surface with different tangential velocities. Figures 12(d), 12(e), and 12(f) show our haptic texture model for
the surface rendered with different velocities. A constant force (0.353 N) is used in the simulation.
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B. Texture Simulation

In this Section, we report simulation results of our IIR filter

models. We do not use a standard haptic device for these

simulations because of their limited bandwidth. Instead we

output the acceleration waveforms to a loudspeaker which can

transmit frequencies from approximately 20 Hz to 20 kHz. The

user rests the tip of the index finger on the speaker membrane

as the membrane vibrates. The vibrations change according to

the simulated texture and the simulated contact position but

the user cannot influence the rendered position. Besides the

large bandwidth of the display, the method has the further

advantages that we can directly render a scanned acceleration

profile, and that we can render profiles generated with our

model with pre-determined velocity. We have not conducted

a systematic user study but during informal use, models of

different surfaces were clearly distinguishable. Two properties

of the surfaces were most noticeable: the stiffness of a material

and the spatial frequency of surface features. The stiffness of a

material determines the sharpness of individual features while

the spatial frequency of surface features and the rendering

velocity determine the frequency of features in the acceleration

waveform played on the speaker.

We compare in Figures 11 and 12 the acceleration wave-

forms generated by our method with scanned sections of the

same surface for the rubber mat and the 80 grit sandpaper,

respectively. We simulate the haptic textures based on our

model with a sampling frequency of 1 kHz. We compare

the output of our model to three different scanned sections

of the same surface. The profiles for the rubber mat in

Figure 11 show between three and four large-scale features

of the surface in the spatial domain. The large-scale features

remain identifiable as the scanning velocity increases, both,

in the scans and in the simulation with our model. The time

domain profiles show that the decaying waveform between

features is not greatly influenced by the scanning or rendering

velocity. However, as the velocity increases the features of

the surface start to merge, i.e., there is aliasing both, in the

scanning of the surface and in the haptic texture simulated

by our model. We can conclude that our model behaves as

desired since the real world measurements including aliasing

are qualitatively matched. The comparison of acceleration

waveforms generated by our method and scanned section for

the sandpaper in Figure 12 show again a good qualitative

correspondence when viewed both, in the time and spatial

domain. The aliasing in the spatial domain is also observable.

We vary the amplitude of the acceleration profile generated

with our model based on Equation 2. The velocity scaling

factor kv and the offset ao are estimated by linear regression

from repeated scans of the same surface over approximately

identical sections and approximately constant velocity during a

scan (see Figure 10). We find kv = 18.5 1/s , a0 = 0.435 m/s2

and kv = 19.4 1/s, a0 = 0.287 m/s2 for the rubber mat and

the 80 grit sandpaper, respectively. The force scaling parameter

kc is a result of Lang and Andrews [14].

One limitation of our method is time-aliasing which is

encountered during scanning. Time aliasing occurs if one

decaying wave has not significantly diminished before the

next feature is encountered. Our current segmentation proce-

dure simply starts a new segment with every feature. This

effectively truncates the earlier decay and adds the remaining

signal to the waveform of the new section. Aliased features

can potentially result in missing information if the estimated

haptic texture is simulated at a lower velocity than the scanning

velocity. We scan therefore the surface as slow as possible if

we use the scanned profile for modeling. We were able to

produce approximately constant velocities of 21.6 mm/s for

the rubber mat and 19.8 mm/s for the 80 grit sandpaper model

during scanning by hand. Time aliasing at these low scanning

velocities is of little practical concern because these low

velocities require human effort and are likely not encountered

in virtual reality. Next, we explore the issue of the repeatability

of our scanning process.

C. Repeatability of Scans

Above, we have established that our scanning and modelling

process produces satisfactory results for the sample textures

but we have not studied the repeatability of our approach. In

order to quantify the variability between scans, we proceed by

scanning each surface five times and comparing the scans. We

attempt to follow similar paths for the scans of the individual

surfaces but due to the hand-held approach each scan path

is slightly different. We report the statistics for filters per

scanning distance and filter order in Table II. We also list

all parameters of five scans for two surfaces in Table III.

The number of segments per scan distance has a reasonable

standard deviation for all surfaces. This is an indication

that our segmentation approach generates segments which

correspond to features of the surface. The filter order of the

IIR filter has some variation. It is well known that estimating

a Prony’s series from noisy data can lead to instabilities in

the parameters of the series. In particular, for some sections

of the profile a high filter order is needed to achieve the

prescribed error threshold. A more elaborate stopping criterion

for determining the order of the Prony’s series, e.g., based

on a combination of approximation error and filter order

relative to segment size may be advantageous. However, for

our application the parameter of the Prony’s series including

the filter order are less important than the approximation error.

The approximation error measured by the normalized sum

of absolute differences with respect to the bandpass filtered

signal SADbandpass and with respect to the original signal

TABLE II
IIR FILTER ORDER AND SEGMENT LENGTH FOR SCANS OF DIFFERENT

SURFACES.

Object Segments/length [1/mm] M̄ + 1 = N̄ + 1
Mean σ Mean σ

Jewel-case 1.637 0.270 23.31 5.39
Tire tread 0.359 0.098 39.41 2.81
Rubber mat 0.345 0.031 31.06 6.14

SP 120 grit 1.181 0.132 14.43 2.72
SP 80 grit 1.030 0.066 17.71 3.63
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TABLE III
IIR FILTER MODEL FROM MULTIPLE SCANS.

Object Scan fmax fmajor Segment/distance M̄ + 1 = SADbandpass SADoriginal v̄t force
[Hz] [Hz] [1/mm] N̄ + 1 [mm/s2] [mm/s2] [mm/s] [N]

Rubber mat

1 91.4 18.7 0.373 33.2 91.7 138.0 19.1 0.439
2 79.5 18.6 0.365 24.9 105.0 134.7 21.4 0.624
3 78.6 17.8 0.316 29.4 103.9 133.2 21.4 0.443
4 79.0 17.2 0.307 27.2 105.8 139.3 25.3 0.477
5 86.9 17.5 0.366 40.6 92.9 147.9 17.5 0.525

SP 80 grit

1 190.6 25.9 0.992 13.5 89.9 168.1 22.6 0.187
2 208.0 42.3 1.011 16.7 84.4 110.7 19.9 0.353
3 286.7 49.4 1.146 20.1 76.9 112.9 15.1 0.385
4 197.3 32.9 0.985 22.6 75.2 95.8 15.1 0.344
5 217.5 24.4 1.014 15.7 82.3 125.5 21.1 0.143

SADoriginal is consistently low as shown in Tables I and III.

We also did not perceive the high filter order sections during

rendering and hence did not investigate a more advanced

stopping criterion for the Prony’s series fit further.

Table III shows that the different scans have been acquired

with slightly different velocities and forces. (The velocity is

estimated based on visual tracking). The comparison shows

that the raw scans have a similar major frequency for the

rubber mat but not for the 80 grit sandpaper. This is not

surprising considering the pattern of the rubber mat texture

and the stochastic nature of the sandpaper (see also the

power spectrum in Figure 6(b)). Our method to estimate the

upper cut-off frequency of the bandpass filter results in some

variability but the difference in the bandpass filtered signals

are not noticeable.

VI. CONCLUSION

In this paper we develop a novel method to obtain vibrotac-

tile textures from real-world samples. Our novel texture model

consists of spatially distributed and computationally efficient

IIR filters which operate in the time-domain. During haptic

rendering of the proles, the user can traverse the textured

surface at any speed, and the spatial frequencies of the features

remain constant, but damping is xed in time, i.e., the spatial

extent of the damping waveform varies with velocity. Our

procedure extends and unifies the decaying sinusoid approach

which has been proposed by others previously. Our estimation

method is able to estimate suitable IIR filters for stochastic,

patterned and mixed surfaces. The method is based on fully-

automatic segmentation of the acceleration signal and the use

of Prony’s method for filter design. We showed that the method

is stable for repeated scans of a surface despite scanning varia-

tions introduced by our hand-held scanning approach. In future

work, we would like to employ our models to characterize

different surfaces for recognition and to synthesize new models

for virtual textures.
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