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Abstract 

I n  IJCNN 2001 a new event is a competition with three 
challenging problems. I n  this paper we describe our ap- 
proaches on solving the first two problems: generuliza- 
tion ability challenge (GAC) and text decoding chal- 
lenge (TDC). The main learning technique used is the 
support vector machine (SVM). 

Figure 

1 Introduction 

In IJCNN 2001 a new event is a competition with three 
challenging problems. In this paper we describe our 
approaches on solving the first two problems: general- 
ization ability challenge (GAC) and text decoding chal- 
lenge (TDCJ. The main learning technique used is the 
support vector machine (SVM). 

This paper is organized as follows. In Section 2 we in- 
troduce the basic concepts of support vector machines 
(SVM) for classification and regression. Then Sections 
3 and 4 demonstrate our approaches on two problems: 
GAC and TDC, respectively. 

2 Support Vector Machines: Classification and 
Regression 
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Figure 1: Separating hyperplane 

The original idea of SVM [2] is to use a linear separat- 
ing hyperplane to  separate training data in two classes. 

2: An example which is not linear separable 

Figure 3: Support Vector Regression 

Given training vectors x i ,  i = 1 , .  . . , I of length n, and 
a vector y defined as follows 

1 if xi  in class 1, { -1 if xi  in class 2, Y i  

the support vector technique tries to  find the separat- 
ing hyperplane with the largest margin between two 
classes, measured along a line perpendicular to the hy- 
perplane. For example, in Figure 1, two classes could 
be fully separated by a dotted line wTx + b = 0. We 
would like to decide the line with the largest margin. 
In other words, intuitively we think that the distance 
between two classes of training data should be as large 
as possible. That means we want to find a line with 
parameters w and b such that the distance between 
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Figure 4: Cross validation using 3000 points 

wTx + b = f l  is maximized. As the distance be- 
tween wTz+b = f l  is 2/11w11 and maximizing 2/11w11 is 
equivalent to minimizing wTw/2, we have the following 
problem: 

1 

yi((WTzi)+b) 2 l , i =  l , . . .  , l .  

min -wTw 
w,b 2 

(1) 

The constraint yi((wTq) + b) 2 1 specify that data in 
the class 1 must be on the right-hand side of wTz+ b = 
0 while data in the other class must be on the left-hand 
side. Note that the reason of maximizing the distance 
between wTx + b = f l  is based on Vapnik's Structural 
Risk Minimization. 

However, practically problems may not be linear sepa- 
rable where an example is in Figure 2. SVM uses two 
methods to handle this difficulty: First, it allows train- 
ing errors. Second, SVM non-linearly transforms the 
original input space into a higher dimensional feature 
space by a function 4: 

Yi((WT4(zz)) + b) 2 1 - 6 7  (3) 
& L O ,  i = l  . . . . .  1 .  

A penalty term C Et=, ti in the objective function and 
training errors are allowed. That is, constraints (3) al- 
low that training data may not be on the correct side of 
the separating hyperplane wTx + b = 0 while we min- 
imize the training error ti in the objective func- 
tion. Hence if the penalty parameter C is large enough 
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Figure 5: Cross validation using 10,000 points 

and the data is linear separable, problem (3) goes back 
to  (1) as all ti will be zero. Note that training data x 
is mapped into a vector in a higher (possibly infinite) 
dimensional space by a function 4(z). In this higher 
space, it is more possible that data can be linearly sep- 
arated. An example by mapping a vector [x, y,  21' from 
R3 to  R'O is as follows: 

4 ( b 7 Y , Z l T )  = ( 1 7 J Z ~ 7 J Z ~ 7 J Z ~ 7 ~ 2 , Y 2 7 ~ 2 7  

&y, J z i z ,  JZyz). (4) 
Hence (2) is a problem in a high dimensional space 
which is not not easy. Currently the main procedure is 
by solving a dual formulation of (2). It needs a closed 
form of K(z i ,  zj) 4(~i)~q5(zj)  which is usually called 
the kernel function. Thus we need some special func- 
tions so that K(z i , z j )  can be easily calculated. For 
example, using (4), K(x i ,x j )  = (1+xTxj)2. Some pop- 
ular kernels are, for example, RBF kernel: e--Yllzi-z~ 11' 
and polynomial kernel: (zTxj /y  + S ) d ,  where y and S 
are parameters. 

After the dual form is solved, the decision function is 
written as 

f(z) = sign(zuT4(z) + b). 

In other words, for a test vector z, if wT4(x) + b > 0, 
we classify it to be in the class 1. Otherwise, we think 
it is in the second class. Only some of zi, i = 1,. .. , 1 
are used to construct w and b and they are important 
data called support vectors. 

Next we briefly introduce support vector regression 
(SVR) which finds a function extracting the hidden re- 
lationships of the given information. Given training 
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Figure 6: Cross validation using 50,000 points 

data ( q 7 y 1 ) ,  . . . , (zl ,yl) ,  where zi are input vec- 
tors and yi are the associated output value of xi, the 
support vector regression is an optimization problem 
PI: 

1 

subject to yi - (wT+(zi) + b)  5 E + &, 
( W T 4 ( x i )  + b)  - yi 5 E + e;, 
< a , ( ;  > O , i = l ,  ... , I ,  

where is the upper training error ( <; is the lower) 
subject to the +insensitive tube Iy-(wT4(z)+b)l 5 E. 
The parameters which control the regression quality 
are the cost of error C, the width of tube E, and the 
mapping function 4. 

The constraints of (5) imply that we would like to put 
most data zi in the tube Iy - (wT4(z) + b)t 5 E. This 
can be clearly seen from Figure 3. If zi is not in the 
tube, there is an error or S; which we would like 
to minimize in the objective function. For traditional 
least-square regression E is always zero and data are not 
mapped into higher dimensional spaces. Hence SVR 
is a more general and flexible treatment on regression 
problems. 

3 Generalization Ability Challenge (GAC) 

The GAC problem can be described as follows: Given 
a time series of length T = 50,000, the kth sam- 
ple consists of four inputs: zl(k),  . . . , ~ ( k )  and one 

output y(k). 
x1 (k), . . . , x4.(k) are used for testing. 

The first input z1 ( I C )  represents a binary synchroniza- 
tion pulse related to a natural periodicity in the system. 
That is, sequentially we have nine Os, one 1, nine Os, 
one 1, and so on. Other attributes, x2(k), . . . , ~ 4 ( k ) ,  

are real numbers in the range of f1 .5 .  An interesting 
observation is that for the 50,000 training data, 90% of 
y(k) are -1. Thus it might be possible that if we just 
guess all test data to be -1, there is already 90% accu- 
racy. The difficulty is how to use learning techniques 
to  achieve an even higher accuracy. 

Then another 50,000 data with only 

An important information is that ~ ( k )  is more related 
to y(k) than the other three. Furthermore, any past or 
future information may affect y(k). Note that in each 
of these data there is an additional x5(k) which is not 
related to y(k). However, only if q ( k )  = 1 we evaluate 
accuracy of the prediction by considering y(k). 

To use SVM for constructing a model, first we have to 
decide the attributes (i.e. features) of each data. That 
is, possible variables which may affect y(k). In addi- 
tion, for each attribute we need an encoding scheme. 
For example, to represent the periodicity of zl(k) ,  we 
can include zl(k - 5), . . . , q ( k  + 4) as 10 binary at- 
tributes of the kth data. On the other hand, we can 
use only one integer between 1 to 10 which indicates 
the the positionof 1 inxl(k-5) ,  ... , z l ( k + 4 ) .  Based 
on our experience we choose the former way as it might 
be better for support vector machines. 

We directly use zz(k) and z3(k) as they are. As ~ ( k )  
is more important, we consider some past and future 
elements. After conducting some cross validation tests, 
we decide to use 24(k - 5), . . . , q ( k  + 4). Therefore, 
each training data consists of 22 attributes. 

For learning techniques like Neural Networks or Sup- 
port Vector Machines, it is recommended to scale each 
attribute of data into an appropriate range such as 
[-1,1] or [0,13. Since all raw data under our encod- 
ing scheme are already in a small region [-1.5,1.5], we 
do not conduct any scaling. Of course we are not very 
sure if this decision is right or not. We will elaborate 
more on this issue later. 

After preparing the training data, we do the model 
selection by 5-fold cross validation. We consider only 
the RBF kernel K ( x i , x j )  = e--Ylls~--s~112. Thus two 
parameters are the kernel parameter y and the penalty 
parameter C in (2). 

First we work on a small subset of the training data: 
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Figure 7: All data points 
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Figure 8: d(k) and y(k) 

3000 randomly selected points. The contour of cross 
validation accuracy is in Figure 4 where two axes are 
log, C and log, y. It can be seen that the best cross 
validation rates happen around C = Z7 and y = 2 O .  
We then work on a larger subset with 10,000 data 
points. Results are in Figure 5 .  Surprisingly we find 
out that parameters with the best cross validation rate 
are around C = 24 to 25 and y = 2O to  2l ,  a different 
range than that in Figure 4. This is a little suspicious 
as earlier we did not have this experience on other prob- 
lems using SVM. Finally we do the model selection on 
all 50,000 training data where results are shown in Fig- 
ure 6 .  Again we note that the best parameters move 
to another region. 

Therefore, the experiment seems to show that the best 
parameters depend on the size of the training data. 
Though it is not clear why this happens, we conjecture 
that the lack of scaling might be one factor. Thus we 
redo the same experiments after scaling data. However, 

8 
d 

Figure 9: The function g 

0.08 

0.04 

408 : . -  I 
0 8  0805 081 0815 082 0825 0 8 3  0835 084 0845 0 8 5  

4 1  

a 

Figure 10: The function g in a small region 

the same obervation still occurs. 

From the results of model selection we still face a 
dilemma. We can just choose the best parameter ob- 
tained from the cross validation procedure on all 50,000 
training data. However, as the 5-fold cross validation 
procedure actually means the training of 40,000 data, 
for the future testing on another 50,000 data, we may 
have to move the parameter a little bit along the trend 
in Figures 4, 5, and 6 .  Finally we take a more con- 
servative approach by using parameters from Figure 6 .  
Hence C = 24 and y = 22 are selected. We then use 
this parameter set to  train the 50,000 data and obtain 
a model. Finally we apply this model to  predict 50,000 
test data. 

Here we provide more information about SVM training. 
For 50,000 training data, the number of support vectors 
is around 2000 to  3000. Such a small percentage of 
support vectors decreases the training time. For each 
parameter set, doing a 5-fold cross validation on 50,000 
data takes less than one hour on a Pentium 111-500 
with 384M RAM. Our experiments were done using 
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LIBSVM [l] which is one of our support vector machines 
software. LIBSVM is an integrated package for both 
support vector classification and regression. 

4 Text Decoding Challenge (TDC) 

The TDC problem can be described as follows: An En- 
glish text is converted into a binary sequence b i t ( k )  
according to the 8-bit ASCII table, with the charac- 
ter SPACE replaced by the character NULL. We then 
slide a window of length two across the entire sequence 
shifting by one from left to right to  generate a pattern 
of two-bit numbers. Then four smooth functions are 
used to generate outputs y(k), k = 1 , .  .. , T :  

y(k) = fz(ul(k), UZ(k)), i = 00,01,107 117 

where T is the length of the sequence, and u1(IE),u~(k) 
are independent, identically distributed random num- 
bers from a uniform distribution in the range ( - l , + l ) .  

We are given T = 30,720 data points 
(ul(k),u2(k),y(k)). The question is to find out 

1 bits in the binary sequence is approximately 0.135. 
In addition, these 30,720 bits are converted from a 
text of understandable English. 

We solve this problem by first using the fact that the 
fraction of 1 bits is only 0.135. Hence the probability of 
00 is (1 - 0.135)2 x 0.75. Thus the majority of points 
is on the function foo. We then plot the whole data 
set (211 ( k ) ,  ug(k) ,  y(k)) in Figure 7. 

bit(k),  k = 1 , .  .. , T. We also know that the fraction of 
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We can see that most of the points are at a particular 
surface. In addition, for those (u1, u2) with the same 
distance to  (0,  0), their function values are the same. In 
order to  further analyze foo(u1,ug), we define d(k) 
dul ( I C ) ~  + ~ 2 ( k ) ~  and draw a Figure 8 which shows the 
relation between d ( k )  and y(k). We can see a smooth 
function and some other points. Thus we tried to  guess 
the analytic form of foo. By drawing the following sinc 
function - in dotted line, in Figure 8, we can see 
that they are nearly the same. Thus we conjecture that 

where g(ul,u2) is an unknown smooth function. Thus 
we subtract all points with 9 and draw a new Fig- 
ure 9 which reveals more information about the func- 
tion g. From this figure we observe that Ig(u1, u2)I 5 
0.1,. 

Then the problem is how to extract 00 points from the 
above information as we failed to guess the analytic 
form of g(ul,u2). If we consider a small range of d, 
Figure 9 reduces to Figure 10. Clearly we can see that 
in a small region g is like a linear function. Thus we try 
a linear interpolation to find out 00 points. First we 
sort all data with Iy - -1 < 0.1 by their d. Then 
starting from data with smaller d, we gradually include 
points into the 00 category. To be more precise, for the 
kth data, we consider the previous five points which 
have been thought as 00 and find out the medium of 
their y values. Then for the next five points after k in 
the sorted list, we also find their medium of y. If the 
line passing these two mediums has the value within 

of y(k), we consider that the kth point should 
be 00. 

We then use a heuristic to  confirm some 0 bits. As the 
binary sequence is from an English text, the first bit of 
each character’s 8 bit representation should be zero. 

Now we know all 00 points. If we represent unknown 
bits as ?, data becomes the following sequence: 
... 00????00??0000?00.. . 
The O? is not 00 so we know it is 01. Similarly ?O is not 
00 so we know it is 10. Then the sequence becomes: 
. . .001??100110000100. .. 
Therefore, we have some 01 and 10 points. Now the 
characters in the beginning of the English text is as 
follows: 
A C ? ? ? ? ?  H ? ? ? ? ? ? ? ?  H ? D ? ? ? ?  F A B  
? I ? H ? L ? L I ? ? ’ ?  ? ? ? ? L A ? ? ? D 
We represent ? as an unknown character. 

Using these 01 points we do support vector regression 
to  find a surface. Then points near this surface might 
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be 01. Similarly we can use the same procedure to 
identify 10 points. Here we use E = 0, y = 20 and C = 1 
for the support vector regression. A large y means 
that we try to  overfit the training data. Therefore, it 
is like that we are trying to do a surface fitting. We 
then assign points whose values are in f0.005 of the 
decision surface -to the same category. However, when 
we sequentially add points to  01 and 10 categories, they 
should not violate existing patterns. For example, if we 
already know a pattern ?1 but its y is very close to the 
surface of 10, we will not change it to  10. A reason is 
that some points may be on the intersections of some 
of these four functions. 

Now the first sentence becomes: 
A C R ? S S T H E S T R E E T T H E D ? ?  R ? F A  
B R I ? H T L Y L I T S T ? R E S L A M M E D  
Finally the remaining points are likely to  be 11. Then 
the first sentence becomes: 
A C R O S S T H E S T R E E T T H E D O O R O F  
A B R I G H T L Y L I T S T O R E S L A M M E D  

Before doing the final correction, we redo support 
vector regression on data in four categories. Using 
y = 20, E = 0, C = 100, we obtain more fitted surfaces. 

The final correction is as follows. For any bit x ,  if the 
sequence obtained so far is . . . axb. .  . but the U value 
at  ax or xb is not very close to  values of f a %  or fzb, we 
think that x might be wrong. We select points which 
are not in the range of f0.01. Then we try to  change x 
to  its complement 5. If u values are now in the range 
of both faz or fzb, Z should be better than x. For this 
process, only six bits are updated. 

The four functions we obtained are in Figures 11, 12, 
13, and 14. Their combination is the original data in 
Figure 7. By removing unnecessary spaces, we obtain 
the final draft. For example, the first sentence is 
ACROSS THE STREET THE DOOR OF A BRIGHTLY 
LIT STORE SLAMMED 
By searching for the web, we also realize the text is 
part of “The heart of a dog” by Mikhail Bulgakov. The 
whole procedure for solving this problem is by a Python 
script. The software used for support vector regression 
is also LIBSVM. 
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