# IJTAG (Internal JTAG): A Step Toward a DFT Standard

Jeff Rearick, Agilent Technologies Al Crouch, Inovys Ken Posse Ben Bennetts, Bennetts Associates Bill Eklow, Cisco Systems

### Purpose

- Provide background and motivation for new IEEE standard activity re: *internal access*
- Describe progress of the IJTAG working group during the past year
- Solicit feedback and participation
- Somehow, some way, make a talk about an IEEE standard interesting and entertaining

### A Background Joke...

- Once upon a time, a guy asked a girl "Will you marry me?"
- The girl said, "NO!"

And the guy lived happily ever after and went fishing and hunting and played golf a lot and drank beer and belched out loud whenever he wanted.

Moral: If left on their own, guys do silly things that don't conform with societal norms.

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

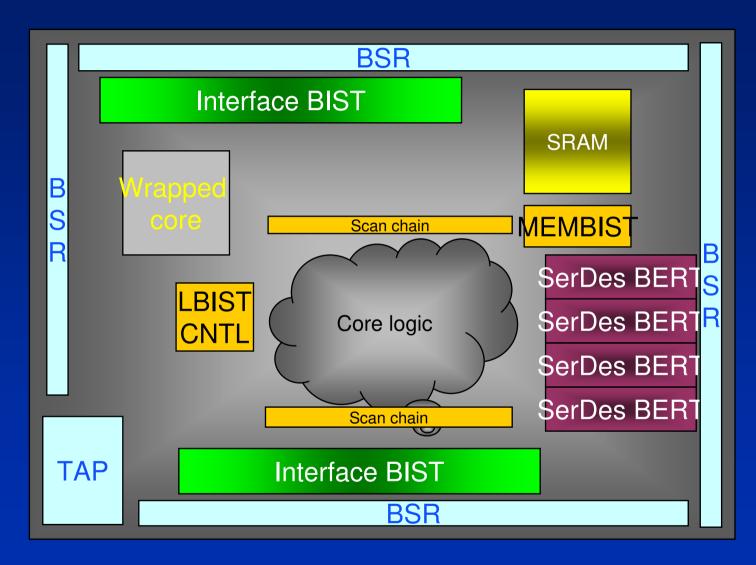
# What is JTAG?

- Common term for:
  - Serial scan testing
  - Boundary scan in particular
  - Test Access Port interface pins
  - IEEE 1149.1
- Origin: Joint Test Action Group (late 1980s)
- Evolution: IEEE Standard 1149.1 (1990+)
- Boundary Scan and Test Access Port (TAP)

### **TAP and Boundary Scan**



### Leverage: 1149.4, .6; 1532; 1500


- Other IEEE standards using the TAP:
  - 1149.4 : Mixed-signal test bus
  - 1149.6 : Advance I/O test
  - 1532 : In-system programming
  - 1500 : Embedded core testing
- Non-IEEE standards using the TAP: – Nexus 5001
- Non-standard usages of the TAP: – A very long list...

### Creative Uses of the IEEE 1149.1 TAP

- Power management
- Clock control
- Chip configuration
- Memory test
- Scan test
- Logic BIST
- Debug/diagnosis
- PLL control
- Reduced pin count test
- Fault insertion
- Embedded instrument access

| Power management       | Turn on/off input isolators (pass gates) [16]                                 |
|------------------------|-------------------------------------------------------------------------------|
|                        | Turn on/off pullup/pulldown resistors                                         |
|                        | Turn on/off entire clock domains                                              |
| Clock control          | Select chop-clock ratios for transition and path delay testing                |
|                        | Select chop-clock ratios and dividers for functional operation                |
| Chip configuration     | Capture of alternate chip IDCode register (chip or mask version)              |
|                        | Selecting Functional Units on the chip to be disabled/enabled                 |
| Memory test            | Selection of Memory BISTs to be run in parallel (1-hot bit per BIST)          |
|                        | Selection of memory BIST algorithm                                            |
|                        | Selection of memory BIST background (e.g., 3-C, 5-A, 0-F, 9-6)                |
|                        | Selection of Memory BISTs to be run in diagnostic mode                        |
|                        | Data collection from a memory BIST operating in diagnostic mode               |
|                        | DMA (connecting BIST muxes to chip-level busses with access to pins)          |
|                        | Enabling-Disabling memory lock for test and debug (OE and R/IW)               |
| Scantest               | Selection of chip-level scan mode or individual partition scan mode           |
|                        | Enabling-disabling-configuring internal tristate busses                       |
|                        | Reconfiguration of scan chains                                                |
|                        | Reconfiguration of scan wrappers around cores                                 |
|                        | Selection of pins to be used as scan-ins and scan-outs                        |
|                        | Configuration of pins used as scan-ins and scan-outs                          |
|                        | Subsuming AC scan operation completely within JTAG                            |
| Logic BIST             | Selection of STUMPs Logic BIST units                                          |
|                        | Selection of polynomial of PRPG LFSRs                                         |
|                        | Scanning in of seeds for re-seeding or debug                                  |
|                        | Selection of 'final signature compare' vs. 'incremental signature extraction' |
|                        | Scanning in of signature to be compared                                       |
| Debug & diagnosis      | Loading an internal counter used as a breakpoint                              |
|                        | Shadow capturing key registers (with a SAMPLE-like function)                  |
|                        | Masking or overwriting key registers (with an EXTEST-like function)           |
|                        | Replacing data in key registers (with and UPDATE-like function)               |
|                        | Selection of scan dump mode (lock memory, enables scan-out)                   |
| PLL control            | Access to control registers for gating Scan-Enable and Scan-Clock PLL outputs |
| Reduced pin count test | Access to low-frequency IOs                                                   |
|                        | Control PLL bypass for clock control                                          |
|                        | Control of internal scan chain configurations (detect versus locate)          |
| Fault insertion        | Drive IO faults                                                               |
|                        | Drive internal faults                                                         |
| Control of embedded    | Control of use of embedded instruments                                        |
| instrume<br>ntation    | Access for embedded instrument outputs                                        |
|                        |                                                                               |

### **TAP Access to Chip Test Features**



### Not a Laughing Matter...

- Internal test, debug, monitoring, repair, configuration, even reprogramming are all done via the TAP
- No common description language
- No common access method
- Very difficult to re-use at higher levels designers
   Moral: If left on their own, out s do silly things that don't conform with societal norms. system-wise

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

### **Example: Creating a Board/System Test**

- Complex board/system
  - Multiple SOC ASICs
  - Microprocessors
  - Embedded and standalone memories

\*

- Programmable logic devices
- Complex features
  - High-speed I/O
  - Backplane connections
  - Reconfigurability

#### **Goal: Re-use Component Test Features**

- Re-run ASIC embedded memory tests
- Re-run ASIC logic BIST
- Run ASIC-based external memory tests
- Run chip-to-chip HSIO PRBS tests
- Monitor internal signal waveforms
- Capture internal chip state
- Use chip test features to test board

#### **Daunting Task: Assembling ASIC Info**

- BSDL (Boundary Scan Description Language)
- Initialization sequence(s) and clock control
- Logic BIST and external MBIST recipes
- For each embedded memory

   Setup, launch, checking procedures
   Diagnostic routines
- List of extra test features and access methods

#### More Information to Collect: Board/Sys

- For each high-speed link
  - Method to setup, launch, and check BER
  - Ability to apply different crosstalk, jitter, noise, data content conditions
- For each parallel bus

- . . .

- Method to setup, launch, and check SI
- Patterns for crosstalk, glitches, etc.
- For each backplane configuration

### **Accessing Test Features is Painful**

- Multiple ASIC vendors
- Multiple memory vendors
- Multiple test methodologies
- Multiple ATE platforms
- Multiple test languages
- Bottom line from example:
   Chip test re-use at board/system: tough!

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

### The Brief History of IJTAG

- Early 2004: two independent (unaware) efforts
- Proposed to 1149.\* and 1532 working groups at ITC 2004
  - Merged, approved, several sign-ons
- Proposed to IEEE TTSG at ITC 2004
  - Advised to proceed informally
- Working group meeting at VTS 2005
   Officers elected; TTSG checkpoint
- Ongoing core team meetings

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

- Background
- Motivating example
- IJTAG standardization effort
  - Scope and focus
  - Technical challenges
  - Vision
- Next steps
- Conclusion

- Background
- Motivating example
- IJTAG standardization effort
  - Scope and focus
  - Technical challenges
  - Vision
- Next steps
- Conclusion

#### How to Fail at Standardization

- Too broad a scope
  - Fix every known problem with boundary scan standards; solve every test problem
- Too narrow a scope
  - Specify how to read results of MBIST
- Too fuzzy a focus
  - Invent new languages and interfaces
- Too sharp a focus

- Use PCI-Express to access Mux-D scan

#### The Three IJTAG Components

- Description of on-chip "instruments"
  Identify location, type, function
  BSDL is not adequate for this; CTL may be
- Protocol for instrument communication
  - Specify instructions, timing, sequences
    - STIL or STAPL may suffice
- High-bandwidth interface to instruments
  - Define control vs. data, handshake, function
    - Goal is to always allow "today's best interface"

### **Defining "Instruments"**

- Instrument, very broadly:
  - Any on-chip circuit for test, debug, diagnosis, monitoring, characterization, configuration, or functional use that can be accessed by, configured from, or communicate with a TAP controller.
- Examples:

 Scan chains, BIST engines, CRC registers, packet counters, performance monitors, waveform ADCs, remapping registers, trace buffers, PLL controls, power managers, ...

#### **IJTAG Scope**

- This standardization effort is intended to address the *access* to on-chip instrumentation, not the instruments themselves. The elements of standardized access include:
  - a description language for the characteristics of the instruments,
  - a protocol language for communication with the instruments, and
  - interface methods to the instruments.

- Background
- Motivating example
- IJTAG standardization effort
  - Scope and focus
  - Technical challenges
  - Vision
- Next steps
- Conclusion

#### **Four Technical Challenges**

- Bandwidth
  - Bus sizing and data rates for instruments
- Sequencing
  - Temporal staging of instrument actions
- Synchronization
  - Coordination of chip resources and instruments
- Interoperation
  - Connectivity with external resources (e.g. ATE)

#### Bandwidth

- Communication bottlenecks:
  - Inside chip to outside world: state dump
  - Outside world to inside chip: memory preload
  - Inside chip to inside chip: BIST
- Control vs. Data bandwidth
  - Control precedence? Data interruptability?
- Scalability across instruments
  - Go/NoGo vs. massive data dump

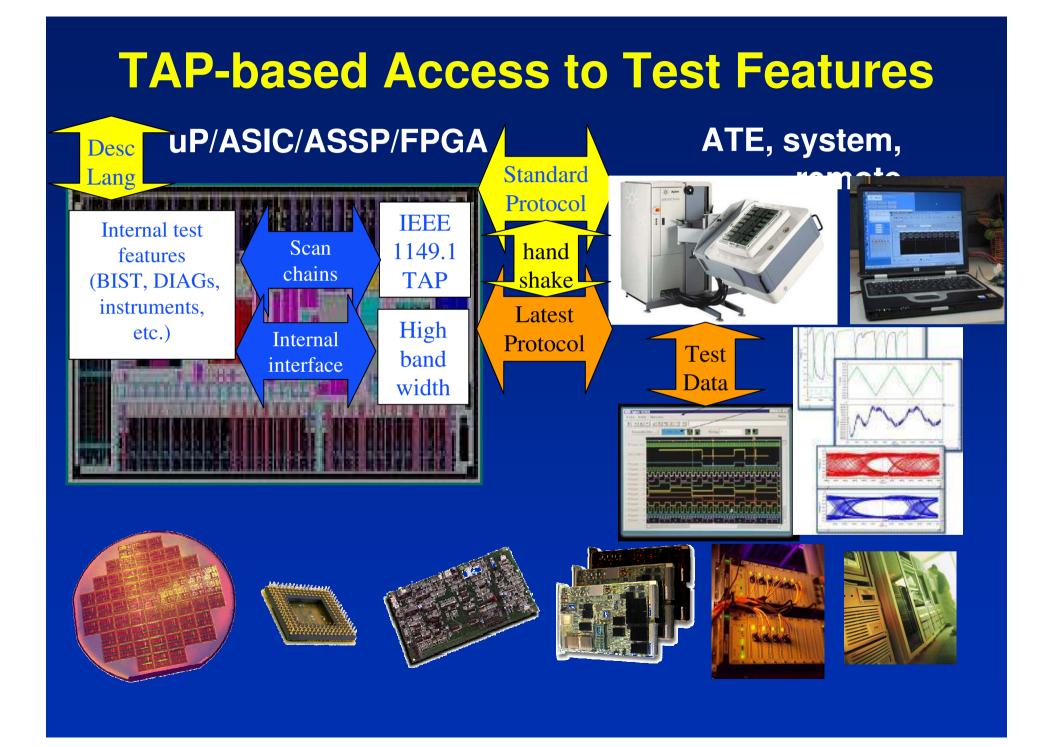
**Real estate vs. throughput** 

### Sequencing

- Simplistic approach to instrument staging:
   Initialize, launch, check
- Complications
  - Multiple launches
  - Interruptions
  - Destructive checking
  - Diagnostics
  - Power limitations
- Language requirements

#### **Synchronization**

- Coordination of chip activity with instruments
- Coordination of board/sys activity with instruments
- Coordination across multiple instruments
- Possible need for real-time interaction
- Time stamping with IEEE 1588
- Cross-clock domain data transfers
- Synchronization to TAP clock domain


#### Interoperation

- Connection to external resources (ATE, controllers, measurement devices, etc.)
- Control and data exchange protocol and language
- Access to instruments during mission mode
- Master/Slave relationships with multiple instruments
- Security

#### **Technically, Non-trivial**

- Despite clear scope and focus, there is still plenty of interesting work to do
- Striking a balance between ambition and practicality will be the key to progress

- Background
- Motivating example
- IJTAG standardization effort
  - Scope and focus
  - Technical challenges
  - Vision
- Next steps
- Conclusion



- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

#### **Next Steps**

- IJTAG Working Group meeting at ITC – November 10, 2005
- Plan: request formal creation of standard working group
  - Preparation of IEEE PAR for TTSG submission
  - Synchronize with other related working groups
  - Start the IEEE clock ticking
- Solicit additional members and input

- Background
- Motivating example
- IJTAG standardization effort
- Next steps
- Conclusion

### Conclusion

- IJTAG fills a very real need
- IJTAG scope must be focused to succeed
  - Standard description of internal features
  - Standard protocol language for access
  - High bandwidth interface mechanism(s)
- IJTAG gaining momentum
- IJTAG needs your input!

### A Background Joke...

- Once upon a time, a guy asked a girl "Will you marry me?"
- The girl said, "YES!"

And the guy lived happily ever after and went fishing and hunting and played golf a lot and drank beer and belched out loud whenever he wanted.

And they both lived happily ever after in the firm belief that standard is better than better.