
IkeaBot: An Autonomous Multi-Robot Coordinated Furniture Assembly

System

Ross A. Knepper, Todd Layton, John Romanishin, and Daniela Rus

Abstract— We present an automated assembly system that
directs the actions of a team of heterogeneous robots in the
completion of an assembly task. From an initial user-supplied
geometric specification, the system applies reasoning about the
geometry of individual parts in order to deduce how they
fit together. The task is then automatically transformed to a
symbolic description of the assembly—a sort of blueprint. A
symbolic planner generates an assembly sequence that can be
executed by a team of collaborating robots. Each robot fulfills
one of two roles: parts delivery or parts assembly. The latter are
equipped with specialized tools to aid in the assembly process.
Additionally, the robots engage in coordinated co-manipulation
of large, heavy assemblies. We provide details of an example
furniture kit assembled by the system.

I. INTRODUCTION

Automated assembly was one of the earliest applications

of robotics. Conventional assembly robots operate affixed

to the factory floor in an environment where uncertainty is

managed and engineered away by careful human design. In

the coming generation, agile assembly systems will become

increasingly adaptable to changing circumstances through the

incorporation of mobile manipulator robots. To accommodate

the additional freedom of a mobile base, uncertainty must be

managed by the robots themselves.

In this paper we present a cooperative robot system

capable of assembling simple furniture kits from IKEA.

We describe here an entire planning and assembly system,

beginning with raw parts and ending with an assembled piece

of furniture. The robots perform geometric and symbolic

planning, assume different roles, and coordinate actions to

complete the assembly.

The robots – mobile manipulators with simple end effec-

tors – are capable of locating parts in the workspace and

performing screwing operations to connect the parts. Because

the robot’s own end effectors are not capable of executing

a natural screwing maneuver, we developed a novel tool

that can deliver continuous rotational motion to furniture

components of various sizes. Many furniture assembly oper-

ations, for example screwing a table leg onto a table, require

cooperation between robots for placing and holding a part

and for applying the screwing tool to execute the assembly.

Figure 1 shows two robots collaborating to screw a table

leg into the table top. All computation occurs on board the

robots in a distributed fashion. For this demonstration, we

use a team of two KUKA youBots.

*This work was supported by the Boeing Company.
The authors are with the Computer Science and Ar-

tificial Intelligence Lab, Massachusetts Institute of Tech-
nology, 32 Vassar St, Cambridge, MA 02139 USA.
{rak,tlayton,johnrom,rus} at csail.mit.edu

Fig. 1. Two robots collaborating in the assembly of a table.

The main contributions of this assembly system are as

follows. First, we developed and implemented a geometric

reasoning system that is capable of discovering the correct

arrangement for attaching parts to one another even without

knowing the final goal shape. Second, we describe a new

object-oriented language for representing symbolic planning

problems. Third, we describe a novel system of modular tools

made to fit over the robot’s end-effector. In particular, we

introduce a new tool design capable of grasping and screwing

a variety of objects. Fourth, we discuss a system in which

robots coordinate to flip over an object that is too large and

heavy for one robot to manipulate, such as furniture. We

believe that this paper represents the first autonomous robotic

system to assemble a piece of IKEA furniture.

II. RELATED WORK

The application of autonomous assembly has received

significant attention from the robotics community.

A number of automated assembly planning systems de-

duce from geometric data the correct assembly sequence [7].

These systems employ CAD models of the individual parts in

order to constrain the search process and validate a choice

of assembly sequence [11, 18]. Such systems are given a

geometric model of the individual parts as well as of the

entire assembly—how all the parts fit together. In this paper,

we describe a system that does not require the full assembly

as input. Instead, the system deduces the geometric relations

among the parts based on possible alignments of the attach

points.

One important use case for robotic assembly systems

occurs in space exploration. Stroupe et al. [16] discuss a

Geometric
Preplanner (IV)

Symbolic
Planner (V)

Dispatcher
(VI)

Delivery
Robot (VI)

Assembly
Robot (VI)

Assembly
Robot

with Tool (VII)

Coordinated
Manipulation

(VIII)

Geometric/CAD
Input Data

ABPL

Ordered set of
Actions on
Parts

Actions

Fig. 2. System architecture. The paper section describing each module is shown in parentheses.

system architecture for assembly of structures in orbit or for

planetary colonization. The authors also discuss a modular

tool changing system somewhat similar to our own. Heger

[4] describes a space assembly system that incorporates

planning and execution, with an emphasis on error detection

and recovery. Neither geometric reasoning, nor multi-robot

coordination were a focus of this work.

In the furniture assembly domain, Spröwitz et al. [14]

employ modular robots as smart parts to actually become

furniture using decentralized computation.

Rus et al. [13] discuss the conditions for a set of mobile

robots (or fingers) to induce rigid body motions on an object,

such as a piece of furniture, for manipulation purposes. These

principles apply both to the manipulation of parts during

attachment (with fingers) and to the maneuvering of fully

assembled furniture.

III. COORDINATED ASSEMBLY SYSTEM

The furniture assembly system uses several mobile manip-

ulators capable of locating and connecting furniture parts.

For the physical experiments in this paper, the parts are

connected with screws, but the architecture and planning

systems support a general class of connectors.

The architecture for the furniture assembly system, de-

picted in Fig. 2, is organized into several modules that direct

the flow of information from basic geometric parts data into

an assembled piece of furniture. In the first stage, a geomet-

ric preplanning module solves for the configuration of the

completed furniture, based only on the form and quantity of

the individual parts—we describe the geometric preplanner

in Section IV. The output of this first stage, a symbolic

blueprint, describes the final assembly configuration, but it

does not provide an order of assembly. Consequently, the

blueprint is then fed into stage two, a symbolic planner

discussed in Section V. This planner is capable of reasoning

about available robots and parts. The symbolic planner out-

puts a sequence of operations that lead to a correct assembled

structure.

In stage three, those actions are dispatched to individual

robots or teams of robots in sequence in order to execute

the task. The execution of assembly actions is described

broadly in Section VI. We use a modular system of custom

tools to aid manipulation, as described in Section VII. In

Section VIII, we discuss the implementation of coordinated

manipulation involving multi-robot teams. Finally, in Sec-

tion IX we describe the demonstration of the complete

system for the assembly of an IKEA Lack table.

IV. GEOMETRIC PREPLANNING

The IkeaBot system begins the planning process by piec-

ing together individual components based on their geometric

description, similar to the work of Ambler and Popplestone

[1], Thomas and Torras [17]. However, we extend that

reasoning to output a blueprint for assembly comprising a set

of static coordinate transforms describing the final assembled

position and orientation of each part as affixed to the others.

To uncover this information, the algorithm searches through

possible subassemblies—that is, sets of one or more attached

parts. In order to support future data acquisition by machine

vision, a fuzzy match is performed between subassembly

pairs. For now, augmented CAD files are supplied by the

user.

A. Representation

Geometry data take the form of a set of CAD files as well

as a database specifying each hole in a part. As an example,

the geometric input file for the IKEA Lack table is shown

in Listing 1. At present, these files are generated by hand,

but in the future they could be automatically generated from

stereo vision or RGB+D data.

The input file provides a list of part types as well as the

number of instances of each part. Since pegs or screws are

normally used to attach parts, the locations of these holes

within each part are key to understanding how the parts fit

together. Consequently, most of the space in the input file is

dedicated to their description.

Each part type is specified in the file by three fields.

• file: the name of a CAD file describing the geometry

(holes may be present or absent in the CAD data),

• center: the approximate center of mass,

• holes: a list of holes.

For each hole, three fields are required.

• diameter: either a number or the name of a fastener,

• position: the center of the hole in the surface plane,

• direction: inward-pointing vector.

The center, position and direction fields are ex-

pressed in part coordinates. Note that direction is speci-

fied as an inward-pointing vector rather than a full orientation

because the fasteners used here are radially symmetric,

allowing the parts to rotate around this axis with respect

to each other. An optional fourth field, pass through,

(absent in the example) applies to holes that pass fully

through the part and specifies the distance from position

along the direction vector before the exit hole is reached.

Such holes are usually attached by nails or conventional

screws. It is important for the geometric reasoning engine

to understand the correspondence between the two ends of

a hole because the assignment of one end removes the other

from future consideration as well.

B. Relational Inference

At each step, the algorithm attempts to discover a coordi-

nate transform that will join two subassemblies together. One

or more holes from each subassembly are used to propose

candidate transforms. Then, checks are performed to validate

the candidate transforms before acceptance.

The algorithm first selects a pair of holes—one hole

each from two subassemblies—to associate. In joining two

holes, the algorithm computes a transform such that the two

subassemblies’ hole positions are coincident, thus reducing

the degrees of freedom by three. Furthermore, the holes

are oriented such that the direction vectors are parallel and

opposite, thus further reducing the freedoms by two.

A pair of holes joined in this manner permits a single

degree of rotational freedom around the axis of the hole. To

resolve the orientation, a second hole from each subassembly

is chosen (if available) and one subassembly is rotated about

its hole’s axis so as to minimize error in lining up this second

pair of holes. The minimum-error orientation resolves the

final degree of freedom and fixes a prospective transform

for mating one subassembly to another. At this point, the

iterated closest point (ICP) algorithm is used to draw a

correspondence among any remaining pairs of holes in the

two subassemblies. The error in matching all pairs of holes

figures into an overall match score for the given transform on

these two candidate subassemblies. Closest holes separated

by more than a threshold value are not included in the match

and remain free for future use.

If one subassembly has only a single hole free, then there

are no other holes to help resolve the rotational ambiguity.

In this case, an orientation is selected arbitrarily. Other

orientations can be tested until one is found that validates.

Several validation checks are employed to any proposed

subassembly transforms before they can be accepted. First,

the parts are collision-checked to verify that the proposed

orientation of the two subassemblies does not lead to self-

intersection. Minor penetration can occur due to imperfec-

tions in the model, thus incurring only a small penalty.

More significant penetration invalidates a proposed mating

transform. An additional check examines the free holes not

used in a particular mating operation. If a hole in one

subassembly is covered by another part, then that hole

Listing 1 Example input file for the geometric preplanner

describing parts for the the IKEA Lack table.
parts: {table_top: 1, leg: 4}

attach_parts: {double_screw: 4}

hole_diameters: [0.006] # meters

attach_diameters: {double_screw: 0.006} # meters

table_top: {

file: table_top.xml, # table is 0.551 x 0.551 x 0.050 m

center: [0.28, 0.28, 0.025],

holes: [{ diameter: double_screw,

position: [0.026, 0.026, 0.050],

direction: [0, 0, -1] },

{ diameter: double_screw,

position: [0.525, 0.026, 0.050],

direction: [0, 0, -1] },

{ diameter: double_screw,

position: [0.026, 0.525, 0.050],

direction: [0, 0, -1] },

{ diameter: double_screw,

position: [0.525, 0.525, 0.050],

direction: [0, 0, -1] }

]

}

leg: {

file: leg.xml, # leg is 0.400 x 0.050 x 0.050 m

center: [0.200, 0.025, 0.025],

holes: [{ diameter: double_screw,

position: [0.0, 0.025, 0.025],

direction: [1, 0, 0] }

]

}

becomes unavailable for future use. Such free hole proximity

queries as well as collision checks are performed using

OpenRAVE [3]. Part proximity to an unused hole creates a

penalty in the scoring function. A mating computed by hole

matching and validated based on the above tests is considered

a plausible mating.

The algorithm employs a number of tunable parameters

to score the quality of a mating of two subassemblies.

For geometry files generated by hand, the algorithm is not

sensitive to the particular choice of values. For geometry

files obtained from perception data, it will likely become

necessary to learn a reasonable tuning of these parameters.

C. Search Algorithm

Search proceeds in a depth-first fashion through the space

of plausible matings of subassemblies. The algorithm is

initialized with all components in a completely unassembled

state. To begin the search, the algorithm instantiates the cor-

rect number of subassemblies, each representing a singular

instance of one of the basic parts.

During search, the planner exhaustively computes plausi-

ble mating transforms that lead to one or more holes lining

up between adjacent parts. A plausible assembly has been

found when two conditions are met: (1) all components are

attached, and (2) no unfilled holes remain. Each plausible

assembly is scored based on the scores of individual plausible

matings. The highest-scoring plausible assembly is returned.

The system utilizes this plausible assembly to construct a

blueprint for use by the symbolic planner.

Listing 2 Machine-generated input file (blueprint) for the

symbolic planner, which builds an upright IKEA Lack table.
type Robot {

object arm {

property(Object) holding = None;

}

}

type AttachmentSpot {

property(Object) attached_to = None;

}

type TableTop {

group hole(AttachmentSpot)[4]{}

property(bool) upside_down = True;

}

type Leg {

object hole(AttachmentSpot){}

}

object table_top(TableTop){}

group leg(Leg)[4]{}

group robot(Robot)[2]{}

action pick_up_leg(robot(Robot), leg(Leg)) {

pre {

robot.arm.holding == None;

leg.hole.attached_to == None;

}

post {

robot.arm.holding = leg;

}

}

action attach_leg_to_top(robot(Robot), leg(Leg), table_top(TableTop)) {

pre {

robot.arm.holding == leg;

table_top.hole[0].attached_to == None;

}

post {

robot.arm.holding = None;

table_top.hole[0].attached_to = leg.hole;

leg.hole.attached_to = table_top.hole[0];

}

}

action flip_table(robot(Robot)[2], leg(Leg)[4], table_top(TableTop)) {

pre {

leg[2].hole.attached_to == table_top.hole[1];

leg[3].hole.attached_to == table_top.hole[0];

leg[0].hole.attached_to == table_top.hole[2];

leg[1].hole.attached_to == table_top.hole[3];

table_top.upside_down == True;

}

post {

table_top.upside_down = False;

}

}

goal assembly(table_top(TableTop)) {

table_top.upside_down == False;

}

V. SYMBOLIC PLANNING

IkeaBot determines an order of operations for assembly

using a symbolic planner. The planner attempts to discover

an action sequence such that the preconditions of each

action are satisfied. The postconditions of an action support

the preconditions of future actions, thus allowing progress

toward the goal.

It should be noted that the symbolic planner ignores

the order in which the geometric preplanner discovered the

mating of subassemblies. Rather, the symbolic planner relies

only on the blueprint generated by the geometric preplanner

to identify the goal of the assembly. Assembly operations

may require that components be assembled in a completely

different order than that previously discovered by static

geometric analysis.

Blueprints are specified using a newly-designed planning

language. ABPL (“A Better Planning Language”) is an

object-oriented symbolic planning specification language,

exemplified in Listing 2. Conceptually similar to OPL [5],

ABPL describes planning problem data in a manner which

respects the logical and intuitive features of the physical

environment as a planning space. ABPL enables an intuitive

statement of the problem by logically organizing concepts us-

ing various object-oriented programming (OOP) paradigms.

ABPL aims to overcome the necessary complexity of

expressing object-oriented relations within first-order logical

systems such as PDDL, the Planning Domain Definition

Language [9]. PDDL relies entirely on a flat, unstructured

representation of the objects in the environment and the

relations between them. The burden of creating structure,

such as regions of symbolic symmetry or commonalities

between multiple objects, falls entirely on the user. While

such systems are capable of describing OOP structures,

requiring the user to express each element of those structures

as a set of propositional statements would be time-consuming

and burdensome to the user. ABPL, in contrast, allows the

user to provide data in a more conventional object-oriented

format. An ABPL problem specification can be about one-

quarter the size of the equivalent PDDL specification. This

simplicity improves readability and ease of ABPL problem

creation, whether manual or automatic.

A. Specification Language Design and Structure

ABPL is based on the object-oriented approach to data

structure design, allowing the user to hierarchically organize

objects within the environment. Objects can be assigned

properties that evaluate to either Boolean values or references

to other objects. These values can be changed by the effects

of symbolic actions to reflect those actions’ consequent

alterations of the environment. Objects themselves can be

defined either at the top level in the global space, or as

sub-elements of other objects. These sub-object relations

can be syntactically referenced in the same way as object-

reference properties, but are semantically different in that

their values cannot be changed after declaration. This fact

is meant to convey the distinction between an object’s sub-

objects, which represent fixed components of that object, and

its object-typed properties, which represent mutable inter-

object relations. ABPL also allows the user to define “types,”

which fulfill the role of object classes. A type can be assigned

properties and sub-objects, which are then replicated in each

object that is declared to be of that type. Types can also be

used as action and goal predicates, for example to restrict a

symbolic action variable to values of a specific type.

An important distinction from other object-oriented sym-

bolic planners is the inclusion of groups. Groups represent

the existence of multiple identical instances of a given object.

For example, Lack tables have four legs, declared simply as

group leg(Leg)[4].

Groups enable the planner to reason efficiently about one

type of symmetry. Because the four legs are identical, they

are interchangeable. Thus any leg can be attached to any

corner of the table, and they can be installed in any sequence.

When referencing a member of the group, it is sufficient to

reference the first member of that group. The planner knows

that this rule extrapolates to all other group members as well.

Subsequently, one may reference the second group member

to indicate any table leg except the one already referenced.

B. ABPL Implementation for Assembly

IkeaBot’s planning module uses the ABPL specification

for its raw input and output data. At present, there is no

Problem Text
Interpreter

Problem Symbolic
Environment

Structure
Problem Text

Formatter

Solution Text
Interpreter

Solution Symbolic
Environment

Structure

Fast-Forward
Symbolic Solver

Solution Text
Formatter

ABPL Problem Text PDDL Problem Text

PDDL Solution TextABPL Solution Text

Fig. 3. Symbolic planner architecture. At present, the planner converts ABPL into PDDL and executes the Fast-Forward solver. In the future, this process
(the large box at right) may be replaced with a direct ABPL solver that can incorporate algorithmic hooks and other features unavailable in PDDL.

symbolic solver that operates directly on ABPL. Rather, we

convert symbolic data from one format to another using a

three step process: a text interpreter (built using the SPARK

little language framework [2]), a symbolic environment struc-

ture, and a text formatter. The process is outlined in Fig. 3.

A planning problem is passed through this process twice;

once to convert ABPL data into a PDDL format for use by

the internal symbolic solver, Fast-Forward [6], and again to

reformat the resulting solution sequence back into ABPL.

Alternatively, the calling program, such as the main IkeaBot

system, can retrieve the solution sequence in data structure

form rather than as ABPL solution text.

The current design of this planning program is predi-

cated on the assumption that any given planning problem’s

physical constraints can be expressed entirely symbolically.

As this is a significant limitation when working with the

geometric constraints inherent to the physical domain, future

work includes the extension of ABPL’s grammar to allow

for external program calls out of the solver in order to

incorporate non-symbolic data and logic into the planning

process. An important example is the use of a motion planner

to determine when it is feasible to attach two subassemblies.

VI. ASSEMBLY EXECUTION

Furniture assembly is accomplished by a large set of small

manipulation actions, each executed by the right robot with

the right part(s) at the right time. To orchestrate this activity

among an arbitrary number of robots in a distributed fashion,

we utilize a modified version of the system described by

Stein et al. [15].

In that system, a static blueprint describing part locations

in an absolute frame of reference is passed to a partitioner

(running on all assembly robots), which divides responsibil-

ity for installing each of the parts among the set of available

assembly robots. Meanwhile, a set of delivery robots stands

by, ready to retrieve and hand off the parts needed by the

assembly robots for installation.

We adapted this framework in order to increase its flexi-

bility for the IkeaBot assembly problem. Specific challenges

we address are heterogeneous parts without fixed global co-

ordinates, heterogeneous robot capabilities, and collaborative

multi-robot manipulation activities.

We replace the partitioner with a dispatcher, in recognition

of the fact that the salient assignment is over actions rather

than parts. The dispatcher remains a distributed process over

Listing 3 Example input file (recipe) for the dispatcher to

construct the IKEA Lack table.
step pick_up_leg(robot[0], leg[1]);

step attach_leg_to_top(robot[1], leg[1], table_top);

step pick_up_leg(robot[0], leg[3]);

step attach_leg_to_top(robot[1], leg[3], table_top);

step pick_up_leg(robot[0], leg[2]);

step attach_leg_to_top(robot[1], leg[2], table_top);

step pick_up_leg(robot[0], leg[0]);

step attach_leg_to_top(robot[1], leg[0], table_top);

step flip_table(robot, leg, table_top);

all assembly robots. Actions employ a fixed number of robots

(one or two in our IKEA Lack table example) to one or more

subassemblies. Listing 3 shows an example ABPL-encoded

input to the dispatcher. In the work of Stein, et al., parts

may be initially ineligible for installation, requiring that new

parts get allocated to assembly robots during the course of

assembly. Similarly, some actions may be initially unready

for execution due to their preconditions. A partial ordering, if

available from the symbolic planner, informs the dispatcher

when each action becomes eligible for execution.

In mobile manipulation, most actions require navigation

and obstacle avoidance capabilities. IkeaBot achieves these

capabilities using the Model-Based Hierarchical Planner [8].

It provides navigation through an environment cluttered with

furniture parts and other robots. Navigating robots utilize a

sampling-based reciprocal algorithm to anticipate the reac-

tion of other robots as well as human pedestrians.

VII. TOOL USAGE

Some manipulation problems are best solved in hardware.

In this section, we describe a modular system of hot-

pluggable, dockable tools that is designed to interface with

the KUKA youBot gripper and wrist design.

A. Interchangeable Gripper System

In order for the robots to use tools effectively, we designed

a system that allows tools to be quickly removed or replaced

with other tools. Manufacturing automation is replete with

existing systems for tool interchange at scales too large for

the KUKA youBot. Our system allows a single robot to

accomplish a variety of manipulation activities autonomously

with compact tools, thus greatly increasing the functionality

of the robots.

Fig. 4. The Torq gripper employed for table assembly.

Fig. 5. Solid modeler depiction of the screwing device. The powered upper
ring is shown in tan; the passive lower ring is blue. The black part on the
left is the coupling point to the KUKA youBot end-effector.

B. Torq Gripper Design

We designed a spinning gripper tool, the Torq Gripper,

which specializes in screwing-type operations. We observed

that the KUKA youBot arm, having only five degrees of

freedom, lacks the capability to rotate its wrist side-to-side.

This limitation makes screwing operations very difficult.

Our design specification requires a versatile tool capable

of applying high torque (up to 3 Nm) over many revolutions

to a shape with either circular or non-circular cross section.

The new robotic gripper uses multiple elastic cables to

compliantly constrain and then spin an object, as in Fig. 4.

A somewhat similar design was employed by Nguyen et al.

[10] in the design of the gripper for the Space Shuttle’s

Canadarm manipulator. The Canadarm employs a set of

cables that constrict around a part as a snare. Our design

contributes two primary distinctions geared for the furniture

assembly task. First, the elasticity and resulting compliance

of the cables allows the robot to handle uncertainty in the

relative position and orientation of the part. Second, both

ends of each cable connect to movable rings, which enables

the device to easily rotate the part after it has been grasped.

The Torq gripper functions by the encirclement of the

target object with flexible elastic members. These members

are attached to two separate rings (see Fig. 5). The top ring

is driven by a pair of motors, whereas the bottom ring is

unactuated. The unactuated ring contains a set of magnets

designed to increase the ring’s static friction. As the driven

ring is spun by the motors, the elastic elements begin to

Fig. 6. A series of frames show the Torq gripper gripping and spinning
an object.

Fig. 7. The Torq gripper in its docking station. Due magnetic and
gravitational force, the tool settles into a unique position.

contract around the object in the center as can be seen in

Fig. 6. After a threshold torque is reached, the bottom ring

and the object begin to spin as well in a stick/slip fashion.

This design enables the rings to maintain an approximately

constant gripping force on the part. The gripping strength is

controlled by the combination of the elasticity of the cables

and the force exerted by the magnets. Elasticity permits the

tool to be non-destructive in its application of force, which

is distributed almost uniformly around the circumference of

object. Additionally, the elastic nature of the force applica-

tion permits considerable error in position and orientation

during operation. More information about the Torq gripper

and its design can be found in the work of Romanishin [12].

Below, we describe the coupling mechanisms whereby the

robot picks up and docks the gripper and other tools.

1) Attachment to Robot Base: Figure 7 shows the system

that has been designed to hold the Torq gripper on the robot

body when not in use. The design takes advantage of the

magnets embedded in the unactuated ring, which attach the

tool to a steel plate. The dock design guides the tool into a

unique rest state for later retrieval.

2) Attachment to Robot Arm: When needed, the tool is

retrieved from its dock by pulling directly away from the

steel surface. The tool is shown coupled to the KUKA

youBot hand in Fig. 8. Eight magnets attract flexure-based

Fig. 8. A model of the Torq gripper attached to the end of the KUKA
arm. Magnetic contacts are shown at left.

steel electrical contacts in order to make the necessary power

and data connections. These magnets serve an additional

purpose of guiding the coupling into position. The KUKA

youBot gripper then securely grasps a custom handle located

inside the housing of the tool. An Arduino microcontroller

on the robot sends commands and interprets sensor signals.

VIII. COORDINATED MANIPULATION

For a variety of reasons, several robots must sometimes

come together in collaborative teams in order to complete the

overall assembly task. Some subassemblies may be too heavy

or large for a single robot to manipulate effectively, or more

robots may be required in order to fixture all of the parts

involved in a single attachment operation. In this section,

we address two issues of coordinated manipulation: dynamic

teaming and co-manipulation with decentralized coordinated

control. An example of two robots cooperatively flipping a

table can be seen in Fig. 9.

We address the resource allocation issue of dynamic team-

ing in a greedy manner. Each robot’s dispatcher allocates the

set of currently valid actions, including both single-robot and

team actions. Assembly robots perform all part-attachment

actions that can be performed without help. Delivery robots

receive no singleton assignments besides delivery tasks.

However, delivery robots are eligible to participate as part

of a team when called upon to do so.

Because it is harder to allocate multiple resources at once,

team activities take priority over singleton actions. After the

dispatcher recognizes that the preconditions for a team task

have been satisfied, the robots involved finish their current

action and then proceed to perform the task in a coordinated

fashion.

Team actions frequently possess a compound nature, and

so they are implemented as a state machine. For the ta-

ble flipping example, states include coarse (global-frame)

navigation, precision (part-frame) navigation, opening and

closing the gripper, and most importantly, following through

the mechanics of a flipping motion.

The flipping motion implements a virtual hinge at one

corner of the table and follows through 90 degrees of travel

at a time. At the conclusion of each 90-degree interval, the

position of the virtual hinge is then updated to the next corner

before the action continues.

Grasp point

Virtual hinge

Initial gripper
position

Final gripper
position

Fig. 10. The geometry of kinematic object flipping. Starting from
an arbitrary grasp point, the gripper rotates 90

◦ about a virtual hinge,
maintaining a constant distance.

In order to compute the desired motion of the hand to

kinematically flip an object, the robot tracks the position

of the gripper with respect to the virtual hinge. The robot

computes the desired velocity of its own end-effector in

Cartesian coordinates in order to track an arc. See Fig. 10.

Each robot adjusts the velocity of motion to match the other’s

pace. Joint velocities are then computed via the Jacobian.

Execution terminates after the grippers sweep through 90
◦ of

rotation (the normal case) or when joint limits or singularities

are reached. At present, the starting shape of the arm is

carefully selected by hand to avoid these kinematic failure

modes. In the future, this process will be automated.

IX. HARDWARE DEMONSTRATION

We demonstrated the capabilities described in this paper

using two KUKA youBots, which assembled an IKEA table.

Beginning from geometric descriptions of the parts, the

robots automatically compute a blueprint and assembly plan.

During execution, a Vicon motion capture system provides

localization for the robots and the table-top, although the

table legs are unmarked. Instead, table legs are available at

a fixed location in the global Vicon reference frame.

The robots expect the table-top to begin in the inverted

position, as indicated in the ABPL blueprint shown in

Listing 2. The robots can assemble the table flat on the

ground or elevated on a platform. The latter condition, as

depicted in Fig. 9, assists the robots in flipping the IKEA

Lack table, whose weight exceeds the combined rated 1 kg

maximum load capacity of a pair of youBots.

In addition to table assembly, the robots know how to

make a stool or two-level table out of a pair of half-height

Lack tables by stacking one on top of another.

The overall runtime to fully assemble the Lack table is

approximately ten minutes. Of that time, virtually all is spent

in execution. Geometric preplanning and symbolic planning

consume only a few seconds each. The following list reports

approximate times involved in executing specific tasks as part

of the assembly: pick up leg: 20 s, place leg in hole: 13 s,

hand off leg: 6 s, screw in leg: 45 s, flip table: 50 s.

Fig. 9. This sequence of images shows the process by which two robots flip a table.

To test robustness of the implementation, we performed

twelve repeated trials of the table assembly. Of those, nine

were completely successful. In three trials, a screw missed

the hole. Once, the screwing device failed due to software. In

all, we observed 48/48 successful pickups, 44/48 successful

placements, and 47/48 successful attach operations. Minor

human assistance permitted all trials to run to completion.

X. DISCUSSION AND FUTURE WORK

In this paper, we describe an implementation of a furniture

assembly system. Parts of the planning system are quite gen-

eral in capability, such as planning “from scratch” with only

the geometric form of the components as input—not even

their assembled shape. We introduce a new language that

is intuitive for humans and robots that efficiently expresses

symbolic planning problems. We describe a modular system

for powered tool use by the KUKA youBot. We discuss a

distributed task allocation system for a team of robots that is

capable of dynamically reassigning tasks as needed, subject

to the capabilities of each robot, demonstrated through the

assembly of an IKEA Lack table. Finally, we discuss an

approach to multi-robot coordination for co-manipulation,

illustrated through the flipping of the table.

Future work primarily revolves around making the system

more generic. We plan to generalize the implementation of

symbolic actions for manipulation to broaden the variety of

furniture kits the system can assemble. We also intend to

generalize the collaboration framework to achieve a variety

of co-manipulation tasks besides object-flipping. Finally,

failure detection and recovery will be added for robustness.

REFERENCES

[1] A. P. Ambler and R. J. Popplestone. Inferring the positions
of bodies from specified spatial relationships. Artificial Intel-
ligence, 6:157–174, 1975.

[2] J. Aycock. Compiling little languages in python. In Proceed-
ings of the 7th International Python Conference, 1998.

[3] R. Diankov. Automated Construction of Robotic Manipulation
Programs. PhD thesis, Carnegie Mellon University, Robotics
Institute, August 2010.

[4] F.W. Heger. Assembly Planning in Constrained Environments:
Building Structures with Multiple Mobile Robots. PhD thesis,
Carnegie Mellon University, Robotics Institute, August 2010.

[5] A. Hertle. Design and implementation of an object-
oriented planning language. Master’s thesis, Albert-Ludwigs-
Universität Freiburg, 2011.

[6] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253–302, month 2001.

[7] L.S. Homem de Mello and A.C. Sanderson. A correct and
complete algorithm for the generation of mechanical assembly
sequences. IEEE Transactions on Robotics and Automation,
7(2):228–240, April 1991.

[8] R.A. Knepper and D. Rus. Pedestrian-inspired sampling-based
multi-robot collision avoidance. In Proceedings of the IEEE
International Symposium on Robot and Human Interactive
Communication, Paris, France, September 2012.

[9] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. PDDL—the plan-
ning domain definition language. Technical Report CVC
TR98003/DCS TR1165, Yale Center for Computational Vi-
sion and Control, New Haven, USA, 1998.

[10] P.K. Nguyen, R. Ravindran, R. Carr, D.M. Gossain, and
K.H. Doetsch. Structural flexibility of the shuttle remote
manipulator system mechanical arm. Technical report, SPAR
Aerospace Ltd., 1982.

[11] J. Latombe R.H. Wilson. Geometric reasoning about mechan-
ical assembly. Artificial Intelligence, 71:371–396, 1994.

[12] J. Romanishin. Development of a robotic torque application
gripper for automated furniture assembly, 2012. Undergradu-
ate Thesis.

[13] D. Rus, B. Donald, and J. Jennings. Moving furniture with
teams of autonomous robots. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems,
August 1995.

[14] A. Spröwitz, P. Laprade, S. Bonardi, M. Mayer, R. Mckel,
P. Mudry, and A. Ijspeert. Roombots-towards decentralized
reconfiguration with self-reconfiguring modular robotic meta-
modules. In Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems, IEEE International
Conference on Intelligent Robots and Systems, pages 1126–
1132, Taipei, Taiwan, 2010.

[15] D. Stein, T.R. Schoen, and D. Rus. Constraint-aware coor-
dinated construction of generic structures. In Proceedings of
the IEEE International Conference on Intelligent Robots and
Systems, 2011.

[16] A.W. Stroupe, T. Huntsberger, B. Kennedy, H. Aghazarian,
E.T. Baumgartner, A. Ganino, M. Garrett, A. Okon, M. Robin-
son, and J.A. Townsend. Heterogeneous robotic systems for
assembly and servicing. In Proceedings of the International
Symposium on Artifical Intelligence, Robotics and Automation
in Space, Munich, Germany, August 2005.

[17] F. Thomas and C. Torras. Inferring feasible assemblies
from spatial constraints. IEEE Transactions on Robotics and
Automation, 8(2):228–239, 1992.

[18] R.H. Wilson. Minimizing user queries in interactive assembly
planning. IEEE Transactions on Robotics and Automation, 11
(2), April 1995.

