
IKNN: Informative K-Nearest Neighbor Pattern
Classification

Yang Song1, Jian Huang2, Ding Zhou1, Hongyuan Zha1,2, and C. Lee Giles1,2

1 Department of Computer Science and Engineering
2 College of Information Sciences and Technology,

The Pennsylvania State University,
University Park, PA 16802, U.S.A.

Abstract. The K-nearest neighbor (KNN) decision rule has been a
ubiquitous classification tool with good scalability. Past experience has
shown that the optimal choice of K depends upon the data, making it la-
borious to tune the parameter for different applications. We introduce a
new metric that measures the informativeness of objects to be classified.
When applied as a query-based distance metric to measure the closeness
between objects, two novel KNN procedures, Locally Informative-KNN
(LI-KNN) and Globally Informative-KNN (GI-KNN), are proposed. By
selecting a subset of most informative objects from neighborhoods, our
methods exhibit stability to the change of input parameters, number of
neighbors(K) and informative points (I). Experiments on UCI bench-
mark data and diverse real-world data sets indicate that our approaches
are application-independent and can generally outperform several popu-
lar KNN extensions, as well as SVM and Boosting methods.

1 Introduction

The K-nearest neighbor (KNN) classifier has been both a workhorse and bench-
mark classifier [1,2,4,11,14]. Given a query vector x0 and a set of N labeled
instances {xi, yi}N

1 , the task of the classifier is to predict the class label of x0
on the predefined P classes. The K-nearest neighbor (KNN) classification al-
gorithm tries to find the K nearest neighbors of x0 and uses a majority vote
to determine the class label of x0. Without prior knowledge, the KNN classifier
usually applies Euclidean distances as the distance metric. However, this simple
and easy-to-implement method can still yield competitive results even compared
to the most sophisticated machine learning methods.

The performance of a KNN classifier is primarily determined by the choice
of K as well as the distance metric applied [10]. However, it has been shown
in [6] that when the points are not uniformly distributed, predetermining the
value of K becomes difficult. Generally, larger values of K are more immune to
the noise presented, and make boundaries more smooth between classes. As a
result, choosing the same (optimal) K becomes almost impossible for different
applications.

Since it is well known that by effectively using prior knowledge such as the
distribution of the data and feature selection, KNN classifiers can significantly

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 248–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

IKNN: Informative K-Nearest Neighbor Pattern Classification 249

improve their performance, researchers have attempted to propose new
approaches to augmenting the performance of KNN method. e.g., Discriminant
Adaptive NN [9] (DANN), Adaptive Metric NN [6] (ADAMENN), Weight Ad-
justed KNN [8] (WAKNN), Large Margin NN [13] (LMNN) and etc. Despite the
success and rationale of these methods, most have several constraints in prac-
tice. Such as the effort to tune numerous parameters (DANN introduces two
new parameters, KM and ε; ADAMENN has six input parameters in total that
could potentially cause overfitting), the required knowledge in other research
fields (LMNN applies semidefinite programming for the optimization problem),
the dependency on specific applications (WAKNN is designed specifically for
text categorization) and so on. Additionally, in spite of all the aforementioned
constraints, choosing the proper value of K is still a crucial task for most KNN
extensions, making the problem further compounded.

query point

7−NN boundary

query point query point most informative point

Fig. 1. A toy classification problem. (Left) The original distribution of two classes.
(Middle) Results of k = 7 NN method where the query point is misclassified. (Right)
One of our proposed methods, (LI-KNN), chooses one informative point for prediction.

Therefore, it is desirable to augment the performance of traditional KNN
without introducing much overhead to this simple method. We propose two
KNN methods that are ubiquitous and their performances are insensitive to the
change of input parameters. Figure 1 gives an example that shows the motivation
of our approach, in which the traditional KNN method fails to predict the class
label of the query point with K = 7. One of our proposed method (LI-KNN)
takes the same value of K, finds the most informative point (I = 1) for the query
point according to the new distance metric, and makes a correct prediction.

1.1 Our Contribution

In this paper, we propose two novel, effective yet easy-to-implement extensions
of KNN method whose performances are relatively insensitive to the change of
parameters. Both of our methods are inspired by the idea of informativeness.
Generally, a point(object) is treated to be informative if it is close to the query
point and far away from the points with different class labels. Specifically, our
paper makes the following contributions:

(1) We introduce a new concept named informativeness to measure the im-
portance of points, which can be used as a distance metric for classification. (2)

250 Y. Song et al.

Based on the new distance metric, we propose an efficient locally informative
KNN (LI-KNN) method. (3) By learning a weight vector from training data, we
propose our second method that finds the globally informative points for KNN
classification (GI-KNN). (4) We perform a series of experiments on real world
different data sets by comparing with several popular classifiers including KNN,
DANN, LMNN, SVM and Boosting. (5) We discuss the optimal choice of the
input parameters (K and I) for LI-KNN and GI-KNN and demonstrate that our
methods are relatively insensitive to the change of parameters.

The rest of the paper is organized as follows: Section 2 presents related work
about different approaches to improve KNN pattern classification; section 3 in-
troduces the definition of informativeness and our first algorithm LI-KNN; sec-
tion 4 continues to propose the second learning method GI-KNN; we apply the
proposed methods to both synthetic and real-world data sets in section 5 for
evaluation; finally we conclude in section 6.

2 Related Work

The idea of nearest neighbor pattern classification was first introduced by Cover
and Hart in [4], in which the decision rule is to assign an unclassified sample
point to the classification of the nearest of a collection of predetermined classified
points. The authors proved that when the amount of data approaches infinity,
the one nearest neighbor classification is bounded by twice the asymptotic error
rate as the Bayes rule, independent of the distance metric applied.

Hastie and Tibshirani [9] developed an adaptive method of nearest neigh-
bor classification (DANN) by using local discrimination information to esti-
mate a subspace for global dimension reduction. They estimate between (B)
and within (W) the sum-of-squares matrices, and use them as a local metric
such as

∑
= W−1BW−1. They showed that their work can be generalized by

applying specialized distance measures for different problems.
Weinberger et al. [13] learned a Mahanalobis distance metric for KNN clas-

sification by using semidefinite programming, a method they call large margin
nearest neighbor (LMNN) classification. Their method seeks a large margin that
separates examples from different classes, while keeping a close distance between
nearest neighbors that have the same class labels. The method is novel in the
sense that LMNN does not try to minimize the distance between all examples
that share the same labels, but only to those that are specified as target neigh-
bors. Experimental results exhibit great improvement over KNN and SVM.

By learning locally relevant features from nearest neighbors, Friedman [7]
introduced a flexible metric that performs recursively partitioning to learn local
relevances, which is defined as I2

i (z) = (Ef − E[f |xi = z])2, where Ef denotes
the expected value over the joint probability density p(x) of an arbitrary function
f(x). The most informative feature is recognized as the one giving the largest
deviation from P (x|xi = z).

Han et al. [8] proposed an application of KNN classification to text cate-
gorization by using adjusted weight of neighbors (WAKNN). WAKNN tries to

IKNN: Informative K-Nearest Neighbor Pattern Classification 251

learn the best weight for vectors by measuring the cosine similarity between
documents. Specifically, the similarity function is defined as cos(X, Y, W) =

�
t∈T (Xt×Wt)×(Yt×Wt)√�

t∈T (Xt×Wt)2×
√�

t∈T (Yt×Wt)2
, where X and Y are two documents, W the

weight vector and T the set of features (terms). Optimizations are also per-
formed to speed up WAKNN. The experiments on benchmark data sets indicate
that WAKNN consistently outperforms KNN, C4.5 and several other classifiers.

3 Locally Informative KNN (LI-KNN)

Without prior knowledge, most KNN classifiers apply Euclidean distances as
the measurement of the closeness between examples. Since it has already been
shown that treating the neighbors that are of low relevance as the same impor-
tance as those of high relevance could possibly degrade the performance of KNN
procedures [7], we believe it to be beneficial to further explore the information
exhibited by neighbors. In this section, we first propose a new distance metric
that assesses the informativeness of points given a specific query point. We then
proceed to use it to augment KNN classification and advocate our first method,
LI-KNN.

3.1 Definition of Informativeness

We use the following naming conventions. Q denotes the query point, K indicates
the K nearest neighbors according to a distance metric, and I denotes most
informative points based on equation (1). For each point, xi denotes the i’s
feature vector, xij its j’s feature and yi its class label. Let N represent the total
number of training points, where each point has P features.

Definition 1. Specify a set of training points {xi, yi}N
1 with xi ∈ R

P and yi ∈
{1, ...m}. For each query point xi, the informativeness of each of the remaining
N-1 points {xj , yj}N

1 is defined as:

I(xj |Q=xi) = − log(1 − P(xj |Q = xi))∗P(xj|Q = xi), j = 1, ...N, j �= i (1)

where P(xj |Q = xi) is the probability that point xj is informative (w.r.t. Q),
defined as:

P(xj |Q=xi)=
1
Zi

⎧
⎨

⎩
Pr(xj |Q=xi)η

(
N∏

n=1

(
1 − Pr(xj |Q=xn)I[yj �=yn]

)
)1−η

⎫
⎬

⎭
(2)

The first term Pr(xj |Q = xi)η in equation (2) can be interpreted as the likelihood
that point xj is close to the Q, while the second part indicates the probability
that xj far apart from dissimilar points. The indicator I[.] equals to 1 if the
condition is met and 0 otherwise. Zi is a normalization factor and η is introduced
as a balancing factor that determines the emphasis of the first term. Intuitively, η

is set to
Nxj

N , where Nxj represents the number of points in the same class of xj .

252 Y. Song et al.

query point

3

4

5

1

2

query point

3

4

5

1

2

query point

3

4

5

1

2

query point

3

4

5

1

2

1 informative point

3 informative points

4

5

1

2

query point

2 informative points

4 informative points

6
7

89

11

class boundary

3

10

d

Fig. 2. An illustration of 7-NN and the corresponding i informative points for the query
point. (Left) 7-NN classification and the real class boundary. (Right) i(i = {1, 2, 3, 4})
informative points for the same query.

The rationale of informativeness is that two points are likely to share the same
class label when their distance is sufficiently small, assuming the points have a
uniform distribution. This idea is the same as KNN classification. On the other
hand, compared to traditional KNN classifiers that measures pairwise distances
between the query point and neighbors, our metric also calculates the closeness
between neighbor points, i.e., the informative points should also have a large
distance from dissimilar points. This further guarantees that the locations of
other informative points have the same class label maximum likelihood.

Figure 2(left) gives an example for clarification, in which point 1 and point
2 (with the same class label) both have the same distance d from Q but point
1 is closer to the real class boundary. Thus, point 1 is more likely to be closer
to the points in other classes. As such we claim that point 1 is less informative
than point 2 for Q by DEFINITION 1. Again, assuming the distribution over
the concept location is uniform, it is more likely that points (e.g., 3 & 4) have
the same label as points 1 & 2 and will more likely distribute around point 2
than point 1.

3.2 Informativeness Implementation

To define Pr(xj |Q = xi) in equation (2), we can model the causal probability of
an individual point on Q as a function of the distance between them:

Pr(xj |Q = xi) = f(‖xi − xj‖p) (3)

where ‖xi − xj‖p denotes the p-norm distance between xi and xj . To achieve
higher probability when two points are close to each other, we require f(.) to be
a function inverse to the distance between two points. The generalized Euclidean
distance metric satisfies this requirement. Thus, equation (3) can be defined as

IKNN: Informative K-Nearest Neighbor Pattern Classification 253

Pr(xj |Q = xi) = exp(−||xi − xj ||2
γ

) γ > 0 (4)

In practice, it is very likely that the features have different importance, making
it desirable to find the best weighting of the features. Specifically, we define
||xi − xj ||2 =

∑
p wp(xip − xjp)2, where wp is a scaling that reflects the relative

importance of feature p. Although there exists numerous functions for calculating
wp, here we specify it as follows:

wp =
1
m

m∑

k=1

wpk =
1
m

m∑

k=1

Varxk
(xpk) (5)

We obtain wp by averaging over all classes’ weights wpk, which is calculated us-
ing the variance of all points in each class k at feature p, denoted by Varxk

(xpk).
The normalization factor Zi in equation (2) ensures the well-defined proba-

bilities of neighbors for a given query point xi. Specifically,

Zi =
N∑

j=1

Pr(xj |Q = xi),
N∑

j=1

P(xj |Q = xi) = 1 (6)

so that the normalization is guaranteed.
Based on the implementation, we have the following proposition:

Proposition 1. Given a specific query x0, ∀ xi, xj that satisfies ‖xi−x0‖2 = kd
and ‖xj − x0‖2 = d with d ∈ R

+, k > 1, I(xi|x0) < exp((1 − k)d)ηI(xj |x0).

Proof. For simplicity, we only consider the case that xi and xj are in the same
class, i.e., yi = yj. Without loss of generality, we let γ = 1 for equation (4). We
have

P(xj |Q = x0)
P(xi|Q = x0)

=
Pr(xj |Q = x0)ηH(xj)1−η

Pr(xi|Q = x0)ηH(xi)1−η

=
exp(−d)ηH(xj)1−η

exp(−kd)ηH(xi)1−η

= exp((k − 1)d)η H(xj)1−η

H(xi)1−η
(7)

where H(x) =
(∏N

n=1

(
1 − Pr(x|Q = xn)I[y �=yn]

))
. Since H(·) is independent of

the query point, its expected value (taken over x and each xn) can be defined as

E(H(x)) = E

(
N∏

n=1

(
1 − Pr(x|Q = xn)I[y �=yn]

)
)

=
N∏

n=1

(
E

(
1 − Pr(x|Q = xn)I[y �=yn]

))

254 Y. Song et al.

=
N∏

n=1

(
E(1 − exp(−‖x − xn‖2)I[y �=yn])

)

=
N∏

n=1

(
(1 − E exp(−‖x − xn‖2)I[y �=yn])

)

Recall that xi and xj are in the same class, thus the set of dissimilar points (say
{x′

n, y′
n}q

1) should be the same. The above equation can then be simplified by
removing the indicator variables:

E(H(x)) =
q∏

n=1

(
(1 − E exp(−‖x− x′

n‖2))
)

=
q∏

n=1

(

1 −
∫ N

1
exp(−‖x− x′

n‖2)dx

)

with N → ∞, it is easy to verify that E(H(xi)) = E(H(xj)). Applying the
results to equation (7), we have

P(xj |Q = x0)
P(xi|Q = x0)

= exp((k − 1)d)η > 1 (with k > 1) (8)

Applying equation (8) to equation (1), we finally have:

I(xj |Q = x0)
I(xi|Q = x0)

=
log(1 − P(xj |Q = x0))
log(1 − P(xi|Q = x0))

· exp((k − 1)d)η

= log(1−P(xi|Q=x0)) (1 − P(xj |Q = x0)) · exp((k − 1)d)η

> exp((k − 1)d)η �

3.3 LI-KNN Classification

So far we have proposed to compute the informativeness of points in the entire
data distribution for a specific Q. However, considering the high dimensionality
and large number of data points in practice, the computational cost could be
prohibitively high. We propose to make use of the new distance metric defined
in equation (1) by restricting the computation between the nearest neighbors in
an augmented query-based KNN classifier.

Algorithm 1 gives the pseudo-code of LI-KNN classification. Instead of finding
the informative points for each xi by going over the entire data set, LI-KNN
retrieves I locally informative points by first getting the K nearest neighbors
(we consider the Euclidean distance here). It then applies equation (1) to the
K local points and the majority label between the I points are assigned to xi.
Specifically, when I = 1, LI-KNN finds only the most informative point, i.e., yi =
argmaxyk,k∈{1,...,K} I(xk|Q = xi). In this way the computational cost of finding
the most informative points is reduced to a local computation. Noticeably, when

IKNN: Informative K-Nearest Neighbor Pattern Classification 255

Algorithm 1. LI-KNN Classification
1: Input: (S, K, I)

target matrix: S = {xi, yi}N
1

number of neighbors: K ∈ {1, ..., N − 1}
number of informative points: I ∈ {1, ..., K}

2: Initialize err ← 0
3: for each query point xi (i = 1 to N) do
4: find K nearest neighbors XK using Euclidean distance
5: find I most informative points among K neighbors (equation (1))
6: majority vote between the I points to determine the class label of xi

7: if xi is misclassified
8: err ← err + 1/N
9: end if

10: end for
11: Output: err

K equals to N , the locally informative points are exactly the optimal informative
points for the entire data distribution as in DEFINITION 1. Likewise, when I
equals to K, LI-KNN performs exactly the same as KNN rule.

At the first glance, it seems that LI-KNN introduces one more parameter I for
the KNN method. However, by carefully checking the requirement for points to
be informative, it is not hard to figure out that LI-KNN is relatively insensitive
to both K and I. (1) Regardless of the choice of K, the points that are closest
(in Euclidean distance) to Q are always selected as neighbors, which by equation
(2) have a high probability to be informative. (2) On the other hand, given a
fixed number of K, the informativeness of the local points are fixed which insures
that the most informative ones are always chosen. For example, in Figure 2(left),
point 2 & 3 are selected as the neighbors for Q with K increasing from 3 to 7.
Meanwhile, when K equals to 7 and I ranges from 1 to 3, the informative sets
(Figure 2(right)) are {2},{2, 3} and {2, 3, 1} respectively, which include the most
informative points in all cases that ensures Q is classified correctly. In practice,
cross-validation is usually used to determine the best value of K and I.

4 GI-KNN Classification

The LI-KNN algorithm classifies each individual query point by learning infor-
mative points separately, however, the informativeness of those neighbors are
then discarded without being utilized for other query points. Indeed, in most
scenarios, different queries Q may yield different informative points. However, it
is reasonable to expect that some points are more informative than others, i.e.,
they could be informative neighbors for several different points. As a result, it
would seem reasonable to put more emphasis on those points that are globally
informative. Since it has been shown that KNN classification [13] can be im-
proved by learning from training examples a distance metric, in this section we
enhance the power of the informativeness metric and propose a boosting-like

256 Y. Song et al.

iterative method, namely a globally informative KNN (GI-KNN) that aims to
learn the best weighting for points within the entire training set.

4.1 Algorithm and Analysis

The goal of GI-KNN is to obtain an optimum weight vector A from all train-
ing points. The algorithm iterates M predefined steps to get the weight vector,
which was initially set to be uniform. In each iteration, an individual point is
classified in the same way as LI-KNN by finding I informative neighbors, with
the only exception that in GI-KNN the distance metric is a weighted Euclidean
distance whose weight is determined by A (line 5 & 6 in Algorithm 2, where
D(xi,x) denotes the Euclidean distance between xi and all the remaining train-
ing points, and DA(xi,x) is the weighted distance). We use εi

m ∈ (0, 1) to denote
the weighted expected weight loss of xi’s informative neighbors during step m.
The cost function Ci

m is a smooth function of εi
m, which guarantees it to be in

the range of (0,1) and positively related with εi
m. Here we use tanh function as

the cost function, depicted in Figure 31. The weight vector A is updated in the
manner that if xi is classified incorrectly, the weights of its informative neighbors
which have different labels from xi are decreased exponentially to the value of
Ci

m (line 9, e(xi, x�) = Ci
m if yi �= y�; line 13, A(x�) ← A(x�) ·exp(−e(xi, x�))).

Meanwhile, the weights remain the same for neighbors in the same class with
xi even if xi is misclassified (line 9, e(xi, x�) = 0 if yi = y�). Clearly, the
greater the weight the query point is, the higher the penalty of misclassification
will be for the selected neighbors. The vector A is then normalized before the
next iteration.

Instead of rewarding those points that classify Q correctly by increasing their
weights, the weights of neighbors remain unchanged if Q is classified correctly.
This could potentially cause accumulative effects to points whose weights that
once increased will always increase in the following steps, ending up with dom-
inant large weights. As a result, we penalize those points that give the wrong
prediction and have different labels with Q. Therefore, by updating the weight
vector before the next iteration, they will be less likely to be selected as the
neighbors for the same Q.

While GI-KNN has several parallels to Boosting such as the structure of
the algorithm, GI-KNN differs from Boosting in the way weights are updated.
Specifically, Boosting assigns high weights to points that are misclassified in the
current step, so that the weak learner can attempt to fix the errors in future
iterations. In GI-KNN classification, the objective is to find globally informative
points, thus higher weights are given to the neighbors that seldom makes wrong
predictions. Notice that the weight of the query point remains unchanged at that
time, because the weight is updated for a specific point if and only if it is chosen
to be one of the informative points for Q.

Another difference from Boosting is that the objective of the Boosting train-
ing process is to find a committee of discriminant classifiers that combines the
1 In practice, we did not find much difference in performance for different τ . Therefore,

we choose τ = 1 for our implementation.

IKNN: Informative K-Nearest Neighbor Pattern Classification 257

Algorithm 2. GI-KNN Training
1: Input: (T, K, I, M)

training set: T = {x,y} ∈ R
N×P

number of neighbors: K ∈ {1, ..., N − 1}
number of informative points: I ∈ {1, ..., K}
number of iterations: M ∈ R

2: Initialization: A = {1, ..., 1} ∈ R
N×1 [the weight vector]

3: for m = 1 to M do
4: for each query point xi (i = 1 to N) do
5: DA(xi, x) = D(xi,x)

A
[calculate the weighted distance]

6: Nm(xi) ← I most informative points according to DA(xi,x)
7: εi

m = A(xi) · EA[Nm(xi)] = A(xi) · 1
I

�I
i=1 A(Nm(i))

8: Ci
m = 1

2 (1 + tanh(τ ∗ (εi
m − 1

2)))
9:

e(xi, x�) =
�

Ci
m if yi �= y�;

0 if yi = y�.

10: if point xi is classified incorrectly [update the neighbors’ weights]
11: errm ← errm + 1

N

12: for each x� (� ∈ Nm(xi)) do
13: A(x�) ← A(x�) · exp(−e(xi, x�))
14: end for
15: renormalizes A so that

�N
i=1 A(i) = N

16: end for
17: ξm ← errm − errm−1

18: end for
19: Output: the weight vector A

weak learners, while GI-KNN tries to learn a query-based distance metric by
focusing on finding the best weight vector for each training instance so that the
misclassification rate of training examples could be minimized.

4.2 Learning the Weight Vector

At completion, the learned vector A can be used along with L2 distance metric
for KNN classification at each testing point t0. Specifically, given the training set
T = {xi, yi}N

1 , the distance between t0 and each training point xi is defined as

D(t0, xi) = ‖t0 − xi‖Ai =

√
(t0 − xi)T (t0 − xi)

Ai
(9)

By adding weights to data points, GI-KNN in essence is similar in effect to
learning a Mahalanobis distance metric D(xi, xj) for k-nearest neighbor classi-
fication. i.e., D(xi, xj) = DA(xi, xj) = ‖xi − xj‖A =

√
(xi − xj)T A(xi − xj),

where A determines the similarity between features. In our case, A measures the
importance of each training point rather than their features.

258 Y. Song et al.

a 0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

ε
m
iτ

C
mi

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3. Cost function (C) used for GI-KNN

In practice, we make two modifications to Algorithm 2 to reduce the computa-
tional cost. First, the L2 distances between all training points are computed and
stored (say in matrix D) at the beginning of the program. Then, instead of updat-
ing D real-time for each query point (line 5 in Algorithm 2), we do it after each
external iteration. In another words, for each point, we update the weight vector
if necessary, but use the same A for all points in the same iteration. After each
round, D is updated with the new weight vector. Similarly, rather than normaliz-
ing A after each classification of Q (line 15 in Algorithm 2), the normalization is
performed only after each external iteration. We discover that empirically these
two modifications do not degrade the performance in most scenarios.

4.3 Complexity of GI-KNN Training

The major overhead of GI-KNN training phase is the time needed to find the
informative neighbors for each point (line 5 of Algorithm 2). Specifically, Nm(i)
keeps the indices of informative neighbors for point xi, whose length is controlled
by the input parameter I. Given K and I, the effort to find the nearest neighbors
is bounded by O(KP), where P denotes dimension of the input data. Calculating
and ranking the informativeness of K nearest neighbors involves computing the
pairwise distances between them and thus costs O(K2P) time to train. Thus the
total time is bounded by O(KP)+O(K2P) = O(K2P) for each point. Therefore,
the training process requires approximately O(K2PMN) time for N training
examples and M iterations. Remember that the traditional KNN classification
costs O(KPN) for the same setting, while LI-KNN requires O(K2PN). When
the K is not very large, the computational complexity is nearly the same for
KNN and LI-KNN, both of which are equal to one iteration time for GI-KNN.

5 Experiments

In this section, we present experimental results with benchmark and real-world
data that demonstrate the different merits of LI-KNN and GI-KNN. LI-KNN

IKNN: Informative K-Nearest Neighbor Pattern Classification 259

and GI-KNN are first rigorously tested by several standard UCI data sets. Then
our proposed methods are applied to text categorization using the real-world
data from CiteSeer Digital Library2. Finally, we investigate their performance
on images by applying to image categorization on the COIL-203 bench-marked
data sets.

For performance evaluation, several classifiers are used for comparison. The
classic KNN [4] classifier is used as the baseline algorithm. We implemented
DANN [9] as an extension of KNN4. To be more convincing, we also compare
with one of the newest KNN extensions – Large Margin Nearest Neighbor Clas-
sification (LMNN)5. Two discriminant classifiers are also compared: a Support
Vector Machine (SVM) and a Boosting classifier. We use the AdaBoost.MH
[12] and the Multi-class SVM [5] software (K.Crammer et al.6) for multi-class
classification.

5.1 UCI Benchmark Corpus

We evaluate our algorithms by using 10 representative data sets from UCI Ma-
chine Learning Repository7. The size of the data sets ranges from 150 to 20,000
with dimensionality between 4 and 649, including both two classes and multi-
class data (C = 3, 26 etc). For evaluation, the data sets are split into training
sets and testing sets with a fixed proportion of 4:1. Table 1 reports the best
testing error rates for these methods, averaged over ten runs. Our methods on
these data sets exhibit competitive results in most scenarios.

Figure 4(a) shows the stability of LI-KNN on the testing errors rates of the
Iris data set. KNN always incurs higher error rates than our algorithms. The
performance of LI-KNN is depicted for four different values of I. It is obvious
that even with different values of I (given the same K), the results are similar,
indicating that the performance of LI-KNN does not degrade when the number
of informative points changes. In addition, with the change of K, LI-KNN is
relatively stable regarding the error rate. The variation of LI-KNN is roughly
3%, meaning that K does not have a large impact on the results of LI-KNN.

Figure 4(b) compares Boosting and GI-KNN on the Breast Cancer data for
the first 1,000 iterations. Overall, GI-KNN incurs lower error rates. From 620
to about 780 iterations GI-KNN’s error rates are slightly higher than Boost-
ing. However, the error rates of Boosting fluctuate quite a bit from 0.048 to
0.153, while GI-KNN is relatively stable and the performance varies only between
(0.043, 0.058). Moreover, our algorithm obtains the optimal results significantly
earlier.

2 http://citeseer.ist.psu.edu
3 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4 During the experiment, we set KM = max(N/5, 50) and ε = 1 according to the

original paper.
5 The code is available at http://www.seas.upenn.edu/∼kilianw/lmnn/
6 See http://www.cis.upenn.edu/∼crammer/code-index.html
7 http://www.ics.uci.edu/∼mlearn/MLRepository.html

260 Y. Song et al.

Table 1. Testing error rates for KNN, DANN, LMNN, SVM, Boosting, LI-KNN and
GI-KNN of 10 UCI Benchmark data sets. N, D and C denote the number of instances,
dimensionality and number of classes respectively. Numbers in the parentheses indicate
the optimal neighbors K for KNN, DANN and LMNN, (K, I) for LI-KNN, and number
of iterations M for GI-KNN and Boosting.

Data Sets N D C KNN DANN LMNN LI-KNN GI-KNN SVM Boosting
Iris 150 4 3 0.044 (9) 0.040 (5) 0.053 (3) 0.013 (9, 5) 0.010 (25) 0.042 0.038 (45)
Wine 178 13 3 0.263 (3) 0.250 (7) 0.031 (5) 0.137 (15, 1) 0.137 (13) 0.205 0.192 (135)
Glass 214 10 2 0.372 (5) 0.436 (5) 0.356 (3) 0.178 (7, 3) 0.198 (202) 0.222 0.178 (304)
Ionosphere 351 34 2 0.153 (5) 0.175 (7) 0.100 (5) 0.127 (5, 3) 0.127 (8) 0.090 0.092 (156)
Breast 699 9 2 0.185 (7) 0.120 (11) 0.927 (5) 0.080 (4, 1) 0.045 (48) 0.052 0.048 (657)
Heart 779 14 5 0.102 (3) 0.117 (5) 0.092 (5) 0.078 (7, 1) 0.078 (192) 0.078 0.080 (314)
Digit 2000 649 10 0.013 (3) 0.010 (3) 0.009 (3) 0.005 (19, 1) 0.005 (137) 0.010 0.005 (175)
Isolet 7797 617 26 0.078 (11) 0.082 (11) 0.053 (5) 0.048 (13, 3) 0.042 (175) 0.044 0.042 (499)
Pendigits 10992 16 10 0.027 (3) 0.021 (5) 0.020 (3) 0.020 (9, 1) 0.020 (42) 0.033 0.038 (482)
Letter 20000 16 10 0.050 (5) 0.045 (3) 0.042 (5) 0.045 (5, 3) 0.040 (22) 0.028 0.031 (562)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

K: number of neighbors

T
e

s
ti

n
g

 E
rr

o
r

R
a

te

Li−KNN 1
Li−KNN 3
Li−KNN 5
Li−KNN 7
KNN

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M: number of iterations

T
es

tin
g

E
rr

or
 R

at
e

AdaBoost.MH

GI−KNN

(a) (b)

Fig. 4. (a) Results on Iris for K from 1 to 100. LI-KNN chooses the number of infor-
mative points (I) to be 1, 3, 5 and 7. (b) Results on Breast Cancer for AdaBoost.MH
and GI-KNN (with K = 5 and I = 1). The best result for GI-KNN is slightly better
(0.045) than that of AdaBoost.MH (0.048).

5.2 Application to Text Categorization

For text categorization experiments we use the CiteSeer data set consisting of
nearly 750,000 documents primarily in the domain of computer science. Several
types of data formats are indexed concurrently (txt, pdf, ps, compressed files,
etc.). For the purpose of text categorization, we only make use of plain text files.
For convenience, the metadata of the documents, i.e., the titles, abstracts and
keyword fields are used in our experiments.

Document class labels are obtained from the venue impact page8 which lists
1,221 major venues whose titles are named according to the DBLP9 format. We
make use of the top 200 publication venues listed in DBLP in terms of impact

8 http://citeseer.ist.psu.edu/impact.html
9 http://dblp.uni-trier.de/

IKNN: Informative K-Nearest Neighbor Pattern Classification 261

KNN DANN LMNN SVM Boosting LI−KNN GI−KNN

0.05

0.1

0.15

0.2

0.25

M
a

c
ro

−
F

 E
rr

o
r

R
a

te
s

 (
%

)

KNN DANN LMNN LI−KNN GI−KNN

0.8

0.85

0.9

0.95

1

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

(a) (b)

Fig. 5. (a) Box plots of macro-F error rates (100% minus Macro-F scores) on CiteSeer
data set summarizes the average F scores on 193 classes. Our algorithms have very low
error rates on average, with very small deviations. Plus(+) signs indicate the outliers.
(b) Classification Accuracies on CiteSeer data set for KNN, LI-KNN and GI-KNN with
different number of neighbors (K = {1, ..., 50}). Our algorithms generally demonstrate
more stable results and higher accuracies.

rates, each of which was referred as a class label. Furthermore, we intentionally
filtered those classes that contain too few examples (i.e., less than 100 doc-
uments). Overall, the total number of documents used for the experiments is
118,058, which are divided into a training set and testing set by 10-fold cross-
validation. Meanwhile, we keep the imbalance of the classes, i.e., some classes
have more training examples than others. Documents are treated as bag-of-words
and tf-idf weights of terms are used to generate the feature space.

Figure 5(a) shows the box plots macro-F error rates. The optimal parameters
(e.g., the number of iterations M and so on) are estimated by 10-fold cross-
validation on the training set. It is evident that the spread of the error distri-
bution for our algorithms are very close to zero, which clearly indicates that
LI-KNN and GI-KNN obtain robust performance over different classes. Mean-
while, our algorithms incur lower error rates even for small classes, making them
potentially good choices for imbalanced data set classification.

We further show the stability of our algorithms by box plots of the classifica-
tion accuracies for different number of neighbors. Figure 5(b) depicts the results
of KNN, DANN and our algorithms for K from 1 to 50 with a fixed number of
I = 1 (i.e., only the most informative neighbor). The mean accuracies are higher
for LI-KNN and GI-KNN than KNN, and the variations are almost half as that
of KNN and DANN.

5.3 Object Recognition on COIL-20

We use the processed version of COIL-20 database for object recognition. The
database is made up with 20 gray-scale objects, each of which consists 72 images
with size 128 × 128. Figure 6(a) shows a sample image of each of the 20 objects.

262 Y. Song et al.

(a) (b)

Fig. 6. (a) Randomly generated images from each object in the COIL-20 database.
(b) Results on COIL-20 with different number of neighbors.

We treat each object as one class, spliting the data into training and testing set
with the proportion of 3:1. Figure 6(b) shows the classification errors regarding
the 5 algorithms, where K ranges from 1 to 11. GI-KNN and LI-KNN generally
outperform others with the best parameters, while both show stable results with
the change of K.

5.4 Discussion

Our I-KNN procedures introduce two adjustable tuning parameters K and I, it is
then desirable to automate the choice of them. Theoretically we did not prove the
optimal choices for either K or I, however, empirical studies with different ranges
of values on several data sets allow us to draw a rough conclusion. Basically, the
value of K should be reasonably big. The bigger K is, the more information can
be gathered to estimate the distribution of neighborhood for the query point.
However, with the increase of K, the effort to compute the informativeness of
neighbors (equation (2)) grows exponentially as well. In practice, we figured out
that K ∈ (7, 19) could be a good trade-off regardless of data size. Meanwhile, a
smaller I is preferable to give the best predictions. Experimental results indicate
that I = 1 and 3 usually achieve the best results, and the performance generally
degrades with the increase of I. There is potentially another parameter to tune,
i.e., η in equation (2), to balance the contribution of the first term. However, we
only use η =

Nxj

N here.
We have observed that most influential on the running time on both algo-

rithms is the computation cost of the informativeness metric, of which the nor-
malization factor (equation (2) and (6)) takes most of the time. To further
improve the performance, we remove the normalization part in our experiments,
i.e., equation (2) and (6). This significantly reduced the complexity of our model
and did not jeopardize the performance very much.

Regarding the choice of the cost function Ci
m for GI-KNN training (line 8 in

Algorithm 2), since GI-KNN has a different objective (to find the best weight
vector) than boosting and other machine learning algorithms (to minimize a
smooth convex surrogate of the 0-1 loss function), we did not compare the

IKNN: Informative K-Nearest Neighbor Pattern Classification 263

performance between different loss functions like exponential loss, hinge loss
and so on. Since we believe that the performance change will not be significant
by exhaustively searching for the best loss function. The choice of different loss
functions has already been extensively studied, interested readers can refer to
[3] for details.

6 Conclusion and Future Work

This paper presented two approaches namely LI-KNN and GI-KNN to extending
KNN method with the goal of improving classification performance. Informative-
ness was introduced as a new concept that is useful as a query-based distance
metric. LI-KNN applied this to select the most informative points and predict
the label of a query point based on the most numerous class with the neigh-
bors; GI-KNN found the globally informative points by learning a weight vector
from the training points. Rigorous experiments were done to compare the per-
formance between our methods and KNN, DANN, LMNN, SVM and Boosting.
The results indicated that our approaches were less sensitive to the change of pa-
rameters than KNN and DANN, meanwhile yielded comparable results to SVM
and Boosting. Classification performance on UCI benchmark corpus, CiteSeer
text data, and images suggests that our algorithms were application-independent
and could possibly be improved and extended to diverse machine learning areas.

Questions regarding the GI-KNN algorithm are still open for discussion. Can
we possibly prove the convergence of GI-KNN, or is there an upper-bound for
this algorithm given specific K and I? More practically, is it possible to stop
earlier when the optimum results are achieved? As a boosting-like algorithm,
can we replace the 0-1 loss function with a smooth convex cost function to
improve the performance? Furthermore, it will be interesting to see whether the
informativeness metric can be applied to semi-supervised learning or noisy data
sets.

References

1. Athitsos, V., Alon, J., Sclaroff, S.: Efficient nearest neighbor classification using
a cascade of approximate similarity measures. In: CVPR ’05, pp. 486–493. IEEE
Computer Society, Washington, DC, USA (2005)

2. Athitsos, V., Sclaroff, S.: Boosting nearest neighbor classifiers for multiclass recog-
nition. In: CVPR ’05, IEEE Computer Society, Washington, DC, USA (2005)

3. Bartlett, P., Jordan, M., McAuliffe, J.: Convexity, classification and risk bounds.
J. Amer. Statist. Assoc. 101, 138–156 (2006)

4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

5. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

6. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-neighbor
classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1281–1285 (2002)

264 Y. Song et al.

7. Friedman, J.: Flexible metric nearest neighbor classification. technical report 113,
stanford university statistics department (1994)

8. Han, E.-H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted
k -nearest neighbor classification. In: 5th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), pp. 53–65 (2001)

9. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification.
IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

10. Latourrette, M.: Toward an explanatory similarity measure for nearest-neighbor
classification. In: ECML ’00: Proceedings of the 11th European Conference on
Machine Learning, London, UK, pp. 238–245. Springer-Verlag, Heidelberg (2000)

11. Peng, J., Heisterkamp, D.R., Dai, H.K.: LDA/SVM driven nearest neighbor clas-
sification. In: CVPR ’01, p. 58. IEEE Computer Society, Los Alamitos, CA, USA
(2001)

12. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. In: COLT’ 98, pp. 80–91. ACM Press, New York (1998)

13. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. In: NIPS (2005)

14. Zhang, H., Berg, A.C., Maire, M., Svm-knn, J.M.: Discriminative nearest neighbor
classification for visual category recognition. In: CVPR ’06, pp. 2126–2136. IEEE
Computer Society, Los Alamitos, CA, USA (2006)

	IKNN: Informative K-Nearest Neighbor Pattern Classification
	Introduction
	Our Contribution

	Related Work
	Locally Informative KNN (LI-KNN)
	Definition of Informativeness
	Informativeness Implementation
	LI-KNN Classification

	GI-KNN Classification
	Algorithm and Analysis
	Learning the Weight Vector
	Complexity of GI-KNN Training

	Experiments
	UCI Benchmark Corpus
	Application to Text Categorization
	Object Recognition on COIL-20
	Discussion

	Conclusion and Future Work
	References

