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Osteoporosis is a serious problem worldwide; it is characterized by bone fractures in 

response to relatively mild trauma. Osteoclasts originate from the fusion of macrophages 

and they play a central role in bone development and remodeling via the resorption of bone. 

Therefore, osteoclasts are important mediators of bone loss that leads, for example, to 

osteoporosis. Interleukin (IL)-1 receptor (IL-1R)–associated kinase M (IRAK-M) is only 

expressed in cells of the myeloid lineage and it inhibits signaling downstream of IL-1R and 

Toll-like receptors (TLRs). However, it lacks a functional catalytic site and, thus, cannot 

function as a kinase. IRAK-M associates with, and prevents the dissociation of, IRAK–IRAK-4–

TNF receptor–associated factor 6 from the TLR signaling complex, with resultant disruption 

of downstream signaling. Thus, IRAK-M acts as a dominant negative IRAK. We show here 

that mice that lack IRAK-M develop severe osteoporosis, which is associated with the 

accelerated differentiation of osteoclasts, an increase in the half-life of osteoclasts, and 

their activation. Ligation of IL-1R or TLRs results in hyperactivation of NF-

 

�

 

B and mitogen-

activated protein kinase signaling pathways, which are essential for osteoclast differentiation. 

Thus, IRAK-M is a key regulator of the bone loss that is due to osteoclastic resorption of bone.

 

Multinucleated osteoclasts originate from the

fusion of mononuclear phagocytes and play a

major role in the resorption of bone. Because

osteoclasts are essential for the development

and remodeling of bone, increases in their

number and/or activity lead to diseases that are

associated with generalized bone loss (e.g., os-

teoporosis) and others with localized bone loss

(e.g., rheumatoid arthritis, periodontal disease).

The cytokines macrophage colony–stimu-

lating factor (M-CSF) and receptor activator of

NF-

 

�

 

B (RANKL) are necessary and sufficient

for the induction of the differentiation of osteo-

clasts from mononuclear phagocytes (1–6), but

agonists of IL-1R/Toll-like receptor (TLR) also

play a critical role in the differentiation and

 

 

 

acti-

vation of osteoclasts. IL-1 is a potent stimulator

of the differentiation, activation and survival of

osteoclasts that have been implicated in post-

menopausal osteoporosis (7), whereas LPS, a

ligand that binds to TLR4, is responsible for the

inflammation-mediated loss of bone (8). Bone

loss that is associated with estrogen deficiency in

rodents can be prevented by

 

 

 

administration of

an antagonist of IL-1R (9, 10); however, bone

loss that is associated with infection remains dif-

ficult to control, even in model systems.

IL-1R–associated kinase (IRAK) plays a

central role in the signaling pathways that are

initiated by members of the IL-1R/TLR

family (11). Members of this family have a

conserved “TLR- and IL-1R-related” intra-

cytoplasmic domain.

 

 

 

Thus, activation of the

different

 

 

 

members of this family induces simi-

lar signaling cascades that culminate in the ac-

tivation of the I

 

�

 

B kinase complex and mito-

gen-activated protein kinases (MAPKs). This

activation leads to the activation of NF-

 

�

 

B,

c-Jun NH

 

2

 

-terminal kinase (JNK), p38, and

extracellular signal-regulated kinase (ERK)1/2,

as well as AP-1–dependent transcriptional re-

sponses (12, 13).
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IRAKs are multidomain proteins with a similar central

kinase domain and a death domain that interacts with mye-

loid differentiation factor 88. All IRAKs have a functional

ATP-binding site, but IRAK-2 and IRAK-M lack a func-

tional catalytic site because the critical aspartate residue is re-

placed by an asparagine and a serine residue, respectively.

Hence, IRAK-2 and IRAK-M are inactive as kinases. In ad-

dition, IRAK-M is expressed predominantly in peripheral

blood leukocytes and in macrophages (14). IRAK-M is ex-

pressed in monocytic cell lines and its expression is induced

strongly upon the maturation of macrophages (14). We re-

ported previously that IRAK-M acts as a negative regulator

of IL-1R/TLR signaling by preventing the dissociation of

IRAKs from myeloid differentiation factor 88 and maintain-

ing the integrity of the complex between IRAK–TNF re-

ceptor–associated factor (TRAF)6 and TLR (15). By trap-

ping both types of IRAK in the receptor complex, IRAK-M

prevents the downstream activation of NF-

 

�

 

B and MAPK

signaling pathways. Thus, IRAK-M seems to act as a domi-

nant negative regulator downstream of IL-1R/TLR in mac-

rophages (15). Therefore, we postulated that if the expression

of IRAK-M is conserved in macrophages after the fusion that

results in multinucleation, it should be a negative regulator of

the differentiation and activation of osteoclasts, and thus, it

should protect bone mass. To test our hypothesis, we exam-

ined mice with a homozygous deletion of the 

 

irak-M

 

 gene.

We found that

 

 

 

in normal mice, IRAK-M is expressed

strongly in osteoclasts and that its absence is associated with

accelerated osteoclastogenesis; an increase in the half-life of

osteoclasts; and the hyperactivation of the NF-

 

�

 

B and

MAKP signaling pathways, via ligation to IL-1R/TLR, with

severe resultant osteoporosis. IRAK-M seems to be a key sig-

naling molecule in the prevention of bone loss.

 

RESULTS
IL-1 receptor–associated kinase M–deficient mice 
develop osteoporosis

 

IRAK-M

 

�

 

/

 

�

 

 mice are viable and fertile but seem to develop

an accentuated spinal curvature or kyphosis at 4 mo of age

(data not shown). At this age, IRAK-M

 

�

 

/

 

�

 

 mice are smaller

than wild-type mice (Fig. 1 A). To assess bone density in

IRAK-M

 

�

 

/

 

�

 

 mice, we subjected femurs from 4-mo-old

IRAK-M

 

�

 

/

 

�

 

 and IRAK-M

 

�

 

/

 

�

 

 mice to peripheral quantita-

tive computed tomography analysis at the midshaft level. The

cortical content was lower in IRAK-M

 

�

 

/

 

�

 

 mice than in age-

matched IRAK-M

 

�

 

/

 

�

 

 mice (Table I). This difference was as-

sociated with a decrease in the diameter of femurs, in males

and females, and a decrease in cortical thickness in males. At

the level of the epiphysis, the trabecular content and density

 

Figure 1. IRAK-M–deficient mice are smaller than wild-type mice 
and have reduced total bone mineral density.

 

 (A) Male and female 

IRAK-M

 

�

 

/

 

�

 

 mice are smaller than IRAK-M

 

�

 

/

 

�

 

 mice; 

 

n

 

 

 

�

 

 10. (B) microCT 

analysis of distal femurs from 4-mo-old male IRAK-M

 

�

 

/

 

�

 

 and IRAK-M

 

�

 

/

 

�

 

 

mice. Note the paucity of the trabeculae inside the bone in IRAK-M

 

�

 

/

 

�

 

 

mice. The wider diameter of the bone sections measures 

 

�

 

3 mm. Bar, 1 

mm. (C) Toluidine blue staining of sections from epiphyseal bones from 

4-mo-old male IRAK-M

 

�

 

/

 

�

 

 and IRAK-M

 

�

 

/

 

�

 

 mice. Bar, 1 mm. (D) TRAP 

staining of sections from epiphyseal bones from 4-mo-old male IRAK-M

 

�

 

/

 

�

 

 

and IRAK-M

 

�

 

/

 

�

 

 mice. Bar, 200 

 

�

 

m.
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were reduced in male and female IRAK-M

 

�

 

/

 

�

 

 mice, as com-

pared with sex- and age-matched IRAK-M

 

�

 

/

 

�

 

 

 

mice. This

decrease in trabecular bone density was associated with a 60%

reduction in trabecular bone volume, as determined by mi-

croCT analysis (Fig. 1 B). Together, our data indicated that

the deletion of the 

 

irak-M

 

 gene in mice leads to osteoporosis.

 

Increased numbers of osteoclasts in IL-1 receptor–
associated kinase M–deficient mice

 

To examine the mechanism by which bone density was re-

duced in IRAK-M–deficient mice, we analyzed tibias from

4-mo-old IRAK-M

 

�

 

/

 

�

 

 and IRAK-M

 

�

 

/

 

�

 

 mice by histo-

morphometry. Our analysis confirmed the reduction in tra-

becular bone volume in male and female IRAK-M

 

�

 

/

 

�

 

 mice

(Table II and Fig. 1 C). At the cellular level, we found an in-

crease in the number of osteoclasts per unit area of bone sur-

face (Fig. 1 D). This was associated, in males, with an in-

crease in the number of osteoblasts, which indicated an

elevated

 

 

 

rate of bone turnover. Thus, the absence of IRAK-M

led to a reduction in body size and bone mass that was asso-

ciated with an increase in the number of osteoclasts.

 

Accelerated osteoclastogenesis and an increase in the 
half-life of osteoclasts in IL-1 receptor–associated 
kinase M–deficient mice

 

To determine whether the increase in the number of osteo-

clasts in IRAK-M

 

�

 

/

 

�

 

 mice might be the result of an increase

in the rate of differentiation of their precursors, we treated

bone marrow macrophages from male IRAK-M

 

�

 

/

 

�

 

 and

IRAK-M

 

�

 

/

 

�

 

 mice for increasing times with M-CSF to gen-

erate osteoclast precursors (16). To our surprise, IRAK-M

 

�

 

/

 

�

 

cells proliferated at a lower rate (Fig. 2 A) but fused more

rapidly than IRAK-M

 

�

 

/

 

�

 

 cells (Fig. 2 B).

Next, to examine whether the differentiation of osteo-

clasts was affected by the absence of IRAK-M, we treated

bone marrow macrophages with increasing concentrations of

M-CSF in the presence of 300 ng/ml RANKL in order to

generate tartrate-resistant acid phosphatase-positive (TRAP

 

�

 

)

multinucleated macrophages with an osteoclast phenotype

(16). IRAK-M

 

�

 

/

 

�

 

 macrophages required as little as 15 ng/ml

M-CSF to reach a maximally multinucleate state, whereas

IRAK-M

 

�

 

/

 

�

 

 cells required 60 ng/ml to reach a maximal

state that was less extensive (Fig. 2, C and

 

 

 

D). However,

higher concentrations of M-CSF tended to have a more lim-

ited effect on multinucleation in IRAK-M

 

�

 

/

 

�

 

 macrophages,

which suggested an increased sensitivity of IRAK-M

 

�

 

/

 

�

 

 cells

to M-CSF. When we treated macrophages with 30 ng/ml

M-CSF in the presence of increasing concentrations of

RANKL, IRAK-M

 

�

 

/

 

�

 

 macrophages matured into

 

 

 

osteo-

 

Table I.

 

Peripheral quantitative computed tomography analysis of femurs from 4-mo-old IRAK-M

 

���

 

 and IRAK-M

 

��� 

 

male and female mice

 

Femoral shaft Distal femur

Cortical

content

Cortical

density

Cortical

thickness

Periosteal

circumference

Endosteal

circumference

Trabecular

content

Trabecular

density

 

mg/mm mg/cm

 

3

 

mm mm mm mg/mm mg/cm

 

3

 

Male

 

���

 

mean 1.985 1,235.6 0.375 5.462 3.107 0.72 291.65

SD 0.182 21.691 0.024 0.289 0.32 0.041 26.428

Male

 

���

 

mean 1.325 1,173.375 0.337 4.409 2.292 0.295 141.925

SD 0.061 13.579 0.015 0.075 0.124 0.093 46.187

 

�

 

�

 

�

 

/

 

���

 

0.7 0.9 0.9 0.8 0.7 0.4 0.5

p-value

 

�

 

0.01

 

�

 

0.01

 

�

 

0.05

 

�

 

0.01

 

�

 

0.01

 

�

 

0.001

 

�

 

0.01

Female

 

���

 

mean 1.51 1,179.08 0.347 4.801 2.625 0.338 177.04

SD 0.067 30.548 0.021 0.318 0.42 0.025 19.802

Female

 

���

 

mean 1.293 1,169.067 0.327 4.423 2.369 0.107 62.167

SD 0.035 18.003 0.01 0.077 0.135 0.078 47.218

 

�

 

�

 

�

 

/

 

���

 

0.9 1 0.9 0.9 0.9 0.3 0.4

p-value

 

�

 

0.01 NS NS

 

�

 

0.05 NS

 

�

 

0.01

 

�

 

0.05

 

Table II.

 

Histomorphometric analysis of proximal tibiae from 4-mo-old 
IRAK-M��� and IRAK-M��� male and female mice

BV/TV BFR/BV N.Oc/B.Pm N.Ob./B.Pm OV/BV

mean SD mean SD mean SD mean SD mean SD

% %/d no./mm no./mm %

Male��� 12.35 2.59 2.01 0.40 2.65 0.49 28.87 6.86 5.14 1.53

Male��� 6.72 0.16 4.38 1.46 10.50 1.33 40.34 5.60 6.40 0.71

p-value �0.01 �0.05 �0.001 �0.05 NS

���/��� 0.5 2.2 4.0 1.4 1.2

Female��� 5.94 1.43 4.88 1.67 2.13 0.63 30.51 4.54 4.25 1.78

Female��� 3.85 0.75 4.78 0.75 6.77 0.90 37.2910.30 4.58 1.48

p-value �0.05 NS �0.001 NS NS

���/��� 0.6 0.9 3.2 1.2 1.1
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Figure 2. Absence of IRAK-M alters osteoclastogenesis in response to 
M-CSF and RANKL. (A) Bone marrow cells from IRAK-M�/� and IRAK-M�/� 

male mice were cultured in the presence of M-CSF (5 ng/ml) for 12–18 h. 

Nonadherent cells were cultured further for the indicated times in 96-well 

dishes and their numbers determined in terms of OD450nm (n � 5; see 

Materials and methods for details). Standard deviations are too small to 

show. P � 0.001 for IRAK-M�/� versus IRAK-M�/� macrophages treated 

for 3, 4, and 5 d; P � 0.01 for IRAK-M�/� versus IRAK-M�/� macrophages 

treated for 6 d. (B) Cells from (A) were stained for TRAP. Bar, 100 �m. 

(C) Nonadherent cells, prepared as in (A), were treated further with 30 ng/ml 

M-CSF for 2 d, replated in 96-well dishes (2 � 105 cells/ml), and treated 

with 300 ng/ml RANKL plus with increasing concentrations of M-CSF for 

3 d. The surface area occupied by TRAP� multinucleated osteoclasts was 

recorded (n � 4). Standard deviations are too small to show. P � 0.001 
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clasts at lower concentrations of RANKL than did IRAK-

M�/� macrophages (Fig. 2, E and F). However, this differ-

ence between IRAK-M�/� and IRAK-M�/� macrophages

remained relatively constant with increasing concentrations

of RANKL, except at the highest dose when multinucleation

of macrophages had reached its maximum. Thus, the absence of

IRAK-M tended to favor the multinucleation of macro-

phages, a phenomenon that might explain, in part, the ele-

vated numbers of osteoclasts in IRAK-M�/� mice.

To determine whether the half-life of osteoclasts also was

altered in IRAK-M–deficient mice, we cultured osteoclast

precursors in the presence of 30 ng/ml M-CSF plus 300 ng/

ml RANKL for 2, 3, or 4 d, and then we stained the cells for

TRAP. The IRAK-M�/� macrophages differentiated into

multinucleated osteoclasts until day 4, by which time the

IRAK-M�/� osteoclasts had undergone apoptosis (Fig. 2 G).

Together, these data indicate that the absence of IRAK-M is

associated with an elevated rate of osteoclastogenesis in re-

sponse to M-CSF alone and to M-CSF plus RANKL and to

extension of the half-life of osteoclasts, which would explain

the increased number of osteoclasts in IRAK-M�/� mice.

Because M-CSF stimulates the production of cytokines by

macrophages, which affects osteoclastogenesis (17), we pos-

tulated that the absence of IRAK-M might affect the re-

sponse of macrophages to the M-CSF–induced production

of IL-1.

To examine our hypothesis, we determined the relative

amount of IL-1 that accumulated over the course of 12 and

24 h in the conditioned medium from IRAK-M�/� and

IRAK-M�/� bone marrow macrophages, with and without

stimulation by M-CSF alone and by M-CSF plus RANKL.

Our results confirmed that M-CSF stimulated the release of

IL-1	 and IL-1
 by macrophages (Table III). RANKL did

not alter that M-CSF–induced production of IL-1. Our

analysis also revealed that the concentrations of IL-1	 and

IL-1
 were higher in supernatants from macrophages that

were deficient in IRAK-M than in those from wild-type

cells; this supports the hypothesis that IRAK-M intercepts

IL-1R signaling and prevents further production of IL-1.

The lower abundance of IL-1 at 24 h might reflect the par-

tial degradation of IL-1 or its binding to IL-1R.

Next, we asked whether the expression of IRAK-M is

preserved upon multinucleation of macrophages. We treated

IRAK-M�/� osteoclasts with 20 ng/ml IL-1	 or with 100

�g/ml LPS for increasing times. To our surprise, we found

that unlike macrophages, multinucleated osteoclasts ex-

pressed high levels of IRAK-M, independent of TLR/ IL-

1R ligation (Fig. 3 A). Therefore, we asked whether

RANKL itself could stimulate the expression of IRAK-M.

RANKL induced the expression of IRAK-M in macro-

phages in a time-dependent manner (Fig. 3 B); this observation

explained the high basal level of IRAK-M in osteoclasts.

Hyperactivation of NF-�B and mitogen-activated protein 
kinase signaling pathways in response to IL-1R/TLR ligation 
in IL-1 receptor–associated kinase M–deficient osteoclasts

We examined whether the absence of IRAK-M could lead

to hyperactivation of the NF-�B and MAPK signaling path-

ways (15). Because IL-1R/TLR ligation affects the differen-

tiation and activation of osteoclasts, we stimulated osteoclasts

from IRAK-M�/� and IRAK-M�/� mice for increasing

times with IL-1	 or IL-1
, both of which are potent ago-

nists of osteoclastic bone resorption. We subjected cell ly-

sates to Western blotting analysis with antibodies that are di-

rected against I�B, and the MAPK signaling molecules, p38,

ERK1/2, and JNK, and their phosphorylated, thus acti-

vated, form. Although p38 is not activated constitutively

in macrophages (15), p38 was activated constitutively in

IRAK-M�/� and IRAK-M�/� osteoclasts (Fig. 3 C). Both

IL-1	 and IL-1
 induced the hyperphosphorylation of

for IRAK-M�/� versus IRAK-M�/� macrophages treated with 7.5, 15, 30, 

and 60 ng/ml M-CSF. (D) Photographs of cells in (C). Bar, 100 �m. (E) Non-

adherent cells, prepared as in (A), were treated further with 30 ng/ml 

M-CSF for 2 d, replated in 96-well dishes (2 � 105 cells/ml), and stimu-

lated with 30 ng/ml M-CSF plus with increasing concentrations of RANKL 

for 3 d. The surface area occupied by TRAP� multinucleated cells was re-

corded (n � 4). Standard deviations are too small to show. P � 0.001 for 

IRAK-M�/� versus IRAK-M�/� macrophages at each RANKL concentration. 

(F) Cells from (E) were stained for TRAP. Bar,100 �m. (G) Osteoclasts were 

generated as in (E) but were treated with 300 ng/ml RANKL and 30 ng/ml 

M-CSF for the indicated times. Bar, 100 �m. Each experiment was repeated 

at least three times with similar results.

Table III. Deletion of the Irak-M gene in mice leads to increased production of IL-1	 and IL-1
 by bone marrow macrophages that 
are stimulated with M-CSF

12 h 24 h

IRAK-M��� IRAK-M��� ���/��� IRAK-M��� IRAK-M��� ���/���

IL-1	 M-CSF 1.09a 1.26a 1.15 0.53a 1.09a 2.06

M-CSF � RANKL 1.27a 1.26a 1.00 0.59a 1.06a 1.80

IL-1
 M-CSF 1.59a 2.08a 1.31 0.52a 0.91a 1.75

M-CSF � RANKL 1.52a 1.90a 1.25 0.51a 1.02a 2.00

Each experiment was repeated three times with similar results.
aValues represent the ratios of 12-h or 24-h stimulation with M-CSF or M-CSF plus RANKL over controls (n � 2).



IRAK-M SUPRESSES OSTEOCLASTS | Li et al.1174

ERK1/2 and JNK in a time-dependent manner in IRAK-

M�/� osteoclasts. By contrast, only IL-1	 induced the time-

dependent hyperphosphorylation of I-�B in osteoclasts that

lacked IRAK-M.

We next asked whether activation of osteoclasts by LPS,

a ligand for TLR4, and a potent agonist of osteoclastic bone

resorption in vivo, also might be affected by the absence of

IRAK-M. We found that p38 was hyperphosphorylated

constitutively in IRAK-M�/� and IRAK-M�/� osteoclasts,

independently of TLR4 ligation (Fig. 3 D). As did IL-1, LPS

induced the hyperphosphorylation of ERK1/2 and I�B in

IRAK-M�/� cells. However, in contrast to the results that

were observed with IL-1, hyperphosphorylation of I�B in

IRAK-M�/� osteoclasts occurred only 1 or 2 h after stimu-

lation with LPS. LPS failed to activate JNK in IRAK-M�/�

and wild-type osteoclasts.

Together, our results show that in macrophages and os-

teoclasts, the absence of IRAK-M leads to hyperactivation of

the NF-�B and MAPK signaling pathways in response to IL-

1R/TLR ligation.

Figure 3. Osteoclasts express IRAK-M, and demonstrate hyperacti-
vation of signaling molecules downstream of IL-1R/TLR when IRAK-M 
is absent. (A) Bone marrow macrophages from wild-type mice were cul-

tured in the presence of M-CSF (5 ng/ml) for 12–18 h. Nonadherent cells 

were cultured further for 2 d in 24-well dishes (macrophages) and treated 

for the indicated times with 20 ng/ml IL-1	 or 1 mg/ml LPS (macrophages), 

or cultured for an additional 3 d in the presence of 30 ng/ml M-CSF and 

300 ng/ml RANKL (osteoclasts, OC) before activation with IL-1	 or LPS. 

Cells were lysed in Laemmli sample buffer supplemented with inhibitors of 

proteases and phosphatases and subjected to Western blotting analysis 

with anti–IRAK-M and anti-GADPH antibodies. (B) Bone marrow macrophages 

from wild-type mice were treated with 300 ng/ml RANKL for the indicated 

times, bone marrow macrophages from IRAK-M-deficient mice were 

treated similarly for 24 h and used as a negative control. Cells were ana-

lyzed as in (B). (C) IRAK-M�/� and IRAK-M�/� osteoclasts were starved for 

2 h, and then stimulated with 20 ng/ml IL-1	, IL-1
, or 1 mg/ml LPS for 

the indicated times. (D) IRAK-M�/� and IRAK-M�/� osteoclasts were stimu-

lated with 1 mg/ml LPS for the indicated times. The right lane shows a pos-

itive control for the phosphorylation of JNK. Each experiment was repeated 

three times with similar results. P-p38, phosphorylated p38.
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DISCUSSION

IRAK-M is the first signaling molecule that lacks intrinsic

enzymatic activity to be shown to regulate the differentia-

tion, activation, and life span of osteoclasts. During signal

transduction, phosphorylation of signaling molecules repre-

sents the sum, at any given time, of opposing effects of the

kinases and phosphatases that determine the response. By

virtue of its sequence homology to IRAKs, IRAK-M binds

the IRAK/IRAK-4 complex, thereby acting as a dominant

negative IRAK that intercepts signals downstream of IL-

1R/TLR and whose effect is independent of phosphoryla-

tion. The induced expression of IRAK-M is sufficient to

interfere with IL-1R/TLR signaling. In this report, we

showed that the level of expression of IRAK-M in osteo-

clasts is high as compared with that in macrophages and

that the absence of IRAK-M leads to severe osteoporosis

which is associated with increased numbers of osteoclasts.

These effects seem to be due, in part, to the M-CSF–

induced production of IL-1, which accelerates the rate of

differentiation, extends the half-life, and stimulates the ac-

tivity of osteoclasts (7). Therefore, we propose the follow-

ing model for IRAK-M signaling during osteoclastogenesis

(Fig. 4).

As shown schematically in Fig. 4, M-CSF that is ex-

pressed by bone marrow stromal cells and osteoblasts in-

duces the clonal expansion of macrophages and the release

by them of IL-1, with resultant activation of IL-1R/TLR.

Activation of IL-1R leads to an elevated rate of differentia-

tion, an extended half-life, and the activation of osteoclasts.

RANKL, expressed by bone marrow cells and osteoblasts,

binds receptor activator of NF-�B (RANK) and activates

NF-�B via TRAF6, which promotes the expression of

IRAK-M. Upon religation of IL-1R, IRAK-M prevents

the dissociation of the IRAK/IRAK-4–TRAF6 complex

and, hence, the downstream activation of NF-�B. Overall,

IRAK-M ensures the ability of osteoclasts to tolerate the

effects of IL-1. M-CSF, RANK, TRAF6, and NF-�B

are required for osteoclastogenesis (1, 5, 18–20). Hence,

IRAK-M–mediated deactivation of IL-1R allows the tran-

sient activation and survival of osteoclasts. The absence of

IRAK-M leads to constitutive activation of IL-1R/TLR,

constitutive production of IL-1, and the prolonged survival

and activation of osteoclasts. Moreover, IRAK-M also me-

diates tolerance to LPS. Thus, IRAK-M, whose expression

is restricted to myeloid cells and is induced strongly by

RANKL, seems to be a novel and critical down-regulator

of the differentiation and activation of osteoclasts. Because

the expression of IRAK-M is induced by RANKL, which

is required for the maturation, fusion, and differentiation of

macrophages into osteoclasts, expression of IRAK-M pro-

vides a powerful negative feedback mechanism.

Fusion of mononuclear phagocytes is the first step in os-

teoclastogenesis. This explains why mononucleate macro-

phages cannot resorb bone efficiently and leads to osteopetrosis.

Hence, inhibition of the production of IL-1 is an essential

step in the prevention of osteoclastic bone resorption.

Together, increased osteoclastogenesis and the extended

survival of osteoclasts explain the elevated number of osteo-

clasts in IRAK-M�/� mice, and, hence, their low bone

mass. It is unclear whether the osteoclasts are individually

more active and resorb bone more efficiently. Although we

have recorded the numbers and the sizes of the “pits” that

are formed in dentin slices by osteoclasts as a function of

time, we have not been able to detect differences between

pits of IRAK-M�/� and IRAK-M�/� osteoclasts (unpub-

lished data). However, because numbers and half-life of

osteoclasts are increased in IRAK-M�/� mice, further in-

creases in their activity would aggravate osteoporosis even

further.

It also is unclear whether the osteoporotic phenotype of

mice that lack IRAK-M is mediated solely by osteoclasts.

Macrophages are present in all tissues and might well con-

tribute, via the cytokines and growth factors that they pro-

duce (e.g., IL-1), to the differentiation and activation of

osteoclasts that leads to osteoporosis. Osteoclasts and macro-

phages share a common precursor and numerous functions.

Thus, there might be cross talk between them.

In terms of phenotype, male mice were affected more se-

verely than female mice by the absence of IRAK-M. Possi-

ble associations between sex hormones and the expression of

IRAK-M remain to be investigated. To avoid confounding

Figure 4. Hypothetical scheme for the role of IRAK-M in the dif-
ferentiation and activation of osteoclasts. Ligation of c-Fms (1) stimu-

lates the production of IL-1, which activates IL-1R. Ligation of RANK (2) 

leads to TRAF6-mediated activation of NF-�B (3), and induction of expression 

of IRAK-M, (4) IL-1 activates IL-1R (5), which stimulates osteoclastogenesis 

and the osteoclastic resorption of bone, and extends the half-life of osteo-

clasts. When IRAK-M is present, it prevents IL-1R/TLR-mediated down-

stream signaling and the activation of NF-�B. Thus, IRAK-M mediates a 

negative feedback mechanism that interrupts signaling downstream of IL-1R. 

In the absence of IRAK-M, the IL-1 cycle continues without interruption, 

leading to increased osteoclastogenesis, with the hyperactivation and 

prolonged half-life of osteoclasts.
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effects that were due to gender, we performed our studies

using cells that originated exclusively from same-sex mice,

namely male mice.

Osteoclasts, which originate from the fusion of mono-

nuclear phagocytes, as do the giant cells that are found at

sites of chronic inflammatory reactions and granulomas, not

only express IRAK-M, but express it at higher levels than

mononuclear cells. This supports the possibility that multi-

nucleation might represent a primitive defense mechanism

that evolved to protect organisms against invasive patho-

gens. That same developmental process has endowed mac-

rophages with the ability to resorb bone by differentiating

into osteoclasts. Moreover, macrophage fusion seems to in-

volve the macrophage fusion receptor/signal regulatory

protein 	-CD47 (21, 22) axis, and macrophage fusion re-

ceptor shares a common origin with antigen receptors.

Thus, macrophage fusion might have evolved before jawed

vertebrates (23).

IRAK-M is a noncatalytic signaling molecule whose ex-

pression is induced by RANKL. Its potency seems to de-

pend upon its level of expression. Thus, if we could develop

methods for regulating the expression of IRAK-M, we

might be able to control bone mass and move toward pre-

vention of osteoporosis.

MATERIALS AND METHODS
Animals. IRAK-M�/� mice were produced by homologous recombina-

tion as described previously (17). Mice were screened by PCR using the

IRAK-M�/� forward primer (exon 4–5) 5�-gccagaagaatacatcagacaggg-3� and

reverse primer 5�-tgtttcgggtcatccagcac-3�; and the IRAK-M�/� forward

primer 5�-cgttccataacacacctctctgc-3� and reverse primer 5�-ttctatcgccttcttgac-

gagttc-3�. Animals were housed and bred at the Yale Animal Care facility,

under sterile conditions reserved for immuno-deficient mice, which include

autoclaved caging and food, as well as changing of cages in a clean-air cabi-

net/change station using sterile techniques. Mice whose bones were sub-

jected to histomorphometric analysis received two i.p. injections of calcein (3

�g/g body weight; Merck) on days 1 and 6 before being killed. All experi-

ments were approved by the Yale Animal Care and Use Committee.

Computed tomography on a microscale. The proximal tibiae from

4-mo-old male IRAK-M�/� and IRAK-M�/� mice were scanned with a

MicroCT 40 scanner (Scanco) with a 2,048 � 2,048 matrix and isotropic

resolution of 5 �m3; three-dimensional trabecular measurements in the sec-

ondary spongiosa were made directly.

Bone densitometry. Bone density was determined as described previ-

ously (24) by peripheral quantitative computed tomography with a Stratec

scanner model XCT 960M (Norland Medical Systems). Routine calibration

was performed daily with a defined standard that contained hydroxyapatite

crystals embedded in lucite, provided by Norland Medical Systems. We

scanned 1-mm–thick slices located at a distance of 3 mm, proximally, from

the distal end of distal femoral metaphyses. The voxel size was set at 0.15

mm. Scans were analyzed with a software program that was supplied by the

manufacturer (XMICE, version 5.1). Bone density and geometric parame-

ters were estimated by Loop analysis. The low- and high-density threshold

settings were 1,300 and 2,000, respectively. Separation of soft tissue from

the outer edge of bone was achieved using contour mode 1. Cortical (high

bone density) and trabecular (low bone density) bone were separated to ob-

tain trabecular data using peel mode 3. Cortical and trabecular bone were

separated to obtain cortical data using cortical mode 1.

Histomorphometry. Tibiae from IRAK-M�/� and IRAK-M�/� mice

were dehydrated in a graded ethanol series and embedded without decalcifi-

cation in methylmethacrylate, as we described previously (25). Longitudinal

sections were cut with an Autocut microtome with a tungsten carbide blade

(Jung). 4-�m-thick sections were stained with toluidine blue (pH 3.7) and

subjected to static histomorphometric analysis, whereas 8-�m–thick sec-

tions were mounted (unstained) for dynamic histomorphometric analysis,

which was performed at a constant distance from the growth plate (includ-

ing trabecular bone), with an image analysis system (Osteomeasure; Osteo-

metrics). The measured parameters included the bone volume relative to

the total volume (BV/TV); the rate of bone formation (BFR/BV), which

takes into account the mineral apposition rate; the number of osteoclasts per

active resorption perimeter (N.Oc/B.Pm); the number of osteoblasts per

active formation perimeter (N.Ob/B.Pm); and the osteoid volume relative

to bone volume (OV/BV).

Reagents. The soluble form of recombinant TRANCE/RANKL that we

used was described previously (16). Recombinant mouse M-CSF, IL-1	,

and IL-1
 were obtained from R & D Systems. A cell proliferation (WST-1)

kit was purchased from Roche Molecular Biochemicals. Unless otherwise

stated, all chemicals were from Sigma-Aldrich. A polyclonal antibody raised

in rabbits and directed against IRAK-M was purchased from Chemicon In-

ternational; rabbit polyclonal antibodies directed against p38, phosphory-

lated-p38, ERK1/2, P-ERK1/2, JNK, and mouse monoclonal antibodies

directed against P-I�B and P-JNK were obtained from Cell Signaling. A

mouse monoclonal antibody directed against GAPDH was purchased from

Novus Biologicals, Inc. Horseradish peroxidase-conjugated F(ab�)2 directed

against rabbit and mouse IgG was purchased from Jackson ImmunoRe-

search Laboratories. All supplies and reagents for tissue culture were endo-

toxin-free. Some bone marrow cells were treated with polymyxin B sulfate

for 24 h to avoid the effects of the endotoxin before treatment.

Bone marrow macrophages and osteoclasts. Bone marrow cells from

6- to 12-wk-old IRAK-M�/� and IRAK-M�/� male mice were plated in

10 cm dishes and cultured in 	-MEM (Life Technologies) supplemented

with 10% FBS in the presence of M-CSF (5 ng/m; 107 cells/10-cm dish)

for 12–18 h. Nonadherent cells were harvested and cultured with M-CSF

(30 ng/ml) in 10 cm dishes, at the same density as before, for an additional

48 h. Floating cells were removed and attached cells, which are TRAP�

macrophages were used as osteoclast precursors (16).

To generate osteoclasts, we cultured bone marrow macrophages in the

presence of RANKL (300 ng/ml) and M-CSF (30 ng/ml) or a 30% (vol/

vol) dilution of the supernatant from a culture of L929 cells, in 96-well, 24-

well, or 60 mm dishes at a density of 0.5 � 106 cells/ml.

Cytokine arrays. Bone marrow macrophages from IRAK-M�/� and

IRAK-M�/� mice were plated, in duplicate wells, in 24-well dishes

(0.5 � 106 cells/well) and treated with 20 ng/ml M-CSF for 10–12 h.

Cells were starved for 4 h and then cultured unstimulated or stimulated for

24 h with 20 ng/ml M-CSF alone or in combination with 300 ng/ml

RANKL in 0.5 ml of serum-free medium. Supernatants were collected

and analyzed for cytokines using mouse cytokine antibody arrays (Raybio-

tech, Inc.). Signals on films were quantitated with National Institutes of

Health Image software.

Western blotting analysis. Cultured cells were lysed directly in Laem-

mli’s sample buffer supplemented with a cocktail of protease inhibitors

(Complete Tablets, Roche Molecular Biochemicals) and phosphatase inhib-

itors (sodium fluoride and sodium vanedate). The lysates were sonicated be-

fore analysis by electrophoresis and Western blotting with ECL (Pierce

Chemical Co.).

Statistical analysis. Data in Tables I and II are means � 1 SD. Statistically

significant differences among experimental groups were evaluated by the

analysis of variances (26). The significance of mean changes was determined
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by an unpaired Student’s two-tailed t test, and significance was recognized

when P � 0.05.
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