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IL-10R Blockade during Chronic Schistosomiasis                       ansoni
Results in the Loss of B Cells from the Liver and the
Development of Severe Pulmonary Disease 

Keke C. Fairfax1,2, Eyal Amiel2, Irah L. King2, Tori C. Freitas2, Markus Mohrs2, Edward J. Pearce1,2*

1Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America, 2 Trudeau Institute, Saranac Lake,

New York, United States of America

Abstract

In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated
granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to
ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by
regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs.
Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of
schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly
diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R
blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and
heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or
Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that
pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R
treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics
of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within
the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell
responses in the regulation of tissue damage during a chronic helminth infection.
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Introduction

Schistosomiasis, a chronic neglected tropical disease caused by

helminth parasites of the genus Schistosoma, affects approximately

200 million people worldwide, is associated with high morbidity,

and leads to more than 300,000 deaths per year in Africa alone

[1,2,3]. Mature Schistosoma mansoni worm pairs live in the portal

vasculature, producing eggs, which are able to transit from the

lumen of the blood vessels to the intestine. Eggs excreted with feces

allow transmission of the infection. Since blood flows towards the

liver in the portal system, many eggs fail to engage the intestine

and instead are carried to the liver where they become trapped in

the sinusoids. Egg antigens elicit strongly Th2-polarized cellular

responses which orchestrate the development of granulomatous

lesions around tissue-trapped eggs [4]. The Th2 response is

essential for host survival [5,6,7] but also leads to hepatic fibrosis

during chronic infection due primarily to the profibrotic effects of

IL-13, a major cytokine product of Th2 cells [6,8,9]. Granulo-

matous inflammation is typically modulated as the disease

progresses to the chronic state, an effect that is associated with

development of hyporesponsiveness within the Th2 cell population

[10]. Extensive hepatic fibrosis is associated with hepatosplenic

schistosomiasis, a form of the disease that occurs at a frequency of

5 – 10% in untreated infected populations and which has a high

mortality rate [11]. Hepatosplenic disease is generally thought to

reflect a failure to modulate the immune response over time, with

the consequence that immunopathology is particularly severe

[12,13]. Another form of severe schistosomiasis has been

recognized, in which patients develop pulmonary hypertension

[14,15,16]. This condition afflicts up to 20% of individuals with

hepatosplenic disease, but is poorly defined and understudied.

There is evidence from both experimental infections in mice,

and from studies of infected people, that IL-10 plays a protective

immunomodulatory role during schistosomiasis [13,17,18]. Here

we set out to re-examine whether IL-10 signaling limits severe

pathology during chronic schistosomiasis primarily by inhibiting

Th2 cell proliferation, a previously proposed mechanism of action

[19,20]. Our data show clearly that specific blockade of IL-10

signaling in situ by administration of an anti-IL-10 receptor (IL-

10R) mAb to chronically infected mice has no measurable effect

on Th2 cell proliferation or IL-4 production (a measure of

activation). However, during the course of these experiments we

noted that chronic infection is associated with the striking

accumulation of schistosome egg antigen (SEA)-specific IgG1-

secreting B cells in the liver, and that consistent with a role for IL-

10 in plasma cell development [21,22], this is inhibited by IL-10R
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blockade. Unexpectedly, IL-10R blockade during chronic infec-

tion led to increased morbidity due to the development of severe

pulmonary disease associated with the portosystemic shunting of

parasite eggs to the heart and lungs. A role for B cells in the

prevention of these severe sequelae is indicated by the finding of

similar disease in chronically infected B cell-deficient or AID-/-

animals. Our data indicate that IL-10 plays a significant role in

preventing the development of pulmonary disease during chronic

schistosomiasis and that it does so via a mechanism that is

unrelated to Th2 cell hyporesponsiveness. Rather, our findings

suggest that IL-10 regulates hepatic humoral immunity and that it

is this arm of the immune system that is responsible for initiating

anti-inflammatory responses, perhaps mediated by the effects of

immune complexes on macrophages, that are essential for

preventing the development of severe pulmonary disease.

Results/Discussion

Th2 cell hypoproliferation during chronic infection is not
IL-10 dependent
To assess the effect of IL-10 on Th2 cell responsiveness we

infected Balb/c 4get mice (which express EGFP as a reporter for

il4 transcription) or 4get/KN2 mice (which report IL-4 protein

production by cell surface expression of human CD2 (HuCD2))

with a low dose of S. mansoni and 10 – 12 weeks later initiated a 4

week treatment with blocking IL-10R mAb (1B1.3a [23]). The

frequency of CD4+ T cells, EGFP+ CD4+ T cells or of EGFP+

huCD2+ T cells within the spleens of infected (or naı̈ve) mice was

unaffected by IL-10R blockade (Figure 1A, C and E respectively).

Consistent with this, the rate of BrdU incorporation by splenic

CD4+ T cells or EGFP+CD4+ T cells was also unaltered by

treatment with anti-IL-10R mAb (Figure 1B, D respectively); the

very low proliferative rate of Th2 cells during chronic infection is

apparent in Figure 1D and is consistent with previous reports [10].

We also examined the hepatic CD4+ T cell compartment for the

effects of IL-10 on T cell function. Blocking IL-10R did not

significantly affect the frequency of CD4+ T cells in the liver

(Figure 1F), the percentages of these cells that expressed EGFP or

HuCD2 (Figure 1G), nor the total numbers of Th2 cells

(Figure 1H). These data support the view that IL-10 does not

enforce Th2 cell hyporesponsiveness during chronic schistosomi-

asis and are consistent with our recent finding that changes in Th2

cell responsiveness over time during infection are the result of Th2

cell-intrinsic mechanisms such as the expression of GRAIL[10].

We also assessed the effect of blocking IL-10R on the production

of Th2 cytokines in addition to IL-4 and of cytokines made by

other CD4 T cell lineages (Figure 2A). We found that IL-10R

blockade had no effect on the ability of hepatic CD4+ T cells to

secrete IL-6, IL-10, IL-13, IL-17a, TNFa, or IFNc in response to

restimulation in vitro (Figure 2A). Additionally, IL-10R blockade

had no measurable effect on the frequency of FoxP3+ regulatory T

cells within the hepatic CD4+ T-cell compartment (Figure 2B). In

summary, measurable effects of L-10R blockade on the hepatic

CD4+ T cell response during chronic infection were minimal.

IL-10R blockade during chronic infection induces severe
pulmonary and cardiac pathology
Despite the lack of effect of IL-10R blockade on Th2 cell

responsiveness, we observed significant changes in morbidity and

mortality associated with the cessation of IL-10 signaling.

Specifically, whereas ,5% of control-treated mice died before

week 14 post infection,.30% of infected mice in which IL-10R was

blocked were dead by this time point (Figure 3A); there was no

evidence of intestinal hemorrhage in these animals and they did not

lose weight precipitously prior to death, which is unlike the situation

in, for example, schistosome-infected IL-42/2, IL-4Ra2/2 or IL-

42/2/IL-102/2 mice, in which death is preceded by severe weight

loss [5,6,17] (data not shown). Infected mice treated with anti-IL-

10R had hepatic granulomas that appeared to coalesce to a greater

extent than in infected control mice (Figure 3B), although we were

unable to measure increased collagen content, indicative of more

severe fibrosis, in these animals (Figure 3C). Moreover, hepatic

levels of IL-13, the major inducing factor for fibrosis in

schistosomiasis, were also unchanged as a result of IL-10R blockade

(Figure 3D). However, we found evidence of hepatic bleeding,

apparent as red blood cells and plasma in extravascular spaces with

a loss of cellular structure (Figure 3E), and marked deposition of

hemosiderin (an indicator of bleeding [24,25]) (Figure 3F), in mice

that were treated with anti-IL-10R. Hemosiderin was localized to

F4/80+ cells that exhibit macrophage-like morphology (Figure 3F).

Notably, IL-10R blockade increased the frequency of F4/80+

macrophages at sites distant from granulomas (Figure 3F, bottom).

Hepatic bleeding was not due to increased burden of infection since

hepatic egg numbers did not differ significantly between anti-IL-

10R-treated and infected control mice (Figure 3G). Strikingly, we

observed lung inflammation in the infected mice in which IL-10R

was blocked that was not apparent in control infected mice

(Figure 3H), and digestion of lung tissue revealed significant egg

deposition into this organ (Figure 3G). Detailed analysis of the

affected lungs revealed eggs as foci of extensive, obliterating cellular

infiltration, with areas of hemorrhage; pathologic changes in the

lungs of infected mice treated with control immunoglobulin were

rare (Figure 3H). Histological examination of the hearts of IL-10R

blocked mice revealed eggs and associated cellular infiltrates in 50%

of IL-10R blocked animals, whereas inflammation was observed in

the heart muscle of only 10% of chronically infected control animals

(Figure 3I). The presence of severe pulmonary pathology suggests

that these animals may have developed pulmonary hypertension.

Pulmonary involvement during schistosomiasis is a result of

portosystemic shunting of eggs to the heart and lungs, and reflects

increased hepatic-portal blood pressure, which is the typically

Author Summary

Schistosomiasis is a chronic disease that affects approxi-
mately 200 million people. Immune modulation is a
hallmark of chronic disease and serves to protect the host
from severe pathology. A significant percentage of people
infected with schistosomiasis fail to undergo this protec-
tive modulation and can develop portal hypertension with
resulting pulmonary complications. Here we show that
schistosome-specific antibody-secreting B cells accumulate
in the liver as the infection progresses to the chronic state
and that this accumulation is dependent on the cytokine
Interleukin-10. Blocking the IL-10R results in not only the
loss of B cells from the liver, but also the development of
severe pulmonary pathology. We found similar changes in
disease progression in mice genetically unable to mount
normal antibody responses. We believe that antibody is
important for triggering the production of anti-inflamma-
tory factors, including IL-10 itself, by other immune cells
called macrophages. Our data suggest that during chronic
schistosomiasis IL-10 promotes the development of a
population of B cells within the liver that is responsible for
minimizing inflammation and preventing the development
of disease in the lungs. Our findings provide a mouse
model that may be of use for studying the development of
pulmonary complications due to chronic schistosomiasis.

Hepatic B Cells in Chronic Schistosomiasis
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thought to be the result of liver fibrosis and severe changes to the

intrahepatic vascular bed associated with obstructive inflammation

[14,26,27,28]. However, our cumulative findings shown in Figure 3

suggest that IL-10 regulated factors that are not directly linked to

increased hepatic fibrosis are able to precipitate increases in portal

hypertension and portal-systemic shunting of parasite eggs,

Previous reports have shown that compared to infected wild

type mice, mice genetically deficient in IL-10 develop larger

hepatic granulomas during acute infection and exhibit higher

mortality rates during chronic infection [17]. Consistent with these

data, the injection of IL-10/Fc fusion protein during acute

infection results in decreased granuloma size [29], while the

blockade of IL-10R during acute infection results in increased

granuloma size [19]. In humans, severe periportal fibrosis during

chronic schistosomiasis is associated with lower levels of IL-10

production, and it has been suggested that IL-10 also plays a role

in preventing fibrosis in infected mice [20,29]. In mice, IL-10 has

been shown to cooperate with IL-12p40 and IL-13Ra2 to suppress
fibrosis due to schistosomiasis [30]. Nevertheless, despite evidence

that IL-10 is anti-fibrotic in pulmonary tissues [31] and in liver

fibrosis caused by carbon tetrachloride [32], there is no published

evidence that mice that lack IL-10 alone develop more extensive

fibrosis during the acute or chronic stages of schistosomiasis

[17,33]. Our studies on chronic infection in Balb/c mice, which

differ from previous studies in which the effects of IL-10 in chronic

infection in B6 mice or acute infection in Balb/c mice have been

examined, do implicate IL-10 in limiting portal-sytemic shunting

during schistosomiasis. Collectively our data show that in Balb/c

mice, IL-10 is not required to maintain the modulated state of Th2

cells during chronic schistosomiasis, but does limit other

pathological events that lead to increased portal hypertension

and severe sequelae. These results are consistent with previous

observations of increased portal hypertension and/or mortality

when IL-10 is present at low levels or absent during chronic

schistosomiasis [13,17].

IL-10R blockade alters the hepatic Bcell compartment
Fibrosis and tissue damage during schistosomiasis is immuno-

logically mediated [8]. Since we were unable to detect changes in

the Th2 response associated with IL-10R blockade that might

account for the observed changes in disease outcome, we

performed further analyses to examine whether other components

of the immune response were affected by treatment with anti-IL-

10R. In the process of analyzing the hepatic cellular infiltrate, we

noticed striking and previously unrecognized differences within the

B cell compartment as a result of infection. Moreover, we noted

Figure 1. The splenic and hepatic IL-4 response is similar between anti-IL-10R and isotype control treated mice. Balb/c 4get or Balb/c
4get/KN2 mice were infected for 10 – 12 weeks and then treated bi-weekly for 4 weeks with rat anti-IL10R antibody or rat isotype control antibody,
and administered BrdU for 7 days before sacrifice. Naı̈ve Balb/c 4get or Balb/c 4get/KN2 mice were similarly treated with antibodies and BrdU.
Isolated spleen cells and cells isolated from livers were analyzed by flow cytometry for expression of the markers indicated. Data shown in A and F are
from gated lymphocytes. Data shown in B – E, and G are from gated CD4 T cells. Data shown are concatenated from 3 – 5 mice per group. Numbers
show the percentages of cells that fall within indicated gates. H, Numbers of CD4+, GFP+ CD4+ and GFP+ HuCD2+ CD4+ T cells within liver tissues of
infected or naı̈ve mice after treatment with anti-IL-10R or control antibody. Data represent mean plus/minus SD of results from 3 – 5 mice per group.
All data shown are representative of three separate experiments with 3 – 5 mice/group.
doi:10.1371/journal.ppat.1002490.g001

Hepatic B Cells in Chronic Schistosomiasis
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marked effects of IL-10R blockade on the hepatic B cell

compartment.

Consistent with previous reports [34,35], we found that

infection induced the accumulation of CD19+ B cells within the

liver (Figure 4A). Interestingly, much of this expansion occurred

late in infection between weeks 10 and 16 (Figure 4A), lagging

behind the peak of granulomatous inflammation which occurs at

week 8 of infection (not shown; [4]). The presence of plasma cells

within the liver, defined by CD138 staining, followed a similar

pattern (Figure 4A). Th2 cells dominate the T cell response during

schistosomiasis [4], and the Th2 cell product IL-4 promotes class

switching to IgG1 [36]. Consistent with this, numbers of IgG1+ B

cells in the liver increased significantly as a result of infection

(Figure 4B) with the result that over 50% of the hepatic CD19+ B

cells in 16 week-infected mice were IgG1+, whereas prior to

infection very few of the CD19+ cells expressed this isotype

(Figure 4C). Despite the fact that the overall numbers of B cells in

the liver did not increase dramatically by week 10 of infection

(Figure 4A), there was a transition within this population in terms

of IgG1+ cells such that approximately 37% of CD19+ cells at

week 10 were IgG1+ compared to,2% in naı̈ve mice (Figure 4C).

Consistent with the hepatic plasma cell data and previous reports

[37], schistosome egg antigen (SEA)-specific serum antibody titers

were also found to increase strikingly between weeks 10 and 16 of

infection (Figure 4D). Targeted measurements of antibody-

secreting cells by ELISpot revealed large numbers of IgG1-

secreting cells from the perfused livers of infected mice that, on a

per cell basis, exceeded the number of IgG1-secreting cells from

the spleens of infected animals (Figure 4E). Moreover, while only a

small percentage (10%) of IgG1-secreting cells in the spleen were

making antibody that recognized SEA, .50% of IgG1-secreting

hepatic B cells produced SEA-specific antibodies (Figure 4G, and

see Figure 4E). The hepatic pool of antibody secreting cells is

therefore highly enriched for those secreting antibody specific for

the egg stage of the parasite. These data emphasize previously

unappreciated changes in the liver B cell compartment during

infection that result in the accumulation of pathogen-specific

IgG1-secreting plasma cells. This is consistent with reports that

plasma cells can be recruited to tissue sites of inflammation

[38,39].

IL-10R blockade had a marked effect on hepatic B cells. The

frequencies of CD19+ B cells and CD138+CD192 plasma cells

within hepatic leukocyte populations from naive and/or chroni-

cally infected mice were significantly reduced as a result of

Figure 2. Blockade of IL-10R during chronic infection does not affect hepatic CD4+ T cell subset responses. Balb/c 4get/KN2 mice were
infected for 11 weeks and then treated bi-weekly for 4 weeks with rat anti-IL10R antibody or rat isotype control antibody. A, Purified hepatic CD4+ T
cells were cultured with TCRa -/- splenocytes and media supplemented with either SEA or anti-CD3 for 72 hours. Cytokine concentrations in culture
supernatants were measured. Data represent mean plus/minus SD of results from 4 – 6 mice per group. B, Isolated livers cells were analyzed by flow
cytometry for expression FoxP3 and GFP. Data shown are from gated CD4+ T cells and concatenated from 4 – 7 individual mice per group. Numbers
show the percentages of cells that fall within indicated gates.
doi:10.1371/journal.ppat.1002490.g002

Hepatic B Cells in Chronic Schistosomiasis
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Figure 3. Blockade of IL-10 receptor during chronic infection results in more severe liver disease with pulmonary involvement. Balb/
c 4get/KN2mice were injected bi-weekly with anti-IL10R antibody or isotype control antibody during weeks 10 –16 post infection. Naı̈ve Balb/c 4get/
KN2 mice were injected with antibodies over the same time period. A, Percent survival of infected control or anti-IL0R-treated mice over the course of
antibody treatment. Liver sections from control and anti-IL-10R treated animals were stained with Masson’s trichrome (B, E) or hematoxylin and eosin
(H, I). B, E, Blue staining indicates collagen deposition, white boxes indicate coalescing granulomas (B) and hemmorhagic necrosis (E). C, Hepatic
collagen concentrations (nanomoles/liver) in infected control or anti IL-10R treated mice at 16 weeks post infection. D, Liver IL-13 concentrations in
infected control or anti-IL10R treated mice. F, Hemosiderin deposits (arrowheads) in F4/80+ cells (blue). G, Numbers of eggs in hepatic and
pulmonary tissues. Data in G represent means of counts from 9 –10 mice per group from two independent experiments, plus minus SD. H, Lung
sections from infected mice treated with control or anti-IL-10R antibodies. Arrowhead indicates an embolized egg and white box indicates
hemorrhage. I, Heart sections from infected mice treated with control or anti-IL-10R antibodies; arrowhead indicates parasite egg. Data shown are
representative of three separate experiments with 3 – 5 mice/group.
doi:10.1371/journal.ppat.1002490.g003

Hepatic B Cells in Chronic Schistosomiasis
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treatment with anti-IL-10R (Figure 4F). Similarly, the overall

numbers of hepatic CD19+IgG1+ B cells (Figure 4H), and of IgG1-

secreting cells (Figure 4E) in chronically infected mice were

decreased by IL-10R blockade. Further, anti-IL-10R treatment

caused a three-fold reduction in the frequency of SEA-specific

IgG1-secreting cells in the liver (Figure 4G). Similar results were

obtained upon examination of hepatic IgE and IgM-secreting cells

from IL-10R-treated mice (Figure S1). Interestingly, there was no

effect of blocking IL-10R on splenic IgG1, IgE, or IgM-secreting

cell numbers (Figure 4E, G, Figure S1), and overall peripheral

serum anti-SEA IgG1 antibody titers did not decline following

anti-IL-10R treatment (Figure 4I).

There are several explanations for the impact of IL-10R

blockade on the hepatic B cell compartment. The first is that IL-

10R signaling is required for the recruitment of plasma cells to the

liver, but not for their generation in the spleen or lymph nodes.

Previous reports have shown that IgG-secreting cells generated at

non-mucosal surfaces express a4b1 which allows them to home to

bone marrow and other tissues through interactions with VCAM1,

expression in the liver of which is increased during schistosomiasis

Figure 4. Blocking IL-10R during chronic infection results in alterations within the hepatic B cell compartment and a reduction in
the production of IgG1 within the liver. A, Numbers of hepatic CD19+ B cells and CD138+ plasma cells during the course of infection in Balb/c
4get/KN2 mice. B, Numbers of surface IgG1+ CD19+ B cells, and C, percentages of CD19+ B cells that are surface IgG1+ in the liver over the course of
infection. Data points represent means plus/minus SD from 4 animals for each time-point. D, Serum SEA-specific IgG1 antibody titers over the course
of infection. Data shown are from individual mice with mean values represented by horizontal bars. E, G, Perfused livers from mice treated with anti-
IL-10R or control antibody as described in the legend for Fig 3 were digested with collagenase and isolated leukocytes were assayed for total IgG1-
secreting cells (E) or total SEA-specific IgG1 secreting cells (G) by ELISPOT. F, Cells isolated from livers were analyzed by flow cytometry for expression
of the markers indicated. Data shown are concatenated plots from 3–5 mice and are gated on live lymphocytes defined by FSC/SSC. For analysis of
CD138+ cells the population was further gated on surface IgD2 cells. Numbers show the percentages of cells that fall within the indicated gate. H,
Numbers of hepatic surface IgG1+ B cells at 16 weeks post infection in control and IL-10R blocked animals. Data graphed are the mean plus/minus SD
of 3 – 5 mice per group. I, Serum SEA-specific IgG1 antibody titers at 16 weeks post infection. Data shown are from individual mice with mean values
represented by horizontal bars. All experiments were performed at least 3 times. * indicates P,0.05, ** indicates P,0.01.
doi:10.1371/journal.ppat.1002490.g004

Hepatic B Cells in Chronic Schistosomiasis
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[40,41]. Alternatively, hepatic plasma cells might originate from

class switched circulating memory B cells or recent germinal

center emigrants that are recruited to the liver, and differentiate

into plasma cells upon antigen re-stimulation [42,43], in an IL-

10R dependent manner. This possibility seems likely as we see a

dramatic reduction in the number of IgG1+ B cells (Figure 4 H) in

the liver after blocking IL-10R during chronic infection. Previous

reports have documented a role for IL-10 in plasma B cell

development [21,22]. Moreover, differentiation of B cells into IgA-

secreting plasma cells within the gut lamina propria has been

reported [44] making it formally possible that S. mansoni-induced

hepatic IgG1 antibody secreting cells are generated in the liver

from B cells first activated in lymphoid organs. Alternatively, IL-10

may be regulating the production of chemokines that are essential

for B cell entry into the liver. One candidate for this would be

CXCL13 [45], production of which is induced in the hepatic

tissues of mice infected with S. japonicum, which is closely related to

S. mansoni [41,46].

Chronic infection leads to the hepatic accumulation of
IgG1+F4/80+ cells
When analyzing IgG1-expressing cells during infection we

noted that IL-10R blockade affected a large population of liver-

infiltrating IgG1+ non-B cells (CD192, CD138). This population

was heterogeneous, as indicated by side scatter (Figure 5A), but

largely F4/80+ Ly6cHi, CD11b+, MHCIIHI, and increased over

time (Figure 5B and data not shown). Consistent with the observed

effects of IL-10R blockade on the hepatic IgG1-secreting B cell

population, the frequencies of IgG1+ non-B cells, and of F4/

80+IgG1+ cells in particular, were significantly decreased as a

result of the treatment of infected mice with anti-IL-10R

(Figure 5A, B). Conversely, the total number of CD11c+F4/80Hi

macrophages were significantly increased in IL-10R blocked

animals (Figure 5C), a finding that supports the qualitative

differences in the frequency of F4/80+ cells indicated by Figure 3C.

F4/80+IgG1+ cells were clearly evident in sections of livers from

mice infected for 16 weeks and were localized primarily to

granulomatous lesions (Figure 5D). Consistent with our flow

cytometric data (Figure 5A,B), IgG1+ cells were rare in sections of

livers from mice infected for 10 weeks, and tended to be located

immediately around parasite eggs and to not be F4/80 positive,

despite the fact that the granulomas at this time point were also

macrophage-rich (Figure 5D). Again consistent with the flow

cytometric data, F4/80+IgG1+ cells were observed far less

frequently in chronically infected mice in which IL-10R was

blocked, than in control infected mice (Figure 5D). Staining of

livers from naı̈ve mice show a small population of F4/80+ resident

macrophages, but no IgG1+ cells (Figure 5 D). This control

staining combined with analysis of liver sections from infected B

cell deficient mMT mice (data not shown) indicate that the

observed IgG1 staining and IgG1 and F4/80 co-localization was

specific.

Overall, data from the flow cytometric and immunohistochem-

ical analyses support the conclusion that as infection progresses

from week 10 to week 16, there is an IL-10-dependent increase in

IgG1-producing B cells within diseased liver tissue, and that IgG1

made locally becomes associated with macrophages. It has

previously been reported that regulatory macrophages can be

generated by immune complex stimulation, and that these

macrophages are able to then produce IL-10 [47,48,49]. We

reasoned that IgG1+ macrophages in the livers of infected mice

could be contributing to the regulation of inflammation by

secreting IL-10. To begin to assess whether this pathway is active

during chronic S. mansoni infection, we generated bone marrow

derived macrophages and assessed their ability to produce IL-10 in

response to SEA-containing immune complexes following priming

by IFNc and LPS (classical activation), IL-4 (alternative action) or

exposure to IL-4 and LPS, which mimics the situation in vivo

during infection [7,50]. We found that macrophages stimulated

with IL-4 and LPS responded strongly to immune complexes by

making IL-10 (Figure 5E). We then assed the ability of

macrophage-enriched single cell suspensions from the livers of

infected mice to secrete IL-10 in response to immune complexes.

Cells from mice infected for 10 weeks, which would not be

expected to have acquired immune complexes in vivo

(Figure 5A,B,C), made little IL-10 ex vivo but responded strongly

to added immune complexes by secreting this cytokine. In

contrast, cells from mice infected for 16 weeks, which are IgG1

positive in vivo, made IL-10 ex vivo without exogenous stimulation,

and no enhanced effect was observed with the addition of immune

complexes (Figure 5F). These data indicated that IgG+ macro-

phages are likely to be making IL-10 in situ in chronically infected

mice. To examine this, we used real time RT-PCR to measure IL-

10 transcripts in IgG1+ vs. IgG12 macrophages isolated from

diseased liver tissues from chronically infected mice. We found

that IL-10 mRNA expression was higher in sorted liver IgG1+

(Ly6cHi CD11bHi CD11c+ F4/80+) macrophages from 16 week

infected Balb/c mice compared to IgG12 (Ly6cHi CD11bHi

CD11c+ F4/80+) cells from the same mice. (Figure 5G). Taken

together, our findings indicate that loss of cells from within the B

cell compartment and subsequent reductions in the production

and localization of IgG1 within the liver, are striking immunologic

correlates of severe disease manifestations following IL-10R

blockade. Our data suggest that this localized production of

IgG1 generates immune complexes that bind to macrophages and

upregulate IL-10 production. Our findings implicate this process

in the regulation of immunopathologic changes occurring within

the liver during infection, and raise the possibility of the existence

of a positive feedback regulatory pathway in which IL-10

promotes local IgG1 production which inturn promotes ongoing

IL-10 production by macrophages (Figure S2).

B-cell deficient mice develop severe pulmonary
pathology during chronic infection
Based on these findings above, we hypothesized that B cells play

an important role in preventing the development of pulmonary

complications during schistosomiasis. To test this hypothesis, we

infected 4get/mMT and wild-type 4get control mice with a low

dose of S. mansoni and analyzed pathological changes due to

chronic infection. As previously published [51], mMT mice were

more susceptible to infection than B cell replete mice (20% of

infected mMT mice died before week 16 vs. none of the control

animals). Increased mortality was associated with the development

of tracts of coalescing hepatic fibrosis (Figure 6A), and evidence of

increased hemosiderin deposits in F4/80+ macrophages

(Figure 6B) indicative of hepatic bleeding, (e.g. [52,53]). Most

significantly, we found that chronically infected mMT mice, like

infected wild type mice in which IL-10R was blocked (Figure 3),

had eggs in their lungs (Figure 6C, D) with extensive associated

cellular infiltration and immunopathologic changes (Figure 6C). In

two independent experiments, 89% of mMT animals (n = 9) had

eggs in their lungs at 16 – 18 weeks post infection compared to

29% of control animals. All mMT mice that died early during

infection (between weeks 11 and 12; 25% of infected mMT mice)

had eggs in their lungs and had no indication of intestinal

hemorrhage upon necropsy. This was not due to increased hepatic

egg burden in the absence of B cells (Figure 6D), nor to a more

aggressive Th2 response, since the frequencies and total numbers

Hepatic B Cells in Chronic Schistosomiasis

PLoS Pathogens | www.plospathogens.org 7 January 2012 | Volume 8 | Issue 1 | e1002490



of EGFP+ CD4+ T cells, or numbers of CD69+ CD4+ T cells in the

livers of infected mMT mice were no different than in infected B

cell-replete animals (Figure 6E). However, as in mice in which IL-

10R was blocked, we did note that compared to chronically

infected wild type mice, the livers of infected mMT mice were

infiltrated by significantly more CD11c+F4/80Hi macrophages

(Figure 6F).

The lack of significant alterations to the hepatic T cell

compartment in infected anti-IL-10R-treated mice and in infected

mMT mice, suggests that the increased severity of disease with

pulmonary involvement is not due to an increase in immuno-

pathologic hepatic Th2 cell responsiveness. Rather, the changes in

the B cell compartment in the infected anti-IL-10R-treated mice

and the similarity of the overall disease picture in anti-IL-10R

treated and mMT mice indicate that antibody is playing a central

role in preventing the development of severe disease. Previous

work from our laboratory has shown that CD40L2/2 mice fail to

produce systemic IgG1 or IgE in response to S. mansoni infection,

Figure 5. IgG1 localizes to F4/80+ cells in the liver during chronic infection and IgG1 binding up-regulates IL-10 production. A, Cells
isolated from livers of naı̈ve or infected Balb/c 4get/KN2 animals treated with anti-IL-10R antibody or with control antibody were stained for surface
IgG1 and analyzed by flow cytometry. B, Frequency of IgG1+ F4/80+ cells during S. mansoni infection. The F4/80 positive cells are also Ly6c, CD11b,
and MHCII positive (not show). Data shown are concatenated plots from 3 – 5 mice, and are gated on live cells. Numbers show the percentages of
cells that fall within each gate. C, Numbers of hepatic CD11c+F4/80Hi macrophages (gated on Ly6cHi CD11bHi) after treatment with anti-IL-10R or
control antibody. D, Frozen liver sections were stained for IgG1 (Red) and F4/80 (Blue) and imaged with a Leica TCS SP5 II laser scanning confocal
microscope at the indicated times post S. mansoni infection. Cells that are both IgG1+ and F4/80+ appear as magenta. Data shown are representative
of two experiments with 3–5 animals per group. E, Balb/c bone marrow derived macrophages were primed in the indicated conditions and then
stimulated for 20 hours with either SEA immune complexes (IC) or media and the supernatants assayed for IL-10 production. F, Liver cell suspensions
from S. mansoni infected livers (either 10 or 16 weeks post infection) were depleted of B and T cells and then cultured for 20 hours with either media
or SEA immune complexes and the supernatants assayed for IL-10 production. G, Liver cell suspensions for 16 week infected Balb/c mice were stained
for Ly6c, CD11c, CD11b, F4/80, and IgG1, and then IgG1+ and IgG12 macrophages (Ly6cHi/CD11bHi/CD11c+F480+) were sorted for RNA extraction.
Expression of IL-10 is normalized to the housekeeping gene b-actin. Data shown for G are combined from two individual sorts of 5–7 animals.
doi:10.1371/journal.ppat.1002490.g005
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exhibit increased mortality, and strikingly develop egg-associated

granulomas in their lungs [54]. The similarity in mortality and

morbidity between these mice that do not make IgG1 or IgE

during infection, but which do have B cells, and the infected B cell

deficient and anti-IL-10R-treated B-cell sufficient mice described

herein, suggest that secreted immunoglobulin is involved in

preventing the development of pulmonary disease during

schistosomiasis. These conclusions are generally consistent with

previous reports which have implicated B cells in immunomod-

ulation during chronic schistosomiasis [51,55,56]. To directly asses

the role of secreted IgG1 in protection against the development of

lung pathology during chronic schistosomaisis, we examined the

outcome of infection in AID-/- mice, which are unable to undergo

class switch recombination or somatic hypermutation [57], and

secrete only IgM. AID-/- mice were less capable than wild type

mice of surviving into chronic infection (Figure 6G) and were

found to have extensive pulmonary disease due to egg deposition

into the lungs (Figure 6H and not shown). Compared to wildtype

mice, AID-/- mice were similar to infected anti-IL-10R treated

and mMT mice in having increased numbers of liver macrophages

Figure 6. Mice lacking B cells exhibit severe pulmonary pathology during chronic infection. C57BL/6 4get/mMT and C57BL/6 4get
controls were sacrificed at 16 weeks post infection. A, C, Liver and lung sections from control and mMT animals were stained with Masson’s trichrome.
White boxes indicate coalescing granulomas (A) and arrowheads indicate eggs embolized in the lungs (B), C, Liver sections were stained with an
antibody against mouse F4/80 (Blue) and imaged with a confocal microscope. The images shown are overlays of the Blue (F4/80)/DIC channels.
Hemosiderin (indicated by arrowheads) crystals are visible under DIC conditions. D, Quantitation of hepatic and pulmonary egg deposition in
infected control or mMT animals. Data shown are the means plus/minus SD of 9 – 10 mice per group from two independent experiments. E,
Expression of EGFP, CD4 and CD69 by cells isolated from the livers of infected control and mMT animals were analyzed by flow cytometry. The mean
and SD of data from 4 – 5 individual animals per group are graphed. F, Numbers of hepatic CD11c+F4/80Hi macrophages (gated on Ly6cHi CD11bHi

cells) at 16 weeks post infection in mMT or control mice. Data are representative of 2 – 3 individual experiments. G, Percent survival of infected
wildtype control or AID-/- mice following a low dose infection of S. mansoni. H, Quantitation of hepatic and pulmonary egg deposition in infected
control or AID -/- animals. I, Numbers of hepatic CD11c+F4/80Hi macrophages (gated on Ly6cHi CD11bHi cells) at 16 weeks post infection in AID -/- or
control mice. Data are representative of 2 individual experiments. J, Concentration of collagen (nanomoles/liver) in the livers of control or AID-/- mice
at 16 weeks post infection. * indicates P,0.05.
doi:10.1371/journal.ppat.1002490.g006
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following infection(Figure 6I). We were unable to correlate

increased portal-systemic shunting of eggs with increased liver

fibrosis in the absence of IgG1 (Figure 6J and data not shown),

Our data suggest that there are at least two distinct sources and

roles for IL-10 during S. mansoni infection (Figure S2). The first role

is in the development and/or recruitment of class switched hepatic

B cells, the numbers of which are reduced in the liver after IL-10R

blockade, in the absence of any changes in the broader systemic of

B cell pool. The source of the IL-10 that is important for this

process is currently unclear. However, Th2 cells make IL-10 and

are present during infection from early time points following the

onset of egg production, so it is reasonable to hypothesize that Th2

cells are responsible for the IL-10 that is important for the hepatic

B cell response. Our time course experiments indicate that class

switched B cells appear in the liver before plasma cells do, and that

hepatic F4/80+IgG1+ macrophages are difficult to detect until

after a population of plasma cells has accumulated. Since systemic

egg antigen-specific IgG1 is measurable prior to the appearance of

plasma cells in the liver, it seems likely that IgG1 is not present

within this tissue until antibody-secreting plasma cells localize to

the organ. IgG1+ macrophages are an additional source of IL-10,

but whether these cells or the IL-10 made by them plays a direct

role in preventing the development of portal hypertension remains

to be determined. However, it has been reported that S. mansoni-

infected FcRc2/2 mice develop similar disease to that evident in

infected mMT mice [51], supporting the view that an FccR+ cell

type is mediating the beneficial effects of antibody. Several types of

myeloid cells, including regulatory macrophages [58,59,60] and/

or myeloid-derived suppressor cells [61], are candidates for cells

that express FccRs and either make or are dependent on IL-10,

and that may play a protective role in the chronically inflamed

tissues of schistosome-infected mice. Macrophages have been

proposed as the ‘‘master regulators’’ of fibrosis secreting both pro-

and anti-fibrotic mediators [62]. Recent work has revealed that

alternatively activated macrophage-derived Arginase-1 (Arg-1) is

involved in the down-regulation of granulomatous inflammation

and fibrosis, and that the macrophage specific deletion of Arg-1

leads to increased mortality and hepatic fibrosis/necrosis [63].

Other work suggests that there is functional plasticity in

macrophages such that when IL-4 primed (alternatively activated)

macrophages are cultured with immune complexes they take on a

‘‘hybrid’’ phenotype where they produce IL-10, but still express

some markers of alternative activation [64,65]. Our finding that

reductions in the numbers of IgG1+ macrophages are associated

with the development of severe pathology suggests that during

chronic S. mansoni infection, alternatively activated macrophages

may bind immune complexes via FccRs and assume regulatory/

anti-inflammatory roles. This possibility is bolstered by our finding

that immune complexes upregulate IL-10 secretion when added to

liver cells from acutely infected mice, and that sorted IgG1+

macrophages from 16 week infected mice express more IL-10

mRNA than IgG12 macrophages. In the absence of IgG1, there is

a significant increase in the number of CD11c+F4/80hi cells within

diseased liver tissues, suggesting that immune complex ligation

modulates either the recruitment or proliferation of these cells

during chronic infection. We speculate that in the absence of

immune complex-initiated signaling events, macrophages that

would normally serve an anti-inflammatory role either lose this

ability or become proinflammatory. Current work is directed

towards more carefully defining the macrophage subpopulations

that our findings here implicate in the regulation of disease

progression during schistosomiasis mansoni, and elucidating the

roles of IL-10 in the orchestration of the hepatic B cell

compartment.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Trudeau Institute (Permit Number: 09-007). All

efforts were made to minimize suffering.

Mice and parasites
4get (C.129- Il4tm1Lky/J) and 4get/KN2 mice were previously

described [66,67]. 4get/mMT and AID-/- [57] mice on a B6

background, and Balb/c TCRa -/- mice, were bred at Trudeau

Institute. All experimental procedures with mice were approved by

the Institutional Animal Care and Use Committee of the Trudeau

Institute. Mice were kept under specific pathogen–free conditions

and were infected at 8–12 weeks of age. Mice on a Balb/c

background were exposed percutaneously to 35 Schistosoma mansoni

(Puerto Rican strain, NMRI) cercariae and mice on a B6

background were exposed to 50 cercariae. For IL-10R blocking,

animals were given bi-weekly i.p. injections of either 250 mg of

purified anti-IL-10R monoclonal antibody (clone 1B1.3A) or

250 mg of purified rat IgG1 isotype control antibody. Soluble egg

Ag (SEA) was prepared from isolated schistosome eggs as

previously described [10,54].

Histology and egg counts
Liver, lungs and heart were collected from PBS-perfused

animals and immediately fixed in 10% neutral buffered formalin.

Tissues were embedded and sectioned, and sections were stained

with hematoxylin and eosin or Masson’s trichrome for enumer-

ation of inflammatory infiltrate and collagen deposition. The

extent of liver fibrosis in anti-IL-10R or isotype control treated

animals at 16 weeks post-infection was determined by measuring

the percentage of fibrotic tissue in trichrome stained liver sections

[68]. Samples of lung and liver were collected to quantitate egg

deposition as previously described [69].

In vivo BrdU labeling
Mice were injected i.p. with 0.5 mg BrdU (BD Biosciences or

Sigma-Aldrich) at the start of the labeling period and thereafter

provided with 0.8 mg/ml BrdU in their drinking water. Fresh

water with BrdU was provided every 2–3 days.

Flow cytometric analysis
To analyze hepatic cell populations livers were removed from

PBS-perfused animals, mashed, and incubated in RPMI (Media-

tech) containing 250 mg/ml Collagenase D (Roche) at 37uC for

60 min. The resulting suspension was disrupted through a 100 mm

metal cell strainer and centrifuged through 40% isotonic Percoll/

RPMI. The resulting pellet was washed, and used for analyses.

Spleen cells were harvested as previously described [10]. Surface

staining with monoclonal antibodies, acquisition, and analyses

were essentially performed as previously described [10]. Samples

were acquired using a FACSCanto II flow cytometer (BD) and

analyzed with FlowJo software (Tree Star, Inc.). The following

mAb (BD, eBioscience, BioLegend, or Invitrogen) against mouse

antigens were used as PE, PE-Cy5, PE-Cy7, allophycocyanin

(APC), APC-Cy7, Pacific blue, or biotin conjugates: CD4 (RM4-

5), CD19 (1D3), CD138 (281-2), IgG1 (A85-1), IgD (11-26), IgM

(11/41), CD11b (M1/70), CD11c (N418), F4/80 (BM8), IA/IE

(MHCII; M5/114.15.2), Ly6c (HK1.4), BrdU (MoBu-1) FoxP3

(FJK-16s), and huCD2 (RPA-2.10). Biotinylated antibodies were
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secondarily stained with APC-Cy7-conjugated streptavidin. Plots

shown are on a Logicle scale.

Immunohistochemistry
Small pieces (0.5 cm2) of PBS-perfused livers were immediately

frozen in optimal cutting temperature (OCT) embedding com-

pound (Sakura Finetek) over liquid nitrogen. Frozen livers were

cut into 7 mm sections on a Leica cryostat. Sections were fixed in a

mixture of ice-cold 75% acetone/25% ethanol for 5 min. Sections

were blocked with PBS containing 2% normal mouse serum and

2% normal donkey serum overnight at 4uC. Sections were stained

with rat anti-mouse IgG1 (A85-1, BD) and rat anti-mouse F4/80

(BM8, Biolegend) in blocking buffer for 60 min, washed with PBS.

Images were generated with Leica LAS AF 2.1.1 software, using

the tile scan feature to stitch together 25 images (5x5) taken with a

20x objective 0.7NA at a resolution of 102461024.

ELISA and ELISPOT
SEA-specific serum IgG1 endpoint titers were determined by

ELISA using the IgG1-specific mAb X56 (BD); Immulon 4HBX

plates (Thermo Fisher Scientific) were coated overnight at 4uC with

0.2 mg of SEA/well, blocked with FBS, and incubated with serial

dilutions of sera, followed by a peroxidase coupled anti-mouse IgG1

and ABTS substrate. Total protein was extracted from perfused

livers in Tissue Extraction Reagent I (Invitrogen), per manufacturer

instructions. Liver extract and culture supernatant IL-13 concen-

trations were determined using the IL-13 duo set (R&D) as per

manufacturer’s instructions. IL-10 concentration in culture supe-

natants was measured using capture and detection antibodies from

R&D as per manufacturer instructions. For ELISPOTs, single-cell

suspensions of splenocytes or collagenase digested liver cells from

infected Isotype control or IL-10R blocked mice were cultured in

RPMI 1640 supplemented with FCS for 24 h in MultiScreen-HA

plates (Millipore, Billerica, MA) coated with 2 mg/ml of either anti-

mouse IgG1 (BD Biosciences), anti-mouse IgE, anti-mouse IgM, or

SEA. Bound Abs were detected with non-competing HRP labeled

anti-mouse IgG1, IgM, or IgE (SouthernBiotech). Bound antibody

was detected with the AEC Chromogen Kit (Sigma) per

manufacturer instructions and spots were counted using Immuno-

spot analyzer (v4.1, C.T.L, Cellular Technology Limited).

Macrophage cultures
Macrophages were differentiated from bone marrow in a 6-day

protocol as previously described [47], and stimulated with either

IFNc followed by LPS (to generated classically activated

macrophages), or IL-4 with or without LPS stimulation (to

generate alternatively activated macrophages) as previously

described [47]. Following this stimulation, 5 ml of immune

complexes (generated by mixing 50 mg of SEA with 20 ml of 16

week infected serum at room temperature for 30 min [47]) were

added to the experimental wells for 24 hours, after which culture

supernatants were assayed for IL-10. For liver cell experiments, B

and T cells were depleted from digested liver cell preparations

using Dynabead mouse pan B and pan T depletion kits

(Invitrogen) as per manufacturer’s instruction. The resulting cells

were cultured for 20 hours (90,000 cells per well) with complete

macrophage media [47] with our without immune complexes

(generated as above), after which the culture supernatants were

assayed for IL-10.

CD4 T-cell restimulation
CD4+ T cells were sorted from livers of naive, infected control

or IL-10R blocked animals using a BD Influx. Sorted cells were

.95% pure. Purified CD4+ cells were cultured at a 10:1 ratio with

splenocytes from Balb/c TCRa -/- mice and stimulated with

either SEA, a-CD3 or media alone for 72 hours. The supernatants

were harvested and concentrations of IL-4, -6, -10, -17a, TNFa

and IFNc were measured using the BD Mouse TH1/TH2/TH17

cytokine bead array kit as per manufacturer’s instructions, and IL-

13 was measured as above.

RNA isolation and purification and RT PCR
Macrophages were sorted from 16 week infected Balb/c mice

based on surface expression of Ly6c, CD11c, CD11b, F4/80, and

IgG1 using a BD Influx. Sorted cells were .95% pure. RNA was

isolated from sorted cells resuspended in 0.5mL Trizol (Invitrogen)

using manufacturer’s instructions and Qiagen’s RNeasy Micro

‘‘RNA clean-up’’ protocol with an on-column DNase treatment.

First strand cDNA was synthesized using isolated RNA, Super-

script II reverse transcriptase (Invitrogen), and oligo dT as a

primer. Taqman assays were performed using Applied Biosystems’

7500 real-time PCR system and Taqman Gene Expression Master

mix. Total reaction volume was 20 mirwith 300 nM of each

primer/probe, 10 ml of master mix, and 1 ml of cDNA as template

(or water as a negative control). Primer/probe combinations

spanned introns. Beta-Actin primers/probe were: forward 59-

TTGCTGACAGGATGCAGAAG-39, reverse 59-TGATCCA-

CATCTGCTGGAAG-39, probe 59- TCGGTGGCTCCATCT-

TGGCC-39. IL-10 primers/probe were: forward 59- GAA-

GACCCTCAGGATGCGG-39, reverse 59- ACCTGCTCCA-

CTGCCTTGCT-39, and probe 59- TGAGGCGCTGTCATC-

GATTTCTCCC-39. Relative expression was calculated using the

22DDCt method.

Collagen quantitation
100 mg pieces of liver tissue were excised from perfused livers

and snap frozen in liquid nitrogen. Samples were digested in a

0.1mg/ml acid pepsin solution overnight at 4uC, after which.

collagen was concentrated and measured using the Sircol Collagen

Assay kit (Biocolor UK) as per the manufacturer’s instructions.

Statistics
Data were analyzed with the unpaired Student t test via Prism

5.0 (GraphPad Software). All data shown represent mean 6 SD,

and p values#0.05 were considered statistically significant.

Supporting Information

Figure S1 Blocking IL-10R during chronic infection

results in a reduction in the production of IgE and IgM

within the liver. Chronically infected Balb/c 4get/KN2 mice

were injected bi-weekly with rat anti-mouse IL10R antibody or rat

isotype control antibody from weeks 12 - 16 of infection. Perfused

livers were digested and the purified cells were assayed for total

IgE-secreting cells (A) or total IgM secreting cells (B) by ELISPOT.

Data shown are mean plus/minus SD of three wells of pooled

samples of 3 - 5 mice per group, * indicates P,0.05. Data are

representative of two independent experiments.

(TIF)

Figure S2 A model describing the sources and roles of

IL-10 during chronic schistosomiasis. During chronic

schistosomiasis, IL-10 promotes the development of schistosome

egg antigen-specific IgG1-secreting plasma cells that localize to

diseased liver tissue. Whether these cells develop outside or within

the liver is unclear, but we have detected both IgG+ B cells and

IgG1 secreting plasma cells within hepatic infiltrates. Antibodies
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secreted by plasma cells complex with antigen secreted by

schistosome eggs trapped within the liver, and become associated

with macrophages. Ligation of FccR by immune complexes

promotes macrophages to assume a regulatory/anti-inflammatory

role that is characterized by the production of IL-10 and probably

additional factors (?) that prevent the development of severe portal

hypertension. The source of IL-10 that initiates this process is

probably the population of egg antigen-specific Th2 cells that

develops early following the onset of egg production (not shown),

but it is possible that IL-10 made by macrophages contributes to

the maintenance of plasma cell populations as depicted.

(TIF)
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