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IL-17 DRIVES COPPER UPTAKE AND ACTIVATION OF GROWTH PATHWAYS

IN COLORECTAL CANCER CELLS IN A STEAP4-DEPENDENT MANNER

EVAN MARTIN

ABSTRACT

Colorectal cancer is a disease characterized by abnormal, invasive cell growth 

beginning in the colon or rectum. The third most common type of cancer worldwide, 

approximately one million new cases of the disease are diagnosed across the globe 

annually, resulting in an estimated 700,000+ deaths. One major risk factor associated 

with development of colorectal cancer is the presence of chronic inflammation in the 

large intestine, also known as colitis. Inflammation is a complex immune response 

against harmful stimuli, characterized by symptoms including heat, redness, swelling and 

pain. One important molecular mediator of this process is interleukin 17 (IL-17), a pro- 

inflammatory cytokine. While acute inflammation is a useful defensive response against 

invading pathogens, the presence of chronic inflammation is associated with an increased 

risk of tumorigenesis.

Colorectal cancer is frequently observed to metastasize from the colon to the 

liver, the body’s largest storage site of copper, after which it becomes significantly more 

difficult to treat effectively. Copper is a trace nutrient required by all living systems, due 

to its ability to participate in one-electron exchange reactions, a vital mechanism of 

ubiquitous biological processes. STEAP4, a cell membrane protein, is a copper

reductase.

In this thesis, data are presented that show that colon cancer cells in which 

STEAP4 is overexpressed take up more copper from their environment than colon cancer
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cells in which STEAP4 is expressed normally. Additional data show that IL-17 

stimulation, previously linked to colorectal cancer progression, increases copper uptake 

by colon cancer cells. A mouse model experiment also shows that induction of colitis 

mobilizes copper from the liver into systemic circulation. Further, it is shown that 

overexpression of STEAP4 enhances activation of IL-17-mediated growth pathways that 

have previously been shown to drive cancer progression. Finally, it is shown that colitis- 

associated colorectal cancer mice treated with a copper chelator may develop fewer 

tumor nodules that untreated mice. Taken together, these data suggest that IL-17 

signaling drives tumor progression through a STEAP4-dependent mechanism of copper 

uptake. It is further suggested that lowering body copper levels through chelation therapy 

could be an effective method of stopping colorectal cancer progression.
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CHAPTER I

GENERAL BACKGROUND

1.1 Copper and Biology

Copper is a transition metal characterized by its malleability and ductility, a 

reddish-brown color, and high thermal and electrical conductivity. It has a valence 

electron configuration of [Ar]3dl04s1 and an atomic number of 29 with a standard atomic 

weight of 63.546. Due to its electron configuration consisting of a fully filled d-shell and 

a half-filled s-shell, copper may be found naturally in its elemental form, though it can

also be found in the form of various ores, such as sulfides, oxides, and

carbonates. Copper is also a metal of historical importance to human civilization, as it

was the first metal to be smelted from ore, as well as the first metal to be cast as mold and

to be alloyed with another metal, tin, to form bronze [1].

Copper is also a critical element to the process of life. An essential element that 

is necessary for all living systems, including animals, plants, fungi, as well as bacteria, 

copper plays a role in many different vital functions [2]. The reason for copper’s 

biological importance lies in its ability to exist in two stable oxidation states — 

specifically, l+, also referred to as the cuprous state, and 2+, also referred to as the cupric 

state. This property allows copper to mediate one-electron exchange reactions, which are
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crucial components of nutrient metabolism, as well the “respiratory burst”, a free radical- 

mediated defense mechanism against infection [3]. Additionally, copper is a known 

cofactor required for the proper functioning of dozens of metalloproteins [4]. This

capacity to participate in one-electron exchanges can be “double-edged sword” for 

organisms relying on it however, as copper is both a potent generator and suppressor of 

radical species [3].

1.2 Human Copper Metabolism and Homeostasis

As is the case with all other living things, copper is required for the survival of 

humans as well. After intake, dietary copper, which typically exists in the cupric state, 

must first be reduced to the cuprous state by membrane-bound metalloreductase proteins

found in the cells that line the duodenum, as well as the stomach, to a lesser extent

[5] . These reductases are known as the Six-Transmembrane Epithelial Antigen of 

Prostate, or STEAP family of proteins. Another membrane protein, known as Duodenal 

Cytochrome B, or DCYTB, has also been proven to function as a copper reductase in 

vitro, although it is not currently known with certainty if it performs this function in vivo

[6] . After reduction to the cuprous state, copper is then transported from the intestinal 

lumen into the enterocytes, primarily by Copper Transporter 1 (CTR1), as well as CTR2, 

to a lesser extent [7]. It is important to note that upon copper uptake by a cell, the ion is 

immediately bound by one of several carriers to prevent unwanted reactions with cellular 

components, which may generate free radical species [8]. Some copper is bound in the 

enterocyte by metallothionein (possibly after being delivered by glutathione, another 

copper carrier), where it is then shuttled to several secondary carriers within the cell, and 

eventually to its final destination. One these secondary carriers is known as Copper
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Chaperone Protein, or CCS, which in turn shuttles the copper ion to Cu/Zn Superoxide 

Dismutase (SOD1), a protein necessary for the suppression of reactive oxygen species 

within the cytosol [7]. Another is Cytochrome C Oxidase copper chaperone, also known 

as COX 17, which delivers copper to the mitochondria, where it is incorporated into 

Cytochrome C Oxidase, a critical protein required for cellular respiration [8].

Figure 1.1 — Copper homeostasis in mammalian cells. Environmental copper, almost 
always found in the cupric state, is first reduced by a reductase protein found on the 
membrane of the cell, notably STEAP2, STEAP3, and STEAP4. After reduction, copper 
is transported through the membrane by Copper Transporter 1 (CTR1) into the cytosol, 
where it quickly binds to one of several chaperone proteins. CCS shuttles copper ions to 
the radical-quenching enzyme superoxide dismutase 1 (SOD1). COX 17 delivers the 
copper ion to the mitochondria, where it can be incorporated into Cytochrome C Oxidase, 
which participates in the electron transport chain. ATOX1 shuttles copper to the trans-
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Golgi network, where it can be transported out of the cell to another destination in the 
body. Additionally, copper ions may also bind to metallothionein or glutathione, which 
store the ion while preventing it from oxidizing other components of the cell. Source: 
Denoyer, D., et al. Targeting copper in cancer therapy: 'Copper That Cancer', 
Metallomics. 2015; 7:1459-1476.

Most uptaken copper, however, is shuttled to the trans-Golgi network by 

Antioxidant Protein 1 (ATOX1, also known as HAH1), where it is then taken up into the

Golgi body by a P-type ATPase known as ATP7A [9]. This ATPase is also referred to 

Menkes's Disease protein, or MNK, as it is the transporter that is dysfunctional in 

patients suffering from the eponymous condition. Menke’s Disease is an X-linked 

recessive disorder characterized by systemic copper deficiency due to an inability of 

copper to be mobilized from enterocytes to the liver, and then on to its many destinations 

around the body from there [2]. MNK is also the protein responsible for maintaining 

normal copper levels in cells throughout the body, with the notable exception of the liver 

cells known as hepatocytes. Another copper homeostasis-related condition, known as 

Wilson’s Disease, is characterized by a similar mechanism in hepatocytes, in which the 

corresponding P-type ATPase located on the Golgi bodies of the cells, known as ATP7B, 

or Wilson’s Disease protein (WND), is defective, and therefore unable to excrete excess 

dietary copper from the liver via the biliary pathway. Copper ions, in turn, accumulate in 

the body’s tissues, notably the liver and nervous system, and cause deleterious effects [9].

In healthy individuals, however, after being shuttled by ATOX1 and taken up into 

the trans-Golgi network by MNK, copper is then transported to the hepatic portal vein, 

where it reaches the liver [10]. Upon being taken up by CTR1 into a hepatocyte, copper 

ions follow largely the same pathways that they follow after being taken up by an 

enterocyte, as described above. However, after being shuttled to the trans-Golgi network,
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hepatic copper ions then meet one of two fates - they may be sent to the biliary pathway 

and excreted in the feces if levels of the element are higher than what the body requires; 

or, copper ions may be bound by ceruloplasmin, another copper-carrying protein found 

primarily in the blood, and then transported to the plasma for distribution around the 

body [8]. Interestingly, several basic facts regarding optimal copper intake levels and 

humans are still unclear [11], such as what percentage of copper from the diet is absorbed 

(previously published studies have reported numbers between 12% - 71%), and whether 

excess copper intake can increase the risk of various diseases (current evidence, though 

far from conclusive, does not support the assertion that it does) [11]. This is largely 

because modem humans eat quite varied diets, and it is therefore difficult to perform 

sufficiently controlled experiments. It is additionally complicated by the lack of reliable 

biomarkers of copper exposure at the current time [12].

1.3 The STEAP Family of Proteins

When found in nature, copper typically exists in the 2+ oxidation state, rather than 

the less common 1+ oxidation state, or the elemental state. However, before a copper ion 

can be taken up by a cell from its environment, the copper ion must be in the 1+ 

oxidation state. Thus, mammalian cells utilize a protein family known as the Six 

Transmembrane Epithelial Antigen of Prostate, or STEAP, proteins. Three of these four

proteins, STEAP2, STEAP3, and STEAP4, have been identified as metalloreductases, 

reducing extracellular iron ions from the 3+ (ferric) state to the 2+ (ferrous) state, and
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Figure 1.2 — Human copper metabolism. Copper ions are primarily absorbed into 
enterocytes in the lining of the duodenum of the small intestine. It is then exported to the 
hepatic portal vein, where it binds to one of several serum copper-binding proteins, 
notably ceruloplasmin and albumin. From there, the ions can either be stored in the 
hepatocytes of the liver, or exported to the bloodstream and other locations within the 
body. Excess copper is exported into the bile by the liver, where it is then removed from 
the body in the feces. Individuals with Menke’s Disease present with a defect in the 
ATP7A protein, which leads to chronic copper deficiency. Individuals with Wilson’s 
Disease suffer from a defect in the ATP7B protein, leading to copper overload in the 
liver, which can cause many deleterious effects through Fenton chemistry, a common 
mechanism mediated by copper or iron ions through which radical oxygen species can be 
generated. Source: Van den Berghe, P., Klomp, L. New developments in the regulation of 
intestinal copper absorption. Nutr Rev. 2009; 67(11): 658-672.

copper ions from the 2+ (cupric) state to the 1+ (cuprous) state, using NAD+ as an 

acceptor. Expression of these proteins has been observed at the mRNA level on tissues 

throughout the body, with the most robust expression on the fetal liver, prostate, brain, 

pancreas, bone marrow, and placenta [13].
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Figure 1.3 — A schematic description of STEAP4's protein structure and molecular 
functions. STEAP4 is capable of reducing iron and copper ions, using NAD+ as an 
acceptor. This function requires the ability to bind metal ions. It has also been reported 
that STEAP4 exhibits phosphogluconate dehydrogenase activity, and is thus capable of 
reducing 6-phosphogluconate to ribulose 5-phosphate, using NADP as a redox partner. 
Source: Yoo, S., Cheong, J., & Kim, H. (2014). STAMPing into Mitochondria. Int J Biol 
Sci, 10(3), 321-326.

1.4 Colorectal Cancer

The colon, also known as the bowel or large intestine, is the last part of the 

digestive system in vertebrates, being immediately preceded by the small intestine. The 

colon can be divided into several sections, beginning with most proximal and ending with 

the most distal: cecum, appendix, ascending colon, transverse colon, descending colon, 

sigmoid colon, rectum, and anal canal [14]. The large intestine serves to absorb water 

and some nutrients from ingested food, and to move the indigestible matter along its tract 

and store it until the material can be excreted as feces through the anus during
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defecation. The colon is also home to a large community of bacteria, known as gut flora, 

which subsist off of nutrients consumed by the host, and in turn aid in the process of 

digestion [15].

Colorectal cancer is defined as a tumor, characterized by uncontrolled, abnormal 

cell growth that may invade other tissues in the body, that begins in this part of the lower 

digestive tract. The disease arises from colorectal polyps - small growths that form in the 

lining of the colon and are typically benign when they are first formed. It is the third 

most commonly diagnosed form of cancer worldwide [16], and the second leading cause 

of cancer-related deaths in the United States [17]. The average risk of an individual 

developing colorectal cancer in his or her lifetime is approximately five percent, however 

this risk varies considerably between individuals based on several factors, including diet 

and physical activity levels, tobacco usage, family history of the disease, heavy alcohol

use, and chronic intestinal inflammation (which will be discussed in more detail in a later

section) [18]. Globally, colorectal cancer accounts for approximately one in ten cancer 

diagnoses [16], though it is significantly more common in Western countries, where it 

accounts for around sixty-three percent of cancer diagnoses [19]. Both sexes are 

approximately equally likely to be diagnosed with colorectal cancer, though men are 

slightly more likely to be diagnosed with rectal cancer specifically [20]. Approximately 

seventy-two percent of colorectal cancers originate in the colon, while the remaining 

twenty-eight percent originate in the rectum [17]. The median age of diagnosis of colon 

cancer is 68 for men and 72 for women, while for rectal cancer it is 63 years of age in

both men and women [17]. It is estimated that over 1.3 million Americans are currently 

living with colorectal cancer [21]. Recently, it has been demonstrated that rates of
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colorectal cancer in young adults have been increasing between 1.0 - 2.4% annually in 

adults between 20 and 39 years of age since the mid-1980s, and by 0.5 - 1.3% in adults 

between 40 and 54 years of age since the mid-1990s [22].

The likelihood of survival and recovery from colorectal cancer is heavily 

dependent upon the stage at which it is identified and diagnosed. Individuals diagnosed 

with the condition in stages 1, 2 and 3 all have five-year survival rates above eighty-five 

percent - by contrast, patients diagnosed at stage four, after distant metastases have been 

established, the five-year survival rate is eleven percent [23]. Because of this, survival 

rates from colorectal cancer have increased considerably in recent decades, rising from 

around fifty percent to six-four percent from 1995 to 2000 alone [19]. This is largely due

to increased public awareness about the importance of regular screenings, which often 

catch colorectal polyps before they become malignant at all [20]. Currently, around forty 

percent of colorectal cancer cases are diagnosed in the local stages, compared to thirty-six 

percent in the regional stage and twenty percent in the metastatic stage [17]. While 

incidence of the disease has declined dramatically in the developed world over previous 

decades however, significant disparities in outcomes remain for economically and 

racially disadvantaged groups [24].

As mentioned earlier, many different factors influence an individual’s risk of

developing colorectal cancer. Some of these risk factors cannot be controlled, such as 

age and genetic considerations. However, many colorectal cancer risk factors are 

modifiable. One crucial variable that plays a role in this is diet. Diets rich in animal 

products such as meat and fat have been implicated in the risk of developing these
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Figure 1.4 — Stages of colorectal cancer. In Stage 0 CRC, the tumor has not grown 
beyond the mucosal layer of the colon. In Stage 1 CRC, the tumor has grown through 
mucosal layer of the colon into the submucosa. In Stage 2 CRC, the tumor has grown 
into the muscular layer of the colon, but has not yet reached the surrounding lymph 
nodes. In Stage 3 CRC, tumor cells have spread to the lymph nodes surrounding the 
colon. Finally, in Stage 4 CRC, the primary tumor has metastasized and spread to other 
organs. Source: https://www.webmd.com/colorectal-cancer/ss/slideshow-colorectal- 
cancer-overview. For the National Cancer Institute © 2005 Terese Winslow LLC, U.S. 
Govt has certain rights.

diseases [18]. Possible reasons for the link between animal product consumption and 

colorectal cancer include the high iron content of red meat, a crucial nutrient for the 

development and progression of cancers, as well as dietary fat creating an environment in 

which gut flora capable of converting bile salts to carcinogenic Λz-nitroso compounds can 

thrive [19]. Consumption of fruits and vegetables are believed to mitigate the risk of 

colorectal cancer due to their high fiber content [25]. Another modifiable risk factor in 

the development of the condition is tobacco usage - it is estimated that around one in

10
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eight cases of colorectal cancer deaths can be directly attributed to cigarette smoking 

[26]. Cigarette smoking is known to increase the rates of formation and growth of 

adenomatous polyps, which often develop into cancerous lesions [27]. Consumption of 

large amounts of alcohol can also increase the risk of colorectal cancer development, 

perhaps synergistically with tobacco smoking [28]. This has been suggested to be due to 

the carcinogenic metabolites of alcohol, alteration of systemic hormone levels, changes in 

folate metabolism, as well as alcohol-mediated oxidation of lipids and generation of 

reactive oxygen species. There is also some evidence to suggest that alcohol can act as 

solvent that increases the penetration of tobacco-derived carcinogens into colon mucosal

cells [19].

Another risk factor associated with incidence of colorectal cancer is obesity and 

lack of physical activity. Indeed, many studies have demonstrated not only correlations 

between excess body fat as well as a sedentary lifestyle with risk of developing colorectal 

cancer, but also an inverse correlation between intensity and frequency of exercise 

sessions and the individual’s risk of developing the disease [19]. The proposed reasons 

for this relationship are numerous, and include increased gut motility, enhancement of 

immune system function, decreasing levels of insulin and insulin-like growth factor, 

decreasing body fat content, enhancing free radical scavenger systems, and influencing 

prostaglandin levels [29].

1.5 Liver Metastasis of Colorectal Cancer

One of the reasons colorectal cancer is such a pernicious disease is its tendency to

form distant metastases, often in the liver [30]. When nutrients from food are absorbed

from the lumen of the intestines into the bloodstream, the nutrient-rich blood is
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immediately transported from the gastrointestinal tract to the liver via a large vein known 

as the hepatic portal vein. This allows the nutrients, as well as any xenobiotics that were 

ingested, to be at least partially metabolized before entering systemic circulation. It also, 

however, provides a direct transportation route for malignant cells from the intestines to 

travel to the liver as well. Additionally, the liver is the body’s primary site of copper 

storage, which could potentially contribute to the high frequency of successful metastases 

from the intestines that establish in that organ. Epidemiological evidence suggests that 

approximately fifteen percent of colorectal cancer patients experience a synchronous liver 

metastasis at some point during their lives [31]. Additionally, around twenty percent of 

individuals diagnosed with colorectal cancer receive their diagnosis after the primary 

tumor has metastasized [32]. Among this group, the five-year survival rate is a bleak 

eleven percent, compared to a rate of above eighty-five percent for individuals diagnosed

before a distant metastasis occurs.

In recent decades, a significant body of evidence has emerged that implicates pro- 

inflammatory signaling pathways in colorectal tumor metastasis, as well as in 

tumorigenesis and progression [32]. Indeed, different types of immune cells, which can 

mediate different immune signaling pathways, are alternatively associated with both 

tumor-suppressing and tumor-promoting microenvironmental conditions. For example, 

several different types of cancers, when highly infiltrated by tumor associated 

macrophages (or TAMs), are generally characterized by poor prognosis; however, in 

colorectal cancer, tumors that present with elevated levels of T cells are associated with 

decreased mortality rates [33]. The most important factor that defines whether a 

particular immune cell type is associated with a tumor-suppressing or tumor-promoting
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microenvironment is the cytokines that particular cell type is known to secrete and be 

activated by. One particular signaling pathway activated by IL-17 that has been 

demonstrated to play an important role in cancer progression is known as nuclear factor 

kappa-light-chain-enhancer of activated B cells, or the NF-κB pathway [34]. A protein 

complex known to regulate DNA transcription and the production of cytokines, NF-κB 

can be activated by a wide array of different ligands, including endogenous cytokines as 

well as exogenous molecular patterns associated with invading pathogens. NF-κB 

signaling controls the expression of several genes relating to cell survival and 

proliferation, and is known to be a response to various harmful stimuli such as free 

radicals, cytokines, bacteria, viruses and others [35]. Published literature has specifically 

implicated the robust activation of NF-κB signaling in liver metastases of colorectal

cancer as well [36].

1.6 MAPK/ERK Signaling and Cancer

Being a disease characterized by abnormal, uncontrolled cell proliferation, many 

different growth pathways play an important role in cancer progression. One of these key 

signaling pathways is the MAPK/ERK pathway, named for the mammalian family of

Mitogen-Activated Protein Kinases. Three MAPK families have been well-characterized 

in mammalian cells, known as the classical MAPK pathway (also known as the ERK 

pathway), C-Jun N-terminal kinase/stress-activated protein kinase (also known as 

JNK/SAPK), and p38 kinase. In these cascades, an extracellular signal (hence the ERK 

designation - Extracellular-signal Regulated Kinases) binds to a tyrosine kinase receptor 

on the surface of the cell, which, in turn, provokes the activation of M APKs through a 

multistep process, made up of no fewer than three enzymes that are activated
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sequentially. These pathways amplify signals from a wide range of stimuli, and are 

capable of causing cell growth, proliferation, differentiation, inflammatory responses, and 

apoptosis [37].

Figure 1.5 — MAPK/ERK signaling in the pathogenesis of cancer. One of numerous 
extracellular signaling molecules first binds to its receptor. A number of downstream 
proteins are phosphorylated in a sequential process, eventually leading to the activation 
of ERK1∕2, JNK1∕2, or MAPK14, which then enters the nucleus of the cell and activates 
transcription factors or modifies DNA-supporting proteins, thus leading to alteration of 
gene expression. Source: Fang, J., & Richardson, B. (2005). The MAPK signalling 
pathways and colorectal cancer. Lancel Oncol, 6(5), 322-327.
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Being involved in stimulating cell growth and proliferation, it should come as no 

surprise that dysregulation of the MAPK/ERK pathway has been implicated in many 

different types of cancer [37]. Indeed, ERK signaling has been shown to play a 

significant role in several events related to tumor development. These include promotion 

of cancer cell migration, induced expression of matrix metalloproteins that promote the 

degradation of the extracellular matrix, and hence tumor invasion, and regulation of 

several proteins involved in apoptosis, which, in turn, promote cancer cell survival [38]. 

Consequently, the ERK receptor is considered to a robust target for anti-cancer 

therapeutic development. Additionally, it has previously been noted that mutations in the 

Epidermal Growth Factor Receptor (EGFR), which activates the ERK pathway, have 

frequently been observed in colorectal cancers [39].

1.7 Copper Chelation as Anti-Cancer Therapy

As it has now been well-established that copper is crucial for cancer progression, 

copper depletion strategies have since become a promising approach for new cancer 

therapies. Chelation is defined as when multiple coordinate bonds form between a 

polydentate ligand and a central atom, which are almost universally metals [40]. Upon 

chelation, the central reactivity of the central atom is reduced, as it is both coordinated 

with a ligand and physically separated from the competing ligands that may be capable of 

coordinating with the central atom. Before its research application to cancer, copper 

chelation therapy had previously been used to treat Wilson’s Disease patients, who 

experience systemic copper overload, particularly in the liver and brain. Therefore, 

several chelators that were known to be well-tolerated were already in usage, such as
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ammonium tetrathiomolybdate, as well as several others [41]. As mentioned previously, 

copper is a critical element required for the process of angiogenesis - the generation of 

new blood vessels required for tumor growth and metastasis. Additionally, an emerging 

body of evidence suggests that copper can directly promote cancer metastasis as 

well. Thus, a number of studies [42] have reported that copper depletion through 

chelation therapy is a promising strategy for treating various forms of cancer, and it is 

highly likely that research into this direction will continue into the future.

1.8 Inflammation and Cancer

One of the most significant risk factors for developing colorectal cancer, and 

many other types of cancers as well, is the presence of chronic inflammation 

[32]. Inflammation is an innate immune response against a pathogen, abnormal cell, 

injury or chemical irritant characterized by red appearance of the inflamed area, pain, 

swelling, and loss of function [43]. The components of inflammation include 

vasodilation, increased permeability of blood vessels, invasion of white blood cells into 

the affected tissue, as well as a number of complex signaling cascades. The acute 

inflammatory response is initiated by immune cells present within the affected area such 

as macrophages and dendritic cells, among others. Upon encountering the harmful 

stimulus, these cells, which contain pattern recognition receptors, or PRRs, on their 

surfaces, bind to the stimulus and are activated, and then begin releasing various pro- 

inflammatory mediators. These mediators are in turn responsible for the clinical signs 

and symptoms of inflammation and can be broken down into many different categories 

such as cytokines, chemokines, enzymes, interferons, and others. The large variety of
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these mediators allows inflammation to fight effectively against a wide range of 

pathogens [44].

Figure 1.6 - Immune system signaling and inflammation play a critical role in the risk of 
tumorigenesis and cancer progression. Upon recognition of a pathogen by the host’s 
immune system via presentation by an APC, a variety of cytokines, both pro- 
inflammatory and anti-inflammatory, are released by myeloid cells. These cytokines bind 
directly to tumor cells and affect their behaviors relating to cell growth, proliferation, and 
invasion, and also regulate the activities of other immune cells, such as regulatory T cells, 
TH-1 cells, TH-17 cells, and Natural Killer cells. Critical cytokines that affect tumor cell 
behavior include IFNγ, IL-6, IL-10, IL-17, IL-12, IL-23, TNFα, and TGFβ. Source:
Karin, M., Lin, W. (2007). A cytokine-mediated link between innate immunity, 
inflammation, and cancer. J Clin Invest, 117(5), 1175-1183.

While the acute inflammatory response has a beneficial defensive effect against

the initiator of the response, chronic inflammation can lead to many negative

consequences in the affected individual. Chronic inflammation can be distinguished from

its acute counterpart not only by the length of the response, but also by the actions of the
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cells and molecules involved. For example, T lymphocyte infiltration into the affected 

tissue is observed in cases of chronic inflammation, but not in the acute response 

[43]. The entire pathology of inflammation is remarkably complex, and an exhaustive 

description is beyond the scope of this thesis. However, one well known consequence of

chronic inflammation is an increased risk of cancer in the affected tissue. Indeed, over

twenty percent of individuals diagnosed with inflammatory bowel disease will be 

diagnosed with colorectal cancer within thirty years of IBD onset, and more than half of 

these patients will eventually die from the cancer. Additionally, many colorectal tumors 

display increased activity of various pro-inflammatory biochemical pathways, providing 

further evidence of the underlying connection between the two conditions [32].

The exact reasons for why chronic colitis increases an individual’s risk of 

development of colorectal cancer are not fully understood. However, various 

characteristics of inflammation have been implicated in all stages of cancer advancement, 

including tumorigenesis, tumor progression and metastasis. One important molecule that 

is known to impact inflammation and its effects on cancer is interleukin 17, also known 

as IL-17. IL-17 is a pro-inflammatory cytokine produced by helper T cells, known as 

Thl 7 cells, as well as immune sentinel cells, that is known play a critical role in 

regulating the innate immune response [45]. Specifically, IL-17 is known to induce IL-6,

IL-8, and several other pro-inflammatory mediators. IL-17 is also known to be a potent 

direct activator of neutrophils, as well as several genes that serve anti-microbial 

functions. However, this activity also makes IL-17 crucially important in the pathology 

of autoimmune disorders, such as psoriasis, rheumatoid arthritis and systemic lupus 

erythematosus. This pro-inflammatory activity has also implicated IL-17 in contributing
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to an environment in which tumors can thrive [46]. Interestingly however, and in an 

illustration of the “double-edged sword” that is the inflammatory response, where it can 

defend a host against foreign threats but can also cause self-damage, some papers have 

also reported that IL-17 can protect against cancer growth and metastasis by enhancing 

the anti-tumor activity of the immune system [47].

1.9 The Interleukin-17 Signaling Pathway

The existence of IL-17, originally named CTLA8, was first reported in 1993 when

its messenger RNA (mRNA) transcript was isolated from a rodent T cell hybridoma [48]. 

It was subsequently discovered that the IL-17 family of cytokines consists of several 

different molecules, termed IL-17A (often referred to simply as IL-17), IL-17B, IL-17C, 

IL-17D, IL-17E (also known as IL-25), and IL-17F. These cytokines are all considered

to be members of the same family because they all exist as homodimers and share five 

highly conserved cysteine residues is their C-terminal region that are crucial for the three- 

dimensional structure of the proteins [49], and their genetic coding information is located 

in humans on chromosome 6. The IL-17 family of cytokines bind to receptors known,

quite logically, as the IL-17 receptor (IL-17R), which consist of several variants. These 

variants are all oligomers, most commonly dimers, which are all comprised of different

combinations of three monomeric subunits, known as IL-17RA, IL-17RB, and IL-17RC

[50]. IL-17A, which shall henceforth be referred to simply as IL-17, consists of 155

amino acid residues and has a molecular weight of 35 kDa [51]. Helper T cells (also 

known as CD4+ T cells) that produce IL-17 are known as TH-17 cells. Naive T cells can 

be differentiated into a TH-17 lineage upon stimulation with several different ligands, 

including transforming growth factor beta (TGF- β), IF-6, and IF-23 [52]. Fike other
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CD4+ cells, ΤΗ-17 cells are activated after an antigen presenting cell (APC), such as a 

macrophage, ingests an invading pathogen and presents a fragment of a peptide from that 

antigen on a specialized surface protein, known as a class 2 major histocompatibility 

complex (MHC). The antigenic peptide fragment bound to the class 2 MHC on the 

surface of the APC then binds to the CD4 protein on the surface of the helper T cell, thus 

activating the T cell and causing it to begin releasing its signature cytokine [53]. In the 

case of TH-17 cells, this signature cytokine is, unsurprisingly, IL-17, though TH-17 cells

also produce and secrete IL-22 [54].also produce and secrete IL-22 [54].

Figure 1.7 - IL-17 increases expression of many genes through activation of various 
downstream signaling pathways. IL-17A, commonly referred to as IL-17 without 
qualification, exists as a heterodimer. IL-17 binds to the IL-17 receptor complex, referred 
to as IL-17R, forms a homodimer consisting of one IL-17RA subunit and one IL-17RC 
subunit upon ligand binding. Both subunits of IL-17R possess a SEFIR domain, which 
recruits Act l upon activation of the receptor complex. Act l can then bind to TRAF6, and 
also acts as an E3 ligase that ubiquitinates TRAF6. TRAF6, in turn, acts as an E3 ligase 
and ubiquitinates TAK1, which can then directly activate the NF-κB pathway. The Act l- 
TRAF6-TAK1 pathway can also activate the MAPK/ERK and C/EBP signaling 
pathways. IL-17R can also activate the PI3K/JAK pathway through a yet unknown 
mechanism. Additionally, TRAF3 can act as a negative regulator of IL-17R activity. 
Additionally, activated IL-17R can also form an Act l-IKKi-TRAF2-TRAF5-SF2(ASF)
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complex that promotes mRNA stability and increases expressions of genes induced by 
IL-17. Source: Source: Zhu, S., Qian, Y. (2012). IL-17/IL-17 receptor system in 
autoimmune disease: mechanisms and therapeutic potential. Clin Sci, 122(11), 487-511.

IL-17 signaling plays many important roles in immune system function,

particularly those related to host defense against bacteria and fungi. IL-17R is found 

abundantly on various types of cells in mucosal barriers, such as epithelial cells and 

fibroblasts [55]. These mucosal barriers line areas of the body that are exposed to the 

outside world, such as the skin, gastrointestinal tract, nasal cavity, urinary tract, and 

reproductive tract, as well as others. Upon stimulation of IL-17R by a ligand, the target 

cell begins producing antimicrobial peptides, such as β-defensins, S100 proteins, and 

regenerating islet-derived protein 3g (ReG3g), which function as endogenous antibiotics 

through mechanisms such as disrupting prokaryotic membranes and interfering with the 

function of critical bacterial cellular processes [56]. The other main function of IL-17 

signaling involves sustaining a pro-inflammatory response. IL-17 stimulation of cell has 

been reported to increase expression of other pro-inflammatory cytokines, such as IL-lβ, 

IL-6, GM-CSF, G-CSF and TNFα from many types of cells, including fibroblasts, 

macrophages, chondrocytes and osteocytes [57]. IL-17 additionally stimulates increased 

expression of many chemokines which recruit leukocytes to the stimulated tissue. These 

include CCL2, CCL7, CXCL1, CXCL2, CXCL5 and CXCL8, which recruit neutrophils

and monocytes from the bloodstream, CCL20, which recruits additional IL-17-producing 

immune cells, and CXCL9 and CXCL10, which further recruit leukocytes to the affected 

tissue. An additional way that IL-17 promotes recruitment of immune cells to the target 

tissue is through promotion of vasodilation and activation of tissue remodeling genes. 

Cells stimulated with IL-17 may undergo structural changes in their extracellular
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matrices through modification of the expression of several different matrix 

metalloproteinases. Through these various mechanisms, IL-17 sustains a pro- 

inflammatory environment [57].

Figure 1.8 — IL-17 and the pathogenesis of cancer. Upon stimulation by a pathogen, one 
of many different immune cells, including Paneth cells found in the epithelium of the 
small intestine, begins secreting IL-17. This has a number of tumor-promoting effects, 
including stimulating the release of other cytokines from target cells, inhibition of 
cytotoxic T cells, and promotion of tumor-initiating cells and tumor vessels. Source: Wu, 
D. (2013). Interleukin-17: A promoter in colorectal cancer progression. Clin Dev 
Immunol.

However, this type of positive feedback response has a significant drawback - 

namely, that sustained activation of IL-17 signaling has been implicated in many

different autoimmune disorders. Autoimmune diseases are a broad class of disorders

characterized by an immune response by a host against the body’s own cells and tissues.
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Common autoimmune disorders include Systemic Lupus Erythematosus (SLE), 

Rheumatoid Arthritis (RA), Type 1 Diabetes Mellitus, Multiple Sclerosis (MS), and, 

most relevant to this thesis, Inflammatory Bowel Disease (IBD). While the pathogeneses 

of these diseases are not fully understood, it is believed that IBD is caused by an 

abnormal immune response against the gastrointestinal microbiota. Previous reports have 

shown that IL-17 expression is increased in the mucosa of the large intestine as well as 

the serum of IBD patients compared to normal patients [58]. Further studies have 

confirmed through animal models that IL-17 signaling plays a crucial role in the

pathogenesis of IBD [59]. However, given the current body of evidence relating IL-17 

and IBD, it is still unclear whether the cytokine has disease-promoting effects or 

protective effects against the disease, or both, as it has been shown that both animal 

models of IBD in which IL-17 production was decreased or knocked out entirely, and 

human patients treated with anti-IL-17 drugs, displayed exacerbated symptoms, rather

than relief from them [60].

1.10 Animal Modelling of Colon Inflammation and Cancer

Many animal models of colitis and colorectal cancer have been developed by 

researchers seeking to study these diseases. These models can be characterized according 

to several variables, such as the method by which the disease is introduced to the animal, 

and whether a cancer model is likely to metastasize. One category encompasses models 

in which the animals are genetically modified to spontaneously develop tumors. For 

example, mouse models of colorectal cancer can be created by generating specific 

mutations, such as those that affect the WNT signaling pathway, or DNA mismatch
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repair proteins. Various other genes that may be modified include p53, KRAS, SMAD3, 

and others that are frequently mutated in clinical cases of colorectal cancer [61].

Figure 1.9 - Molecular structures of dextran sodium sulfate (DSS) and azoxymethane 
(AOM). AOM reliably induces colon carcinoma after intraperitoneal (IP) injection. It is 
therefore often used for this purpose in animal model experiments. It is believed that the 
mechanism of AOM-induced carcinoma involves inducing DNA base pair mismatches or 
disrupting normal mismatch repair mechanisms. Similarly, DSS reliably induces colon 
inflammation when delivered as an aqueous drinking water solution, and is often used in 
animal model experiments for this purpose. It is believed that DSS achieves this by acting 
as detergent that disrupts the normal mucosal lining of the colon, allowing gut flora to 
penetrate into the submucosal and muscular layers of the colon, thus generating an 
immune response. Source (DSS): Tanaka, T. (2011). Development of an Inflammation- 
Associated Colorectal Cancer Model and Its Application for Research on Carcinogenesis 
and Chemoprevention. Int J Inflam, 2012. Source (AOM): Wikimedia Commons.
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Another broad category of colorectal cancer animal models are those that are 

chemically induced. The most commonly used colon inflammation model is the dextran 

sodium sulfate, or DSS model, in which the animal’s drinking water is replaced with a 

dextran sulfate sodium solution, for either one or multiple cycles, punctuated by 

“recovery” cycles of unaltered drinking water. While the exact mechanism by which 

DSS administration induces colitis is not fully understood, it is believed that the chemical 

degrades the mucosal barτier of the large intestine by acting as a detergent, leading to 

infiltration of gut bacteria into the lining of the colon, which provoke an immune

response [62]. Other colon inflammation models used include rectal administration of 

2,4,6-trinitrobenzenesulfonic acid, or oxazolone dissolved in ethanol (which is required 

to penetrate the mucosal barrier.) While some animals that experience intestinal 

inflammation do spontaneously develop tumors at an increased rate, these models are 

typically combined with a one-time administration of azoxymethane (AOM), which 

reliably induces colorectal adenocarcinomas, most likely by causing the mismatching of 

nucleotide base pairs during DNA replication [63].

1.11 Engineering Recombinant Cell Lines and Proteins

For well over a century now, cells grown in vitro, or outside of the organism from 

the cells were derived, have been an invaluable tool for biological research. While whole 

organs isolated from animals were maintained in media containing ions and molecules 

necessary for life in the 19th century, research in cell culture took major steps forward in 

the mid-20th century, which allowed cell monolayers to be grown, for which the 1954 

Nobel Prize in Medicine was awarded [64]. In modem times, a large assortment of
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different cell growth media exists, capable of sustaining virtually any type of cell 

imaginable.

For certain experiments, in which a researcher is interested in investigating the 

function of a particular protein, the gene corresponding to that protein may be 

overexpressed, knocked out, or knocked down in a cell line. Due to the nature of the 

experiments detailed in this thesis, overexpressed cell lines shall be described. The 

introduction of purified, or “naked” DNA into a eukaryotic cell is known as a 

transfection. This is in contrast with performing the same action on a prokaryotic cell, 

which is typically called a translation. Expression of a gene may be induced either 

stably, where the foreign nucleic acid is integrated into the nuclear DNA of the 

transfected cell, or transiently, in which the transfected DNA remains in the cytosol.

After purification of the DNA, there are several methods which may be used to transport 

the DNA across the cellular membrane. These methods may be classified as biological, 

chemical, or physical in nature, and include techniques such as using a viral vector, use of 

calcium phosphate, a cationic lipid or polymer vector, electroporation, sonoporation, laser 

irradiation, or use of magnetic nanoparticles [65]. Biological methods, such as 

introduction of DNA using a viral vector, are efficient and commonly used for 

experiments in which stable gene expression is desired, as they take advantage of the 

natural ability of viruses to integrate their genetic material into the genome of a host.

They carry the significant downside, however, of potentially evoking an immune 

response from the host cell. Chemical methods take advantage of positively charged 

vectors, such as cationic lipids or cationic polymers, which are attracted to the negatively 

charged lipid bilayer of the cell. While the exact mechanism by which the nucleic acids
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pass through the cell membrane is not fully understood, it is believed to be endocytotic or 

phagocytotic in nature. While these chemical methods do not carry the risk of generating 

an immune response, they are considerably less efficient than viral vectors and may 

damage the cells. Finally, physical methods, such as sonoporation, laser-based 

transfection, and electroporation, utilize these tools to generate holes in the cell 

membranes which allow the nucleic acids to travel through. Similarly to chemical 

methods, physical methods do not evoke an immune response in the host cells, but are 

less efficient than biological methods and may damage the cell.

After the purified DNA is transported into the host cell, if it is transiently 

expressed, target gene expression will decrease exponentially in each subsequent 

generation due to dilution of the genetic material in daughter cells following mitosis, and 

is typically only observable for several days [66]. Thus, for most experiments in which 

overexpression of a gene is to be investigated, a stable transfection is required. In 

addition to the gene of interest, a “marker” gene must be co-transfected into the cell as 

well, typically one that confers resistance to an extracellular toxin. This allows the 

researcher to specifically select for clones of cells that have integrated the foreign DNA, 

consisting of the both gene of interest and the marker gene, into their genome, as only

clones of cells which have done so will survive in culture after addition into the medium

of the toxin to which the stably transfected cells are now resistant due to expression of the 

marker gene. Additionally, a target gene may be modified, or “tagged”, by addition of a 

nucleotide sequence to the complementary DNA (cDNA) of the gene that is to be 

expressed, which causes the gene to manufacture that specific amino acid sequence in 

addition to its normal amino acid sequence during protein construction. Tags allow for
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use of antibodies that bind to that specific amino acid sequence within the recombinant 

gene, which allows a researcher to purify the desired protein by an affinity technique, as 

well as to quantify expression level of the protein it by Western blotting. Commonly 

used protein tags include the polyhistidine tag, the FLAG tag, the glutathione s- 

transferase tag, as well as others [67].

Further, to eliminate the complicating variables of how modifying the genome of 

a cell line may affect its normal behavior compared to the unmodified cells, “inducible” 

cell lines are often generated. One common mechanism by which this is accomplished is 

through the tetracycline-controlled transcriptional activation method, which allows a 

researcher to either provoke (termed “Tet on”) or block (termed “Tet off") expression of 

the gene of interest in the cells via addition of the antibiotic tetracycline, or a derivative 

antibiotic, such as doxycycline, to the growth medium [68]. These tetracycline-inducible 

systems make use of a recombinant protein generated from the tetracycline repressor 

protein, originally discovered in E. coli, which prevents expression of tetracycline 

resistance-related genes when bound to its operator, fused with a fragment of another 

protein known as a transactivation domain, which provides scaffolding that allows RNA 

polymerase to bind to the promoter region of the DNA, and thus initiate transcription of 

the genes controlled by the promoter. In the case of a Tet on system, the tetracycline-

binding domain of this recombinant protein binds to a tetracycline molecule, thus 

changing the conformation of the protein in such a way that allows it to bind to its 

operator [68]. After the recombinant protein has bound to its operator segment of DNA, 

the transactivation domain of the recombinant protein then enables RNA polymerase to 

bind to the promoter region of the DNA, which in turn leads to expression of the gene or

28



genes controlled by that promoter. The operator, promoter, and genes controlled by those 

segments of DNA are collectively referred to as an operon. Similarly, in the case of the 

Tet off system, the tetracycline-binding region of the fused protein is mutated such that 

tetracycline binding changes its conformation in a way that causes it to detach from its 

operator, thus preventing the binding of RNA polymerase to the promoter, mediated by 

the transactivation domain of the recombinant protein, and subsequent expression of the 

genes within the operon [68]. These types of systems have been in use for many years, 

and it has been demonstrated that these systems can be used to generate stably 

transfected, inducible human cell lines [69]. However, the use of tetracycline-inducible 

cell systems does carry the risk of altering cell metabolic processes and proliferation 

through exposure to doxycycline [67].

1.12 Determination of Metal Content in Solution by AAS

An effective method of determining the concentration of metals in a solution is 

atomic absorption spectroscopy, also known as AAS. In use since the 1950s, AAS 

instruments follow the general procedure of forcing the sample into the gas phase and 

atomizing it with some form of heat energy, then passing light of a wavelength specific to 

the element being determined through the atomized sample, and then measuring how 

much of the light is absorbed by the sample, which corresponds directly to the 

concentration of that element in the solution [70]. Two common methods of sample 

heating and atomization are by aspirating the sample into a flame, known as flame atomic 

absorption spectroscopy (FAAS), and alternatively by heating the sample in a small 

furnace made of graphite, which is known as graphite furnace atomic absorption

spectroscopy (GFAAS).
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CHAPTER II

EXPERIMENTAL AIMS AND PROTOCOLS

2.1 Project Rationale and Overall Hypothesis

In 2015, unpublished data from the Li Lab, seeking to identify genes whose 

expression in keratinocytes was upregulated after three hours of stimulation with IL-17, 

was generated from a quantitative proteomic analysis. This analysis revealed a that a of 

significant number upregulated genes were copper-related — most notably, STEAP4. 

From this data, it was hypothesized that the mechanism by which IL-17 signaling sustains 

a pro-inflammatory, tumor-promoting response may be dependent upon copper 

metabolism, and STEAP4 activity specifically. Prior to the generation of this data, no 

copper or STEAP4-dependent mechanism had ever been described in the published

literature.
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Symbol log2 Ratio (IL-17-3h∕Untr-3h) Regulated Up or Down? P-value FDR

Lox 0.19363 up 0 0

Loxl2 0.191213 up 8.37E-102 1.45E-99

Loxl1 0.035404 up 0.000238 0.001449

Loxl3 0.005426 Up 0.598932 0.68446

Loxl4 0.158363 Up 9.21E-56 1.54E-54

Steap4 4.008474 Up 8.99E-68 1.07E-65

Cp 2.162976 up 9.31E-183 2.99E-180

Table 2.1 - Many copper-related genes are upregulated in epithelial cells stimulated with 
IL-17. STEAP4 functions as a copper reductase and ceruloplasmin (Cp) is the primary 
carrier of extracellular copper in the body. Lysyl oxidase (LOX) proteins are a class of 
copper-dependent enzymes that catalyze formation of crosslinks within various types of 
connective tissues. Source: Li Lab, Department of Immunology, Lerner Research 
Institute, Cleveland Clinic Foundation.

Thus, the Li Lab sought to investigate a potential copper-dependent mechanism,

mediated by STEAP4, that promoted the pro-inflammatory activity of IL-17. Thus, the

aims of the experiments presented in this thesis can be described thusly:

Aim 1: Determine whether STEAP4 overexpression and IL-17-signaling promotes 
copper uptake by colon epithelial cells, and whether induction of inflammation mobilizes 
copper from latent storage into systemic circulation.

Aim 2: Identify a biochemical mechanism by which IL-17-mediated copper uptake 
promotes growth in colon epithelial cells.

Aim 3: Determine whether systemic chelation of copper mitigates tumorigenesis in a 
mouse model of inflammation-associated colorectal cancer.

It was determined that Aim 1 would be investigated through several cell-based

experiments. The first experiments would investigate whether STEAP4 overexpression

of a colon cancer cell line increased uptake of extracellular copper by the cells compared

to cells in which STEAP4 was expressed normally. An additional experiment would seek

to determine whether IL-17 stimulation of colon cancer epithelial cells took up more

extracellular copper than colon cancer cells which were not stimulated with IL-17.
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Finally, a third experiment utilizing a mouse model of colon inflammation would be

performed in which animals would be sacrificed throughout the course of the experiment, 

and the concentration of copper in the liver and the serum would be measured through an 

atomic absorption method. Aim 2 would be investigated by conducting another cell- 

based experiment in which activation of growth-promoting signaling pathways would be 

quantified by Western blot, and this activation would be compared between cells in 

which STEAP4 was overexpressed and STEAP4 was expressed normally. Finally, Aim 3

would be investigated by utilizing a mouse model of inflammation-associated colorectal 

cancer, and comparing the number of colon tumors that developed in animals whose body 

copper levels were left unaltered to animals whose body copper levels were depleted 

through the administration of a copper chelator by oral gavage.

2.2 Cell Culture

The human colon carcinoma cell line known as LS147T, obtained from the

American Type Culture Collection, was used for all cell-based experiments. Cells were 

grown in high glucose Dulbecco’s Modified Eagle Medium, which was supplemented 

with 10% fetal bovine serum and 2% penicillin-streptomycin. Cell culture dishes were 

kept in incubators maintained at 37 oC, containing 95% air and 5% CCF. Prior to 

harvesting, all cell handling techniques were performed in class 1 biological safety hoods.

2.3 Engineering FLAG-Tagged STEAP4-Inducible LS147T Cells

The STEAP4-inducible cell line was generated by cloning a C-terminal FLAG-

tagged STEAP4 cDNA sequence into the pLIX 403 vector. 3 μg of the expression 

vector was then transfected into HEK-293FT cells using the Lipfectamine2000 reagent, 

purchased from ThermoFischer, according to the manufacturer’s instructions. Medium
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from these cells, containing Lentivirus, was then harvested and filtered with 0.45-μM 

Millex-HP filter 36 hours after the transfection was performed. LS147T cells were then

transfected with the Lentivirus using a 1:1 ratio of fresh medium and filter medium 

containing Lentivirus for 24 hours. Following this, cells were then cultured in fresh 

medium for 72 hours, and then transfected cells were selected for by growth in medium 

containing 1 μg/ml puromycin for one week. Finally, cell clones were harvested, and 

expression of FLAG-tagged STEAP4 was confirmed by Western blot.

2.4 Treatment and Harvesting of Cultured Cells

Before being used in any experiments, cultured cells were grown to around 50% 

confluence. In the experiments in which the STEAP4-inducible cell line was used, cells 

receiving doxycycline were treated with 200 ng/mL of the antibiotic 24 hours before any 

cytokines or copper supplements were added to the medium. Cells used in the copper 

determination experiments were grown in cell culture dishes with a diameter of 60 mm, 

and cells used in the cell signaling experiments in which copper was not determined were 

grown in dishes with a diameter of 35 mm.

In the experiments in which intracellular copper content was measured by atomic 

absorption spectroscopy, a bulk 100 mM copper sulfate (CuSO4) was prepared with fresh 

Milli-Q water and was then autoclaved to ensure sterility. Cells treated with copper 

received the CuSO4 solution by micropipetting such that the final concentration of copper 

in the medium was 50 μM, not including any copper originally contained therein, at the 

zero timepoint of the experiment. If cells were treated with both copper and cytokines, 

the cytokine treatment (50 ng cytokine/mL medium) was administered 24 hours before 

the copper supplement was added to the medium. The time of copper administration was
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defined as the zero timepoint of the experiment. After addition of copper solution or 

cytokines to the cell medium, the culture dishes were gently swirled for several seconds 

to distribute the supplements evenly throughout the medium. In the cell signaling 

experiments not involving copper measurements, cells were treated with cytokine at the 

zero timepoint, and were then harvested at the timepoints specified in the figures.

Upon harvesting the cells, the medium was removed from the cell dishes by 

vacuum aspiration. If copper was administered during the experiment, cells were rinsed 

once with ice cold phosphate buffered saline (PBS) containing 0.1 M

ethylenediaminetetraacetic acid (EDTA) to ensure that all extracellular copper was 

removed, and then once with unaltered, ice cold PBS. If copper was not administered, 

cells were rinsed twice with unaltered, ice cold PBS. After rinsing, cells were then lifted 

from the dish with a cell scraper, which was rinsed with PBS and dried with a paper 

towel in between each use, and then were suspended in PBS. The cell suspension was 

then transferred to a 15-mL plastic centrifuge tube by pipette. Before centrifugation, the 

cell suspensions were kept on ice. Cells were then centrifuged for 5 minutes at 3,000 

RPM. Following centrifugation, the supernatant was then removed by vacuum 

aspiration.

In the experiments in which copper was to be determined, cells were lysed using 

300 mL of aqueous lysis buffer containing 0.5% Triton X-100, 20 mM HEPES, 150 mM 

NaCl, 12.5 mM β-glycerophosphate, 1.5mM MgCE, 10 mM sodium fluoride (NaF), 2

mM dithiothreitol, 1 mM sodium orthovanadate, 2 mM ethylene-

bis(oxyethylenenitrilo)tetraacetic acid (EGTA), 20 mM aprotinin and 1 mM

phenylmethylsulfonyl fluoride, prepared in Milli-Q water, where the pH was adjusted to
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between 7.4 and 7.6. The total protein contents of the raw lysates were then measured by 

ultraviolet-visible spectrophotometry, using the Bradford protein assay (595 nm), so that 

the copper content of the samples could be adjusted based on the quantity of cells in each 

sample. This was accomplished by adding 10 μL of lysate to 1 mL of Bio-Rad Protein 

Assay Dye Reagent (diluted 5x in Milli-Q water) into a 1-mL cuvette with a pathlength 

of 1 cm and then pipetting up and down for several seconds to mix the solution. A 

standard curve was generated using bovine serum albumin (BSA) protein solutions of 

known concentrations. If any samples registered an absorbance value outside the range 

of the standard curve, the samples were discarded, and the assay was repeated for all 

samples by adding a smaller volume of lysate into 1 mL of the protein assay reagent dye 

until all values were within the range of the curve. After determination of the protein 

concentrations, 0.7 mL of concentrated nitric acid, purchased from Sigma-Aldrich, were 

added to the samples (in 1.5-mL microcentrifuge tubes), which were then briefly 

vortexed and allowed to sit in a 37 oC incubator for 30 minutes to an hour. Samples were 

then analyzed by atomic absorption spectroscopy (detailed below) after being diluted 10- 

fold by pipetting 100 μL of acid/lysate homogenate into a fresh 1.5-mL tube containing 

900 μL nitric acid. Samples that were not immediately analyzed by AAS were placed in - 

80 0C storage until the time of analysis.

In the experiments in which intracellular protein contents were to be determined 

by Western blot, cells were lysed using the same lysis buffer described above. Protein 

concentrations in each sample were determined by ultraviolet-visible spectroscopy using 

the method described above, without generating a standard curve. To normalize the 

protein content of each sample, the most protein-dilute sample was left unaltered, while
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all other samples were diluted with lysis buffer based on the ratio of the absorbance T 

595 nm of the sample in question to the absorbance at 595 nm of the most dilute sample, 

such that the final volume of each sample was 1 mL. After the total protein

concentrations of the samples were adjusted, each one was mixed with 2x Laemelli 

sample buffer, supplemented with 100 μL of 2-mercaptoethanol per 900 μL of sample 

buffer. Samples were then boiled for 5 minutes at 95 oC and kept in -20 oC storage until 

the time of analysis by Western blot.

2.5 Quantitative Analysis of Proteins by Western Blot

All samples analyzed by Western blot were separated on 10% SDS-PAGE gels 

prepared using National Diagnostics reagents, which were run at 100 V. The running 

buffer was a deionized water solution containing 2 M glycine, 0.25 M Tris-HCl, and 0.02

M sodium dodecyl sulfate (SDS). After running the separation gel, protein bands were 

transferred to a poly(vinylidene difluoride) (or PVDF) membrane pre-soaked in 95% 

methanol. Each transfer was run for 2 hours at 80 V where the box containing the gel 

and membrane were kept in an ice bath. The transfer buffer was prepared in deionized 

water and contained 25 mM Tris-HCl, 200 mM glycine, and 10% methanol. After the

transfer, the membrane was blocked with 5% milk solution, dissolved in a wash buffer

prepared using deionized water, containing 50 mM Tris-HCl, 150 mM NaCl, and 0.1%

Tween-20. After blocking, the membrane was incubated at 4 oC overnight, with gentle 

shaking, in a primary antibody solution, dissolved in 5% BSA solution prepared in wash

buffer. The membrane was then rinsed five times, for five minutes each, in wash buffer,

with gentle shaking. Following this, the membranes were then incubated for one hour in 

the corresponding secondary antibody solution, dissolved in a 5% milk solution prepared
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in wash buffer. The membrane was then rinsed again five times, for five minutes each, 

using wash buffer and gentle shaking. Finally, the membrane was then placed on plastic 

wrap and then soaked in chemiluminescent Western blot detection reagents obtained 

from Thermo Fisher for approximately 30 seconds, and then placed in a cassette with 

autoradiography films and images were obtained using a film developer. The intensity of 

the protein bands was quantified using ImageJ image processing software.

2.6 Animal Modelling of Colitis and Cancer

Mice were maintained in the Biological Resources Units at Lerner Research 

Institute of the Cleveland Clinic Foundation. In experiments modelling inflammation 

only, drinking water in each cage was replaced with an aqueous, 3% dextran sodium 

sulfate solution for the duration of the experiment to induce colitis [71]. Mice were fed 

with standard chow and ear tags were used to identify each animal. In mice where both 

inflammation and colon cancer were modelled, this was achieved by a one-time 

intraperitoneal injection of azoxymethane (AOM), using 15 mg of the substance per kg of 

body weight, followed by 3 cycles where drinking water was replaced with a 1.5% DSS 

solution for 5 days, with two weeks of unaltered drinking water in between each cycle. 

The first 5-day cycle of DSS solution began on the day of AOM administration. Mice 

given ammonium tetrathiomolybdate (TTM) were administered treatment of aqueous 

TTM, using 20 mg per kilogram of body weight, once every three days by oral gavage.

2.7 Animal Sacrifice and Sample Collection

At the time of sacrifice of inflammation-only animals, mice were transported from 

the BRU to the Li Lab and were administered a 200 μL dose of ketamine through 

intraperitoneal injection. Immediately after unconsciousness was induced, but while the
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animal was still alive, the abdomen was opened with a Y-shaped cut performed with 

surgical scissors, and a blood sample was collected by cardiac puncture using a 19 G 

needle attached to a 1-mL syringe. As much blood was collected as possible and was 

placed in a 1.5-mL microcentrifuge tube after collection. Blood samples were placed on 

ice immediately after collection and were then centrifuged at 4° C for 15 minutes at 1,000 

RPM for 15 minutes. 100 μL of serum was then removed from the microcentrifuge tube 

by micropipette and was placed in a fresh 1.5-mL tube. The serum was then stored in a - 

80° C freezer until the time of analysis. Immediately prior to copper analysis, 900 μL of

concentrated nitric acid was added to the tube, which was briefly vortexed and then 

allowed sit in a 37 oC incubator for 30 minutes to 1 hour. After blood collection, a sample 

of the animal’s liver then was removed and placed in a 1.5-mL plastic microcentrifuge 

tube, which was then placed on dry ice, and later into storage in a -80° C freezer. 

Immediately before copper analysis, the liver samples were digested in 15-mL centrifuge 

tubes containing 1 mL concentrated HNO3 for 30 minutes to 1 hour in a 37 oC incubator. 

After then being briefly vortexed, 100 μL of liver homogenate was then pipetted into a 

fresh 1.5-mL microcentrifuge tube containing 900 μL nitric acid to generate the sample 

that would be tested for copper by atomic absorption.

At the time of sacrifice of colitis-associated carcinoma mice, which was at the

conclusion of the third cycle of unaltered drinking water, 8 weeks after AOM injection, 

animals were brought back to the Li Lab from the BRU and sacrificed by CCL 

asphyxiation. After sacrifice, the abdomen of the animal was opened with a Y-shaped cut 

and the colon was carefully removed and placed in a dish containing PBS. The colon 

was then carefully opened longitudinally with scissors and any feces were removed by a
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gentle wiping with a PBS-soaked paper towel. Tumor nodules, which were defined as 

lesions on the colon measuring 1 mm in diameter or greater, were counted visually.

2.8 Determination of Copper by Atomic Absorption

Figure 2.1 — Overview of an atomic absorption spectrometer. A light beam of a specific 
wavelength is passed through the atomized sample, where the transmittance is compared 
to the intensity of a reference beam. The wavelength used is specific to the element 
being analyzed. Source: http://lab-training.com/wp-content/uploads/2013/03/Double- 
Beam-AAS-Schematic-Diagram.png

All experiments were performed using a Varian FS220 atomic absorption 

spectrometer from the Case Western Reserve University Department of Chemistry. 

Samples were analyzed in triplicate using a graphite furnace method. The wavelength 

used was 324.8 nm with a slit width of 0.5 nm. The following stages of heating were

used in the method:

Stage number Temperature (°C) Time (s)
1 85 5
2 95 40
3 120 10
4 800 5
5 800 1
6 800 2
7 2300 0
8 2300 2
9 2300 2

Table 2.2 — Stages of heating used in the AAS method. The first three stages are the
drying stages, in which water and other volatile solvents present in the solvent are boiled 
off. Stages four through six are the ashing stages, in which other organic molecules of a 
higher boiling point are removed from the sample. The final three stages are the analysis 
stages, in which the element to be analyzed is atomized and analyzed, and then the 
furnace is heated again to remove any remaining analyte.
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Samples were kept under nitrogen gas during analysis and a flow rate of 3 L/min 

was used. No matrix modifiers were used. The calibration curve was generated using the

“automix” feature of the instrument, where the bulk material for standards was a 500

μg∕L solution of CuSO4 prepared in concentrated HNO3, and the makeup material was

unaltered concentrated HNO3.
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CHAPTER III

RESUTLS AND DISCUSSION

3.1 STEAP4 Overexpression Increases Copper Uptake by Colon Cancer Cells

Figure 3.1 — Copper uptake by STEAP4-inducible LS147T cells. Cells were grown to 
around 50% confluence in 60-mm diameter dishes at the time of doxycycline treatment. 
A) The change in intracellular copper concentrations over 4 hours in cells treated with 
doxycycline versus untreated cells. p = 0.04. B) intracellular copper concentration 
measurements at each timepoint in treated and untreated cells. C) Expression of FLAG- 
tagged STEAP4 in doxycycline-treated cells and untreated cells. All copper 
measurements were done by GFAAS and each data point was analyzed in triplicate. Error 
bars represent the standard deviation of each data point.
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It has been previously reported [5] that overexpression of STEAP4 in increases 

the hourly rate of environmental copper uptake in HEK-293T cells, a line derived from

human embryonic kidney cells, by approximately 20 percent. And indeed, the data 

shown in Figure 3.1 indicates from the time of copper treatment (defined as “0 hr”) until 

4 hours after treatment, STEAP4-overexpressed colon cancer cells take up more 

extracellular copper from their environment than cells in which STEAP4 is expressed

normally. Further, the difference of around 20 percent in the average hourly rates of 

copper uptake in STEAP4-overexpressed cells compared to cells in which STEAP4 is 

normally expressed agrees quite well with what has been previously reported. While 

copper is an essential trace nutrient required by all living systems, it is also true that 

excess intracellular copper can cause a variety of deleterious biological effects through a 

chemistry known as the Fenton reaction [72], which occurs via the following scheme:

Cu+ + H2O2 → Cu2+ + HO∙ + OH

This immune-mediated production of free radical-containing reactive oxygen 

species (ROS) through using copper as a redox partner can be used by an organism for 

host defense purposes, as macrophages are known to release unbound copper ions upon 

encountering an invading pathogen in a process known as the “respiratory burst” [73]. 

The primary defensive benefit of this procedure is to cause oxidative damage to a variety 

of cellular components of the pathogen, particularly its lipids and DNA. For this reason, 

when stored physiologically, copper must be kept bound to one of many copper-

coordinating proteins. Thus, while little data exists to date exploring the potential 

connection between dietary copper intake and the likelihood of developing various types 

of cancer - and in fact, surprisingly little is known about the typical amount of copper
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consumed by humans who eat modern Western diets, or even the optimum daily intake of 

the nutrient for adults [11] - it is reasonable to speculate that a higher than normal 

concentration of body copper, which is partially dependent on STEAP4 expression, may 

cause an increased risk of tumorigenesis, perhaps due to increased oxidative damage to 

DNA and subsequent deleterious mutations that copper-mediated Fenton chemistry can 

cause. It may also be speculated that high body copper levels could potentially lead to 

increased rate of cancer progression after a tumor has already been established, as copper 

is required for cell growth generally, as well for angiogenesis [74], the process of creating 

new blood vessels which provide required nutrients to a growing tumor. Further 

supporting this idea are previous studies which have reported increased intracellular 

copper concentrations in a variety of cancers, including colorectal cancer [75]. The full 

extent of the time scale over which STEAP4 expression affects intracellular copper levels 

remains unclear, however. Additional investigation into this question is suggested to gain 

a clearer picture of this connection.
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3.2 IL-17 Stimulation Increases Copper Uptake by Colon Cancer Cells

Figure 3.2 — Copper uptake by IL-17-treated and untreated LS147T cells. All samples 
were analyzed in triplicate by GFAAS. A) The change in intracellular copper 
concentrations from over 4 hours in cells treated with IL-17 versus untreated cells. p = 
0.01. B) Intracellular copper concentration measurements at each timepoint in cytokine- 
treated and untreated cells. All copper measurements were done by GFAAS and each 
data point was analyzed in triplicate. Error bars represent the standard deviation of each 
data point.

Previously published data from the Li Lab has shown that IL-17 stimulation 

upregulates the expression of STEAP4 in keratinocytes [76]. Further, it has long been 

known that copper plays a critical role in the regulation of the inflammatory process [77], 

though the mechanism of this regulation is still not fully understood, outside of the 

copper-involved respiratory burst mediated by neutrophils, monocytes, and other immune 

cells. It has also long been known that IL-17 signaling is a critical factor in the 

progression of colorectal cancer, due to its previously reported pro-inflammatory effects 

and promotion of a tumor-friendly microenvironment [78]. Previous experiments with

inflammation-associated colorectal cancer mice, induced through DSS-AOM treatment, 

have found that deletion of the IL-17A receptor partially protects against development of 

colorectal cancer in a genetically-modified mouse model [79]. However, the mechanisms 

of IL-17’s promotion of cancer progression are not yet fully understood. It has been
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proposed that these mechanisms may include suppression of the anti-tumor immune 

response mediated by cytotoxic T cells, promotion of angiogenesis, and activation of the 

JAK/STAT signaling cascade, which has previously been implicated in the pathogenesis 

of several different types of cancer [80]. To date, however, the mechanism of IL-17,s 

promotion of tumorigenesis and tumor progression has not been linked directly to a 

copper-mediated mechanism in the literature. Data presented in this thesis suggest that 

this previously proposed promotion of angiogenesis by IL-17 may be driven by its 

upregulation of STEAP4, and the resulting increase in the copper levels of tumor cells.

Though IL-17-producing CD4+ T cells (also known as Thl7 cells) were

originally thought of as the only significant producers of IL-17, evidence has since 

emerged that many different types of immune cells are capable of producing the cytokine 

as well, particularly innate immune cells such as natural killer (NK) cells and neutrophils 

[81]. Interestingly, it has also been reported that a highly specialized type of epithelial 

cell found in the intestinal crypts known as Paneth cells are capable of rapidly producing 

IL-17 (and other pro-inflammatory mediators) upon exposure to inflammatory cytokine 

signals [82]. Enterocytes, the epithelial cells that line the lumen of the small intestine, are 

the primary cells responsible for the uptake of dietary copper, after its reduction from the 

cupric state to the cuprous state [83]. Thus, taking the data from Figure 3.2 into account, 

it can be reasonably inferred that the presence of inflammation in the gut, which directly 

causes the sustained release of IL-17 by Paneth cells, likely stimulates increased uptake 

of dietary copper in vivo, and thus creates a positive feedback loop which sustains the 

local inflammatory response, thereby creating a tumor-promoting microenvironment.
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One additional implication of the crucial role that copper metabolism plays in the 

progression of cancer is its relevance to platinum-containing anti-cancer drugs. A 

mainstay of frontline treatments for many types of cancer, including colorectal cancer, 

platinum therapies such as cisplatin (often referred to as the “penicillin of cancer”), as 

well as oxaliplatin, commonly prescribed to colorectal cancer patients, are known to 

cause cell death by mediating DNA damage through a mechanism of generating both 

intrastrand and interstrand crosslinking via platinum adducts, which in turn induces 

apoptosis [84]. As these platinum-containing drugs are taken up into the cells by copper 

transport proteins including ATP7A, ATP7B, and most notably CTR1, they affect rapidly

dividing cells most strongly, and thus can effectively target malignant cells while 

minimizing damage to healthy tissues [85]. However, with the exception of germ cell 

tumors, acquired resistance to these drugs is a virtually unavoidable result of platinum 

therapy [86]. It is possible that treatment with copper chelators may be able to mitigate 

this problem, however, as it has been reported that the uptake of platinum-based drugs by 

tumor cells can be enhanced through treatment with ammonium tetrathiomolybdate [87]. 

While further study into this route of treatment is required to better elucidate its 

effectiveness, it is suggested that copper chelation by TTM may incur the dual benefits of 

reducing the tumor-promoting effects of copper uptake via promotion of angiogenesis 

and stimulation of cell growth and proliferation, and also by re-sensitizing tumor cells to 

DNA damage caused by platinum therapy, by upregulating the expression of copper 

uptake membrane proteins such as CTR1 that are responsible for platinum uptake into the

cell.
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3.3 Colitis Mobilizes Copper from Latent Storage in the Liver into Systemic 
Circulation

Figure 3.3 — Colitis induces mobilization of latent copper stored in the liver into 
systemic circulation. First panel: liver concentrations of intracellular copper in mice over 
the course of DSS treatment. p = 0.04. Second panel: serum copper concentrations mice 
over the course of DSS treatment. p = 0.05. Day 0 represents the time at which the 
animals’ drinking water was replaced by an aqueous 3% DSS solution. P-values reflect a 
comparison between copper concentrations measured on day 0 and copper concentrations 
measured on day 9. All copper measurements were done by GFAAS and each animal’s 
sample was analyzed in triplicate. Error bars represent the standard deviation of each data 
point. n = 3.

As has been mentioned previously, the liver is the largest storage site of copper in 

the body [2]. While this has long been known, and it has also long been known that the

liver is a common site of colorectal cancer metastases, it has been believed that this is

primarily due to the high volume of blood flow from the intestines to the liver via the 

hepatic portal vein, which provides a route of transportation of malignant cells from the 

intestines to the liver. And while this is likely correct, it is suggested that the abundance 

of copper may play a role in the success of intestinal cancer metastases in the liver as

well.

Upon reduction by a STEAP protein and uptake across the apical membrane into 

an enterocyte by CTR1, the copper ion is immediately bound to one of several copper 

chaperone proteins to prevent unwanted redox reactions from occurring within the cell.
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From there, depending on which protein the ion binds to, it is shuttled to one of several 

locations - binding to COX17 delivers copper to the mitochondria, where it is 

incorporated into cytochrome c oxidase, which is a crucial protein involved in cellular 

respiration [88]. It may also be shuttled to the trans-Golgi network by ATOX1, where it 

can be exported to the bloodstream by ATP7A or ATP7B, and then on to another 

destination within the body [89]. A third important destination of the copper ions is the 

cytosol of the enterocyte that initially took them up, where it can be shuttled by CCS to 

superoxide dismutase (SOD1), a critical protein which converts intracellular superoxide 

radicals (CF ) into molecular oxygen, and thus prevents unwanted radical-generating 

reactions from occurring within the cell [90]. Excess intracellular copper may also be 

bound to metallothionein. If the ion is exported to the bloodstream, it binds to α2 

macroglobulin or albumin and is taken up into a hepatocyte by CTR1. From there, it can 

be transported to mitochondria or superoxide dismutase within the hepatocyte, or shuttled 

to the trans-Golgi network and exported again to the bloodstream, where it binds to 

ceruloplasmin or albumin, and is then distributed to cells and tissues around the body

[91].

It has been reported previously that elevated serum copper in mouse models of 

breast and lung cancer occur concomitantly with a decrease in liver copper levels [92]. 

The data shown in Figure 3.3 indicate that this is the case in a mouse model of 

inflammatory bowel disease as well. Copper, therefore, is being mobilized from the site 

of storage into systemic blood circulation, which likely increases the risk of 

tumorigenesis directly via the increased risk of oxidative DNA damage through Fenton 

reaction-mediated production of reactive oxygen species at the site of inflammation, as
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well as indirectly by sustaining the chronic inflammatory response and resulting tumor-

promoting environment at the site of inflammation. This also likely sustains tumor

progression as well by providing the copper necessary for continued cell growth and

angiogenesis. Therefore, it is suggested that copper depletion therapy may

simultaneously serve the dual functions of slowing the progression of a primary colon

tumor by depriving it of the resources necessary for growth, and may additionally

decrease the likelihood of a secondary tumor successfully establishing in the liver as well

due to less copper being available in the local environment

3.4 STEAP4 Overexpression Enhances IL-17-Mediated Activation of Growth 
Pathways in Colon Cancer Cells

Figure 3.4 — STEAP4 overexpression enhances IL-17-mediated activation of 
MAPK/ERK signaling in LS147T cells. Activation of ERK.1/2 and ERK5 is increased in 
doxycycline-treated cells compared to untreated cells. The relative intensity of each band 
was quantified using ImageJ software. The intensities of the p-ERKl/2 and p-ERK5 
bands from the zero timepoint from the treated cell group and the untreated cell group 
were defined as 1 for each respective group. “Normalized relative intensity” was obtained 
by dividing the intensity of each band by the intensity of the band from the zero timepoint 
from its group, after the intensity value for each band had been normalized against the 
intensity of its corresponding actin band.

49

Dox + + + + +

IL-17(min) 0 5' 10' 30' 60' 0 5' 10' 30' 60'

Steap4-Flag

P-Erkl/2 — —

Normalized relative intensity 1.00 2.36 2.05 2.57 1.79 1.00 2.81 3.72 2.14 1.05

P-Erk5

Normalized relative intensity 1.00 2.48 1.92 1.43 1.47 1.00 3.49 2.81 3.01 1.44

Actin — — —  

Relative intensity 1.00 0.83 1.35 0.90 0.67 0.96 1.07 1.12 1.45 0.81



Colorectal carcinogenesis is a complex biological event involving dysregulation 

of the growth, proliferation, and differentiation of enterocytes, as well as of pro-apoptotic 

and cell survival mechanisms [93]. These cell cycle processes are regulated by a variety 

of internal as well as external signals. External signals perform this regulation by binding

to cell membrane receptors and thus triggering the corresponding signaling cascade. One 

significant example of these externally regulated signaling pathways is the mitogen- 

activated protein kinase/extracellular signal regulated-kinase, or MAPK/ERK pathway. 

Being members of the serine-threonine kinase family, it has long been known that this

pathway is critical regulator of human gene expression and cellular proliferation [94]. 

Accordingly, the MAPK/ERK signaling cascade has previously been implicated in 

several different types of cancers [95]. The ERK signaling pathway specifically, of three 

known pathways falling under the MAPK family, is communicated through the activation

of Protein Kinase C, or PKC. PKC in turn activates RAF1, which then activates MEK.

MEK then activates ERK, which can then directly phosphorylate various transcription 

factors, which themselves directly affect gene expression related to proliferation and cell

survival [96].

IL-17 signaling is known to activate several important cell growth and 

proliferation pathways, including the PI3K-AKT and NF-κB pathways, in addition to the

ERK signaling cascade [97]. The data presented in Figure 3.4 demonstrates that this 

activation of ERK signaling is enhanced by overexpression of STEAP4, suggesting that 

copper plays an important role in this process. A previous report demonstrated that 

deletion or mutation of copper transporter 1 (CTR1), as well as treatment with a copper 

chelator, can inhibit this signaling pathway by reducing the ability of MEK1 to
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phosphorylate ERK [98], further substantiating this assertion. It is therefore suggested 

that inhibiting IL-17 signaling and administering copper depletion therapy concurrently

could be more effective in retarding tumor progression than either treatment separately, 

though further investigation into this assertion is recommended.

3.5 Copper Chelation as Potential Anti-Cancer Therapy and Future Directions

Figure 3.5 — Copper chelation potentially decreases the number of tumor nodules in 
DSS-AOM mice. Animals were sacrificed by CO2 asphyxiation at the conclusion of the 
third “recovery cycle” of unaltered drinking water, 8 weeks after AOM injection and the 
beginning of the first DSS-treated drinking water cycle. Tumor nodules were identified 
by visual inspection and were defined as any lesion on the colon measuring 1 mm in 
diameter or larger. The “x” from each box signifies the median value for the group and 
the line signifies the mean. n = 6.p = 0.16.

Given all of the data shown thus far, the practical question to ask is whether

copper depletion could be an effective treatment for inflammation-associated colorectal

cancer patients. Ammonium tetrathiomolybdate (TTM) is a copper chelator that is used

to treat Wilson’s Disease, a condition characterized by a defect in ATP7B that causes

excess copper accumulation in the liver and brain [99]. While TTM is currently only
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approved by the Food and Drug Administration for treatment of Wilson’s Disease 

(administered orally in the form of capsule), it has very recently been reported that TTM 

treatment inhibits inflammatory responses in microglia cells in vitro [100]. The molecule

is also currently being investigated as a therapy for breast cancer [101]. While the data 

displayed in Figure 3.6 did not find a statistically significant difference in the 

development of tumor nodules between the animals treated with the chelator and the 

animals gavaged only with water, they do suggest that further study into whether or not 

TTM is an effective treatment for colorectal cancer patients could be valuable.

While colorectal cancer can usually be treated relatively easily when detected 

early, effective treatment of metastatic colon cancer remains a significant clinical 

challenge with few good therapeutic options. While the five-year survival rate for 

patients diagnosed with stage 1 through stage 3 colorectal cancer ranges from 92% to 

53%, the rate for patients diagnosed with stage 4 of the disease stands at a dismal 11% 

[102]. There is, therefore, an urgent need to find effective treatments for patients 

diagnosed with metastatic colorectal cancer. As was mentioned earlier, the liver is the 

most common site of metastasis for primary colon tumors, and is also the largest site of 

copper storage in the body. Previous studies have reported that in mice which were 

genetically programmed to develop breast cancer, copper depletion treatment did not 

prevent the formation of tumors in the breast tissue, but animals treated with TTM 

developed tumors that were too small to be observed visually, while untreated animals 

developed easily visible tumors [103]. Therefore, it is recommended that additional 

studies be performed to investigate the potential of copper depletion therapy to prevent 

the growth of additional tumors after the initial one is discovered. It is likely that further
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investigation into this route of cancer treatment, in patients afflicted with colorectal and

other cancers will continue into the future.

3.6 Statistical Analysis

Pipette volumes were assumed to have a standard deviation of ±2%.

Tissue samples were massed to two decimal points of accuracy.

Statistical Calculations for Figure 3.1

Error in AAS measurements
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Error in sample volumes

Total error

Statistical Calculations for Figure 3.2

Error in AAS measurements
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Error in sample volumesSample volume = 300 μL lysate + 700 μL acid = 1 mL Sample volume SD = 6 μL lysate + 14 μL acid = 20 μL
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Total error

Statistical Calculations for Figure 3.3 (A)

Error in AAS measurements
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Error in sample volumesSample volume = 100 μL liver homogenate + 900 acid = 1 mL Sample volume SD = 2 uL + 18 uL = 20 uL

Mean tissue sample mass = 0.514 g Balance error = + 0.005 g 0.01Average % error in tissue mass measurement = —-— 0.514Average % error in tissue mass measurement = 0.01945525291
57

Error in measurement of liver tissue mass



σvolume+mass σvolume x 1.01945525291
σvolume+mass = 0.16823673595265xl.01945525291 

σvolume+mass = 0.17150982419
Total error

Statistical Calculations for Figure 3.3 (B)

Error in AAS measurements
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σ[Cu,cumulative timepoints] ~ 3.69988473438

Error in sample volumesSample volume = 100 μL serum + 900 μL acid = 1 mL Sample volume SD = 6 μL lysate + 14 μL acid = 20 μL

Total error
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p = 0.05
Statistical Calculations for Figure 3.5Avg # of tumor nodulestreαted = 1 Avg # of tumor nodulesuntreated = 2.5

σtreated 1.095445 
σuntreated = 1.760682
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CHAPTER IV

CONCLUSION

Despite encouraging progress that has been made, colorectal cancer remains a 

significant clinical challenge. This is particularly true in patients who do not regularly 

receive colonoscopies, as the disease becomes significantly more difficult to treat 

effectively in its later stages. Despite the American Cancer Society’s recommendation 

that adults aged 45 years or older get screened for colorectal cancer, fully one-third of 

adults 50 to 75 years of age have never received a colonoscopy [104]. For this reason, a 

better understanding of the pathogenesis of colorectal cancer and new treatment options, 

particularly for metastatic tumors, is urgently needed.

It has long been known that chronic inflammation increases an individual’s risk of 

developing colorectal cancer [32]. While inflammation is a remarkably complex 

biological response, it is known that interleukin 17 is a critical mediator of the 

inflammatory process. Thus, IL-17 is a promising target for anti-cancer therapies that has 

been investigated for many years now [78]. The precise role that IL-17, and 

inflammation generally plays in tumorigenesis and tumor progression is still not fully

understood. Data presented in this thesis suggest that the pro-inflammatory and the 

cancer-promoting properties of IL-17 are dependent, at least in part, on copper.
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Figure 4.1 - A proposed visual model of IL-17's effects on copper mobilization and tumor promotion. The colon is represented in 
blue, the liver is represented in brown, STEAP4 is represented in purple, and copper ions are represented in green. A) The liver and 
colon are healthy and normal, and STEAP4 is expressed normally in colon epithelial cells. B) The colon epithelium suffers and injury 
(represented in red). C) The injury to the colon tissue causes Paneth cells and white blood cells from the local blood supply to begin 
secreting IL-17 (represented in crimson). D) IL-17-mediated inflammation causes latent copper stored in the liver to be mobilized into 
systemic circulation. IL-17 stimulation additionally induces increased expression of STEAP4 by colon epithelial cells. This 
overexpression of STEAP4 causes colon epithelial cells to increase the amount of copper they take up from the blood. E) IL-17 
signaling causes increased ERK signaling (represented in gold) in colon epithelial cells, promoting cell survival and increasing cell 
growth and proliferation, and thus the risk of tumorigenesis (represented in yellow). F) IL-17 signaling further upregulates the 
expression of STEAP4 in colon carcinoma cells. G) Continued inflammation, mediated by IL-17, continues to mobilize copper from 
the liver into systemic circulation, which further increases activation of ERK signaling, as the STEAP4-overexpressed cells take up 
additional copper from the blood, thus fueling a positive feedback cycle. H) After tumorigenesis, the established tumor causes 
dysregulation of normal colon homeostasis, thus sustaining a pro-inflammatory environment in the colon, paving the way for 
continued tumor growth and metastasis to potentially occur.
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A crucial element in biology, copper is a required element in all living systems 

due to its ability to participate in one-electron transfer reactions. In humans, the ability of 

cells to take up copper from their extracellular requirement is dependent on a family of 

proteins known as the Six Transmembrane Epithelial Antigen of Prostate, or STEAP

proteins. Additionally, it has previously been reported that copper is often elevated in 

malignant tissue samples compared to corresponding healthy tissue, including those

found in colon cancer [75]. Previous data from the Li lab revealed that increased

expression of STEAP4 is induced by stimulation with IL-17 [76]. Data from experiments

presented in this thesis show that both overexpression of STEAP4, and stimulation with 

IL-17 increases the amount of copper taken up by colorectal cancer cells, the rate of 

which in the latter case agrees with data previously reported in human embryonic kidney 

cells [13]. Further data indicate that overexpression of STEAP4 in colon cancer cells 

enhances activation of the ERK pathway, which has previously been implicated in 

colorectal cancer [38], by IL-17 stimulation, suggesting that copper plays a critical role in 

this signaling process.

The most common site of distant colorectal cancer metastases is the liver. Upon 

the occurrence of colon cancer metastasis to the liver, the disease’s prognosis becomes 

dismal [102]. Data presented here suggest that upon induction of intestinal inflammation, 

copper is mobilized from the liver into systemic circulation, which agrees with data 

previously reported indicating that this occurs in a mouse model of breast cancer as well 

[92]. Additionally, it was found that treatment with the copper chelator ammonium 

tetrathiomolybdate, used to treat copper overload in Wilson’s Disease, potentially reduces 

the number of tumor nodules that develop in the colon in a model of inflammation-
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associated colorectal cancer, though further investigation is required to provide 

convincing evidence of this conclusion. It is suggested that copper depletion therapy 

could slow the growth of colorectal tumors, and possibly reduce the instances of tumor 

metastases. Further study into this avenue of treatment is suggested.

The progress that has been made into describing the mechanisms of colon 

tumorigenesis and tumor progression, particularly in the context of an inflammatory 

microenvironment, has been encouraging. However, for people afflicted with the 

condition, it is still not enough. It is the author’s hope that the experiments presented 

herein that detail the copper-dependent role of IL-17 in colorectal cancer cell growth will 

provide another step on the road to understanding, and ultimately curing, this devastating

disease.
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Figure 1.1 - Copper homeostasis in mammalian cells
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Figure 1.2 - Human copper metabolism
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Figure 1.3 - A schematic description of STEAP4's protein structure and 
molecular functions
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Figure 1.5 - MAPK/ERK signaling in the pathogenesis of cancer
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Figure 1.6 - Immune system signaling and inflammation play a critical role in the 
risk of tumorigenesis and cancer progression.

78



Figure 1.7 - IL-17 increases expression of many genes through activation of 
various downstream signaling pathways.

Rights and Permissions

79



Non-commercial requests

Authors may reproduce an article, in whole or in part, in a thesis or dissertation at no 
cost providing the original source is attributed.

(Obtained from: http://www.portlandpresspublishing.com/content/rights-and- 
permissions)

Zhu, S., Qian, Y. (2012). IL-17/IL-17 receptor system in autoimmune disease: 
mechanisms and therapeutic potential. Clin Sci, 122(11), 487-511.

Figure 1.8 - IL-17 and the pathogenesis of cancer

This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

(Obtained from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870650/)

Wu, D. (2013). Interleukin-17: A promoter in colorectal cancer progression. Clin Dev 
Immunol. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870650/

Figure 1.9 - Molecular structure of dextran sodium sulfate (DSS) and 
azoxymethane (AOM).

DSS:

Permission Requests

For the vast majority of articles in Hindawi journals, you do not need to seek permission 
from Hindawi for reuse. The copyright of most articles remains with the authors, who 
have chosen to make the articles available for reuse under an open license, such as the 
Creative Commons Attribution License (CC-BY). These licenses permit reuse and 
adaptation, as long as the original authors are cited. The applicable license for all articles 
is included in the front matter of the article in human- and machine-readable formats.

Rarely, Hindawi journals will contain material republished with permission under a more 
restrictive license. Where applicable, this will be clearly marked. In these cases, you may 
need to seek permission for reuse from the copyright holder.

(Obtained from: https://www.hindawi.com/copyright/)

Tanaka, T. (2011). Development of an Inflammation-Associated Colorectal Cancer- 
Model and Its Application for Research on Carcinogenesis and Chemoprevention. Int J 
Inflam, 2012.

80

http://www.portlandpresspublishing.com/content/rights-and-permissions
http://www.portlandpresspublishing.com/content/rights-and-permissions
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870650/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870650/
https://www.hindawi.com/copyright/


AOM:

Commons:Reusing content outside Wikimedia

The Wikimedia Foundation owns almost none of the content on Wikimedia sites — the 
content is owned, instead, by the individual creators of it. However, almost all content 
hosted on Wikimedia Commons may be freely reused subject to certain restrictions (in 
many cases). You do not need to obtain a specific statement of permission from the 
licensor(s) of the content unless you wish to use the work under different terms than the 
license states.

(Obtained from:
https://c0mm0ns.wikimedia.0rg/wiki/C0mm0ns:Reusing_c0ntent_0utside_Wikimedia) 

Image obtained from:
https://en.wikipedia.org/wiki/Azoxymethane#/media/File:Azoxymethane.png

Figure 2.2 - Overview of an atomic absorption spectrophotometer

Sent by: Evan Martin <e.martin42@vikes.csuohio.edu>

Sent on: Tue, Jul 17, 2018 at 3:12 PM

Sent to: labtraining@lab-training.com

Subject: Atomic absorption diagram

Hello,

My name is Evan Martin, and I am a master's candidate in the Department of Chemistry 
at Cleveland State University. I am currently writing a thesis on the role of copper 
metabolism in colorectal cancer, and I came across a diagram on your website (http:\\lab 
training.com/aas/) titled "Double Beam AAS Schematic Diagram".

I would like to request permission to include this diagram in my thesis. If you have any 
questions about my project, please contact me at e.martin42@vikes.csuohio.edu and I 
would be happy to answer them. Thank you for your consideration, and I hope to hear 
from you soon.

Regards,
Evan

Sent by: Dr. Saurabh Arora <saurabharora@arbropharma.com> 

Sent on: Wed, JμL 18, 2018 at 12:30 AM 

Sent to: e.martin42@vikes.csuohio.edu
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Subject: Re: Atomic absorption diagram

Dear Evan

Please feel free to use the diagram.
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