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Abstract

The host inflammatory response against infections is characterized by the release of pro-

inflammatory cytokines and acute-phase proteins, driving both innate and adaptive arms of

the immune response. Distinct patterns of circulating cytokines and acute-phase responses

have proven indispensable for guiding the diagnosis and management of infectious dis-

eases. This review discusses the profiles of acute-phase proteins and circulating cytokines

encountered in viral and bacterial infections. We also propose a model in which the inflam-

matory response to viral (IL-18/ferritin) and bacterial (IL-6/CRP) infections presents with

specific plasma patterns of immune biomarkers.

The Inflammatory Response

Inflammation is a protective response by the body that aims to remove invading pathogens,

neutralize noxious stimuli, and initiate tissue repair. Inflammation is triggered when innate

immune cells sense evolutionary conserved structures on pathogens (pathogen-associated

molecular patterns [PAMPs]) or endogenous stress signals (damage-associated molecular pat-

terns [DAMPs]) through germline-encoded pattern recognition receptors (PRRs). PRRs are

mainly expressed by macrophages and dendritic cells, although they have also shown to be

expressed by other immune and non-immune cells including neutrophils, lymphocytes, fibro-

blasts, and epithelial cells [1]. During an infection, cell stress provoked by invading pathogens

also leads to the release of DAMPs that synergize with PAMPs to activate PRRs. The role of

DAMPs in PRR activation is particularly pronounced during viral infections as viral spread

depends on the fate of infected cells.

PRR activation triggers a complex array of inflammatory processes through the release of

proinflammatory cytokines, with the induction of acute phase proteins (APPs) being a promi-

nent feature of the inflammatory cascade (Fig 1). APPs comprise a homeostasis-restoring class

of proteins whose plasma concentration increases in response to inflammatory insults. Plasma

inflammatory cytokines and APPs have been established as a valuable tool in the diagnosis,

management, and prognosis of inflammatory diseases, given their exceptional sensitivity for

systemic inflammation [2]. Because inflammatory cytokines and APPs are highly heteroge-

neous with a wide variety of biological functions, we asked ourselves whether we could dis-

criminate between different types of inflammatory reactions based on distinct cytokine/APP

profiles. This review discusses APPs and major cytokines involved in viral- and bacterial-
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induced inflammation and proposes a novel model in which two types of inflammatory reac-

tions present with differential plasma levels of immune biomarkers. We also aim to propose a

pathophysiological distinction between the induction of the acute phase response in bacterial

versus viral infection.

Plasma Cytokine Markers of Inflammation

Plasma cytokine profiling is routinely used in patients with inflammation to define the patho-

physiological phenotype, thereby playing a pivotal role in the diagnosis and therapeutic deci-

sion-making. The pro-inflammatory cytokines IL-1α, IL-1β, and IL-18 are inflammatory

plasma markers belonging to the IL-1 family of cytokines, which are all synthesized as precur-

sor proteins. The IL-1α precursor (pro-IL-1α) is biologically active and can be found constitu-

tively inside cells under homeostatic conditions [3]. Pro-IL-1α is passively released from dead,

dying, or injured non-apoptotic cells and acts as a major DAMP capable of triggering powerful

inflammatory responses [4]. IL-1β and IL-18 are mainly produced by monocytes/macrophages

in response to PAMP/DAMP recognition by PRRs [5]. Unlike pro-IL-1α, the precursors of

Fig 1. The acute inflammatory response mediated by the release of pro-inflammatory cytokines. Following PAMP or DAMP recognition, PRRs trigger

proinflammatory and antimicrobial responses by inducing the release of a broad range of cytokines. The archetypical pro-inflammatory cytokines TNF-α, IL-

1β, and IL-6 are rapidly released upon PRR activation, and they all act as endogenous pyrogens by increasing the hypothalamic thermoregulatory set-point

[82]. In addition, TNF-α and IL-1β orchestrate the release of chemokines and expression of leukocyte adhesion molecules on vascular endothelium,

promoting the rapid and efficient recruitment of leukocytes towards inflammatory foci [83–85]. TNF-α is also responsible for multiple hallmark signs of

inflammation by inducing local vasodilation (rubor, calor) and vascular leakage (causing swelling) [86, 87]. Furthermore, IL-1β evokes inflammatory

hyperalgesia and is well known for its induction of IL-6 [88, 89]. IL-6, in turn, is a major inducer of acute-phase protein production by hepatocytes [90]. PAMP,

pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern; PRR, pattern recognition receptor.

doi:10.1371/journal.ppat.1005973.g001
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IL-1β and IL-18 (pro-IL-1β and pro-IL-18) are biologically inactive and require proteolytic

cleavage into biologically active mature cytokines. This proteolytic cleavage mostly depends on

caspase-1 activation through the formation of multimeric protein complexes termed inflam-

masomes. Hence, a two-step model has been proposed: first, activation of PRRs on host cells

induces transcription of pro-IL-1β and pro-IL-18; second, activation of the inflammasome by

PAMPs or DAMPs results in the posttranslational cleavage of the pro-cytokines into mature

IL-1β and IL-18 [5].

Although the release of IL-1β and IL-18 involves similar processes, their functions differ

considerably. In synergism with IL-12, IL-18 acts as bridge to link the innate immune

response to IFN-γ production by driving T-helper (Th) 1 polarization and priming NK cells,

both resulting in high-level production of IFN-γ [6, 7]. IFN-γ is crucial for early host defense

against infections by stimulating the phagocytosis and intracellular killing of pathogens, par-

ticularly intracellular bacteria and fungi. IFN-γ also plays an important role in establishing

an antiviral state for long-term control through the induction of key antiviral enzymes, most

notably protein kinase R [8]. In addition, IL-18 harbors the unique property of inducing Fas

ligand expression on NK cells, facilitating their killing of infected cells by Fas-mediated apo-

ptosis [9].

In contrast to IL-18, IL-1β negatively regulates IFN-γ-mediated responses. IL-1β is a potent

inducer of COX-2 expression, leading to the production of large amounts of prostaglandin E2

(PGE2). PGE2, in turn, directly acts on T cells to suppress IFN-γ production, thereby suppress-

ing Th1 immunity and driving Th17 polarization [10]. Another downstream action of IL-1β
involves upregulation of the pleotropic cytokine IL-6, which is a key factor in priming naïve T

cells for Th17 differentiation [11]. IL-6 can also inhibit the immunosuppressive functions of

regulatory T cells and prevent Th17 cells from converting into regulatory T cells, illustrating a

pivotal role for IL-6 in shaping the adaptive immune response in favor of Th17 immunity [12,

13]. Th17 responses, which are characterized by the production and release of IL-17 and IL-22,

are critical for epithelial and mucosal host defense against extracellular bacteria and fungi [14].

IL-17 and IL-22 cooperatively enhance mucosal barrier function by stimulating the expression

of antimicrobial peptides and inducing neutrophil recruitment [14, 15]. Interestingly, Th17

responses may contribute to a suboptimal host defense against viruses by upregulation of anti-

apoptotic molecules, thereby blocking target cell destruction by cytotoxic T cells and enhanc-

ing the survival of virus-infected cells [16]. Thus, although Th17 responses are very efficient in

orchestrating the clearance of extracellular bacteria and fungi, the killing of intracellular patho-

gens such as intracellular bacteria and viruses may be more effective in the setting of a strong

Th1 response.

Acute-Phase Proteins

To assess the presence of inflammation in a clinical setting, laboratories routinely assess the

plasma concentrations of various APPs as robust biomarkers of inflammation. APPs are

produced primarily by hepatocytes in response to various inflammatory cytokines, most nota-

bly IL-1β and IL-6, although IL-18 has also been implicated in APP release [17]. C-reactive

protein (CRP) is the prototype of human APPs. In healthy individuals, CRP is found in trace

amounts with a median plasma concentration of 0.8 mg/L, while CRP values rise sharply up to

1,000-fold after an inflammatory stimulus [18]. CRP remains stable over prolonged time peri-

ods and has a half-life of 19–20 hours [19]. Because this half-life remains constant under con-

ditions of health and disease, the sole determinant of circulating CRP is its synthesis rate,

which directly reflects the intensity of the inflammatory process [19]. This makes CRP a pow-

erful marker for disease activity in infectious and inflammatory diseases.
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CRP plays an important role in innate immunity as early defense mechanism against infec-

tions. After binding to microbial polysaccharides or ligands exposed on damaged cells, CRP

can directly mediate their phagocytosis by engaging with Fc-receptors on phagocytic cells [20,

21]. Ligand-bound CRP can also mediate phagocytosis indirectly by activation of the classical

complement pathway through interaction with C1q [22]. This activation process results in C3/

C4 opsonization of pathogens and apoptotic cells, enhancing complement receptor-mediated

phagocytosis. However, CRP attenuates the formation of a downstream membrane attack

complex on the surface of invading microbes or damaged cells through recruitment of factor

H, thereby protecting the cells from lysis [23]. Thus, activation of the complement cascade by

CRP limits the inflammatory response by promoting opsonization while avoiding the pro-

inflammatory effects of cell lysis.

Another inflammatory plasma marker that has been extensively used in clinical practice is

the APP ferritin. Ferritin is a ubiquitous intracellular iron storage protein composed of 24 light

(L) and heavy (H) ferritin monomers. By storing iron in a non-toxic form, ferritin prevents

iron from catalyzing radical formation through Haber-Weiss or Fenton chemistry. During

infection and inflammation, iron is withdrawn from the circulation and is redirected to hepa-

tocytes and macrophages, thereby reducing the availability of this essential nutrient to invad-

ing pathogens [24]. The resulting iron overload in hepatocytes and macrophages enhances the

translation of ferritin through the iron response protein [25]. Part of the elevated ferritin load

in macrophages may translocate to the lysosomal compartment, where it protects this com-

partment from reactive iron, followed by ferritin secretion through the secretory-lysosomal

pathway [26]. Ferritin may also enter the circulation via the classical ER/Golgi-dependent

secretory pathway in hepatocytes [27, 28]. Another possible mechanism for ferritin secretion

involves leakage from damaged cells, explaining the firm association between serum ferritin

and markers of hepatocellular damage [29]. It is, however, important to note that circulating

ferritin lacks most of the iron it contained when being intracellular.

Although many aspects of the fundamental biology of serum ferritin remain surprisingly

unclear, various immune regulatory roles have been attributed to extracellular ferritin. Unlike

L-ferritin, H-ferritin modulates the immune response by suppressing lymphocyte blastogen-

esis and myelopoiesis, possibly through inhibition of transferrin-mediated iron uptake, as iron

is required for cell proliferation and differentiation [30–32]. H-ferritin also downregulates the

immune response through induction of the anti-inflammatory cytokine IL-10 by regulatory T

cells [33]. In addition, H-ferritin physically interacts with the chemokine receptor CXCR4,

thereby attenuating CXCR4-mediated leukocyte migration to inflammatory sites [34]. It

remains, however, paradoxical that circulating ferritin predominantly consists of L subunits,

whereas most evidence supports immune modulatory functions for H-ferritin.

Besides CRP and ferritin, various other APPs have been used in clinical practice. One such

protein is serum amyloid A (SAA), whose plasma concentration can rapidly increase up to

1,000-fold in response to inflammatory stimuli [35]. SAA is mainly produced in the liver and

serves as an innate recognition molecule that opsonizes gram-negative bacteria for phagocyto-

sis [36]. SAA also induces powerful and rapid secretion of proinflammatory cytokines by

monocytes and macrophages, thereby augmenting the early host response to invading patho-

gens [37, 38]. Another fast-responding APP that has been of particular interest is the prohor-

mone procalcitonin. Procalcitonin is secreted by parafollicular C-cells of the thyroid gland

under normal conditions but can be secreted by numerous other cell types throughout the

body in response to proinflammatory stimulation, culminating in markedly elevated serum

procalcitonin levels [39]. However, the exact physiological function of procalcitonin during

the acute phase response remains obscure and requires further study.
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Plasma Inflammatory Profiles in Viral and Bacterial Infections

One of the most frequent challenges that physicians face in clinical practice is the difficulty of

discriminating between viral and bacterial infections. Timely discrimination between viral and

bacterial etiologies is not only required for appropriate treatment but can also prevent unnec-

essary morbidity and even mortality. A rapid and powerful tool that assists in the diagnosis of

infectious diseases is the monitoring of host immune responses through circulating cytokines

and APPs.

An interesting pattern of inflammatory plasma markers emerges in bacterial infections.

Many bacterial diseases are characterized by elevated levels of circulating IL-1β and IL-6 with a

concomitant increase in plasma CRP, explaining the good correlation between plasma levels of

IL-6 and CRP [40]. It has been shown that circulating concentrations of both IL-6 and CRP

are markedly higher in patients with community-acquired bacterial infections as compared to

patients with viral infections [41]. In addition, plasma IL-6 and CRP concentrations are signifi-

cantly more elevated in bacterial enterocolitis as compared to viral enterocolitis [42]. The com-

bination of IL-6 and CRP plasma biomarkers can even be used to predict serious bacterial

infections in young febrile infants [43]. Importantly, IL-6–induced CRP levels are able to dis-

tinguish between specific viral and bacterial etiologies that remain daunting challenges in clini-

cal practice, including the discrimination between bacterial pneumonia and influenza

infections as well as the discrimination between streptococcal pharyngitis and infectious

mononucleosis [44].

Unlike many bacterial infections, viral infections are commonly characterized by elevated

plasma levels of the pro-inflammatory cytokine IL-18, together with increased circulating ferri-

tin concentrations. In healthy adults, IL-18 circulates in relatively low concentrations of less

than 200 pg/mL, while circulating ferritin concentrations are usually in the range of 120 μg/L

[45, 46]. However, during the acute stages of an Epstein-Barr virus (EBV) infection, plasma IL-

18 concentrations can easily exceed 1,000 pg/mL, with median ferritin up to 431 μg/L [47]. IL-

18 and ferritin are also strongly induced during chronic hepatitis B and C virus infections [48–

51]. The human immunodeficiency virus (HIV) disease is another viral infection that has been

characterized by increased circulating levels of both IL-18 and ferritin. During HIV infection,

plasma IL-18 levels exceed 1,000 pg/mL [52, 53]. In addition, circulating ferritin in HIV

patients ranges around a median of 487 μg/L and has been associated with HIV disease pro-

gression [54, 55]. The most striking elevation of circulating ferritin is seen in patients suffering

from acute dengue infections, with median plasma ferritin levels up to 1,264 μg/L [56, 57].

Moreover, circulating levels of both IL-18 and ferritin show strong correlation with dengue

disease severity and, therefore, may be considered as a tool to predict disease progression [57,

58]. It is, however, important to note that elevated levels of circulating IL-18 in dengue virus

infections concur with increased levels of the antagonistic IL-18 binding protein (IL-18BP),

resulting in unchanged plasma concentrations of free, biologically active IL-18 [59]. This dem-

onstrates that special attention should be paid to circulating levels of free IL-18 molecules

when studying the IL-18 response in infectious diseases, particularly because the ELISA kits

for IL-18 detection measure the mature form of the cytokine, both free and complexed with

IL-18BP. Besides its role in infectious diseases, IL-18 has been implicated in the pathophysiol-

ogy of various other diseases, but this falls outside the scope of this review and has been

reviewed extensively in earlier reviews (see [60]).

Although bacterial infections are commonly characterized by the induction of IL-6 and

CRP, viral infections are generally associated with marked elevation in plasma IL-18 and ferri-

tin with concomitant low circulating CRP levels (Fig 2A) [47]. Therefore, we propose a model

in which bacterial- and viral-induced inflammatory responses present with differential plasma

PLOS Pathogens | DOI:10.1371/journal.ppat.1005973 December 15, 2016 5 / 13



levels of CRP and ferritin (Fig 2B). Upon viral infection, IL-18 release induces a marked eleva-

tion of circulation ferritin, explaining the frequently observed hyperferritinemia in viral infec-

tions. IL-18 also stimulates Th1 immune responses, which play a crucial role in the host

defense against intracellular microbes through the induction of IFN-γ. In contrast, bacterial

infections are commonly associated with an extensive release of IL-1β, thereby stimulating the

hepatocytic CRP secretion through the induction of IL-6. CRP, in turn, acts as innate weapon

in early host defense by promoting the phagocytosis of bacteria. IL-1β also stimulates a Th17

immune response, which is crucial for epithelial and mucosal defense against extracellular bac-

teria. Thus, the IL-18 response in viral infections is responsible for hyperferritinemia, while

bacterial infections are characterized by an IL-1β/IL-6 response, culminating in elevated

plasma levels of CRP.

The host immune response to invading pathogens is orchestrated by a complex network of

cytokines and acute phase reactants that are mainly represented by, but are not limited to, the

IL-6/CRP and IL-18/ferritin axes described above. Differences in several other cytokine plasma

markers and APPs have been described in bacterial and viral infections (Tables 1 and 2). Par-

ticular interest has been raised for SAA, which is significantly increased in patients with bacte-

rial infections as compared to patients with viral infections [44]. This increase positively

correlates with circulating CRP levels, and some authors have considered SAA to be equivalent

to CRP in clinical practice, although SAA might be a more sensitive marker in infections with

low inflammatory activity [44]. Procalcitonin has emerged as a promising biomarker in infec-

tious inflammation. The diagnostic accuracy of procalcitonin has proven superior to both CRP

and SAA in the early identification of bacterial infections, and procalcitonin serves as

Fig 2. Bacterial- and viral-induced inflammation are characterized by differential plasma levels of CRP and ferritin. (A) Mean or median

concentrations of circulating CRP and ferritin in various viral and bacterial infections illustrate that viral infections are generally characterized by high

plasma ferritin with concomitant low circulating CRP [18, 45, 47, 54, 57, 91–94], while bacterial infections are commonly characterized by high plasma

CRP levels [95–100]. (B) Proposed model in which the induction of IL-1β/IL-6 in response to bacterial infections contributes to elevated plasma levels of

CRP, while viral infections are characterized by an IL-18 response, culminating in hyperferritinemia. Importantly, IL-1/IL-6/CRP and IL-18/ferritin do not

fully reflect the bacterial-viral infection dichotomy, as various bacterial infections are known to elevate plasma IL-18 levels while some viral infections are

known to raise plasma IL-1β levels [72, 73]. The direct correlation between circulating concentrations of IL-18 and ferritin has not yet been investigated and

should be assessed in future studies. HCV: hepatitis C virus infection; EBV: Epstein-Barr virus infection; HIV: human immunodeficiency virus infection.

doi:10.1371/journal.ppat.1005973.g002
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prognostic indicator for sepsis [61, 62]. The secretion of procalcitonin during these bacterial

infections is stimulated by cytokine plasma markers such as IL-6 and tumor necrosis factor-α,

whereas viral infections commonly attenuate the procalcitonin response, likely due to

increased IFN-γ production [63, 64].

An interesting plasma inflammatory profile has been observed in macrophage activating

syndrome (MAS). MAS comprises a heterogeneous group of life-threatening disorders featur-

ing excessive activation of T cells and macrophages, leading to a cytokine storm. The develop-

ment of MAS can be triggered by infectious diseases of viral or bacterial etiology and has been

associated with exceptionally high serum levels of free IL-18 with concomitant hyperferritine-

mia, reflecting an IL-18/IL-18BP imbalance [65]. The circulating levels of IL-18 are remarkably

high in both MAS and viral infections, even in comparison to severe bacterial sepsis. A likely

explanation resides in the origin of circulating IL-18, with monocytes/macrophages being the

Table 2. Changes in circulating concentrations of acute phase proteins during infections.

Viral and Bacterial Infections

CRP Stimulated by both viral and bacterial infections, but reaches higher values during

bacterial infections [44, 77, 78]SAA

Procalcitonin

Ferritin Elevated in viral infections [47, 56]

Retinol Decreased during infections [79]

Haptogloblin Not significantly different between neonates with and without an infection [80]

α1-antitrypsin

LPS binding

protein

Elevated in bacterial infections as compared to viral infections [68]

sTREM-1

Neutrophil

lipocalin

More elevated in bacterial infections as compared to viral infections [81]

CRP: C-reactive protein; SAA: serum amyloid A; sTREM-1: soluble triggering receptor expressed on

myeloid cells-1.

doi:10.1371/journal.ppat.1005973.t002

Table 1. Changes in plasma cytokine concentrations during infections.

Bacterial Infection Viral Infection

IL-1α Low / N.D. [71] N.D. [59]

IL-1β Increased [71] Increased [72]

IL-1Rα Increased* [41] Normal [41]

N.D. [59]

IL-2 Increased* [41] Increased [41]

IL-6 Increased* [41] Low / ND [41, 59]

IL-18 Increased [73] Increased [58, 59]

IFN-α N.D. [74] Increased† [59, 74]

IFN-γ Increased [75, 76] Increased [59]

TNF-α Increased* [41, 71] Normal [41]

Increased [59, 72]

* Direct comparison between viral and bacterial infections revealed higher circulating levels in bacterial

infections [41].
† Direct comparison between viral and bacterial infections revealed higher circulating levels in viral infections

[74]. N.D.: not detected.

doi:10.1371/journal.ppat.1005973.t001
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main source of IL-18 in diseases of bacterial origin, while the largest amount of circulating IL-

18 in MAS and viral diseases might originate from damaged endothelium. Anti-cytokine ther-

apy using the IL-1 receptor antagonist anakinra provides a survival benefit for severe septic

patients with features of MAS [66]. Because IL-1 has been shown to induce caspase-1 expres-

sion required for subsequent proteolytic maturation of pro-IL-18, anakinra can indirectly

block the production of biologically active IL-18, thereby counteracting the overwhelming IL-

18 response in septic patients with features of MAS [67].

Conclusions and Future Perspectives

The model we propose describes the pathophysiology underlying the distinct immune

responses to bacterial and viral infections, thereby offering new incentives for future research.

However, our model does not serve as direct diagnostic tool in clinical practice, because con-

siderable controversy exists about the diagnostic benefit of CRP, and combining CRP with

other circulating biomarkers (e.g., IL-6, IL-18, and procalcitonin) was found not to improve

the prediction of microbiological etiology in patients with lower respiratory tract infection [68,

69]. This emphasizes the importance of using inflammatory plasma markers as integral part of

the diagnostic armamentarium, in which the clinical picture and patient’s history remain cor-

nerstones. Further studies should elucidate the sensitivity and specificity of a plasma inflam-

matory signature consisting of IL-6, CRP, IL-18, and ferritin in distinguishing between viral

and bacterial infections. It will also be important to assess the direct correlation between circu-

lating concentrations of IL-18 and ferritin in viral infections, as current studies have only

focused on either IL-18 or ferritin separately.

A large array of bacterial and viral infections should be investigated, as it may be expected

that these two types of inflammatory reactions (IL-1/IL-6/CRP versus IL-18/ferritin) will not

fully reflect the bacterial–viral infection dichotomy. In line with this, patients with influenza

infection seem to have an inflammatory reaction more closely resembling a bacterial rather

than viral infection [68], although this discrepancy might also be explained by an altered

immune response due to (undetected) bacterial co-infection or the interference of influenza

with caspase-1 activation [70]. More studies on various infections in larger cohorts are, thus,

needed, and should also include fungal and parasitic infections.
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