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ABSTRACT

Macrophages acquire distinct phenotypes during tissue

stress and inflammatory responses. Macrophages are

roughly categorized into two different subsets named

inflammatory M1 and anti-inflammatory M2 macro-

phages. We herein identified a unique pathogenic mac-

rophage subpopulation driven by IL-23 with a distinct

gene expression profile including defined types of

cytokines. The freshly isolated resting mouse peritoneal

macrophages were stimulated with different cytokines

in vitro, the expression of cytokines and chemokines

were detected by microarray, real-time PCR, ELISA and

multiple colors flow cytometry. Adoptive transfer of

macrophages and imiquimod-induced psoriasis mice

were used. In contrast to M1- and M2-polarized macro-

phages, IL-23-treated macrophages produce large

amounts of IL-17A, IL-22 and IFN-γ. Biochemical and

molecular studies showed that IL-23 induces IL-17A

expression in macrophages through the signal trans-

ducer and activator of transcription 3 (STAT3)-retinoid

related orphan receptor-γ T (RORγT) pathway. T-bet

mediates the IFN-γ production in IL-23-treated macro-

phages. Importantly, IL-23-treated macrophages signifi-

cantly promote the dermatitis pathogenesis in a

psoriasis-like mouse model. IL-23-treated resting mac-

rophages express a distinctive gene expression prolife

compared with M1 and M2 macrophages. The identifi-

cation of IL-23-induced macrophage polarization may

help us to understand the contribution of macrophage

subpopulation in Th17-cytokines-related pathogenesis.

KEYWORDS interferon-gamma, interleukin-17,

interleukin-23, imiquimod-induced psoriasis, macrophage

polarization

INTRODUCTION

Macrophages demonstrate significant plasticity and are able

to modify their phenotype and function in response to the

surrounding microenvironments (Murray and Wynn, 2011). It

is well known that macrophage polarization display tremen-

dous heterogeneity and is involved in tissue remodeling and

pathogenesis. Recently, an elegant study evaluated the

transcriptome of human macrophages induced by a variety

of stimuli and revealed an extraordinary spectrum of mac-

rophage activation states that far extend the current M1

versus M2-polarization model (Xue et al., 2014). Importantly,

the diverse macrophage subsets can have drastic effects on

health and disease within the tissues where they reside

(Labonte et al., 2014).

IL-23, one member of the IL-12 cytokine family, is crucial

in the pathogenesis of psoriasis, experimental autoimmune

encephalomyelitis (EAE), collagen-induced arthritis (CIA),

inflammatory bowel disease (IBD) (Tonel et al., 2010; Teng

et al., 2015) and leukocyte adhesion deficiency type 1
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(LAD1) (Moutsopoulos et al., 2017). Polymorphisms in the

gene encoding the IL-23 receptor (IL-23R) are important

susceptibility factors for Behcet’s disease, ankylosing

spondylitis, and IBDs like Crohn’s disease and ulcerative

colitis (Remmers et al., 2010; Kadi et al., 2013). It is known

that IL-23 is essential for the terminal differentiation of IL-17-

producing Teffector cells (Park et al., 2005; McGeachy et al.,

2009), which were initially shown to be a chief pathogenic

cell population in EAE and CIA (Duerr et al., 2006; Remmers

et al., 2010), human psoriasis (Wilson et al., 2007; Lubberts,

2015) and LAD1 (Moutsopoulos et al., 2017). However, in

addition to acting on Th17 cells, IL-23 also regulates the

function of innate lymphocytes (Guo et al., 2012). IL-23R is

predominantly found on activated memory T cells, natural

killer (NK) cells, and innate lymphoid cells (ILCs), and at

lower levels on monocytes, macrophages, and dendritic cells

(DCs) in humans; whereas mouse IL-23R is expressed on

activated T cells, ILCs, γδ T cells, macrophages and DCs

(Kastelein et al., 2007; Awasthi et al., 2009; Aychek et al.,

2015). Importantly, studies have demonstrated that IL-23

induces these innate cells to secrete IL-17 and/or IL-22,

although it remains unknown whether IL-23 affects the

functional development of IL-23R-expressing innate cells

in vivo (Cella et al., 2009; Guo et al., 2012; Paget et al.,

2012).

We herein demonstrate that IL-23-treated mono-

cyte/macrophages selectively produce IL-17A, IL-22 and

IFN-γ, and display a distinct lineage gene expression profile

in sharply contrast to M1 and M2 subsets. Importantly, M(IL-

23) macrophages significantly promote the severity of der-

matitis pathogenesis in a mouse psoriasis-like model. Thus,

our findings reveal a previously unappreciated macrophage

polarization driven by IL-23 with unique cell surface markers

and cytokine-producing gene profile.

RESULTS

IL-23 induces a distinct macrophage gene expression

profile

To explore the roles of different cytokines on the expression

of IL-17 family members include IL-17A, IL-17B, IL-17C, IL-

17D, IL-17E (also called IL-25) and IL-17F in macrophages,

we firstly detected the expression of these genes in freshly

isolated mouse peritoneal resident macrophages after dif-

ferent cytokines and LPS stimulation for 48 h by real-time

PCR. Among the 15 cytokines and LPS studied, only IL-23

significantly promoted IL-17A and IL-17F expression, while

resting macrophages expressed almost undetectable levels

of IL-17A and IL-17F (P < 0.001, Fig. 1A). In addition, IL-23

also significantly induced IL-22 and IFN-γ expression in a

specific manner compared to other cytokines and LPS

stimulation (P < 0.001, Fig. 1A). IL-23 induced the mRNA

and protein expression of Th17-type cytokines in dose- and

time-dependent manners as determined by real-time PCR

and ELISA assays (Figs. 1B, 1C and S1). The expressions

of IL-17A and IFN-γ in IL-23-treated macrophages were

further confirmed by flow cytometry and confocal microscopy

staining (Fig. 1D–F). The low percentage of IL-17A+ mac-

rophages might be due to the limited IL-23R expression on

CD11b+F4/80+ macrophages (Fig. S2). However, IL-23 failed

to induce significantly high levels of IL-17C, IL-17D and IL-

17E expression in macrophages (Fig. S3). Furthermore, IL-

23 significantly induced IL-17A, IL-17F, IL-22 and IFN-γ

expression in tissue resident macrophages isolated from

spleens, lungs and liver as well (Fig. S4). To exclude the

potential contamination of other immune cells like T cells, B

cells and ILCs during the differentiation process, we sorted

the peritoneal resident cells of naïve mice to obtain highly

purified F4/80+ cells. It is true that more than 99% of the

sorted cells were CD11b+F4/80+ cells and indeed these cells

also expressed high levels of IL-17A and IL-17F after IL-23

treatment for 48 h (Fig. S5). In addition, the in vitro bone

marrow-derived macrophages also expressed higher levels

of IL-17A, IL-17F, IL-22 and IFN-γ after IL-23 stimulation

(Fig. S6). Thus, IL-23 promotes IL-17A, IL-17F, IL-22 and

IFN-γ expression in resting mouse macrophages in a

specific manner. However, the IL-23-induced expression of

IL-17A, IL-17F, and IL-22 in macrophages were significantly

lower than Th17 cells (Fig. S7A), as well as the lower IFN-γ

expression when comparing with Th1 (Fig. S7B).

To investigate whether IL-23 induces a unique macro-

phage polarization in contrast to M1 and M2 subpopulations,

we compared the expression patterns of the subpopulation-

related marker genes in macrophages treated with LPS +

IFN-γ, IL-4 and IL-23, respectively. Surprisingly, IL-23 failed

to induce either the expression of M1 marker genes like

iNOS, TNF-α, IL-12 and IL-1β, or M2-related genes like

Arg1, YM1 and FIZZ1 (Murray and Wynn, 2011), as detected

by quantitativePCR,ELISAand bioactivity assays (Fig. 2A–D),

whereas IL-23-treated macrophages specifically expressed

IL-17A, IL-17F, IL-22 and IFN-γ (Fig. 2A–E). The distinct

expression patterns of TNF-α, iNOS, IFN-γ, IL-17 and IL-22 in

M1 and M(IL-23) macrophages were further determined by

flow cytometry and confocal assays (Fig. 2F and 2G). To fur-

ther demonstrate whether M(IL-23) macrophages represent a

distinct polarization of macrophages, we thus determined the

gene expression profiles of M1, M2 and M(IL-23) cells by

microarray analysis. Indeed, M(IL-23) macrophages expres-

sed a unique panel of genes in sharply contrast to M1 and M2

macrophages (Fig. 3A). The microarray data were submitted

to the NCBI Gene Expression Omnibus (GEO, http://www.

ncbi.nlm.nih.gov/geo, under accession number GSE

102274). M1, M2 and M(IL-23) cells expressed significant

different gene profiles with up-regulated 301 genes and down-

regulated 135 genes specifically in M(IL-23) cells compared

withM1 andM2 cells (Fig. 3B). Interestingly, M1,M2 andM(IL-

23) cells expressed distinctive gene profiles of cytokines and

chemokines, as determined by mRNA microarray and real-

time PCR methods (Figs. 3C and S8). We also found that M1

macrophages expressed high levels of I-Ab and M2 macro-

phages expressed high CD206 on the surface as reported
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previously (Sun et al., 2012), but M(IL-23) macrophages

expressed low levels of I-Ab and CD206 molecules (Fig. 3D

and 3E). Thus, IL-23-treated macrophages express different

cytokines and cell surface markers as M1 and M2

macrophages.

M(IL-23), M1 and M2 polarizations are reciprocally

regulated

To address whether M(IL-23) macrophages could arise from

M1 or M2 cells, we examined the potential differentiation

ability into M(IL-23) macrophages from resting M0, M1 and

M2 macrophages, respectively. When M1 macrophage

polarization was induced from resting macrophages by LPS

+ IFN-γ as reported (Zhu et al., 2014), these M1-polarized

macrophages were remarkably resistant to M(IL-23) induc-

tion as indicated by the significantly poor IL-17A, IL-17F, IL-

22 and IFN-γ expression when they were subsequently

stimulated with IL-23 as determined by real-time PCR and

ELISA (P < 0.001, Fig. 4A and 4B). Identical results were

also observed when M1-polarized peritoneal macrophages

freshly isolated from TG-pre-treated mice were used instead

of the in vitro LPS + IFN-γ-induced macrophages (Fig. 4C).

M2 macrophages induced by IL-4 were hard to respond to

the subsequent IL-23 treatment in terms of IL-17A, IL-17F,

IL-22 and IFN-γ expression (P < 0.001, Fig. 4D and 4E).

Thus, resting macrophages are susceptible to IL-23-driven

M(IL-23) polarization but M1 and M2 macrophages are

highly resistant to trans-differentiation into M(IL-23)

macrophages.
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Figure 1. Cytokine expression of macrophages stimulated with different cytokines. (A) The freshly isolated peritoneal

macrophages (PEMs) were stimulated with different cytokines and LPS for 48 h. Cytokine mRNA expression were detected by real-

time PCR. (B) mRNA expression of IL-17A, IL-17F, IL-22 and IFN-γ in PEMs treated with different doses of IL-23. (C) Concentrations

of IL-17A, IL-17F, IL-22 and IFN-γ in the media of PEMs after IL-23 treatment for 48 h. (D) The percentages of IL-17A+ cells in F4/80+

PEMs were detected by a flow cytometry. (E) The percentages of IFN-γ+ cells in F4/80+ PEMs treated with IL-23. (F) The expression

of IL-17A and IFN-γ in PEMs were determined using two-photon microscope. Data were shown as mean ± SD (n = 3). **P < 0.01,

***P < 0.001 compared with the control.
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The involvement of STAT3-RORγT and T-bet in M(IL-23)

polarization

In order to investigate the signaling pathways activated by

IL-23 in macrophages, we performed the pathway analysis

based on the gene expression data. As expected, IL-17 and

JAK-STAT signaling pathways were activated in macro-

phages after IL-23 stimulation (Fig. S9A and S9B). Further-

more, IL-23 promoted STAT3 activation in macrophages in

terms of the enhanced levels of p-STAT3 (Y705 and S727,

Fig. 5A) as previously observed in T-cells (Cho et al., 2006;

Teng et al., 2015). Inhibition of STAT3 activation by STAT3-

specific inhibitor NSC (NSC74859) significantly decreased

the IL-17A, IL-17F and IL-22 mRNA and protein expression

in M(IL-23) macrophages, while inhibition of STAT3 failed to

inhibit IFN-γ expression (Figs. 5B and S10A). It is reported

that RORγT, RORα, IRF4 and BATF are critical transcription

factors for Th17 cell induction (Huber et al., 2008; Chung

et al., 2009; Ciofani et al., 2012). The expression of RORγT

and RORα were enhanced in M(IL-23) macrophages at both

mRNA and protein levels (Fig. 5C and 5D), which was further

confirmed by confocol imaging analysis (Fig. S11A and

S11B). However, no detectable IRF4 and BATF expression

in M(IL-23) macrophages was observed in contrast to Th17

cells, as determined by real-time PCR, Western blots and

flow cytometry (Figs. 5C, 5D and S12). Thus, the enhanced

expression of RORγT and RORα raised the possibility that
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they are likely involved in IL-23-driven M(IL-23) polarization.

Consistently, specific inhibition of RORγT by a chemical

SR2211 (Kumar et al., 2012) significantly decreased the IL-

17A, IL-17F and IL-22 but not IFN-γ expression in mRNA

(P < 0.001, Fig. S10B) and protein levels (P < 0.001,

Fig. 5F). To further confirm the roles of RORγT in the Th17-

type cytokines expression in macrophages induced by IL-23,

we freshly isolated CD11b+F4/80+ peritoneal macrophages

from RORγT KO and wild-type control mice and then treated

these cells with IL-23 in vitro. As shown in Fig. S13, signifi-

cantly less IL-17A, IL-17F and IL-22 expression but not IFN-γ

expression was detected in RORγT-deficient macrophages

compared with wild-type control macrophages (P < 0.01,

Fig. S13). As expected, inhibiting STAT3 activity significantly

blocked the IL-23-induced RORγT expression in macro-

phages (Fig. 5E), indicating RORγT is a down-stream

molecule in IL-23-activated STAT3 pathway. Thus, IL-23

induces IL-17A, IL-17F and IL-22 expression in macro-

phages through a STAT3-RORγT-dependent pathway.

To understand the intracellular signal pathway for IFN-γ

production in M(IL-23) macrophages, we detected the Th1-

related key transcription factor T-bet (Robinson and O’Garra,

2002). The expression of T-bet was significantly up-regu-

lated in macrophages after IL-23 treatment as determined by

real-time PCR and Western blots (Fig. 5G and 5H). Macro-

phages isolated from T-bet KO mice expressed significantly

lower IFN-γ after IL-23 treatment (P < 0.001, Fig. 5I). How-

ever, the T-bet deficiency failed to impact the IL-17A, IL-17F
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(C) Heatmap diagram summarizing cytokines and chemokines expression in M0, M1, M2 and M(IL-23) macrophages. Relative gene

expression was depicted according to the color scale. (D) Representative staining of I-Ab, and CD206 on M0, M1, M2 and M(IL-23)

cells. (E) Percentages of I-Ab+, and CD206+ cells in F4/80+ M0, M1 and M(IL-23) cells. Data were shown as mean ± SD (n = 3).

***P < 0.001 for comparisons between the indicated groups.
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and IL-22 expression in macrophages induced by IL-23

(Fig. S14). These results suggest that the enhanced T-bet in

macrophages by IL-23 is involved in the IFN-γ but not IL-

17A, IL-17F and IL-22 expression.

The roles of M(IL-23) macrophages in a psoriasis model

IL-23 and IL-17 are crucial in the pathogenesis of psoriasis,

EAE, CIA, IBD (Cua et al., 2003; Murphy et al., 2003; Wilson

et al., 2007; Tonel et al., 2010) and LAD1 (Moutsopoulos

et al., 2017). We employed an imiquimod (IMQ)-induced

murine model of psoriasis, in which Th17 cytokines like IL-23

and IL-17 were highly involved (van der Fits et al., 2009; Imai

et al., 2015). CD11b+F4/80+macrophages sorted from skin

tissue (Fig. S15) with IMQ-induced psoriasis-like dermatitis

expressed high levels of IL-17A and IL-22 molecules

(Fig. 6A). In order to investigate whether the induced M(IL-

23) cells could promote the pathogenesis in the IMQ-induced

psoriasis mouse model, we used a suboptimal dose of IMQ

(about 35 mg per mouse) to induce a weak psoriasis-like

dermatitis. A suboptimal dose of IMQ treatment caused a

weak but observable dermatitis, while the treatment with a

standard dose of IMQ (about 70 mg per mouse) induced a

typical clinical and pathological alteration of psoriasis-like

dermatitis as indicated by the body weight loss, scores of

skin scaling, erythema, hardness and thickness, as well as

skin pathological changes (Fig. 6B–H). Adoptive transfer of

IL-23-induced M(IL-23) macrophages into recipient mice with

suboptimal IMQ treatment significantly enhanced the

severity of dermatitis to a degree caused by the treatment of

a high dose of IMQ, as evidenced by the alterations of body

weight, skin scaling, erythema, hardness, thickness, and

pathological changes, whereas adoptive transfer of resting

macrophages failed to do so (P < 0.01, Fig. 6B–H). In par-

allel to the pathogenesis, the IL-17A, IL-17F, and IL-22

mRNA expression in skin tissues were significantly
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Figure 4. M(IL-23), M1 and M2 polarizations are reciprocally regulated. (A) The mRNA expression of IL-17A, IL-17F, IL-22 and

IFN-γ in M0, M1, M(IL-23) and IL-23-treated M1 cells. (B) Concentrations of IL-17A, IL-17F and IL-22 cytokines in culture media of M0,

M1, M(IL-23) and IL-23-treated M1 cells. (C) mRNA expression of IL-17A, IL-17F, IL-22 and IFN-γ in resting and TG-recruited

peritoneal macrophages treated with or without IL-23 for 48 h. (D) mRNA expression of IL-17A, IL-17F, IL-22 and IFN-γ in M0, M2, M
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RESEARCH ARTICLE Yuzhu Hou et al.

1032 © The Author(s) 2018

P
ro
te
in

&
C
e
ll



increased by adoptive transfer of M(IL-23) macrophages

(P < 0.001, Fig. 6I). Thus, M(IL-23) macrophages have the

ability to promote the pathogenesis in a mouse model with

psoriasis-like dermatitis.

DISCUSSION

Macrophage polarization is determined by genetic and

environmental factors. Macrophage polarizations play a

critical role in mastering the amplitudes and types of host

immunity. In the present study, we identified a previously

unappreciated macrophage polarization, that is, M(IL-23)

macrophage subpopulation with the following characteristics

and supporting evidences: 1) IL-23-treated resting macro-

phages display distinct gene expression profiling than M1

and M2 macrophages; 2) IL-23-treated resting macrophages

selectively produce IL-17A, IL-17F, IL-22 and IFN-γ, but not

M1 and M2-related cytokines and molecules including TNF-

ɑ, IL-12, iNOS, Arg1, YM1, and FIZZ1; 3) Resting macro-

phages are susceptible to M(IL-23) induction, while polarized

M1 and M2 macrophages are highly resistant to IL-23

treatment. 4) IL-23-treated resting macrophages present in

psoriasis-like dermatitis and promote pathogenesis; and 5)

IL-23-induced IL-17A, IL-17F and IL-22 expression in mac-

rophages is dependent on STAT3-RORγT pathway, while the

expression of IFN-γ in IL-23-treated macrophages was likely

mediated by T-bet pathway. Therefore, IL-23-treated mac-

rophages display distinct phenotype and cytokine production

compared with M1 and M2 macrophages.
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Figure 5. The involvement of STAT3-RORγTand T-bet in M(IL-23) polarization. (A) The phosphorylation state of STAT3 in PEMs.
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Macrophage polarization induced by IL-23 RESEARCH ARTICLE

© The Author(s) 2018 1033

P
ro
te
in

&
C
e
ll



It is reported that IL-23 significantly contributes to

inflammatory disease risk in humans (Duerr et al., 2006;

Genetic Analysis of Psoriasis et al., 2010). Mice deficient in

IL-23 but not IL-12 are resistant to experimental immune-

mediated disease like EAE, RA, and IBD (Cua et al., 2003;

Murphy et al., 2003). The promotion of Th17 subset is highly

recognized to be the key player to mediate the critical role of

IL-23 in inflammatory diseases and infection-induced

pathological consequences like Lyme disease and toxo-

plasma encephalitis (Weaver et al., 2013). Our present study

shows that IL-23 acts directly on macrophages to induce IL-

17A, IL-17F, IL-22 and IFN-γ productions which likely pro-

mote the severity of psoriasis-like dermatitis in mice. The

ability of IL-23 to induce IL-17 production in macrophages is

consistent with the recent observations showing that IL-17

production by macrophages contributes to allergic asthma

and that IL-23 protection against plasmodium berghei

infection in mice is partially dependent on IL-17 from mac-

rophages (Song et al., 2008; Ishida et al., 2013). The sig-

nificance of M(IL-23) macrophage polarization in Th17

cytokines-related inflammatory diseases requires to be

clarified.

IL-23, an IL-12 cytokine family member, is a heterodimeric

molecule composed of p40 and p19 subunits (Langrish et al.,

2005). The known biological roles and the pro-inflammatory

activities of IL-23 in inflammation and autoimmune diseases

include but not limit to the induction of Th17-induced secretion

of IL-17 and suppression of CD4+CD25+ regulatory T cells

(Iwakura and Ishigame, 2006; Izcue et al., 2008). IL-23 sig-

nals through IL-23R and IL-12Rβ1 to activate JAK and pre-

dominantly the phosphorylation and activation of STAT3

(Oppmann et al., 2000), which acts to promote transcription of
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Figure 6. M(IL-23) promoted the pathogenesis in imiquimod-induced psoriasis mice. (A) mRNA expression of IL-17A and IL-22

in the sorted F4/80+ macrophages of skin tissue. (B) We used a suboptimal dose of IMQ (35 mg/day), and a standard dose of IMQ (70

mg/day) was used as a positive control (IMQ, high dose). The IMQ (35 mg/day)-treated mice were transferred with PBS, 1 × 106 M0 or

M(IL-23) macrophages. Body weight loss was shown. (C) H&E staining of the skin tissues. Scaling score (D), erythema score (E),

hardness score (F), skin thickness (G) and cumulative score (H) of mice. (I) mRNA expression of IL-17A, IL-17F, and IL-22 in skin

tissues. Data were shown as mean ± SD (n = 8). **P < 0.01, ***P < 0.001 for comparisons between the indicated groups.
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Il23r and Rorc (encoding RORγ), establishing a positive

feedback loop and stabilizing expression of genes encoding

pro-inflammatory effector molecules including Il17a, Il17f, Il22

and Csf2 (Parham et al., 2002; Codarri et al., 2011). In mac-

rophages, IL-23 uses the classical STAT3-RORγT pathway to

induce Th17 cytokines gene expression profile. On the other

hand, IFN-γ is characteristically produced by NK, T and NKT

cells. It is reported that monocytes/macrophages can express

IFN-γ by IL-12/IL-18 and LPS/ATP stimulations, respectively

(Raices et al., 2008). In the present study, LPS + IFN-γ and IL-

4 failed to induce detectable IFN-γ expression in resting

macrophages, but IL-23 drove resting macrophages to

express high levels of IFN-γ via T-bet pathway.

In summary, we identified a unique macrophage subpopu-

lationM(IL-23) induced by IL-23with a distinct gene expression

profile in contrast to M1 and M2 macrophages. Importantly, IL-

23-induced M(IL-23) macrophage polarization is closely

involved in the pathogenesis in an IMQ-induced psoriasis

mouse model. The physiological function of M(IL-23) macro-

phages in tissue repair and remodeling, as well as the role of M

(IL-23) macrophages in pathogenesis caused by infections,

tumors and graft rejection need to be explored in the future.

MATERIALS AND METHODS

Animals and reagents

C57BL/6(B6) mice were purchased from Beijing University Experi-

mental Animal Center. ROR-γt knock-out (KO) mice (B6.129P2(Cg)-

Rorc
tm2Litt/J; JAX; Stock No.: 007572) were purchased from The

Jackson Laboratory. All mice were maintained in a specific patho-

gen-free facility. All experimental manipulations were undertaken in

accordance with the Institutional Guidelines for the Care and Use of

Laboratory Animals, Institute of Zoology.

Recombinant mouse cytokines were purchased from PeproTech

(Rocky Hill, NJ). RmIL-21 and IL-23 were obtained from R&D Sys-

tems (Minneapolis, MN). Bacterial lipopolysaccharide (LPS; E. coli

055:B5) was purchased from Sigma-Aldric (St Louis, MO). Selective

STAT3 inhibitor (NSC74859; 4655/10) were obtained from R&D

Systems and RORγT inverse agonist (SR2211; 557353) were from

The Merck Group (Darmstadt, Germany). The reagents were used at

the indicated or following concentrations based on our previous

studies (Hou et al., 2013; Hou et al., 2014): recombinant mouse IL-

1β (100 ng/mL), IL-2 (100 U/mL), IL-4 (1000 U/mL), IL-6 (20 ng/mL),

IL-10 (20 ng/mL), IL-12 (10 ng/mL), IL-13 (20 ng/mL), IL-17A (100

ng/mL), IL-21 (100 ng/mL), IL-23 (100 ng/mL), IL-33 (100 ng/mL),

TNF-α (100 ng/mL), IFN-γ (50 ng/mL) TGF-β1 (5 ng/mL); and

recombinant human IL-23 (100 ng/mL), M-CSF (10 ng/mL); LPS

(500 ng/mL), NSC74859 (100 μmol/L), SR2211 (10 μmol/L).

Anti-mF4/80-PE-Cy5, anti-mCD11b-PE-Cy5, anti-mTNF-α-FITCand

anti-mCXCR5-PE were purchased from BD Biosciences Pharmingen

(San Diego, CA, US). Anti-mIL-17A-PE was purchased from Biolegend

(San Diego, CA, US). Anti-mIL-23R-AF488 mAb was purchased from

R&D Systems. The primary antibodies against p-STAT3 (Tyr705),

p-STAT3 (Ser727), STAT3, IRF4 and BATF were purchased from Cell

Signaling Technology (Beverly, MA, US). The primary antibodies against

RORγTwere from Millipore Biotechnology (Billerica, MA, US).

Cell isolation

Primary mouse peritoneal macrophages were obtained from B6

mice as described previously (Zhu et al., 2014). The purity of mac-

rophages was more than 90% of CD11b+F4/80+macrophages as

analyzed by flow cytometry (Yang et al., 2016). For real-time PCR

and ELISA assays, CD11b+F4/80+ macrophages were further sorted

by a MoFlo XDP High Speed Cell Sorter (Beckman Coulter).

Microarray hybridization and data analysis

Total RNA was amplified and labeled by Low Input Quick Amp

Labeling Kit, One-Color (Cat#5190-2305, Agilent technologies,

Santa Clara, CA, US). Differentially expressed genes were defined

as genes with at least 2 fold variance of expression levels in M1, M2

and M(IL-23) polarized macrophages compared to M0

macrophages.

Immunofluorescent staining

Cells were cultured on coverslips for the indicated time and then

fixed in 4% paraformaldehyde for 10 min and stored in PBS at 4°C

(Hou et al., 2014). Cells were permeabilized and blocked and then

were incubated with the indicated mAbs (1:100 dilution) overnight at

4°C. Following PBS washes, the secondary Ab was applied for 1 h

and HOECHST33342 (2 μg/mL) for 10 min. Photomicrographs were

taken using an LSM510META Laser Scanning Microscope (Zeiss,

Germany).

Western blot

It was performed as described (Sun et al., 2012). Protein bands were

visualized by adding HRP membrane substrate (Millipore) and then

scanned using the Tanon 1600R Gel Image System (Tanon Co.,

Ltd., Shanghai, China). GAPDH mAb (Proteintech Group, Inc) was

used to normalize for the amount of loaded protein.

ELISA

IL-17A, IL-17F, IL-22 and IFN-γ ELISA assays were performed fol-

lowing the manufacturer’s instructions (Biolegend).

Quantitative PCR

Real-time PCR was performed using multiple kits (SYBR Premix Ex

TaqTM, DRR041A, Takara Bio) on CFX96 (Bio-Rad) (Li et al., 2017).

The primers are listed in Table S1. Housekeeping gene hypoxan-

thine phosphoribosyl transferase (HPRT) was used as an internal

control.

IMQ-induced psoriasis

The day that psoriasis was first induced by imiquimod (IMQ) was

defined as day 0. On days −1 and 1, B6 mice were injected i.v. with

1 × 106 IL-23-induced macrophages which were treated with IL-23

for 72 h in vitro as described above. B6 mice were used to induce

psoriasis by IMQ as described previously (van der Fits et al., 2009).

Mice were evaluated daily. Back redness (erythema), presence of

scales (scaling), and hardness of the skin were scored using a

semiquantitative scoring system from 0 to 4 based on their external
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physical appearance: 0 = no skin abnormalities, 1 = slight, 2 =

moderate, 3 = marked, and 4 = severe. In addition, mice were

weighed, and dorsal skin thickening was assessed by measuring

double-skin fold thickness using a digital micrometer (Mitutoyo). At

the end of the experiment, back skin samples were fixed in 4%

formaldehyde and stained with H&E. Parakeratosis, acanthosis and

leukocyte infiltration were assessed to evaluate scores in a blinded

way. Scores from 0 to 2 were given, as follows: 0 = no abnormalities;

1 = psoriasis-like dermatitis: epidermal acanthosis, reduction of

granulose layer, and hyperkeratosis with modest leukocyte infiltra-

tion; 2 = psoriasis-like dermatitis: higher epidermal acanthosis,

absence of granulose layer, and higher hyperkeratosis with leuko-

cyte infiltration enriched in neutrophils.

Intracellular cytokine staining

Macrophages were treated with GolgiPlug (BD Pharmingen) for the

last 6 h of incubation (Zhu et al., 2014). Cells were fixed and per-

meabilized with fixation and permeabilization solution (BD; 553722)

and Perm/Wash buffer (BD; 554723). Cells were analyzed for the

intracellular production of cytokines by staining with anti-mTNF-ɑ-

FITC, anti-mIFN-γ-PE, or anti-mIL-17A-PE, respectively. The cells

were then detected by a flow cytometry.

Statistical analysis

Data are presented as mean ± SD. Student’s unpaired t test for

comparison of means was used. For multiple group comparison,

significant difference was calculated using the non-parametric

Mann-Whitney U test. A P value less than 0.05 was considered

significant.
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