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Alzheimer’s disease (AD) is a devastating condition with no known

effective treatment. AD is characterized by memory loss as well as

impaired locomotor ability, reasoning, and judgment. Emerging evi-

dence suggests that the innate immune response plays a major role in

the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in

the brain perturbs physiological functions of the brain, including

synaptic and neuronal dysfunction, microglial activation, and neu-

ronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for

interleukin (IL)-33, increase in patients with mild cognitive impair-

ment, suggesting that impaired IL-33/ST2 signaling may contribute

to the pathogenesis of AD. Therefore, we investigated the poten-

tial therapeutic role of IL-33 in AD, using transgenic mouse models.

Here we report that IL-33 administration reverses synaptic plastic-

ity impairment and memory deficits in APP/PS1 mice. IL-33 admin-

istration reduces soluble Aβ levels and amyloid plaque deposition

by promoting the recruitment and Aβ phagocytic activity of micro-

glia; this is mediated by ST2/p38 signaling activation. Furthermore,

IL-33 injection modulates the innate immune response by polarizing

microglia/macrophages toward an antiinflammatory phenotype and

reducing the expression of proinflammatory genes, including IL-1β,

IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our

results demonstrate a potential therapeutic role for IL-33 in AD.

innate immunity | synaptic plasticity | β-amyloid | microglia |
neuroninflammation

Alzheimer’s disease (AD) is the most common type of de-
mentia in the elderly population, and its prevalence is in-

creasing with the rapidly growing global elderly population (1).
AD is characterized by progressive memory loss and other cognitive
dysfunctions, such as impaired locomotor ability, reasoning, and
judgment (2, 3). The hallmarks of AD pathology include the pres-
ence of extracellular amyloid plaque deposits, composed of Aβ
peptides, and the intracellular formation of neurofibrillary tangles
in the brain, together with synaptic dysfunction and neuronal loss.
The mechanisms underlying the onset and progression of AD

remain unclear. Mutations of amyloid precursor protein and
presenilins that result in abnormal production of Aβ peptides are
suggested to play a dominant role in the pathogenesis of early-
onset familial AD (4). Identification of several innate response
genes in genome-wide association studies support the idea that
innate immunity is involved in the more common sporadic late-
onset form of AD (LOAD) (4).
Studies of transgenic mouse models of AD suggest the im-

pairment of microglial function to reduce Aβ burden as a causal
factor in the disease (5). Specifically, in AD, microglial activation
attempts to eliminate Aβ accumulation by enhancing Aβ phagocy-
tosis, clearance, and degradation; however, the continuous genera-
tion and aberrant accumulation of Aβ in the brain causes
microglial dysfunction by reducing Aβ receptors and increasing
the generation of inflammatory mediators (5). Chronic neuro-
inflammation induced by microglia contributes to pathological
progression and symptom severity in late stages of the disease.

Importantly, although sometimes contradictory, modulation of
the immune system by specific interleukin signals such as IL-12/
IL-23 and IL-10, as well as the inflammasome pathway, ame-
liorates AD-like pathology (6–9).
IL-33, an alarmin of the IL-1 family, is a crucial mediator of

the innate immune response and a regulator of immune cell
infiltration and activation (10). IL-33 is expressed in various cell
types (10, 11). IL-33 binds to a heterodimeric receptor complex,
comprising ST2 and IL-1RAcP, and triggers the intracellular
cascade involve myeloid differentiation factor 88 (MyD88) and
NF-κB. This signaling selectively activates type 2 T-helper cells,
mast cells, neutrophils, and alternatively-activated macrophages
(10). In the central nervous system (CNS), IL-33 is constitutively
expressed in oligodendrocytes (12), whereas ST2 is expressed
mainly in microglia and astrocytes (13). IL-33 is a pleiotropic
cytokine with diverse functions in various infectious and in-
flammatory diseases that may exert beneficial or detrimental
effects on the disease (10, 14). Genetic studies have identified
three single nucleotide polymorphisms in the IL-33 gene that are
associated with a reduced risk of AD development (15). IL-33
transcript levels are decreased in the brains of LOAD cases (15).
How IL-33 is involved in the pathogenesis of AD, in particular
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whether replenishment of IL-33 can alleviate AD pathology,
remains unclear, however.
Here we show that IL-33 treatment reverses synaptic plasticity

and cognitive deficits in APP/PS1 mice, an AD mouse model that
exhibits selected pathologies of AD, including amyloid plaque
deposition and cognitive impairment. IL-33 reduces soluble Aβ and
amyloid plaque load by promoting the recruitment and phagocytic
activity of microglia. Furthermore, IL-33 injection modulates the
immune response of APP/PS1 mice and polarizes microglia/mac-
rophages toward an antiinflammatory phenotype. Collectively, our
results demonstrate the potential therapeutic role of IL-33 in AD.

Results

IL-33 transcript and protein levels are reportedly lower in the
brains of patients with LOAD compared with brains of healthy
individuals (15). We found significantly higher levels of serum
sST2, a decoy receptor of IL-33, in patients with mild cognitive
impairment (MCI; with an increased risk of developing to AD in

later life) compared with healthy controls (Fig. 1A); however,
whether and how IL-33 is involved in AD pathogenesis, specif-
ically whether replenishment of IL-33 can alleviate AD pathol-
ogy, remain unclear. Therefore, we used the APPswePS1de9
(hereinafter designated APP/PS1) transgenic mouse model of
amyloid plaque deposition (16) to examine the effect of IL-33 on
amyloid pathology.
First, we investigated whether increasing IL-33 levels can

rescue hippocampal synaptic plasticity impairment and cognitive
deficits in APP/PS1 mice. Whereas high-frequency stimulation
significantly increased the magnitude of long-term potentiation
(LTP) at Schaffer collateral (SC)-CA1 synapses in the hippo-
campus of wild type (WT) mice, LTP was significantly impaired
in 6- to 7-mo-old APP/PS1 mice (17, 18). An i.p. injection of
recombinant IL-33 (200 ng) for 2 d dramatically reversed the
LTP impairment of APP/PS1 mice (Fig. 1 B and C).
We next assessed the effect of IL-33 on modulating the be-

havioral performance of the APP/PS1 mice. In the exploratory

Fig. 1. IL-33 administration ameliorates synaptic impairment and behavioral deficits in APP/PS1 mice. (A) Boxplot showing the sST2 levels in the serum of

healthy subjects (NC; n = 17) and patients with MCI (n = 18). *P < 0.05, two-sample t test. (B and C) IL-33 rescues LTP impairment in APP/PS1 mutant mice. WT

and APP/PS1 mice at age 6 to 7 mo were given IL-33 or vehicle control (Con). LTP in the hippocampal CA1 region was induced by high-frequency stimulation

(HFS). (B) Averaged slopes of baseline normalized fEPSP (mean ± SEM). (Inset) Examples of fEPSPs recorded 5 min before (1, gray) and 55 min after (2, black)

LTP induction. (C) Quantification of mean fEPSP slopes during the last 10 min of the recording after LTP induction. n = 16–18 slices from eight mice, rep-

resentative of three experiments. ***P < 0.001, two-way ANOVA with Bonferroni post hoc test. (D) IL-33–treated APP/PS1 mice (14 mo old) exhibit improved

habituation in the exploratory open field (OF) test. (Upper) Timeline of IL-33 administration and the OF test. (Lower) Percentage change in distance traveled

relative to the distance traveled on the first day of training. n = 11–13 mice/group. Data are mean ± SEM. *P < 0.05; ***P < 0.001, two-way repeated-measures

ANOVA. (E–G) IL-33 ameliorates memory retrieval deficits of APP/PS1 mice in fear conditioning (FC) tests. (E) Timeline of IL-33 administration and FC test. S,

electrical shock; T, freezing tests. The graphs show the percentage of freezing time after 1 d (F) and 7 d (G) of electric shocks. n = 11–13 mice/group. Data are

mean ± SEM. *P < 0.05; **P < 0.01, two-way ANOVA with Bonferroni post hoc test.
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open field test, the vehicle-injected and IL-33–injected WT mice
exhibited similar habituation ability in novel testing environ-
ments during the 3-d training course (Fig. 1D and SI Appendix,
Fig. S1). The APP/PS1 mice exhibited significantly slower ha-
bituation to the testing environment than theWTmice; however, the
IL-33–treated APP/PS1 mice showed significantly improved habitu-
ation to the testing environment (Fig. 1D and SI Appendix, Fig. S1).
We also assessed the memory formation and retrieval abilities

of the IL-33–treated APP/PS1 mice using the contextual fear-
conditioning test, by evaluating their freezing response at 1 d and
7 d after the administration of electric shock (Fig. 1 E–G). The mice
of different experimental groups did not exhibit any significant
difference in freezing response immediately after electric shock (SI
Appendix, Fig. S2). Compared with theWTmice, the APP/PS1 mice
exhibited reduced freezing behavior at 1 d and 7 d after the electric
shock, indicating an impaired contextual retrieval of fear memory
(Fig. 1 F and G). Whereas the IL-33–treated APP/PS1 mice did not
exhibit an improvement in freezing performance 1 d after the electric
shock (Fig. 1F), IL-33 treatment was able to restore the impaired
freezing response of the APP/PS1 mice at 7 d after the electric
shock (Fig. 1G). These data suggest that IL-33 treatment re-
verses contextual memory deficits in APP/PS1 mice, probably
through ameliorating the hippocampal synaptic dysfunctions.

IL-33 reached the brain within 30 min after i.p. injection (SI
Appendix, Fig. S3), consistent with earlier findings of a com-
promised blood–brain barrier in both APP/PS1 mice and patients
with AD (19, 20). At the concentration used (200 ng i.p. daily for
2 d), IL-33 did not affect the general health or plasma histamine
level in either WT or APP/PS1 mice (SI Appendix, Fig. S4).
Collectively, these results demonstrate that IL-33 can rescue the
synaptic dysfunction and memory deficits of APP/PS1 mice.
We then investigated whether IL-33 administration exerts a

beneficial effect on the pathological conditions of AD by mea-
suring soluble Aβ levels and amyloid plaque deposition in APP/
PS1 mice. Western blot analysis showed that IL-33 injection
significantly reduced the amounts of soluble Aβ in the cortices of
10-mo-old (by 54 ± 9%, n = 3 experiments; Fig. 2A) and 25-mo-
old (SI Appendix, Fig. S5) APP/PS1 mice. Specifically, soluble
Aβx–40 and Aβx–42 species, which play major synaptotoxic roles in
AD (21), were decreased by ∼50% and ∼30%, respectively, in
the cortices of 10-mo-old IL-33–administered APP/PS1 mice
(Fig. 2B). At 2 d after IL-33 treatment, the 4G8-labeled amyloid
plaques were significantly reduced in the cortices of 12-mo-old
APP/PS1 mice (Fig. 2 C and D). Importantly, intracerebroventricular
administration of sST2 abolished the IL-33–mediated reduction
of 4G8-stained amyloid plaques in the APP/PS1 mice (Fig. 2 C
and D), demonstrating the specificity and the central activation

Fig. 2. IL-33 administration reduces soluble Aβ levels and Aβ plaques in APP/PS1 mice. (A) IL-33 reduced soluble Aβ content. Representative Western blot of

soluble and insoluble Aβ in cortical homogenates of 10-mo-old APP/PS1 mice. n = 6 mice from three experiments. (B) Quantitative analysis of relative Aβx–40
and Aβx–42 levels in soluble fractions of APP/PS1 mice measured by ELISA. n = 4 mice per group. **P < 0.01, Student’s t test. (C and D) IL-33 ameliorated

amyloid plaque pathology in APP/PS1 mice. Representative images (C) and quantification (D) of 4G8-stained amyloid plaques in the cortices of APP/PS1 mice

(12 mo old) after IL-33 administration with or without sST2 infusion. n = 7 mice/group. *P < 0.05, one-way ANOVA with Bonferroni post hoc test. All data are

mean ± SEM. (Scale bars: Top, 500 μm; Bottom, 100 μm.)
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of myeloid cells of IL-33/ST2 signaling in ameliorating the ce-
rebral amyloid pathology. IL-33 administration for 2 d also re-
duced 4G8-stained amyloid plaques in 5XFAD mice, another
AD transgenic mouse model (SI Appendix, Fig. S6).
Because the Aβ phagocytic activity of microglia directly im-

pacts Aβ clearance (22, 23), we examined whether Aβ phagocy-
tosis and degradation by resident microglia/infiltrating monocytes
are altered in APP/PS1 mouse brains following IL-33 admin-
istration. To mediate Aβ phagocytic uptake, myeloid cells are
first recruited to amyloid plaques before being activated and
phagocytosing Aβ (8, 24). Clusters of Iba1+ myeloid cells were
found adjacent to the amyloid plaques in the cortices of the
APP/PS1 mice (Fig. 3A). IL-33 injection enhanced the re-
cruitment of Iba1+ myeloid cells to amyloid plaques in these

cortices (Fig. 3A). Our 3D analysis confirmed the increased
colocalization of myeloid cells and amyloid plaques in IL-33–
treated APP/PS1 mouse brains (Fig. 3 B and C), supporting
the notion that IL-33 enhances the proximity between mye-
loid cells and amyloid plaques.
CD68, a transmembrane glycoprotein of the lysosomal/endosomal-

associated membrane glycoprotein family, acts as a scavenger
receptor for debris clearance (25, 26). In APP/PS1 mice, the
clusters of Iba1+ myeloid cells surrounding amyloid plaques
exhibited diffuse CD68 distribution (Fig. 3D). IL-33 adminis-
tration increased CD68 expression in Iba1+ myeloid cells, that
were in close contact with amyloid plaques (Fig. 3E). These
findings suggest that IL-33 administration increases phagocytic
Aβ uptake by myeloid cells.

Fig. 3. IL-33 administration enhances microglial phagocytosis of Aβ. (A–C) IL-33 increases the colocalization of Iba1+ myeloid cells and Aβ plaques in the cortices of

APP/PS1mice (12mo old). Representative confocal images (A) and 3D reconstruction (B) show the interaction betweenAβ plaques and Iba1+ cells. (C) Quantification of the

3D colocalization of Aβ plaques and Iba1+ staining. n = 16 images from four mice. ***P < 0.001, Student’s t test. (D and E) IL-33 increases CD68 expression in Aβ plaques.

Representative projected confocal images showing CD68 staining in Iba1+ cells (Left) and distribution of CD68+Iba1+ cells around the Aβ plaques (Right) in the cortices of

vehicle-treated (Con; D) or IL-33–treated (E) APP/PS1 mice. (F–I) IL-33 enhances the phagocytic activity of resident microglial cells. Representative scatterplots and quan-

tification show the percentages of CD11b+mononuclear cells (F andG) and CD11b+CD45lo cells (H and I) containingmethoxy-X04–labeled Aβ in the APP/PS1 mouse brains

(17 mo old) after IL-33 administration. Top quadrants (red and blue) in Fwere identified as myeloid cell populations, whereas Top Right quadrants in F and the gate in H

represent populations of cells that phagocytosed Aβ [methoxy-X04+ (MeX04+)]. Con, n = 5 mice; IL-33, n = 6 mice from three experiments. All data are mean ± SEM. *P <

0.05; **P < 0.01, Student’s t test. (Scale bars: 10 μm.)
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To directly demonstrate that IL-33 promotes Aβ phagocytosis
by myeloid cells, we injected APP/PS1 mice with methoxy-X04, a
fluorescent dye that crosses the blood-brain barrier and specifi-
cally binds Aβ (7). Flow cytometry analysis detected methoxy-
X04–labeled Aβ in ∼33% of the CD11b+ myeloid cells from the
cortices of the APP/PS1 mice (Fig. 3 F and G), but not those of
WT mice (SI Appendix, Fig. S7). IL-33 injection further in-
creased the proportion of CD11b+ cells exhibiting methoxy-X04
fluorescence (∼47%; Fig. 3 F and G).
Both resident microglia and infiltrating monocytes are sug-

gested to play phagocytic roles in clearing unwanted materials in
neurodegeneration and brain injury (27, 28); therefore, we ex-
amined the subset(s) of CD11b+ myeloid cells that exhibited
increased Aβ phagocytic activity in IL-33–treated APP/PS1
mouse brains. Resident microglia and infiltrated monocytes can

be differentiated by low (CD45lo) and high (CD45hi) CD45 ex-
pression, respectively (29). We found that most CD11b+ myeloid
cells in the WT mice were resident microglia, as characterized by
the low CD45 expression (>90% CD45lo; SI Appendix, Fig. S8A).
The APP/PS1 mice exhibited ∼3.6-fold more infiltrating mono-
cytes (CD11b+CD45hi myeloid cells) compared with the WT
mice (SI Appendix, Fig. S8 A–D). In the APP/PS1 mice, ∼10% of
CD11b+CD45lo resident microglia phagocytosed Aβ (Fig. 3 H
and I), and ∼80% of CD11b+CD45hi infiltrating monocytes took
up the methoxy-X04–labeled Aβ (SI Appendix, Fig. S8 E–G). IL-33
administration significantly increased Aβ phagocytic uptake by
resident microglia by ∼80%, whereas the percentage of Aβ-containing
infiltrating monocytes remained relatively stable (Fig. 3 H and I
and SI Appendix, Fig. S8 E–G). In addition, soluble Aβ can be
degraded by Aβ-degrading enzymes, including neprilysin and

Fig. 4. IL-33 modulates inflammatory responses in APP/PS1 mice. (A and B) IL-33 administration increases neprilysin protein level in the brains of APP/PS1

mice. WT and APP/PS1 mice (14 mo old) were treated with IL-33 or PBS (Con). Representative Western blot (A) and quantification of neprilysin (NEP; B)

expression are shown. n = 4 cortices per group. **P < 0.01, two-way ANOVA with Bonferroni post hoc test. (C) ST2-deficient microglia abolished the IL-33–

stimulated Aβ uptake. Shown are the differences in fluorescein-labeled Aβ1–42 uptake between the control (Con) and IL-33–treated primary ST2+/+ and ST2−/−

adult microglia cultures. n = 6 mice in three experiments. *P < 0.05, one-way ANOVA with Bonferroni post hoc test. (D and E) IL-33 drives microglia to an

alternative activation state in APP/PS1 mice. Shown is quantitative ddPCR analysis of Fizz1 (D) and Arg1 (E) mRNA levels in microglia isolated from IL-33–

administered APP/PS1 mouse brains. WT/Con, n = 5 mice; WT/IL-33, n = 4 mice; APP/PS1/Con, n = 7 mice; APP/PS1/IL-33, n = 6 mice. *P < 0.05; **P < 0.01, two-

way ANOVA with Bonferroni post hoc test. (F–H) IL-33 suppresses the proinflammatory genes in APP/PS1 mice. Shown is quantitative ddPCR analysis of NLRP3

(F), IL-1β (G), and IL-6 (H) in the cortices of 12-mo-old APP/PS1 mice. WT/Con, n = 5 mice; WT/IL-33, n = 3 mice; APP/PS1/Con, n = 5 mice; APP/PS1/IL-33, n = 4

mice. *P < 0.05; **P < 0.01; ***P < 0.001, two-way ANOVA with Bonferroni post hoc test. All data are mean ± SEM.
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insulin-degrading enzyme (30). Whereas reduced neprilysin ex-
pression was observed in the brains of APP/PS1 mice, IL-33
administration significantly increased neprilysin protein expres-
sion, but not insulin-degrading enzyme expression, in APP/PS1
mice (Fig. 4 A and B and SI Appendix, Fig. S9). Taken together,
our results demonstrate that IL-33 administration mitigates the
amyloid plaque pathology in APP/PS1 mice through the en-
hancement of Aβ phagocytosis by resident microglia and Aβ
clearance, probably by increasing neprilysin levels.
We then examined how IL-33 triggers Aβ uptake by microglial

cells. IL-33 enhanced the uptake of fluorescence-labeled oligomeric
Aβ1–42 in cultured microglial cells in WT mice in a dose-dependent
manner (SI Appendix, Fig. S10), but not in ST2-deficient microglia
(Fig. 4C). Concordant with the prominent expression of ST2 in
microglia (SI Appendix, Fig. S11A), the downstream signaling
molecules (p38 and ERK1/2 MAPKs) of ST2 receptors were
activated in cultured microglia on IL-33 treatment (SI Appendix,
Fig. S11 B–D). These results indicate that ST2 signaling in microglia
mediates the IL-33–associated enhancement of Aβ phagocytosis
in the brain of APP/PS1 mice.
The inflammatory responses in the brain play a significant role

in AD pathology (5, 31). Microglial polarization is associated
with the immune response in the CNS (32). Importantly, the
mRNA expression of Arg1 and Fizz1, which are associated with
antiinflammatory action, was significantly increased in CD11b+

myeloid cells isolated from both WT and APP/PS1 mouse brains
after IL-33 administration (Fig. 4 D and E). These results suggest
that IL-33 drives the microglia/macrophages in the APP/PS1
mouse brains toward an alternative activation phenotype, which
may contribute to neuroprotective functions. Furthermore, our
results suggest that IL-33 can ameliorate global inflammation in
the brain cortices of APP/PS1 mice. In the APP/PS1 mice, pro-
inflammatory genes including IL-1β, IL-6, and NLRP3 (NOD-like
receptor family, pyrin domain-containing 3, a key component in the
inflammasome cascade) were significantly induced in the brain
cortex. IL-33 administration significantly suppressed the in-
creased expression of these proinflammatory genes (Fig. 4 F–H).
Taken together, these findings suggest that IL-33 regulates in-
flammatory responses in the APP/PS1 mouse brain.

Discussion

There is no effective therapy for AD, in part because of our
limited knowledge of its underlying pathophysiological mecha-
nisms. Nonetheless, manipulation of the innate immune system
has been considered a promising approach for the development
of an effective therapeutic strategy for AD. The present study
demonstrates that peripheral IL-33 administration in AD mouse
models alleviates AD-like pathology by enhancing microglial
phagocytosis and degradation of Aβ. Furthermore, IL-33 treatment
switches the microglia/macrophages to an alternative activation
phenotype, resulting in a reduction of the proinflammatory response
in the AD mouse brains. Considered along with the beneficial effects
of IL-33 on synaptic and memory functions in the AD-like mouse
model, our results suggest that IL-33 administration can be de-
veloped as a potential therapeutic intervention for AD.
IL-33 is a pleiotropic cytokine whose roles depend on in-

flammation sites and stimulant types. IL-33/ST2 signaling plays a
protective role in some diseases caused by sterile inflammation
(where the activation of innate immunity is not triggered by in-
fection), such as atherosclerosis and obesity (10, 14). In athero-
sclerosis, IL-33 reduces atherosclerotic plaque formation by
reducing macrophage foam cell formation and increasing pro-
duction of the antiinflammatory cytokine IL-5 and antioxidized
low-density lipoprotein antibody (33, 34). Similarly, Aβ-stimulated
sterile inflammation in AD also plays an important role in disease
pathogenesis (35). IL-33 expression is reduced in the brains of pa-
tients with AD (15), and sST2 is increased in the serum of patients
with MCI, as demonstrated in the present study (Fig. 1A). These

results raise the intriguing possibility that impaired IL-33/ST2 sig-
naling contributes to the nonresolution of sterile inflammation,
resulting in amyloid plaque deposition, chronic neuroinflammation,
and increased symptom severity in AD. Indeed, our findings show
that replenishment of IL-33 is able to reduce the AD-like pathol-
ogy in the brains of APP/PS1 mice.
What are the underlying mechanisms that mediate the ability

of IL-33/ST2 signaling to attenuate AD pathology? Clearance of
Aβ is controlled by complex mechanisms, and its dysregulation
has been suggested to be a major disease culprit (36). The first
responders to Aβ accumulation are the microglia, which are
recruited to amyloid plaques. Interestingly, the Aβ-clearing ca-
pacity of microglia in APP/PS1 mice is impaired with aging, as
revealed by reduced expression of Aβ-binding receptors and Aβ-
degrading enzymes (37). In particular, it has been suggested that
microglia become inefficient in phagocytosing Aβ during AD
progression. IL-33 specifically enhances Aβ uptake by microglia.
The increased numbers of CD68+ phagocytic microglial cells
around amyloid plaques in APP/PS1 mice after IL-33 treatment
suggests that IL-33 is able to restore the phagolysosomal activity
of microglia and promote Aβ clearance. Furthermore, treatment
of primary adult microglia with IL-33 enhances Aβ uptake,
whereas abolishing ST2 expression in microglia reduces this
uptake. These findings suggest that IL-33–dependent activation
of ST2 signaling in microglia enhances Aβ phagocytosis and
clearance. Further phenotypic characterization of this microglial
subset that exhibits increased Aβ phagocytic capacity will provide
insight into the mechanisms underlying the IL-33–stimulated
clearance of Aβ. In particular, recent identification of markers
specific for resident microglia may facilitate further analysis of
microglial regulation by IL-33 (38).
Direct degradation of Aβ by endopeptidases is another im-

portant pathway for its clearance (39). Exogenous expression of
one of the enzymes, neprilysin, in the brains of AD transgenic
mice causes a reduction of Aβ oligomers, the major species
causing synaptotoxicity (40), whereas reducing the activity of
neprilysin in the APP/neprilysin−/− double transgenic mice re-
sults in accumulation of Aβ, specifically the oligomeric form
(41). The increase of neprilysin protein in the brains of APP/PS1
mice after IL-33 administration (Fig. 4 A and B) provides insight
into the mechanism of the enzymatic degradation of Aβ in the
IL-33–treated condition.
On exposure to Aβ during the progression of AD, microglia

are converted into proinflammatory and activated phenotypes.
Activated microglia result in Aβ accumulation by enhancing the
production of Aβ peptides and reducing its phagocytosis and
degradation (22). Along with recruiting monocytes to lesion sites,
IL-33 acts as an alarmin for the polarization of macrophages toward
the alternative phenotype after CNS injury (42). Indeed, we show
that IL-33 administration causes an increase in the antiinflam-
matory genes Arg1 and Fizz1 in microglia/macrophages in the
brain, suggesting that IL-33 enhances the polarization of microglia/
macrophages to an alternative activation phenotype.
How does IL-33 modulate the functions of microglia/macro-

phages? Toll-like receptors (TLRs), including TLR2 and TLR4,
have been identified as innate pattern recognition receptors that
mediate the proinflammatory response (43, 44). TLR signaling
via the adaptor protein MyD88 mediates inflammatory responses,
such as inducing microglial phagocytic activity in early stages of
inflammation and increasing transcription of genes encoding IL-1
family cytokines (44, 45). Indeed, inhibition of TLR2 or TLR4
reduces Aβ-stimulated microglial production of IL-1β and IL-6 (46,
47). IL-33/ST2 signaling acts as a negative regulator of TLR sig-
naling by competing with MyD88 (48, 49). Specifically, ST2 acti-
vation recruits MyD88, which leads to MAPK activation for gene
transcription (10). Whether this mechanism mediates the sup-
pression of proinflammatory gene production in IL-33–treated
APP/PS1 mice awaits further study.
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It is tempting to speculate that relatively high levels of IL-33 in
the CNS of healthy individuals (50) may be a key innate factor
that protects against AD. The breakdown of this fail-safe
mechanism owing to genetic disposition or environmental pres-
sure thus may contribute to the onset of AD. Indeed, genetic
studies have linked IL-33/ST2 single nucleotide polymorphisms
to clinical AD (15, 51), suggesting that our observations in the
murine AD model could be extrapolated to humans. Recent
clinical trials of AD treatments have been unsuccessful, likely
because the regimens aimed to bind monoclonal antibodies to
Aβ or to prevent further Aβ accumulation at a late disease stage
(52). Our finding that IL-33 mobilizes innate immunity to pre-
vent and clear established Aβ accumulation even at late stages of
the disease represents a new treatment paradigm for AD.

Methods
Reagents. Murine recombinant IL-33 was obtained from Biolegend (580506).

sST2-Fc recombinant protein (1004-MR-050) and the ST2/IL-1 R4 Quantikine

ELISA Kit (DST200) were purchased from R&D Systems. Antibodies specific for

IL-33 (clone Nessy-1; ab54385) and APP (clone DE2B4; ab11132) were pur-

chased from Abcam. Iba1 antibody (019-19741) was purchased from Wako;

APC-conjugated antibody against CD11b (clone M1/70) and FITC-conjugated

antibody against CD45 (clone 30-F11), from eBioscience; CD68 antibody (FA-11),

from AbD Serotec; monoclonal 4G8 antibody (recognizes Aβ17–24; SIG-39220)

for immunohistochemistry and 6E10 antibody (recognizes Aβ1–16; SIG-39320)

for Western blot analysis, from Covance; insulin-degrading enzyme antibody

(PC730), from Calbiochem; neprilysin antibody (H-321), from Santa Cruz

Biotechnology; P-p38 (4511), p38 (9212), P-ERK1/2 (4377), and ERK1/2 (9102)

antibodies, from Cell Signaling Technology; and actin antibody (clone AC-40;

A4700), from Sigma-Aldrich. Fluorescein-beta-amyloid (1–42) (A-1119-1) was

obtained from rPeptide; methoxy-X04 (4920), from Tocris Bioscience; DAB, from

DAKO; Hoechst 34580 (H21486), human Aβx–40 (KHB3481), and Aβx–42
(KHB3441) commercial ELISA kits and Alexa Fluor secondary antibodies, from

Life Technologies; and the histamine ELISA kit (ENZ-KIT140-0001), from Enzo

Life Sciences.

Oligomeric Fluorescein-Aβ1–42 Preparation. Monomeric Aβ1–42 was dissolved in

dry DMSO and diluted in ice-cold phenol red-free F-12 medium to a final

concentration of 100 μM. The fluorescein-Aβ1–42 solution was incubated at 4 °C

for 24 h and then centrifuged at 14,000 × g for 10 min. The supernatant was

frozen in liquid nitrogen as aliquots and stored at −20 °C for up to 1 mo (18).

Human Subjects. All cases involved Han Chinese patients. Clinical diagnosis

was established according to criteria published by the National Institute of

Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease

and Related Disorders Association (2). The cases of MCI were gathered from

outpatient or inpatient clinics at the Department of Neurology, Second

Affiliated Hospital of the Zhejiang University School of Medicine, and the

control group without dementia was recruited from the Health Examination

Center between 2014 and 2015.

Data on age, sex, education, medical history, and family history were

recorded as well (SI Appendix, Table S1). The sera of 17 healthy controls (NC)

and 18 patients of mixed sex with MCI were collected. All of the NC and

patients with MCI recruited were age ≥60 y. Patients with other neurologic

or psychiatric disorders or clinically significant medical conditions were ex-

cluded. No patient had a history of head trauma or alcohol or drug abuse.

This study was approved by the Institutional Ethics Committees of the Sec-

ond Affiliated Hospital of the Zhejiang University School of Medicine and

The Hong Kong University of Science and Technology (HKUST). Informed

consent for participation in this study was obtained either directly or from

a legal guardian.

Mice. The APP/PS1 double-transgenic mice, generated by incorporating a

human/murine APP construct bearing the Swedish double mutation and the

exon-9–deleted PSEN1 mutation (APPswe + PSEN1/dE9) (16), were obtained

from the Jackson Laboratory (B6C3-Tg[APPswe, PSEN1dE9]85Dbo/J). The

generation of 5XFAD mice overexpressing the K670N/M671L (Swedish),

I716V (Florida), and V717I (London) mutations in human APP (695), as well as

M146L and L286V mutations in human PS1, has been described previously (53).

The 5XFAD mice were kindly provided by Sookja Kim Chung, The University of

Hong Kong, Pokfulam, Hong Kong. The St2−/−mice were obtained from Andrew

McKenzie, University of Cambridge, Cambridge, United Kingdom (54). Genotypes

were confirmed by PCR analysis of tail or ear biopsy specimens. WT C57BL/6 mice

were obtained from Jackson Laboratory.

All mice were housed in the HKUST Animal and Plant Care Facility, and all

animal experiments were approved by the HKUST Animal Ethics Committee.

Mice of the same sex were housed four per cage with a 12-h light/dark cycle

and food and water ad libitum. All in vivo experiments were performed on

sex- and age-matched groups. Mice of both genders were used for experi-

ments. The mice were assigned at random to the experimental conditions.

Sample sizes were chosen primarily on the basis of experience with similar

types of experiments. All of the animal experiments were conducted in the

light phase.

In Vivo Experiments. Murine recombinant IL-33 (200 ng per mouse) was in-

jected i.p. into 6- to 25-mo-old mice. For studies of amyloid plaque load,

microglial phagocytosis of Aβ, mRNA expression, and LTP, mice were injected

with IL-33 for 2 consecutive days. The field excitatory postsynaptic potentials

were recorded using a MED64 multichannel recording system (Panasonic

International). For behavioral tests, mice were injected i.p. with IL-33 as in-

dicated in Fig. 1 D and E. The open field test and contextual fear condi-

tioning were conducted as described previously (55, 56). Soluble ST2 (sST2)

was delivered into APP/PS1 mice via mini-osmotic pumps (model 1004; Alzet)

at 0.11 μL/h. The min-iosmotic pumps were adjusted intracerebroventricularly in

the right hemisphere. The pumps were loaded with murine recombinant

sST2 protein (240 ng per pump; 10 μg/mL) or with vehicle in artificial cere-

brospinal fluid (aCSF; 119 mM NaCl, 2.5 mM KCl, 2.5 mM CaCl2·2H2O, 1 mM

NaH2PO4·2H2O, 1.3 mM MgCl2·6H2O, 26.2 mM NaHCO3, 11 mM D-glucose).

After 2 d of sST2 delivery, IL-33 was administered i.p. to mice for another 2 d.

At the end of the treatment, the mice were killed and their brains fixed with

4% paraformaldehyde.

LTP. In brief, after the mice were killed, whole brains were immediately

resected and soaked in ice-cold aCSF supplemented in 95% O2/5% CO2. Brain

slices (300 μm) were then prepared using a vibratome (HM650V; Thermo

Fisher Scientific) and soaked in oxygenated aCSF for 2 h at 32 °C. The mouse

hippocampal slices were placed on a precoated polyethylenimine (Sigma-

Aldrich) on a MED–P210A probe (Panasonic International) fabricated with

8 × 8 electrode arrays (20 × 20 μm, indium tin oxide and platinum black) with

a 100-μm interelectrode distance. Electrodes were manually placed at the

CA3–CA1 region under a microscope (MIC-D; Olympus). Each slice was sub-

merged in and superfused with oxygenated aCSF at 1.3–1.5 mL/min.

Field excitatory postsynaptic potentials (fEPSPs) were recorded from the

dendritic layer of CA1 neurons by selecting an electrode in the Schaffer

collateral pathway as the stimulating electrode. Based on the stimulus–

response curve, a stimulation intensity that evoked an fEPSP with 30–40% of

the maximum response was selected. LTP was induced by three trains of

high-frequency stimulation (100 Hz for 1 s, delivered 30 s apart). The field

potential response after the tetanus was recorded for 60 min. The magni-

tude of LTP was quantified as the percentage change in the average slope of

the fEPSP over 60 min after LTP induction (18).

Open Field Test. The locomotor activity of the mice in the open field test was

recorded and tracked using a photobeam activity system and software (San

Diego Instruments). In brief, experimental mice were placed in the center of

an open-top chamber (16 × 16 × 15 inches) with an array of photobeams

around the periphery. The mice were allowed to explore the chamber for

15 min each day for 3 consecutive days. Locomotor activity in the three

training trials was recorded by the photobeams, and the distance moved was

subsequently determined. The chamber was cleaned with 70% ethanol after

each trial.

Contextual Fear Conditioning. On the day of training, the mice were allowed

to explore in an enclosed training chamber with the floor wired to an electric

shock generator for 180 s. Themice were then exposed to a pure tone for 30 s,

followed by a 2-s foot shock (0.8 mA). At 60 s after delivery of the second

shock, the mice were returned to their home cages. The fear response

(freezing) was assessed at 1 d and 7 d after the electric shock. The mice were

re-exposed in the original chamber for 5 min, and the time of freezing

was measured using the Contextual NIR Video Fear Conditioning System

(Med Associates).

Immunohistochemistry. Coronal cryosections (20 μm) of perfused mouse

brains were used for immunohistochemistry. For 4G8 immunostaining, an-

tigen retrieval was performed by microwave heating of the sections in so-

dium citrate buffer (10 mM trisodium citrate, 0.5% Tween-20 in H2O, pH 6.0)

for 10 min, followed by incubation with 3% H2O2 in H2O for 5 min to inhibit
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endogenous peroxidase activity. The sections were blocked with 2% goat

serum in Tris-buffered saline for 20 min and then labeled with 4G8 anti-

body (dilution 1:500) in blocking buffer overnight at 4 °C. The sections

were then labeled with a Dako HRP-linked goat anti-mouse/rabbit IgG

antibody for 50 min at room temperature and developed with a Dako DAB

chromogen kit.

Imaging was performed using a Leica DM6000 B compound microscope

system. The area of Aβ plaques in the cortex of the brain sections was an-

alyzed by the “Analyze Particles” function of ImageJ. The region of the

cortex used for amyloid plaque analysis was above the hippocampus. Three

brain sections per mouse (∼200–300 μm apart) were analyzed, and the average

percentage of cortical area occupied by amyloid plaques was calculated.

To examine the colocalization of amyloid plaques and microglia, the brain

sections were blockedwith 1%BSA, 4%goat serum, and 0.4% Triton X-100 in

Dulbecco’s PBS (DPBS) for 30 min at room temperature and then incubated

with Iba1 (1:500 dilution) and 4G8 (1:1,000 dilution) antibodies overnight at

4 °C. Imagingwas performed using a Leica TCS SP8 confocal system. Quantification

of the 3D-colocalization was conducted using the Imaris software (Bitplane).

To determine the blood–brain barrier penetrability of IL-33, 11-mo-old

APP/PS1 mice were injected i.p. with IL-33 (200 ng) in DPBS or DPBS alone.

Mouse cortices and sera were collected for IL-33 ELISA.

Aβ Extraction, Western Blot Analysis, and ELISA. Aβ was sequentially extracted

from the soluble and insoluble fractions of the mouse cortex (16, 18). Frozen

brain tissues were lysed in indicated lysis buffers with various protease in-

hibitors (18). In brief, the mouse cortex was homogenized in buffer con-

taining 250 mM sucrose, 20 mM Tris·HCl pH 7.4, 1 mM EDTA, 1 mM EGTA,

and protease inhibitor mixture (Sigma-Aldrich) or in radioimmunoprecipitation

assay buffer. Densitometric quantification of protein band intensity from

Western blot analysis was performed using ImageJ. Soluble Aβ was se-

quentially extracted by diethylamine (soluble), followed by formic acid (in-

soluble). Levels of soluble and insoluble Aβ were determined by Western

blot analysis. Soluble Aβx–40 and Aβx–42 were analyzed by ELISA.

Isolation of Mouse Microglia.Adult mice were anesthetized and perfused with

ice-cold DPBS. The isolated forebrain were cut into small pieces and disso-

ciated enzymatically and mechanically using a papain-based neural dissoci-

ation kit (130-092-634; Miltenyi Biotec) with a gentleMACS dissociator system

(Miltenyi Biotec) according to the manufacturer’s instructions. Percoll gra-

dient (30%; Sigma-Aldrich) was used to remove myelin. The resultant

mononuclear cell suspensions were used for flow cytometry analysis or for

preparation of microglial cultures (57). The purity of microglia/infiltrating

monocyte isolation was routinely >90% as determined by fluorescence staining

for CD11b and flow cytometry analysis.

Analysis of Microglial Phagocytosis of Aβ. For in vivo analysis, the experiment

was performed as described previously (29). APP/PS1 or WT mice (17 mo old)

were injected i.p. with IL-33 in PBS or PBS alone daily for 2 consecutive days.

The next day, the mice were injected i.p. with methoxy-X04 (10 mg/kg). The

mice were deeply anesthetized at 3 h after methoxy-X04 injection and

perfused in the left ventricle with ice-cold PBS. Isolated mononuclear cell

suspensions from the mouse forebrain were then incubated with a mouse

FcR blocking reagent (Miltenyi Biotec) and labeled with APC-conjugated

mouse CD11b (1:100 dilution) and FITC-conjugated CD45 (1:100 dilution)

antibodies and analyzed using a BD FACSAria IIIu flow cytometer. Myeloid cells

were identified as CD11b+ cells and were further classified as microglia or

infiltrating monocytes based on low (CD11b+CD45lo) or high (CD11b+CD45hi)

CD45 expression, respectively (29).

For the in vitromicroglial phagocytosis assay, microglia cells were prepared

from St2+/+ or St2−/− mice (1.5 to 2 mo old) and cultured for 6–7 d in vitro.

The cells were then pretreated with IL-33 for 20 h, followed by fluorescein-

Aβ1–42 (2 μM) for 1 h. The cells were then fixed with paraformaldehyde and

immunostained with Iba1 antibody and Hoechst 34580. Wide-field fluores-

cence microscopy was performed using an IN Cell Analyzer 6000 system (GE

Healthcare). Images were acquired at 16 corresponding positions assigned

by the software in each well. Intensity segmentation was applied to each

channel using the same thresholding criteria across different samples. The

boundaries of microglia were determined according to Iba1+ labeling in-

tensity, and fluorescein-Aβ1–42 in each Iba1+ cell was quantified. The area of

phagocytosed fluorescein-Aβ1–42 was divided by the corresponding cell area

to obtain the relative area of fluorescein-Aβ1–42 in a given cell.

Droplet Digital PCR and qRT-PCR. For droplet digital PCR (ddPCR), RNA from

mouse cortices was extracted using TRIzol (Invitrogen) and the RNeasy Mini

Kit (Qiagen) and quantified using a BioDrop μLITE microvolume spectro-

photometer. Equivalent amounts of RNA were reverse-transcribed using the

PrimeScript RT-PCR Kit (TaKaRa). ddPCR was performed according to the

manufacturer’s protocol (Bio-Rad). The copy numbers for samples were av-

eraged across duplicates. The copy numbers of target genes were normal-

ized to those of GAPDH or β-actin.

For qRT-PCR, cDNA after reverse transcription was preamplified using

TaqMan PreAmp Master Mix (Invitrogen). The PCR amplification and real-

time detection of PCR products were performed using TaqMan gene ex-

pression assay (Applied Biosystems) and Premix Ex Taq qPCR assay (TaKaRa).

PCR analyses were conducted in a total volume of 20 μL containing 2 μL of

preamplified product. The mRNA expression values were normalized to

the level of β-actin, GAPDH, or CD11b as indicated. The following TaqMan

probes were used: NLRP3 (Mm00840904_m1), IL-1β (Mm01336189_m1), IL-6

(Mm00446190_m1), IL-13 (Mm00434204_m1), TGFβ (Mm01178820_m1), GAPDH

(Mm99999915_g1), β-actin (Mm02619580_g1), ST2 total (Mm00516117_m1), Fizz1

(Mm00445109_m1), Arg1 (Mm00475988_m1), and CD11b (Mm00434455_m1).

Statistical Analysis. The investigators who performed the electrophysiologi-

cal, immunohistochemical, RNA expression, and flow cytometry analyses and

the behavioral tests were blinded to the genotypes of themice and treatment

conditions. All data are expressed as arithmetic mean ± SEM, except for

human sST2 serum level. All statistical analyses were performed using

GraphPad Prism version 6.0. The significance of differences was assessed by

the unpaired Student’s t test or one- or two-way ANOVA followed by the

Bonferroni post hoc test as indicated. The level of significance was set at P <

0.05. Soluble ST2 levels were recorded for NC subjects and patients with MCI,

with data analyses performed using R version 3.2.2. The Shapiro–Wilk test

was used to assess the normality of the continuous measurements. Statistical

comparisons of ST2 levels in the two subject groups were compared using a

two-sample t test.
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