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Abstract

Rationale: Rhinoviruses are the major cause of asthma
exacerbations; however, its underlying mechanisms are poorly
understood. We hypothesized that the epithelial cell–derived
cytokine IL-33 plays a central role in exacerbation pathogenesis
through augmentation of type 2 inflammation.

Objectives: To assess whether rhinovirus induces a type 2
inflammatory response in asthma in vivo and to define a role for IL-33
in this pathway.

Methods:We used a human experimental model of rhinovirus
infection and novel airway sampling techniques to measure IL-4, IL-5,
IL-13, and IL-33 levels in the asthmatic and healthy airways during
a rhinovirus infection. Additionally, we cultured humanT cells and type
2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirus-

infected bronchial epithelial cells (BECs) to assess type 2 cytokine
production in the presence or absence of IL-33 receptor blockade.

Measurements andMainResults: IL-4, IL-5, IL-13, and IL-33 are
all induced by rhinovirus in the asthmatic airway in vivo and relate to
exacerbation severity. Further, induction of IL-33 correlates with
viral load and IL-5 and IL-13 levels. Rhinovirus infection of human
primary BECs induced IL-33, and culture of humanT cells and ILC2s
with supernatants of rhinovirus-infected BECs strongly induced
type 2 cytokines. This induction was entirely dependent on IL-33.

Conclusions: IL-33 and type 2 cytokines are induced during
a rhinovirus-induced asthma exacerbation in vivo. Virus-induced
IL-33 and IL-33–responsive T cells and ILC2s are key mechanistic
links between viral infection and exacerbation of asthma. IL-33
inhibition is a novel therapeutic approach for asthma exacerbations.
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Immune responses to viral infections
involve CD41 IFN-g–producing T helper
type 1 (Th1) cells, regarded as the
archetypal effector cell of antiviral
immunity. In contrast, Th2 cells, which
secrete IL-4, IL-5, and IL-13, are regarded
as critical effector cells in allergic asthma.
Furthermore, IL-4 and IFN-g inhibit
development of Th1 and Th2 subsets,
respectively, thus creating polarized
immune responses that counterregulate
each other.

This fundamental understanding of
T-cell biology is not aligned mechanistically

with the highly consistent finding that
respiratory viral (mostly human rhinovirus)
infections, an archetypal Th1 trigger, are
the dominant cause of acute exacerbations
of the Th2-mediated disease allergic asthma
(1–3). Furthermore, studies reporting
substantial reductions in asthma
exacerbations using therapies targeting
type 2 cytokines (4–8), as well as synergistic
interactions between allergen exposure
and viral infections that increase the
risk of asthma exacerbations (9, 10),
suggest strong interactions between
viral infection and type 2 responses
that are similarly unexplained
mechanistically.

Type 2 innate lymphoid cells (ILC2s)
provide a potent early innate source of the
cytokines IL-5 and IL-13 in mice (11–13),
and recent studies have demonstrated that
similar cells are found in humans (14, 15).
IL-33 is an epithelial cell–derived cytokine,
and its receptor (ST2) is expressed on both
Th2 cells and ILC2s, making it a potential
target for inhibition of both innate and
acquired type 2 inflammation in asthma
(16). Polymorphisms in IL-33 and its
receptor are associated with increased risk
of asthma (17). Additionally, IL-33 is
induced by the influenza virus in mice
(18, 19), raising the possibility that IL-33
could be a bridging mediator between
viral infection and type 2–driven disease.
However, the role of IL-33 in virus-induced
asthma exacerbations in humans is
unknown, and no evidence exists that
indicates that rhinovirus infection can
induce IL-33. It is also unknown whether
respiratory viral infection in asthma leads
to amplification of type 2 inflammation
in vivo, as measuring type 2 cytokines in
human airway samples is difficult, leading
to reliance upon indirect measures such
as RNA levels (20), eosinophils (for IL-5)
(5, 6), or periostin (for IL-13) (7). The
technique of nasosorption uses an
absorptive matrix to sample nasal mucosal
lining fluid undiluted (21). We adapted
this method to sample bronchial mucosal
lining fluid and have termed this technique
“bronchosorption.”

Using these novel sampling techniques,
along with experimental rhinovirus
infection in asthma, we investigated IL-33
and type 2 cytokine production during
virus-induced asthma exacerbations in vivo.

Furthermore, we examined the functional
role of rhinovirus-induced, bronchial
epithelial cell–derived IL-33 on human

T-cell and ILC2 cytokine production
ex vivo. We thereby demonstrate a critical
role for IL-33 in linking viral infection with
induction of a type 2 immune response in
asthma exacerbations. Some of the results
of these studies have been reported
previously in the form of an abstract
(22). Additionally, baseline clinical
characteristics, baseline bronchoalveolar
lavage (BAL) fluid cell counts, and nasal
IL-25 levels from the same study subjects
described herein have been published
elsewhere (23).

Methods

The study received ethical approval (St
Mary’s Hospital research ethics committee,
09/H0712/59), and informed consent was
obtained from all subjects. Detailed methods
are available in the online supplement.

Study Participants

We recruited nonsmoking patients with
mild or moderately severe asthma and
nonsmoking, nonatopic healthy volunteers
aged 18–55 years and without a recent viral
illness or serum neutralizing antibodies to
rhinovirus 16 (RV16) at screening. Patients
with asthma were excluded if they had
severe disease (as defined by the Global
Initiative for Asthma [24]), a recent asthma
exacerbation, or current symptoms of allergic
rhinitis. Full inclusion and exclusion criteria
are available in the online supplement.

Study Design

Study volunteers who met the inclusion
criteria underwent baseline sampling,
including bronchoscopy 2–4 weeks before
inoculation with RV16 (25). A second
bronchoscopy was performed on Day 4
postinoculation. Daily diary cards of
respiratory symptoms were commenced
2 weeks before baseline sampling and
continued until 6 weeks after inoculation.
Subjects were seen on Days 2, 3, 4, 5, 7,
10, and 42 postinoculation for clinical
assessment and nasal sampling (see
Figure E1 in the online supplement).
As previously reported (25), lower
respiratory symptom scores were
corrected for baseline symptoms and
the effects of the bronchoscopy (see
Figure E2). Spirometry was performed
using a PiKo-1 spirometer (nSpire Health,
Hertford, UK). Rhinovirus was detected
by polymerase chain reaction of nasal

At a Glance Commentary

Scientific Knowledge on the

Subject: Rhinovirus infections are
the most common trigger for asthma
exacerbations. Data derived from
mouse and ex vivo human models
suggest that rhinovirus-induced
augmentation of T helper type 2 (Th2)
inflammation may play a role in the
pathogenesis of exacerbation.
However, the understanding of how
a classic Th1 trigger—a virus—
exacerbates a classic Th2 disease—
allergic asthma—is unknown.

What This Study Adds to the

Field: IL-33 is an inducer of type 2
inflammation in mouse models. We
show, for the first time, that IL-33 and
the type 2 cytokines IL-4, IL-5, and IL-
13 are induced by rhinovirus in the
asthmatic airway in vivo and that their
levels relate to exacerbation severity.
We also show that IL-33 is strongly
induced by rhinovirus infection of
primary human bronchial epithelial
cells in vitro. We further show that
type 2 cytokine production by human
T cells and type 2 innate lymphoid
cells is induced by supernatant from
rhinovirus-infected human bronchial
epithelial cells and that this induction
is completely inhibited by blocking
the IL-33 receptor. These findings
highlight IL-33 as a key mechanistic
link between rhinovirus infection and
amplification of type 2 inflammation
in asthma exacerbations and identify
IL-33 inhibition as a novel therapeutic
approach for treating asthma
exacerbations.
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lavage and BAL samples as described
previously (25).

Bronchosorption is a technique to
sample bronchial mucosal lining fluid. The
main benefit of this novel technique is the
measurement of previously undetectable
mediators through avoidance of the
significant analyte dilution associated with
BAL. The bronchosorption device is
passed down the operating port of the
bronchoscope (see online supplement
for further details). Nasosorption was
performed as described (21, 26, 27). IL-4,
IL-5, IL-13 and IL-33 were measured
using the Meso Scale Discovery (MSD)
(Rockville, MD) array platform.

In Vitro Studies

Human bronchial epithelial cells (BECs)
(Lonza, Basel, Switzerland) were either
infected with RV16 or treated with media
for 24 hours (28). Supernatants were
harvested, ultraviolet light irradiated, and
filtered to inactivate and/or remove virus
particles (28). Inactivation was confirmed
by an absence of cytopathic effect of treated
supernatants in HeLa cell titration assays
(29). IL-33 was measured in supernatants
by using the DuoSet ELISA Development
Kit (R&D Systems, Minneapolis, MN).

Naive human CD41 T cells from
peripheral blood were isolated by negative
selection, expanded, and assessed as
.96% pure by surface expression of CD4,
CD45RA, and CCR7 (30). To determine the
importance of IL-33 in the induction of
Th2 cytokines, activated (to induce ST2 and
the ability to respond to IL-33) but not
polarized (equal low expression of IL-4,
IL-5, IL-13, IFN-g, and FOXP3; data not
shown), CD41 T cells (Th0 cells) were
treated with blocking anti-ST2 antibody
(ab89741; Abcam, Cambridge, UK) or
matched isotype control (ab81216; Abcam).
Three hours later, Th0 cells were cultured
at 1 3 106 cells/ml with media (RPMI
1640) (Sigma-Aldrich Corp., St. Louis, MO)
alone or with media (four parts) plus
supernatants (one part) from rhinovirus-
infected or media-treated, uninfected BECs
for 12 days before intracellular staining of
T cells for IL-4, IL-5, IL-13, and GATA-3
(assessed using the LSRFortessa cell analyzer
[BD Biosciences, San Jose, CA] with FlowJo
v10 software [FlowJo, Ashland, OR]) or
measurement of Th2 cytokines in the culture
supernatants using the MSD platform.

Human ILC2s were isolated from
peripheral blood using flow cytometric

sorting of lineage-negative (CD22, CD32,
CD142, CD162, CD192, CD562,
CD235a2, and CD1232), CRTh21,
CD1271, and CD451 cells (see Figure E4).
ILC2s were then cultured under conditions
identical to those used for the Th0 cells,
but at 1 3 105 cells/ml, and cytokine
production was measured on Day 7. A full
description of the methods used is available
in the online supplement.

Statistical Analysis

Data were analyzed using SPSS v20.0
software (IBM SPSS, Chicago, IL). Data
are given as mean (6SEM) if normally
distributed or median (interquartile range
[IQR]) if nonparametric. Differences
between groups were analyzed by unpaired
t or Mann-Whitney U tests. Within-group
comparisons were analyzed with paired
t tests or Wilcoxon’s signed-rank test.
Correlations were examined using
Pearson’s and Spearman’s correlation tests
for parametric and nonparametric data,
respectively. Differences were considered
significant at P , 0.05. All P values are two
sided.

Results

Forty-six volunteers (32 with asthma and
14 healthy) were inoculated with RV16.
Seven subjects failed to develop infections
and were excluded. The baseline
characteristics of subjects who were
successfully infected are shown in Table 1
and have been reported previously (23).
There were no subject withdrawals and no

requirement for systemic corticosteroids
during this study.

Patients with Asthma Experience

Greater Rhinovirus-induced

Respiratory Morbidity and Viral

Load than Healthy Subjects

Following inoculation with rhinovirus,
subjects with asthma displayed significantly
greater upper and lower respiratory
symptoms and reductions in peak
expiratory flow (PEF) and FEV1 compared
with healthy subjects (Figures 1A–1E). In
addition, we observed increased viral loads
in patients with asthma, with a notable
earlier peak (Day 3) compared with healthy
subjects (Day 4) (Figure 1F). At Day 3, viral
load levels in patients with asthma were
z250-fold greater than in healthy subjects
(median [IQR] copies per milliliter: 1.68 3

106 [1.60 3 104 to 1.28 3 107] in subjects
with asthma vs. 6.92 3 103 [1.50 3 103

to 3.21 3 106] in healthy volunteers; P =
0.042). In asthma, peak viral load correlated
with exacerbation severity (peak reductions
in PEF: r = 20.463, P = 0.008). Viral
load in BAL fluid was measured at a single
time point during infection (Day 4) and
was not significantly different between
groups on this day. There were no
differences between steroid-treated and
steroid-naive subjects with asthma in terms
of viral load (see Table E1).

Virus-induced Lower Airway

Eosinophilia Is Increased in Asthma

BAL fluid cell counts showed a significant
increase in eosinophil numbers from
baseline during rhinovirus infection in

Table 1. Baseline Characteristics of Study Volunteers

Characteristics
Healthy
(N = 11)

Asthma
(N = 28) P

Age, yr 31 6 12 36 6 11 NS
Sex
Female, n (%) 4 (36) 15 (54) NS
Male, n (%) 7 (74) 13 (46)

Baseline FEV1, % predicted 104 6 8 86 6 12 ,0.001
Baseline histamine PC20, mg/ml .16 1.26 6 2.01 —
ICS use, n (%) — 15 (53.6) —
ICS daily dose, beclomethasone/equivalent, mg* — 427 6 71 —
IgE, IU/ml, median (IQR) 16 (14–19) 139 (70–448) ,0.001
BAL fluid eosinophilia, %, median (IQR) 0 (0) 0.5 (0–1.7) 0.002

Definition of abbreviations: BAL = bronchoalveolar lavage; ICS = inhaled corticosteroid; IQR =
interquartile range; NS = not significant.
These baseline characteristics were reported previously in Reference 23. Data shown are mean6 SD
unless otherwise stated.
*Mean 6 SD data of steroid-treated subjects, n = 15.
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patients with asthma, but not in healthy
subjects (median [IQR]: asthma at baseline =
0.5% [0.0–1.7] vs. asthma at Day 4 = 1.2%
[0.0–3.8], P = 0.025) (Figure 1G). As
previously reported (25), eosinophil

numbers during infection in the patients
with asthma were significantly greater than
in healthy subjects (P = 0.046). However,
to our knowledge, this is the first time
a significant rhinovirus-induced

eosinophilia has been demonstrated in
asthma. No statistically significant
differences were observed in cell counts
between steroid-treated and steroid-naive
subjects with asthma. In addition, no
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Figure 1. Rhinovirus infection results in more severe upper and lower respiratory tract involvement, greater viral loads, and bronchial eosinophilia in

asthma. Shown are the daily change from baseline in upper (A) and lower (B) respiratory symptoms of subjects with asthma (red) and healthy volunteers

(black). The total lower respiratory symptom score (C) equates to the summation of daily scores over the 14-day postinoculation period and represents the

severity of the exacerbation. As symptom scores were corrected for baseline and bronchoscopy-induced symptoms, a small number of subjects had

a negative score (see online supplement for further details). Decreases in morning PEF are shown as percentage changes from baseline (D) following

rhinovirus inoculation. The maximal decline in FEV1 (E) represents the maximal change during the infection period for each subject. Viral load was

measured at each study visit in nasal lavage (F). Bronchoalveolar lavage eosinophil counts were measured at baseline and on Day 4 postinoculation (G).

Results shown are mean 6 SEM (A–E); bars represent median values (F). Statistical comparisons between groups were performed at each time point,

but have been left unmarked where nonsignificant to aid clarity. *P , 0.05; **P , 0.01; ***P , 0.001.
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significant relationships between cell
counts in BAL fluid on Day 4 and lower
respiratory symptoms were identified. We
believe that this may simply reflect the
single time point (Day 4) on which counts
during the exacerbation were possible
rather than a true absence of a relationship
between counts and symptoms. Data
regarding further inflammatory cell counts
are available online (see Table E2).

Type 2 Cytokines Are Induced by

Rhinovirus Infection in Asthma In Vivo

Nasal levels of IL-4, IL-5, and IL-13 were
significantly elevated in subjects with
asthma, both at baseline and upon infection
(all P, 0.05). Significant induction of these
cytokines during infection was observed
only in the subjects with asthma (all P ,

0.001) (Figure 2A; see also Table E3).
Bronchial levels of IL-5 and IL-13 measured
using bronchosorption (Figure 2B; see also
Table E4) were also significantly greater
in the subjects with asthma at baseline (all
P , 0.05), with a significant increase in
IL-5 levels from baseline to infection
observed only for the subjects with asthma
(P , 0.05; see also Table E4). Cell type 2
cytokine production in BAL fluid in
response to nonspecific ex vivo stimulation
has previously been reported to be
increased in asthma and also to be related
to the severity of the asthma exacerbation
following subsequent rhinovirus challenge
(25). However, we believe that our
observation that rhinovirus infection
directly drives type 2 responses in patients
with asthma but not in healthy individuals
in vivo is novel.

IL-33 Is Induced by Rhinovirus

Infection In Vivo and Is Related to

Type 2 Responses

Nasal IL-33 was significantly induced by
rhinovirus infection in subjects with asthma
(P , 0.001), with a trend toward induction
in healthy subjects (Figure 2A). Given
our current understanding of IL-33, these
findings strongly suggest that rhinovirus-
induced IL-33 may drive the type 2
responses observed during asthma
exacerbations. Although bronchial IL-33
was not significantly induced in either
group (see Table E4), measurements were
possible only at a single time point (Day 4);
IL-33 induction at alternative time points of
infection are possible. In support of a role
for IL-33 in promoting type 2 responses
during asthma exacerbations, we identified

significant correlations between bronchial
IL-33 and both IL-5 and IL-13. Again, these
findings were exclusive to subjects with
asthmatic (Figure 2C).

Type 2 Cytokines and IL-33 Correlate

with Clinical Outcomes and Viral Load

We next investigated relationships between
type 2 cytokines, exacerbation severity, and
viral load. In asthma, IL-5 and IL-13 levels
during infection both positively correlated
with respiratory symptom severity (P ,

0.05) (see Table E5). Similarly, in subjects
with asthma, both nasal and bronchial IL-
33 levels during infection correlated with
asthma symptom severity (Figure 2D). The
IL-33 level also significantly correlated with
viral load (Figure 2E), which is in keeping
with the respiratory epithelium being both the
site of infection and the source of IL-33.

Rhinovirus Infection of Primary

Human BECs Ex Vivo Induces

IL-33 Secretion

Our clinical observations led us to
hypothesize that virus-induced, BEC-
derived IL-33 might promote type 2
responses by responsive immune cells,
thereby driving virus-induced asthma
exacerbations. We therefore performed
functional analyses to test this hypothesis
ex vivo. Rhinovirus infection of BECs
significantly upregulated levels of IL-33
in culture supernatants (P , 0.01)
(Figure 3A), demonstrating that rhinovirus
infection of the bronchial epithelium leads
to the release of large amounts of IL-33.

IL-33 Present in Rhinovirus-infected

BEC Supernatants Directly Induces

Th2 Responses in Human T Cells

To test the functional role of IL-33 released
from rhinovirus-infected bronchial
epithelium in inducing Th2 responses, we
cultured activated, nonpolarized human
CD41 T cells (Th0 cells) with media alone
and with supernatants from rhinovirus-
infected or uninfected BECs. The Th0
cells cultured with supernatants from
rhinovirus-infected BECs had significantly
higher frequencies of IL-41, IL-51, IL-131,
and GATA-31 cells than the Th0 cells
cultured with either medium alone or
medium with supernatants from uninfected
BECs (all P , 0.05) (Figure 3B). This
induction was Th2-specific, as there was
no similar induction of Th1 responses
assessed on the basis of IFN-g expression
(Figure 3B). Moreover, this induction of

Th2 responses was dependent on IL-33, as
it was completely inhibited by pretreatment
of the Th0 cells with anti-ST2 monoclonal
antibody (P , 0.05 vs. isotype control
for IL-4, IL-5, IL-13, and GATA-3). In
contrast, blocking the actions of IL-33 in
these cultures potentiated Th1 responses
(Figure 3B).

In addition, levels of secreted type 2
cytokines were significantly higher following
culture of Th0 cells with supernatants from
rhinovirus-infected BECs compared with
those cultured with supernatants from
uninfected BECs or with medium alone
(all P , 0.05) (Figure 3C). This induction
was also completely prevented by blocking
the IL-33 receptor in these cultures (P ,

0.05 vs. isotype control) (Figure 3C).

IL-33 in Rhinovirus-infected BEC

Supernatants Directly Induces IL-5

and IL-13 Production by Human ILC2s

We next investigated whether IL-33 released
from rhinovirus-infected BECs could induce
type 2 cytokine production by human
ILC2s. ILC2s, characterized as lineage
negative, ckitint, CD451, CD1271, CD251,
and CRTH21, were purified by flow
cytometric sorting from peripheral blood
(Figures 3D and 3E; see also supplementary
METHODS). We observed striking induction
of both IL-5 and IL-13 by human
ILC2s cultured with supernatants from
rhinovirus-infected BECs (P , 0.05 vs.
ILC2s cultured with media alone or with
supernatants from uninfected BECs)
(Figure 3F). Cytokine levels were z200
and z100 times greater on a per-cell basis,
respectively, than those from Th0 cells.
Critically, this IL-5 and IL-13 induction was
again completely blocked by anti-ST2
treatment (P , 0.05 vs. isotype control)
(Figure 3F), demonstrating IL-33 as the key
factor in this pathway. This rhinovirus
trigger of IL-33 is therefore likely to drive
an early and robust type 2 response via
these innate cells.

Discussion

Our study is the first, to our knowledge, to
demonstrate that rhinovirus induces IL-33
and the type 2 cytokines IL-4, IL-5, and
IL-13 during a virus-induced asthma
exacerbation in vivo. We also have shown
relationships between IL-33 and increased
type 2 cytokines and between these
cytokines and asthma exacerbation severity
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in humans. We have demonstrated that
rhinovirus infection of BECs strongly
induces IL-33 release in vitro, which
activates both human T cells and human
ILC2s to produce type 2 cytokines in
a manner dependent upon IL-33. These
observations have important implications
for the understanding of virus-induced
asthma exacerbations and offer

a mechanism through which the classic
Th1 trigger—a virus—promotes type 2
inflammation in susceptible individuals.

Recent trials of anti-IgE (31), anti–IL-4
(4), anti–IL-5 (5, 6, 8), and anti–IL-13 (7)
therapies have shown the potential of
blocking individual type 2 molecules
to reduce asthma exacerbations. Our
observations that type 2 cytokines and

airway eosinophilia are both induced by
rhinovirus infection in patients with asthma
in vivo underscores the validity of this
approach. Our data suggest that blockade
of IL-33 signaling may be considerably
more effective than blocking individual
type 2 cytokines, in view of the potential
to inhibit eosinophilic inflammation
consequent upon IL-5 production,
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airway hyperresponsiveness, mucus
hypersecretion, and airway remodeling
associated with IL-13 production, as well as
IgE class switching associated with both
IL-4 and IL-13. Inhibitors of IL-33 should
therefore be more effective than approaches
that block only a single type 2 cytokine
and/or receptor.

In this study, we have established
a biological system that allowed us to
measure the ability of rhinovirus-infected
epithelial cells to produce IL-33 and mediate
polarization of T-cell populations and ILC2
activation ex vivo. We cultured activated,
but nonpolarized, CD41 T cells in the
presence of supernatants from rhinovirus-
infected epithelial cells and observed
increased production of IL-4, IL-5, and
IL-13 compared with T cells cultured with
supernatants from uninfected epithelial
cells. We have clearly established an
essential role for IL-33 in this epithelial
cell–Th2–ILC2 axis, as blocking ST2
completely inhibited Th2 polarization,
indicating that, in this system, rhinovirus-
induced Th2 polarization was entirely

dependent on IL-33. Our data also suggest that
ILC2s may be major innate sources of type 2
cytokines in response to rhinovirus infection,
as they are capable of producing z200 and
z100 times the amount of IL-5 and IL-13,
respectively, on a per-cell basis than T cells.

Although we provide evidence that
virus-induced IL-33 can directly and
potently induce type 2 responses by two
critical immune cells, we observed similar
levels of IL-33 in both healthy and asthmatic
airways in vivo, suggesting that it may
not be virus-induced IL-33 levels that are
discriminatory, but rather the number of
cells able to respond to IL-33 when it is
released. This may relate to quantitative
and/or qualitative differences in the
numbers of ST2-expressing cells present in
exacerbating asthma, such as Th2 cells,
ILC2s, basophils, and mast cells.

Although the induction of type 2
cytokines in our ex vivo system appeared to
be entirely dependent upon IL-33, it is also
possible that cell types other than epithelial
cells might be important sources of
cytokines such as thymic stromal

lymphopoietin (TSLP), IL-25, or
prostaglandin D2 (PGD2) that are able to
induce type 2 responses in responding cells,
and/or that cosecretion of these other
mediators may act synergistically with
IL-33. For example, Barnig and colleagues
recently showed that the combination of
IL-33, PGD2, and IL-25 enhanced type
2 cytokine production by ILC2s in
a synergistic manner (32), and Xue and
colleagues demonstrated that ILC2
activation via PGD2 upregulated the
expression of ST2 on ILC2s (15).

We recently reported that nasal IL-25
is induced by rhinovirus infection in both
healthy individuals and patients with
asthma, with nonsignificant trends for
higher IL-25 protein levels in asthma (23).
We also reported data from a separate
study showing that IL-25 was induced by
rhinovirus to a greater degree ex vivo in
primary BECs from patients with asthma
compared with healthy subjects. In
a murine model, we showed that blocking
rhinovirus-induced IL-25 is capable of
suppressing induction of Th2/ILC2-type
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inflammation during rhinovirus-induced
exacerbation of allergic airway
inflammation (23). Further studies in other
in vitro and in vivo human and animal
models, and eventually in clinical trials,
are required to determine the relative
importance of TSLP, IL-25, IL-33, and
PGD2 in the context of virus-induced
asthma exacerbations.

Our finding of substantially higher
levels of IL-33 in the lung than in the
nose was unexpected. As this is, to our
knowledge, the first study in which nasal
and bronchial IL-33 were simultaneously
measured in asthma using our novel
sampling techniques, we cannot relate
our values to other studies. However, we
used similar sampling methods in both
compartments (absorptive matrices placed
on the nasal and bronchial mucosa) and the
same assays for IL-33 analysis (MSD). Thus,
we must assume that bronchial mucosal IL-33
is present in greater quantities than nasal IL-33.
Our findings that bronchial IL-33 correlates
with both IL-5 and IL-13, as well as with
exacerbation severity, suggest that our
measurements are functionally relevant.

Taken together, our findings suggest
that viral induction of BEC-derived IL-33 is
centrally involved in the induction of the
type 2 response we observed in virus-
induced asthma exacerbations. This central
role for IL-33 is supported by recent work by
Halim and colleagues, who demonstrated
that ILC2 activation and Th2 cell
differentiation in papain-treated mice was
also IL-33 dependent (33). Our findings also
suggest a mechanism for the reported
synergistic interaction between allergen
sensitization and/or exposure and viral
infection in increasing the risk of asthma

exacerbations (9, 10), because an atopic
individual with asthma who is exposed to
allergens in parallel with viral infection may
have increased frequencies of allergen-
specific Th2 cells in the lung, with
enhanced ST2 expression. Because Th2
cells, along with other type 2 cells, are
recruited and activated by allergen
exposure, these patients may exhibit an
increased capacity to respond to virus-
induced IL-33 by the release of type 2
cytokines. A similar pathway may be
invoked in relation to ILC2s, but
elucidating the relative importance of these
cell types requires further study.

Increased rhinovirus replication in
asthmatic BECs has previously been
observed ex vivo and related to delayed and
impaired production of antiviral IFNs (34,
35), but to date increased viral load in vivo

in asthma has not been observed (36, 37).
The earlier and greater peak in viral load in
asthma demonstrated in the present study
is consistent with these ex vivo reports
and suggests an impaired antiviral immune
response in some patients with asthma. It
is possible that these novel observations
might be due to the inclusion of subjects
with more severe asthma, as most previous
rhinovirus infection studies limited
inclusion to only subjects with mild
asthma. However, the precise nature of
how this relates to the augmented type 2
inflammation we observed requires further
study. Additionally, Bonilla and colleagues
reported that IL-33 is necessary for potent
CD81 T-cell responses to both RNA and
DNA viruses in mice (38), highlighting
a need to investigate the effect of IL-33
blockade on viral replication in future
work.

In the present study, we also introduced
bronchosorption as a new technique to
sample bronchial mucosal lining fluid and
permit detection of cytokines not normally
detectable in BAL fluid. This technique
offers great potential to advance the
mechanistic understanding of many
respiratory conditions.

In summary, this study provides
evidence that rhinovirus infection leads to
induction of IL-33 and type 2 cytokines
in asthma in vivo and that levels of these
mediators are related to the severity of
asthma exacerbations. To our knowledge,
this study is the first to show that
rhinovirus infection of the bronchial
epithelium can directly activate human
T cells and human ILC2s to produce
large quantities of type 2 cytokines,
a process found to be completely dependent
on IL-33. We therefore identify IL-33
ligation to its receptor as a mechanistic
link between viral infection and asthma
exacerbations. On the basis of the data
presented here, we believe that the IL-
33/ST2 axis is an exciting target for
future therapeutic interventions for
asthma exacerbations. n
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