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Abstract

It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is
different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-b in terms of inhibition
of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical
analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in
comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-b, IL-35 is not constitutively
expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that
AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-
constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two
groups: (1) the house-keeping cytokines, such as TGF-b, inhibit the initiation of inflammation whereas (2) the responsive
cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate
the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the
design of new strategies of immune therapies.
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Introduction

In the past ten years, significant progress has been made in

characterizing the roles of CD4+CD25highFoxp3+ regulatory T

cells (Tregs) in inhibition of various types of inflammation and

immunological diseases [1,2,3,4]. However, it remains poorly

defined what anti-inflammatory/immunosuppressive mechanisms

healthy individuals have in order to maintain normal tissue

functions such as by preventing the initiation of inflammatory

process and inhibiting the progression of inflammation.

CD4+ T helper cells (Th) play essential roles in regulating

inflammation and immune responses via differentiation into

various Th functional subtypes, including Th1, Th2, Th17, Th9,

Th22, follicular Th, and Tregs [5]. The majority of Th cell

functions are fulfilled via the secretion of various cytokines, which

can play a dual role in regulating chronic inflammation and

autoimmune diseases [6]. Proinflammatory and Th1-related

cytokines such as IL-1 and IL-18 promote the development and

progression of inflammation and immune responses [7,8].

However, anti-inflammatory and Tregs-related cytokines such as

IL-10 and TGF-b exert clear anti-inflammatory activities [9]. It

therefore stands to reason that patients with autoimmune diseases

[10], angina [11], or familial hypercholesterolemia [12] have

lower serum IL-10 levels than healthy controls. In fact, the transfer

of human IL-10 or intracerebral injection of IL-10 significantly

inhibit experimental autoimmune encephalomyelitis [13,14].

These findings suggest that immunosuppressive/anti-inflammato-

ry cytokines play a critical role in the inhibition of inflammation

and autoimmune diseases.

Interestingly, IL-35 has been identified as a novel immunosup-

pressive/anti-inflammatory cytokine. It is a dimeric protein with

two subunits, IL-12A and Epstein-Barr virus induced 3 (EBI3)

[15,16]. Secretion of IL-35 has only been confirmed in non-

stimulated mouse Tregs [16] and in stimulated human Tregs [17]

but not detected in non-stimulated human Tregs [18]. In addition

to T cells, other cells in vessels, such as endothelial cells and

vascular smooth muscle cells, also generate various inflammation-

regulating cytokines [19]. However, the question of whether non-

T cells such as vascular cells express IL-35 remains.

Thus, despite significant progress, several important knowledge gaps

exist: First, how IL-35 is expressed in human and mouse tissues;

Second, if IL-35 is not constitutively expressed, then what are the

transcriptional and post-transcriptional mechanisms controlling its

induction and degradation; and Third, whether IL-35 is temporally

different from TGF-b and IL-10 in the inhibition of inflammation in

non-inflammatory or inflammatory stages. In this study, we hypoth-

esized that anti-inflammatory/immunosuppressive cytokines including

IL-35 have differential expression in various tissues under non-

stimulated conditions. Using database mining and statistical analysis

methods that we developed [20,21], we examined the expression of
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anti-inflammatory cytokines in numerous tissues from a panoramic

viewpoint. Furthermore, we examined the potential molecular

mechanisms regulating IL-35 expression. The in-depth analysis of

the expression patterns of IL-35 in comparison to that of other anti-

inflammatory cytokines could provide novel avenues for innovative

therapeutic treatments for inflammation and autoimmune diseases.

Methods

Tissue expression profiles of genes encoding anti-
inflammatory cytokines and their receptors

An experimental data mining strategy (Fig. 1), as we reported

[20,21], was used to analyze the expression profiles of mRNA

transcripts of genes in cardiovascular and other tissues in humans and

mice by mining experimentally verified human and mouse mRNA

expressions in the expressed sequence tag (EST) databases of the

National Institutes of Health (NIH)/National Center of Biotechnol-

ogy Information (NCBI) UniGene (http://www.ncbi.nlm.nih.gov/

sites/entrez?db=unigene). Transcripts per million of genes of interest

were normalized with that of house-keeping b-actin in each given

tissue to calculate the arbitrary units of gene expression. A confidence

interval of the expression variation of house-keeping genes was

generated by calculating the mean plus two times that of the standard

deviation of the arbitrary units of three randomly selected house-

keeping genes (PRS27A, GADPH, and ARHGDIA in human; Ldha,

Nono, and Rpl32 in mouse) normalized by b-actin in the given tissues

(Fig. 2A). If the expression variation of a given gene in the tissues was

larger than the upper limit of the confidence interval (the mean plus

two times the standard deviation) of the house-keeping genes, the

high expression levels of genes in the tissues were considered

statistically significant. Gene transcripts lower than one per million

were technically presented as no expression.

Analysis of transcription factor binding sites in the
promoters of anti-inflammatory cytokines

The promoter regions of targeted genes, defined as 1,500 bases

upstream of the transcription start site, were retrieved from the

NIH/NCBI Entrez Gene database (http://www.ncbi.nlm.nih.

gov/gene). In addition, the promoter region was analyzed with the

widely-used transcription factor database TESS (http://www.cbil.

upenn.edu/cgi-bin/tess/tess) to analyze the frequencies of 10

inflammation related transcription factor binding sites (Fig. 3A).

Alternative spliced isoforms of anti-inflammatory
cytokines

The presence and features of alternative promoters and

alternatively spliced isoforms of each gene were examined with

the AceView database of NIH/NCBI (http://www.ncbi.nlm.nih.

gov/IEB/Research/Acembly/index.html).

Correlation of the ratios of tissue SAH versus SAM
concentrations with the expression levels of anti-
inflammatory cytokines and receptors

The concentrations of S-adenosylmethionine (SAM) levels over

S-adenosylhomocysteine (SAH) levels were determined previously

by Ueland’s group [22] in tissues from adult male mice. Tissue

SAM/SAH ratios were used for further comparison and regression

analyses. Simple linear regression analyses were performed by

plotting mRNA levels of individual genes against the SAM/SAH

ratios in seven mouse tissues including the brain, kidney, liver,

spleen, heart, lung, and thymus. Multivariable regression analyses

were then performed to evaluate the effect of SAM/SAH ratios on

the expressions of anti-inflammatory cytokines and receptors [20].

Presence of adenine and uracil nucleotide-rich (AU-rich)
elements in 39-untranslated regions of anti-inflammatory
cytokines

The genes of interest were searched in the UTRdb (http://

utrdb.ba.itb.cnr.it/search) at the Institute for Biomedical Tech-

nologies, University of Bari for the existence of functional motifs

and signals in the 39-untranslated regions (39UTR) of each

mRNA. The presence of AU-rich elements in the 39UTRs was

searched using the AU-rich Element Containing mRNA Database

(ARED 3.0) (http://brp.kfshrc.edu.sa/ARED).

MicroRNA interactions with the mRNAs of anti-
inflammatory cytokines

The potential interactions of mRNAs from the genes of interest

with microRNAs were examined using the Bioinformatics and

Research Computing software TargetScan (http://www.targets-

can.org) from the Whitehead Institute for Biomedical Research in

the Massachusetts Institute of Technology (MIT). The significance

of MicroRNA binding to the genes of interest was determined

using the confidence intervals generated from the microRNAs

within Tarbase, an experimentally verified MicroRNA online

database (http://diana.cslab.ece.ntua.gr/tarbase). Briefly, human

microRNAs, which were single site effective and luciferase assay-

confirmed, were used to ensure that the interactions of the

microRNAs were specific to their respective mRNA targets. 27

microRNAs that met the criteria were selected and evaluated in

TargetScan to construct the intervals and set the lower limit for the

context values and score percentile as we reported [23].

MicroRNAs with the context score of 70% or higher and the

context value of 20.22 or lower were determined to be significant.

Figure 1. Flow chart of database mining strategy that was used
to generate tissue expression profiles of genes. NCBI: National
Center of Biotechnology Information; IDs: Identifications; EST: Expressed
sequence tag.
doi:10.1371/journal.pone.0033628.g001
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Results

1. IL-35 is not constitutively expressed in non-stimulated
human tissues, whereas TGF-bs have high expression
levels

We hypothesized that to keep inflammation in check, various

tissues express certain levels of anti-inflammatory cytokines under

physiological conditions. To examine this hypothesis, a database

mining method we developed (Fig. 1) [21], was used to examine

experimentally verified expression profiles of mRNA transcripts of

anti-inflammatory cytokines (Table 1) and receptors (Table S1) in

NCBI-UniGene database. The expression of three sets of genes in

18 human tissues and 14 mouse tissues were examined (fewer

mouse tissues were examined due to the fact that gene expression

data for four of the mouse tissue counterparts were not available in

the database). The first set (Fig. 2B) had six anti-inflammatory

cytokines/cytokine subunits [IL-35 (IL-12A, EBI3), IL-10, three

isoforms of TGF-b (TGF-b1, TGF-b2, TGF-b3)]; the second set

(Fig. 2C) included two IL-35-related subunits (IL-12B, IL-27); and

the third set (Figure S1) included IL-35 receptor subunits (IL-

Figure 2. The gene expression profiles found in human and mouse tissues. A. Data presentation format (The data presented in X-, Y-axis,
and tissue order of ARHGDIA and Idha are applied to all the human and mouse genes examined respectively). As an example, the gene expression
profiles of human housekeeping gene Rho GDP dissociation inhibitor (GDI) alpha (ARHGDIA) in the eighteen tissues are presented, with the tissue
names and position numbers shown on the X-axis. The gene expression data were normalized by the b-actin (Hs. 520640) expression data from the
same tissue, which are presented on the left Y-axis. The expression ratios among tissues were generated by normalizing the arbitrary units of the
gene in the tissues with the median level of the arbitrary units of the gene in all the tissues which are presented on the right Y-axis. In order to define
confidence intervals for statistically higher expression levels of given genes, we calculated the confidence intervals of tissue expression for three
housekeeping genes [the mean X+26standard deviations (SD) = 2.83] including ARHGDIA (Hs. 159161), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, Hs. 544577), and ribosomal protein S27a (RPS27A, Hs. 311640). The expression variations of given genes in tissues, when they were larger
than 2.83-fold, were defined as the high expression levels with statistical significance (the right Y-axis). To define confidence intervals for statistically
higher expression levels of given genes in 14 mouse tissues, we calculated the confidence intervals of tissue expression [the mean X+26standard
deviations (SD) = 3.1] for three mouse house keeping genes including Lactate dehydrogenase A (Ldha, Mm. 29324), non-POU-domain-containing
octamer binding protein (Nono, Mm. 280069), and ribosomal protein L32 (Rpl32, Mm. 104368). The expression variations of given genes in tissues,
when they were larger than 3.1-fold, were defined as the high expression levels with statistical significance (the right Y-axis). B. The expression
profiles of suppressive cytokines in human (Left 2 columns, with cytokine members designated with capital letters) and mouse (right 2 columns, with
cytokine members designated with lowercase letters) tissues. C. The expression profiles of IL-35 related subunits in human and mouse tissue.
doi:10.1371/journal.pone.0033628.g002
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Figure 3. Transcription factor binding frequencies in the promoter region of IL-35. The promoter sequences (1500 base pair upstream of
the transcription start site) of 3 housekeeping genes (ACTB, GAPDH, ARHGDIA), IL12A, EBI3, and TGFB1 were retrieved from the NIH/NCBI Entrez Gene
database, and were analyzed using TESS to determine the frequencies of 10 Transcription factors (TFs). The binding frequencies of the 10 TFs in the
promoter region of each gene were counted. Confidence interval was set by using the mean+26standard deviation (SD) of the TF binding
frequencies in the promoter of 3 housekeeping genes. The binding frequency which is higher than the uppermost confidence interval (p,0.05) is
considered significant.
doi:10.1371/journal.pone.0033628.g003

Table 1. The Unigene ID of human and mouse genes that were examined.

UniGene Name Cytokine/Receptor Subunit Related cytokine Unigene ID/Human Unigene ID/Mouse

Anti-inflammatory Cytokine

IL12A Interleukin 12 A IL35 Hs. 673 Mm.103783

EBI3 Epstein-Barr induced virus gene 3 IL35 Hs. 501452 Mm. 256798

IL10 Interleukin 10 IL10 Hs. 193717 Mm. 874

TGFB1 Transforming growth factor, beta 1 TGFb Hs. 645227 Mm. 248380

TGFB2 Transforming growth factor, beta 2 TGFb Hs. 133379 Mm. 18213

TGFB3 Transforming growth factor, beta 3 TGFb Hs. 592317 Mm. 3992

Other IL-35 related subunits

IL12B Interleukin 12 B IL12 Hs. 674 Mm. 239707

IL27 Interleukin 27 IL27 Hs. 582111 Mm. 222632

doi:10.1371/journal.pone.0033628.t001
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12Rb2, IL-6ST), IL-10 receptor (IL-10RA, IL-10RB) and TGF-b
receptor (TGF-bR1, TGF-bR2). Of the 18 human tissues

examined (Table 2), the expression of the first IL-35 subunit, IL-

12A, was only found in brain, intestine, and spleen at very low

levels, whereas the second IL-35 subunit, EBI3, was expressed at

low levels in eye, lymph node, and pancreas, with high levels in the

placenta. IL-10 was also expressed at very low levels only in blood,

lung, and spleen but not in heart or vessels. In comparison, all

three isoforms of TGF-b were highly expressed in most tissues

including heart tissue. TGF-b1 was widely expressed in all tissues

except thymus, trachea, and vasculature, suggesting anti-inflam-

matory and other physiological functions of these cytokines in

human tissues. However, TGF-b2 was significantly expressed in

the trachea but not expressed in immune tissues (bone marrow,

lymph node, spleen, and thymus), and TGF-b3 was expressed

highly in heart but not in lymph node, spleen, and thymus,

suggesting that both TGF-b2 and TGF-b3 may be mainly

functional in non-immune tissues. In addition, the expression

patterns of anti-inflammatory cytokines in mouse tissues were

similar to their human counterparts except for IL-35 (IL-12A and

EBI3). IL-12A and EBI3 had significantly higher expression levels

in mice when compared to humans (Fig. 2B). Furthermore, IL-

12A was found in mouse blood, bone marrow, liver, and thymus,

whereas EBI3 was expressed in mouse blood, bone marrow, liver,

skin, spleen, thymus, and high levels in mouse lymph node. Taken

together, anti-inflammatory cytokines IL-35 and IL-10 had very

low expressions in non-stimulated tissues, whereas TGF-bs had

high expression levels, suggesting that the latter cytokines, but not

the former ones, are required for anti-inflammatory functions

under non-stimulated ‘‘house-keeping’’ conditions. This conclu-

sion is further supported by gene knockout studies in mice. The

gene deficiencies of IL-12A, EBI3, and IL-10 were not lethal to

mice in contrast to the massive inflammation leading to organ

failure and death observed in TGF-b1 knockout mice (Table 3).

IL-35 signals through heterodimeric receptor made of IL-

12Rb2 and gp130 (encoded by IL-6ST) or homodimers of each

chain [24]. IL-6ST was ubiquitously expressed in all the tissues

examined (Figure S1). Meanwhile IL-12Rb2 was expressed in

seven tissues but not in heart and vascular tissue. It is therefore

conceivable to speculate that the use of gp130-gp130 homodimers

may provide a mechanism by which IL-35 could affect tissues that

do not express IL-12Rb2.

Heart and vascular tissue expressed IL-10RA, IL-10RB, TGF-

bR1, and TGF-bR2 in human (Figure S1). Similarly, mouse heart

also expressed IL-10 and TGF-b receptor complexes. IL-10 acts

through a transmembrane receptor complex, which is composed

of IL-10RA and IL-10RB. It plays an important role in the control

of both innate and adaptive immunity [25]. IL-10 deficiency

promotes atherosclerotic lesion formation, characterized by

increased infiltration of inflammatory cells and increased produc-

tion of proinflammatory cytokines [26]. TGF-b isoforms including

TGF-b1, TGF-b2, and TGF-b3 were expressed in the vessel wall.

They signal through TGF-bR1 and TGF-bR2 via activating

Smad-dependent and Smad-independent signals and play a key

role in atherosclerosis [27]. These results suggest that cardiovas-

cular tissues express IL-10 and TGF-b receptors and are able to

accept these anti-inflammatory cytokine signals to inhibit inflam-

mation.

2. IL-35 is a responsive anti-inflammatory cytokine that
could be induced by proinflammatory cytokines in non-T
cells

As a new member of the IL-12 heterodimeric cytokine family,

IL-35 shares subunit IL-12A with IL-12 and subunit EBI3 with IL-

27. We classified the tissues into two tiers based on their expression

of the heterodimeric cytokine subunits (Table 4). Thus, tissues that

expressed both subunits of a given heterodimeric cytokine were

placed in the first tier of ‘‘ready to go’’ status. Tissues that did not

express one or both the subunits were placed in the second tier of

Table 2. Anti-inflammatory cytokines are differentially
expressed in human and mouse tissues.

Tissues Human Expression Mouse Expression

Adrenal GlandTGFB1, TGFB2

Blood IL10, TGFB1 Il12a, Ebi3, Il10, Tgfb3

Bone Marrow TGFB1, TGFB3 Il12a, Ebi3, Il10, Tgfb1, Tgfb3

Brain IL12A, TGFB1, TGFB2, TGFB3 Ebi3, Tgfb2, Tgfb3

Eye EBI3, TGFB1, TGFB2, TGFB3 Tgfb1, Tgfb2, Tgfb3

Heart TGFB1, TGFB2, TGFB3 Tgfb2, Tgfb3

Intestine IL12A, TGFB1, TGFB2, TGFB3 Ebi3, Tgfb1, Tgfb3

Kidney TGFB1, TGFB2, TGFB3 Tgfb2, Tgfb3

Liver TGFB1, TGFB2, TGFB3 Il12a, Ebi3, Tgfb1

Lung IL10, TGFB1, TGFB2, TGFB3 Ebi3, Tgfb1, Tgfb2, Tgfb3

Lymph Node EBI3, TGFB1 Ebi3

Pancreas EBI3, TGFB1, TGFB3 Tgfb1, Tgfb2, Tgfb3

Placenta EBI3, TGFB1, TGFB2, TGFB3

Skin TGFB1, TGFB2 Ebi3, Tgfb1, Tgfb2, Tgfb3

Spleen IL12A, IL10, TGFB1 Ebi3, Tgfb1, Tgfb3

Thymus - Il12a, Ebi3, Tgfb1, Tgfb2, Tgfb3

Trachea TGFB2

Vascular TGFB2

doi:10.1371/journal.pone.0033628.t002

Table 3. Effects of anti-inflammatory cytokine gene knockout (2/2) in mice.

Gene2/2 Viable Reported phenotype PMID

IL122/2 Yes Display normal development 8766560

EBI32/2 Yes No overt autoimmunity or inflammatory disease 12482940

IL102/2 Yes Only a local inflammation limited to the proximal colon 8402911

TGFB12/2 No Multifocal inflammatory cell response and tissue necrosis 1436033

TGFB22/2 No Perinatal mortality 9217007

TGFB32/2 No Die within 20 hours of birth 7493022

doi:10.1371/journal.pone.0033628.t003
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‘‘inducible’’ status. For IL-35 expression, mouse blood, bone

marrow, liver, and thymus tissues, but none of the human tissues,

were in the first tier. Since secretion of IL-35 has only been

confirmed in non-stimulated mouse Tregs [15] but not in non-

stimulated human Tregs [18], our results support the idea that the

expressions of IL-35 in tissues are different between human and

mouse. It should be noted, that it is unknown whether IL-35

expression in these four mouse tissues is due to potential high levels

of Tregs in these tissues. In addition, for the two other IL-35

related cytokines, IL-12 and IL-27, none of the human tissues were

in the first tier. For mouse IL-27, only lymph node was in the first

tier. While for mouse IL-12, bone marrow and thymus were in the

first tier. Taken together, the results suggest that IL-35 is not

constitutively expressed in human tissues but may be an inducible

anti-inflammatory cytokine that may control full-blown inflam-

mation.

We then hypothesized that IL-35 is upregulated in inflamma-

tion. The inducibility of IL-35 has been demonstrated in human

Tregs [17], and human conventional CD4+Foxp32 T cells [28]

(Table 5). However, the inducibility of IL-35 in non-T cells

remains unknown. Since IL-35 nomenclature was first proposed in

2007, we analyzed the experimental reports published before

2007. We found that IL-12A and EBI3 can also be upregulated in

non-T cells including immature dendritic cells, epithelial cells,

smooth muscle cells, and vascular endothelial cells (Table 5). We

also found that IL-35 could be upregulated in human non-T cells,

such as microvascular endothelial cells, aortic smooth muscle cells,

and epithelial cells by stimulations with proinflammatory cytokines

tumor necrosis factor-a (TNF-a), interferon-c (IFN-c), and IL-1b

(Table 5). In addition, in epithelial cells, TNF-a induced the

upregulation of both IL-12A and EBI3 whereas type 1 T helper

cell (Th1) cytokine IFN-c only upregulated the expression of IL-

12A but not EBI3. TNF-a and IFN-c synergistically induced the

upregulation of IL-12A and EBI3 expression (Table 5). These

results suggest that the upregulation of IL-35 is double-gated and is

controlled by two different signals, and IL-35 is only upregulated

when the expressions of both subunits are induced. Moreover, in

one non-IL-35 study of bacterial infection-released endotoxin

lipopolysaccharide (LPS)-activated monocytes, IL-12A expression

rapidly increased, peaked at 12 hours and then dropped back to

background levels after 24 hours. In contrast, EBI3 showed

prolonged expression kinetics, although its transcription was

induced as early as 3 hours after LPS stimulation. Reaching

maximal EBI3 mRNA levels around 24 hours, EBI3 was still

above non-stimulated background levels after 72 hours (Table 6),

suggesting that IL-12A mRNAs are less stable than that of EBI3,

potentially because of mRNA degradation mechanisms. Since

EBI3 can dimerize with IL-12A to form IL-35 or dimerize with IL-

27 to form proinflammatory cytokine IL-27, and IL-12A can also

dimerize with IL-12B to form Th1 proinflammatory cytokine IL-

12, although we do not know the binding constants of these

dimerizations, we found that the upregulation time of IL-12 and

IL-27 were quantitatively earlier than that of IL-35 and that the

scales of IL-12 and IL-27 upregulation was higher than that of IL-

35. Once again, the analysis suggests that IL-35 is a responsive

cytokine that is induced by inflammation. Finally, we hypothesized

that if IL-35 and IL-10 are upregulated in response to

proinflammatory cytokine stimulation, the expression of ubiqui-

Table 4. The two-tier expression status of IL-35 and related cytokines is identified.

Cytokine Human tissue Mouse tissue

First tier (‘‘ready to go’’ expression status with two cytokine subunits)

IL-35 - Blood, Bone Marrow, Liver, Thymus

IL-12 - Bone Marrow, Thymus

IL-27 - Bone Marrow, Lymph Node

Second tier (‘‘inducible’’ expression status that requires up-regulation of at least one cytokine subunit)

IL-35 All the tissue Brain, Eye, Heart, Intestine, Kidney, Lung, Lymph Node, Pancreas, Skin, Spleen

IL-12 All the tissue Blood, Brain, Eye, Heart, Intestine, Kidney, Liver, Lung, Lymph Node, Pancreas, Skin, Spleen

IL-27 All the tissue Blood, Brain, Eye, Heart, Intestine, Kidney, Liver, Lung, Pancreas, Skin, Spleen, Thymus

doi:10.1371/journal.pone.0033628.t004

Table 5. IL-35 subunit mRNAs have been shown to be induced by stimulation in various human cell types.

IL-35 StudyPMID Cell Type Treatment Time Induction Fold

IL12A EBI3 b-Actin

Yes 20953201 Conventional CD4+Foxp3- T cells IL-35 9 day 60 18 -

Yes 21576509 Naı̈ve regulatory T cells TCR/CD28 co-activation 9 day 100 150 -

No 17947455 Intestinal microvascular endothelial cells IL-1b 8 hour 20 10 1

No 15196212 Intestinal epithelial cell line TNF-a 8 hour 5 500 1

No 15196212 Intestinal epithelial cell line IFN-c 8 hour 35 1 1

No 15196212 Intestinal epithelial cell line TNF-a+IFN-c 8 hour 60 1000 1

No 19556516 Primary aortic smooth muscle cells TNF-a+IFN-c 24 hour 9 160 -

No 12446009 Immature dendritic cells CD40L+IFN-c 12 hour ‘ 23 -

doi:10.1371/journal.pone.0033628.t005
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tously expressed TGF-b will be un-responsive to inflammation

stimuli. As expected, in another non-IL-35 report, we found that

proinflammatory cytokine IL-1b stimulation could upregulate IL-

35 and IL-10 but not TGF-b (Table 7). Taken together, these

results suggest that first, IL-35 and IL-10 are responsive anti-

inflammatory cytokines whereas TGF-bs is house-keeping anti-

inflammatory cytokines; second, in response to inflammation,

competition of dimerization of IL-35 against dimerization of IL12

and IL27 may be one of the novel mechanisms underlying IL-35’s

inhibition of inflammation; and third, due to the lower expression

levels, IL12A is quantitatively a limiting subunit for dimerization

and upregulation of cytokine IL-35, while EBI3 is not.

3. NF-kB transcription factor has high binding
frequencies in the promoter regions of IL-35 subunits IL-
12A and EBI3

The upregulation of IL-35 in response to proinflammatory

stimuli suggests that proinflammatory transcription factors may

mediate this upregulation. Thus, we hypothesized that IL-35

subunits IL-12A and EBI3 can be regulated by specific

proinflammatory transcription factors. To test this hypothesis,

the promoter sequences (1,500 bases upstream of the gene

transcription start site) from a control group of house-keeping

genes (ACTB, GAPDH, ARHGDIA) and the promoter sequences

of IL-35 subunits IL-12A, EBI3, and TGF-b1 were retrieved from

the NCBI database. The promoter regions were analyzed using

the transcription factor database TESS to examine the binding

frequencies of 10 inflammation-regulatory transcription factor

(TF) binding sites (Fig. 3B). Compared to the first control group,

the promoter regions of both IL-12A and EBI3 had significantly

higher frequencies of the binding sites for NF-kB (2 and 4 times

respectively) (Fig. 3C). In contrast, TGF-b1 had no binding sites

for NF-kB, which again supported its role as housekeeping anti-

inflammatory cytokine, which correlated with the results of non-

induction of TGF-b in response to NF-kB-mediated IL-1b
stimulation (Table 7). Our results are consistent with previous

reports on the roles of NF-kB in regulating IL-12A [29] and EBI3

[30] expression. In addition, we found that AP-1 and HSF-1

transcription factor had significantly high frequencies of binding

sites in the promoter region of IL-12A whereas GR and IRF-1 had

significantly high binding sites in the promoter region of EBI3.

These results may shed light on the differential induction of IL-35

subunits in response to proinflammatory cytokines (Table 5),

which correlates with the double-gated controls in upregulation of

these IL-35 subunits.

4. Alternative promoter and alternative splicing regulate
the structures, functions, and expressions of IL-35 and
other anti-inflammatory cytokines

Recent findings suggest that alternatively spliced isoforms of

cytokines may either enhance or antagonize the function of the

other isoforms of the cytokine [31]. Since IL-35 is not

constitutively expressed in most tissues, we searched for evidence

that IL-35 subunit genes have alternative promoters, which serves

as structural evidence for potential transcriptional induction of IL-

35 in response to different stimuli [32]. We hypothesized that IL-

35 and other anti-inflammatory cytokines have several alternative

spliced isoforms and promoters. To test this hypothesis, we

examined the AceView-NCBI database; the most comprehensive

database of alternative promoters and alternatively spliced gene

isoforms that is generated from experimental data of cDNA

sequence analysis from tissue mRNA transcriptomes [33]. As

shown in Table 8, all of the human anti-inflammatory cytokines

have numerous alternatively spliced isoforms. For example, IL-35

subunit IL-12A has six isoforms, whereas IL-35 subunit EBI3 has

two isoforms and two promoters (Fig. 4).

It should also be noted that one isoform of EBI3 was a secreted

form, while the other was a cellular form. The potential function of

intracellular isoform of EBI3 is not fully known, however in

addition to the interaction with IL-12A to constitute IL-35 and its

interaction with IL-27RA [34] to fulfill its cytokine function, EBI3

also interacts with four other proteins including Calnexin [35],

Golgi SNAP receptor complex member 1 [34], MyoD family

inhibitor [36], and SMAD family member 3 [36]. This may

Table 6. IL-35 subunit mRNAs have differential induction and duration of expression in human monocytes.

IL-35 Study PMID Cell Type Treatment Time (hour) IL12A (pg) EBI3 (pg) IL12B (pg) IL27 (pg)

No 12121660 Monocyte LPS 0 0 0 0 0

No 12121660 Monocyte LPS 3 5 50 5000 100

No 12121660 Monocyte LPS 6 50 90 10000 150

No 12121660 Monocyte LPS 12 100 180 24000 300

No 12121660 Monocyte LPS 24 10 400 2000 0

No 12121660 Monocyte LPS 48 0 180 1000 0

No 12121660 Monocyte LPS 72 0 140 0 0

doi:10.1371/journal.pone.0033628.t006

Table 7. Differential response of IL-35 subunits, IL-10, and TGF-b1 in response to proinflammatory cytokine IL-1b.

IL-35
Study PMID Cell Type Treatment Time Induction Fold

IL12A EBI3 IL10 TGFB1 b-Actin

No 15130917 Umbilical vein endothelial
cell

IL-1b 2.5 hour 2.2 6.1 2.3 0.9 1.0

doi:10.1371/journal.pone.0033628.t007
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underlie EBI3 intracellular function. We also noticed that IL-12A

has four secreted forms and two intracellular forms. Similarly, in

addition to its interactions with EBI3 to constitute IL-35 and its

interactions with IL-12B to constitute IL-12, IL-12A also interacts

with three other proteins; Wiskott-Aldrich syndrome protein

(WASP)-family member 1 [37], CD28 [38], and IL-8 [37], which

may provide insight for IL-12A intracellular and/or cytokine

functions. As we and others reported previously, a similar multi-

functional cytokine can be seen in translationally controlled tumor

protein (TCTP), which has an intracellular function of anti-

apoptosis [39] and a secreted cytokine function of histamine

release [40].

Of note, IL-35 subunit IL-12A, TGF-b2, and TGF-b3 have more

than one secreted isoforms with isoform-specific protein sequences.

Potential binding differences of these secreted cytokine isoforms to

their receptors could lead to different functions. In addition, all of

anti-inflammatory cytokines have alternative promoters, suggesting

the importance of tissue-specific and/or stimulation-specific tran-

scriptional mechanisms in mediating the transcriptional upregula-

tion of the genes via alternative promoters [32]. Of note, there was

no alternative promoter data on IL-12A in the database. Future

work is needed to map out the detailed sequence requirements in

the alternative promoters in response to various stimuli.

5. Higher expression of IL-35 could be induced by higher
hypomethylation status in tissues

Previous reports showed that epigenetic mechanisms, including

methylation and demethylation, control T helper cell differenti-

ation and cytokine generation [41]. As we discussed in our recent

review [42], the ratio of cellular methylation donor S-adenosyl-

methionine (SAM) levels over S-adenosylhomocysteine (SAH)

levels is an important metabolic indicator of cellular methylation

status [43,44]. A higher SAM/SAH ratio suggests a higher

methylation status than normal (hypermethylation) whereas a

lower SAM/SAH ratio indicates a lower methylation status than

normal (hypomethylation). A previous report showed that feeding

rats with SAM, a methyl donor, inhibits the expression of TGF-

bR1 and TGF-bR2 [45], suggesting that intracellular global

methylation status regulates anti-inflammatory cytokine signaling.

We hypothesized that intracellular methylation/demethylation

status, a major metabolic stress-related epigenetic modification

[46], may regulate the expression of IL-35 and other anti-

inflammatory cytokines and the associated receptors in tissues. To

test this hypothesis, we used tissue concentrations of SAH and

SAM and the ratio of SAM over SAH in seven mouse tissues;

brain, heart, kidney, liver, lung, and thymus [20], which were

reported previously by Ueland’s group [22] (Fig. 5A). We

performed multivariable regression analyses to determine the

effect of cellular methylation, indicated by the SAM/SAH ratio,

on the expression of anti-inflammatory cytokines and receptors. As

shown in Figure 5B, the SAM/SAH ratios negatively correlated

with the expression levels of TGF-bR1 and TGF-bR2 (p,0.05).

This result corresponds with previous experimental studies [45],

which suggest that our approach was feasible in examining the role

of hypomethylation in regulating the expression of anti-inflam-

matory cytokines, and that DNA methylation status in cells can

determine the functional status of TGF-b signaling [47]. Notably,

the tissue expression of the two subunits of IL-35, IL-12a, and

EBI3, were increased as the tissue SAM/SAH ratios were

decreased (p = 0.16 or 0.06). Although these P values were

.0.05, these results suggest that hypomethylation, induced by

metabolic stress including pro-atherogenic risk factor hyperhomo-

cysteinemia [20], could induce the expression of IL-35 in mice

(Fig. 5C). In support of our regression results, our analysis on

previously reported microarray experimental data in a non-IL-35

related study showed that treatment of human cells with

azacytidine (AZC), a DNA methyl transferase inhibitor and a

hypomethylation inducer, induces the upregulation of IL-35

subunit transcripts [48]. Similarly, since global DNA hypomethy-

lation has been observed in lupus, an autoimmune inflammatory

disease [49], taken together, our results suggest that DNA

hypomethylation-induced expression of IL-35 may result from a

negative feedback mechanism during full-blown inflammation.

6. The expressions of IL-35 can be regulated by an AU-
rich element-mediated mRNA degradation mechanism

Although IL-35 subunits can be induced by proinflammatory

cytokine in many cell types, their mRNAs have differential

Figure 4. Schematic presentation of how alternative promoter and alternative splicing regulate the expression of IL-35 subunit
Ebi3.
doi:10.1371/journal.pone.0033628.g004

Table 8. Alternative promoter and alternative splicing
regulate the expression and structures of anti-inflammatory
cytokines.

Gene Exons
Total
Isoforms

ORF
Isoforms Secreted Promoters

IL12A 7 6 6 4 -

EBI3 5 2 2 1 2

IL10 5 3 3 1 2

TGFB1 7 5 8 1 2

TGFB2 8 7 10 3 2

TGFB3 8 7 9 2 5

doi:10.1371/journal.pone.0033628.t008
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Figure 5. Higher hypomethylation status is positively associated with higher expression of IL-35 gene. A. Concentrations of SAM and
SAH in mouse tissues were previously examined by Ueland et al. B. Correlation of suppressive cytokines and TGF-b receptors with SAM/SAH ratios in
mouse tissues. C. Schematic presentation of how IL-35 may be regulated by methylation status. S-Adenosylhomocysteine (SAH) and S-
Adenosylmethionine (SAM) are intermediate metabolites of homocysteine-methionine metabolism cycle. SAH is a potent inhibitor of cellular
methylation. High SAM/SAH ratio is associated with hypermethylation of DNA and no IL12A/Ebi3 expression. Low SAM/SAH ratio is associated with
hypomethylation of DNA and Ebi3 can be expressed.
doi:10.1371/journal.pone.0033628.g005
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expression kinetics within the same cell type under identical

conditions (Table 6). We argued that non-constitutive expression

status of IL-35 in tissues may be realized by quick degradation

following their upregulation presumably via mRNA degradation

mechanisms. We hypothesized that RNA binding proteins may

regulate the mRNA stability of IL-35 subunits. Thus, we searched

for evidence for whether IL-35 subunit mRNA 39 untranslated

region (39UTR) had specific structural features mediating quick

degradation. Using a web-based AU-rich element mRNA

database [50], we analyzed all the mRNA 39untranslated regions

(UTRs) of anti-inflammatory cytokines in the UTR database

UTRdb (http:// utrdb.ba.itb.cnr.it/search). As shown in Table 9,

IL-12A and IL-10 contained AU-rich elements in their mRNA

39UTRs, suggesting that IL-35 (also IL-12) and IL-10 are under

regulation by the AU-rich element-mediated mRNA degradation

mechanism. In contrast, no AU-rich elements were found in

39UTRs of TGF-bs. Since our data showed that IL-12A is a

limiting factor for upregulation of IL-35 (Table 6), potential quick

degradation of IL-35 subunit IL-12A via an AU-rich mechanism

correlated with the non-constitutive expression status of IL-35

(Fig. 6). These suggest that AU-rich element-mediated mRNA

degradation may participate in regulating mRNA stability of IL-

35. Our results were supported by a previous experimental report

on the role of Tristetraprolin, an AU-rich element binding protein,

in regulating IL-12A (IL-35 subunit) expression [51].

7. The microRNAs that target IL-12A and EBI3 mRNA
39UTRs are not shared, suggesting that the expressions
of these two subunits of IL-35 may be regulated by
different microRNAs

MicroRNAs (MiRNAs or MiRs) are a newly characterized class

of short (18–24 nucleotide long) [52], endogenous, and non-coding

RNAs, which contribute to the development of particular disease

states through the regulation of diverse biological processes such as

cell growth, differentiation, proliferation, and apoptosis [53]. This

regulation occurs through base-pairing with messenger RNAs

(mRNAs) predominately at the 39UTR [54,55], and leads to

degradation or inhibition of mRNA translation [56]. A sequence

analysis identified miR-16 as possessing complementary sequence to

the canonical AUUUA, which demonstrates a potential role for this

microRNA to modulate the stability of mRNAs with this AU-rich

element [57]. Since we found this AU-rich element in the 39UTR of

IL-35 subunit IL-12A and IL-10, we hypothesized that mRNAs of

IL-35 and other anti-inflammatory cytokines contain the structures

in their 39UTRs for microRNA binding and regulation. To

examine this hypothesis, we used the online microRNA target

prediction software, TargetScan (http://www.targetscan.org/)

developed in the Massachusetts Institutes of Technology. To ensure

that the predicted microRNAs have the binding quality equivalent

to that of experimentally verified microRNAs, we reasoned that

Figure 6. Positions of AUUA sequences in 39-UTR of IL-12A
mRNA are indicated.
doi:10.1371/journal.pone.0033628.g006

Table 9. 39-untranslated region in mRNA of anti-
inflammatory cytokines in human contain signals for RNA
protein binding.

Human Gene Length bp Signal Class Cluster

IL12A 460 ARE II 3

EBI3 579 - - -

IL10 1033 ARE I 5

TGFB1 728 - - -

TGFB2 6325 - - -

TGBF3 2150 - - -

doi:10.1371/journal.pone.0033628.t009

Figure 7. Schematic presentation of how miR-21 may regulate
the mRNA stability of IL-35 subunit IL12A.
doi:10.1371/journal.pone.0033628.g007

Table 10. Predicated microRNAs that could bind to anti-
inflammatory cytokines.

mRNA MicroRNA Position mRNA MicroRNA Position

IL12A miR-21 256–262 IL10 - -

miR-590-5p 256–262 TGFB1 miR-139-5p 292–298

EBI3 miR-576-5p 277–283 TGFB2 miR-141 109–115

miR-136 186–192 miR-200 A 109–115

miR-185 202–208 TGFB3 miR-631 772–778

miR-548m 211–217 miR-875-5p 960–966

miR-548m 217–223 miR-511 967–974

miR-128 251–257 miR-520d-5p 997–1003

miR-27b 252–258 miR-524-5p 997–1003

miR-27a 252–258 miR-876-3p 32–38

miR-552 317–323 miR-1291 365–371

miR-663b 388–394 miR-1291 452–458

miR-644 390–396 miR-649 486–492

miR-1303 409–415 miR-644 926–932

doi:10.1371/journal.pone.0033628.t010
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there are certain shared binding features between predicted

microRNAs and targeted 39UTRs of mRNAs that can be reflected

in the context value and context percentage. To test this hypothesis,

the confidence intervals for context value (the mean 626
SD = 20.2560.12) and for context percentage (76.07619.07) were

generated, respectively, from 45 interactions between 27 experi-

mentally verified human microRNAs and 36 different genes (not

shown) within Tarbase, an online database of experimentally

verified microRNAs (http://diana.cslab.ece.ntua.gr/tarbase/) [58].

These human microRNAs were all confirmed using luciferase

reporter assays and had been found to effectively target a single

unique mRNA sequence. As shown in Table 10, microRNAs may

regulate anti-inflammatory cytokines. We found that 3 microRNAs

on the list have more than one binding site either within cognate

target 39UTR or within other genes. This finding correlated with

others’ report that some microRNAs have numerous mRNA targets

[59]. Of note, the microRNAs targeting IL-35 subunits IL-12A and

EBI3 mRNA 39UTRs were not shared, suggesting once again that

the expressions of these two subunits of IL-35 are differentially

regulated by different microRNAs in a ‘‘double-gated’’ manner.

Furthermore, 2 predicted microRNA target including IL12A on our

list have been confirmed in experiments (Table 11). These results

suggest that microRNAs may inhibit the mRNA stability and

translation of anti-inflammatory cytokines including IL-35 (Fig. 7),

either independently or via interactions with RNA binding protein

in various tissues.

Discussion

Since 2007, a new anti-inflammatory/immunosuppressive cyto-

kine, IL-35, has been defined [16,60,61]. Formed by heterodimer-

ization of Epstein-Barr virus-induced gene 3 (EBI3) protein with the

IL-12 p35 subunit (IL-12A) [15], IL-35 inhibits inflammation in

various autoimmunity models such as experimental colitis [16,62],

collagen-induced autoimmune arthritis [61], autoimmune demye-

lination in central nervous system [63], and type 2 T helper cell

(Th2)-mediated allergic asthma [64]. Although secretion of IL-35

has only been confirmed in Tregs [15], the contributions of IL-35

generated from tissues and cells other than T cells under non-

stimulated conditions remains poorly identified. In an effort to

bridge this knowledge gap we used a new experimental database

mining and statistical analysis technique to determine the tissue

expression of anti-inflammatory cytokines and receptors including

novel cytokine IL-35 and made the following findings: 1) anti-

inflammatory cytokines IL-35 and IL-10 are not constitutively

expressed in most tissues whereas TGF-bs have higher expression

levels in non-stimulated tissues; 2) IL-35 receptor subunit IL-6ST,

IL-10RA, IL-10RB, TGF-bR1, and TGF-bR2 receptor complex

are constitutively expressed in cardiovascular and other tissues; 3)

NF-kB transcription factor has higher binding frequencies in the

promoter region of IL-35 subunits; 4) alternative promoter and

alternative splicing regulate the structures and expressions of IL-35

and other anti-inflammatory cytokines and receptors; 5) higher

expression of IL-35 could be induced with higher hypomethylation

status. The higher binding frequencies of NF-kB-transcription

factor in IL-35 promoters, alternative promoters, along with higher

expression of IL-35 induced by hypomethylation all suggest that the

expression of IL-35 is inducible via several mechanisms. To support

our results, we also presented the reported experimental evidence

that IL-35 is indeed induced by stimulations of various proin-

flammatory cytokines and bacterial endotoxin LPS in vascular

endothelial cells, smooth muscle cells and monocytes; 6) the

expressions of IL-35 and IL-10 could be regulated by AU-rich

element-mediated mRNA degradation mechanism; and 7) the two

subunits of IL-35 are subjected to regulation by different

microRNAs. The last two structural evidences indicate that IL-35

Table 11. Some predicted MicroRNA targets listed above have been confirmed in experiments.

MicroRNA Reported Target Reported Function PMID

miR-21 IL35/IL12A Introduction of pre-miR-21 dose dependently inhibited cellular expression of
a reporter vector harboring the 39-untranslated region of IL-12p35.

19342679

miR-200A TGFB2 miR-200a downregulated the expression of TGF-b2 via direct interaction with
the its 39 untranslated region

20952520

doi:10.1371/journal.pone.0033628.t011

Figure 8. A new working model of responsive anti-inflammatory cytokine and housekeeping cytokine. Homeostatic tissues express
‘‘house-keeping’’ anti-inflammatory cytokines TGF-b1, TGF-b2, TGF-b3 to prevent it from initiation of inflammation. When tissues get inflamed,
proinflammatory factors may stimulate tissues to express ‘‘responsive’’ anti-inflammatory cytokines such as IL-35 by specific transcription factors to
counteract inflammation response. Furthermore, ARE binding proteins and MicroRNAs are responsible of the quick degradation of IL-35 mRNA
afterwards, by which IL-35 achieve non-constitutive expression status in tissues again.
doi:10.1371/journal.pone.0033628.g008
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can be degraded quickly by 39UTR-mediated mechanisms, which

correlates with the non-constitutive expression of IL-35 in tissues.

It is worth pointing out that the data retrieved from the

expression sequence tag (EST) database analyzed in this study is

more precise than that detected with traditional approaches

including Northern blot analysis and PCR analysis due to the un-

biased cDNA cloning and DNA sequencing procedures of EST

database deposits [21]. Thus, the expression patterns of IL-35,

other anti-inflammatory cytokines, and receptors are experimen-

tally-based and precise.

Transcription factors (TFs) are master genes which control the

expression of other genes. It is well-accepted that multiple binding

sites for a given TF within a promoter will increase the likelihood

of actual binding [65]. The most physiologically relevant TFs will

bind to the putative core promoter region (1,500 base pairs

upstream of the transcription start site) to fulfill their functions

[66]. Our strategy to identify TF binding profiles and transcrip-

tional signaling is an important advance in merging bioinformatics

and experimental science. This study, together with our previous

database mining work [20,21,23], utilized novel database mining

techniques to identify disease-related signaling pathways. Our

research method is featured as; (1) hypothesis-driven, (2)

intensively grounded in the literature, (3) panoramic and

integrative for gene and TF regulation, (4) based on the NCBI

experimental databases, (5) inclusive of well-characterized TFs in

the searchable database TESS; (6) statistically rigorous analysis of

available public databases, and (7) experimentally verified.

Alternative promoters play an important role in gene transcrip-

tion in response to tissue/cell-specific and stimulation-specific

transcription signaling [67]. One of the best examples of multiple

promoter usage is fibroblast growth factor-1 (FGF1) transcription,

which is controlled by at least four distinct promoters in a tissue-

specific manner. The 1.A and 1.B promoters of FGF1 are

constitutively active in their respective cell types. In contrast,

different biological response modifiers, including serum and

transforming growth factor-b, can induce the 1.C and 1.D

promoters of FGF1 [67]. Of note, our results showed that most

anti-inflammatory cytokines and cytokine receptors have more

than one promoter, suggesting the capacity of these genes to

respond to tissue-/cell-specific and stimulation-specific transcrip-

tion signaling [67]. Although endothelial cells and vascular smooth

muscle cells also generate various inflammation-regulating cyto-

kines [19], the lack of a cell type-specific gene expression database

prevents the analysis of databases in cell-specific manner. When

the detailed sequences become available, it will be possible to

compare the transcription factor binding profiles in the alternative

promoters of the same genes.

To summarize our results, we propose a new system of

categorizing anti-inflammatory cytokines (Fig. 8) based on the

following three criteria including (1) constitutive or non-constitu-

tive expression in tissues, (2) non-responsiveness or responsiveness

to proinflammatory stimuli, and (3) acceleration or no acceleration

of autoimmune and inflammation by cytokine gene deficiency. We

categorize anti-inflammatory cytokines into two groups: first, the

house-keeping cytokines are defined with constitutive expression in

tissues, non-responsiveness to proinflammatory stimuli, and

acceleration of autoimmune and inflammation in the absence of

the genes, such as TGF-bs; second, the definitions of responsive

cytokines include cytokines with non-constitutive expression in

tissues, responsiveness to proinflammatory stimuli and no

acceleration of autoimmune and inflammation in the absence of

the genes, including IL-35. IL-35 is not constitutively expressed in

most tissues similar to IL-10. Instead it is upregulated, by

hypomethylation and other proinflammatory signals, in human

tissues and most mouse tissues except mouse blood, bone marrow,

liver, and thymus. In addition, the expression and structure of IL-

35 are under various regulations including NF-kB transcription

factors, alternative promoter, alternative splicing, and mRNA

degradation via AU-rich-dependent and microRNA-dependent

mechanisms. These mechanisms underlie the upregulation and

quick degradation of IL-35. Our new working model and new

system in categorizing anti-inflammatory cytokines provide

important insight into the following two important issues: first,

how anti-inflammatory cytokines share their duties: the house-

keeping cytokines, such as TGF-bs, inhibit the initiation of

inflammation whereas the responsive cytokines including novel

cytokine IL-35 suppress full-blown inflammation; and second how

these two groups of anti-inflammatory cytokines orchestrate their

roles in suppressing inflammation in different stages in various

tissues and systems. Our findings are significant for future design of

novel anti-inflammatory/immunosuppressive therapies.
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