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IL-5  and IL-5 Receptor in Asthma
ATC Kotsimbos, Q Hamid+

Department of Medicine, Meakins-Christie Laboratories, McGill University, 3626 rue St Urbain, Montreal,
Quebec, Canada H2X 2P2

Eosinophils, along with mast cells are key cells involved in the innate immune response against
parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic
parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which
is particularly important for the terminal differentiation, activation and survival of committed eosino-
phil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the
evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer
consisting of a unique α subunit (predominantly expressed on eosinophils) and a β subunit which is
shared between the receptors for IL-3 & GM-CSF (more widely expressed). The α subunit is required for
ligand-specific binding whereas association with the β subunit results in increased binding affinity. The
alternative splicing of the αIL-5R gene which contains 14 exons can yield several αIL-5R isoforms
including a membrane-anchored isoform (αIL-5Rm) and a soluble isoform (αIL-5Rs). Cytokines such
as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor
mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene
expression. The major intracellular signal transduction mechanism is activation of non-receptor associ-
ated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel
family of transcriptional factors named signal transducers and activators of transcription (STATS).
JAK2, STAT1 and STAT 5  appear to be particularly important in IL-5 mediated eosinophil responses.

Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and
airway inflammation. Several studies have shown an association between the number of activated T
cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity
in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of
atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predomi-
nantly  T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-
5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of acti-
vated CD 4 + T cells and  IL-5 mRNA positive cells are increased in asthmatic airways following antigen
challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids
have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensi-
tive asthma but not in  steroid resistant and chronic severe steroid dependent asthma. The link between
T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demon-
stration that there is an increased number  of αIL-5R mRNA positive cells in the bronchial biopsies of
atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this in-
creased αIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that
expressed mRNA for membrane bound α IL5r inversely correlated with FEV1, whereas the subset of
activated eosinophils that expressed mRNA for soluble αIL5r directly correlated with FEV1. Hence, not
only does this data suggest that the presence of eosinophils expressing αIL-5R mRNA contribute to-
wards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to αIL-
5R isoform expression is of central importance. Finally, there are several animal, and more recently in
vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bron-
chial hyperresponsiveness(BHR) -  all of which support a link between IL-5 and airway eosinophila and
bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the
finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The
importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been fur-
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ther demonstrated by a number of studies which have indicated that IL-5 administration is able to
induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase
responses and BHR.

In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly
important in the asthmatic response. Human studies in asthma and studies in allergic animal models
have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the
eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosi-
nophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosino-
phil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associ-
ated with steroids. Such therapies could target key T cell activation proteins and cytokines by various
means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucle-
otides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another
option would be to target key eosinophil activation mechanisms including the αIL5r. As always, the risk
to benefit ratio of such strategies await the results of well conducted clinical trials.
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ASTHMA AND ALLERGIC INFLAMMATION

Asthma is characterized by episodic airway
obstruction, increased bronchial responsiveness to
the inhalation of non-specific irritants and airway
inflammation (McFadden & Gilbert 1992). The
link between abnormal airway physiology and air-
way inflammation was initially suggested by the
results of post-mortem studies of asthmatic lungs
which documented the presence of an inflamma-
tory infiltrate (Dunnill 1960). The use of fibreoptic
bronchoscopy has allowed bronchial biopsies and
lavage fluid to be examined in less severe asth-
matics and in normal subjects. These studies have
shown that eosinophils and T lymphocytes in par-
ticular are increased in number and activation sta-
tus in asthmatic airways compared to controls
(Jeffery et al. 1989, Azzawi et al. 1990, Bradley et
al.1991, Bentley et al. 1992, Laitinen et al. 1993).
Furthermore, several studies have correlated the
number of activated T cells and eosinophils with
abnormalities in FEV1 and airway reactivity
(Walker et al. 1991) and with clinical severity in
asthma (Bousquet et al. 1990).

 More recently, lung resection studies have also
demonstrated an increase in the number of eosino-
phils and T lymphocytes  in both the large and small
airways of asthmatic subjects compared to non-
asthmatic controls matched for age, sex, smoking
history, lung function and airway size (Hamid et
al. 1996).  These results extend the findings from
previous studies using endobronchial biopsies by
showing that a similar but more severe inflamma-
tory process is present in the peripheral airways
and in the airway wall external to the smooth
muscle layer-both of which are not routinely
biopsied during fibreoptic bronchoscopy. This data
is consistent with the evidence that suggests that
the small airways are the major site of obstruction

in asthma (Macklem et al. 1970, Wiggs et al. 1992,
Kuwano  et al. 1993). In addition, the extensive
presence of inflammatory cells throughout the air-
ways makes it possible that these cells may be im-
portant modulators of the function of other cells
present in airway tissues-including epithelial cells,
fibroblasts and smooth muscle cells.  There is there-
fore considerable interest and research into the
mechanisms underlying the initiation and mainte-
nance of the inflammatory respone in asthma-
which is likely to be a consequence of a compli-
cated interaction between various cells and media-
tors.

IL-5: AN IMPORTANT LINK BETWEEN T CELLS AND
EOSINOPHILS

IL-5 MOLECULAR BIOLOGY
IL-5 GENE, MRNA AND PROTEIN

The human IL-5 gene is located on chromosome
5 in a gene cluster that contains the IL-4 family of
cytokine genes (Boulay & Paul 1992). It contains 4
exons which encode a peptide of 124 amino acids
(Azuma et al. 1986 ). IL-5 is a monomer  which
exists functionally as an antiparallel homodimeric
glycoprotein linked by 2 disulfide bonds and has a
tertiary crystalline structue consisting of 4 alpha
helices (Milburn et al. 1993). The exon structure,
primary secondary and tertiary protein sequences,
cell membrane receptors and intracellular signal
transduction pathways of IL-5 are similar with those
from the IL-4 cytokine family, thereby suggesting
that they are evolutionary related cytokines (Milburn
et al. 1993, Kosugi et al. 1995). Therefore, it is not
surprising that these cytokines also share cellular
sources and functional activities and are all impor-
tant in the co-ordinated immune defense against
parasitic infection. However, IL-5 is unusual in that
it is the most highly conserved member of this group.
In addition, the IL-5 glycoprotein is highly homolo-
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gous between mammalian species thereby suggest-
ing that IL-5 function is of particular benefit to the
host organism.

IL-5 RECEPTOR GENE, MRNA AND PROTEIN

The human IL-5 receptor complex is a
heterodimer consisting of a unique α subunit (αIL-
5R; MW 60Kd) and a β subunit (MW 130Kd)
which is shared between the receptors for IL-3 and
GM-CSF (Lopez et al. 1991, Murata et al. 1992,
Miyajima et al. 1993). In vitro, the expression of
human αIL-5R has been described to be present
on eosinophils and basophils whereas the β sub-
unit is more widely expressed (Denburg et al. 1991,
Migita et al.1991, Miyajima et al. 1993). The α
subunit is required for ligand-specific binding
whereas association with the β subunit results in
increased binding affinity (Takagi et al. 1995). The
receptors for IL-5, IL-3 and GM-CSF belong to
the class I cytokine receptor family based on their
structural motifs (Bazan 1990, Boulay & Paul,
1992b). The membrane proximal region of the ex-
tracellular domains of both the α and  β subunits
of the IL-5R have common structural features
which they share with the other members of the
haematopoietin cytokine receptor family. This ho-
mologous region is characterized by a trp-ser-x-
trp-ser motif and by several conserved short se-
quence elements - the integrity of which is required
for the interaction with its ligand (Bazan 1990,
Boulay & Paul 1992b).

The gene for human αIL-5R  is located on chro-
mosome 3 (Tuypens et al. 1992) and the gene for
human βIL-5R  is on chromosome 22 (Miyajima
et al. 1993, Takai et al. 1994). The alternative splic-
ing of the αIL-5R gene which contains 14 exons
can yield several  αIL-5R isoforms including a
membrane-anchored isoform (αIL-5Rm) and a
soluble isoform (αIL-5Rs) (Tuypens et al. 1992,
Tavernier et al. 1992). The membranous and
soluble αIL-5R isoform primarily differ in whether
or not a transmembrane binding domain is present.
Although, αIL-5Rm and αIL-5Rs isoform bind IL-
5 with equally high affinity (Tavernier et al. 1992,
Devos et al. 1993, Koike et al. 1994), αIL-5Rm
interacts with the β subunit thereby substantially
increasing the affinity for IL-5 and allowing spe-
cific signal transduction pathways to be activated
(Koike et al. 1994) whereas αIL-5Rs competes for
IL-5 ligand with αIL-5Rm present on eosinophils
and therefore has antagonistic properties that may
have a regulatory role (Tavernier et al. 1991).

IL-5 RECEPTOR MEDIATED INTRACELLULAR SIGNAL
TRANSDUCTION

Cytokines produce specific and non-specific
cellular responses through receptor mediated acti-

vation of intracellular signal transduction pathways
which, to a large part, regulate gene expression
(Nicola et al. 1989, Miyajima et al. 1992). IL-5R
mediated signalling requires the cytoplasmic do-
mains of both subunits, is dependent on the pro-
line rich areas proximal to the transmembrane do-
mains  and involves the process of dimerization of
the α and β subunits (Sakamaki et al. 1992,
Miyajima et al. 1992,  Takaki et al. 1993). The
major intracellular signal transduction mechanism
is activation of non-receptor associated tyrosine ki-
nases including MAP kinases (Matsumoto et al.
1995, Pazdrak et al. 1995)  and JAKS (Sakamaki
et al. 1992, Corneils et al. 1995) which can then
transduce signals via a novel family of transcrip-
tional factors named signal transducers and acti-
vators of transcription (STATS) (Ihle et al.
1995a,b). STAT proteins exist in the cytoplasm as
latent, transcriptionally inactive forms until in re-
sponse to extracellular signals, they become phos-
phorylated on tyrosine residues, translocate to the
nucleus, and bind to specific DNA elements. JAK2,
STAT1 and STAT 5  appear to be particularly im-
portant in IL-5 mediated eosinophil responses (Mui
et al. 1995, Van der Braggen et al. 1995). Despite
major advances in this area in recent years, the exact
mechanisms by which IL-5 dependent, cell-type
specific signals are generated are still to be eluci-
dated.

IL-5, T CELLS AND EOSINOPHILS

Eosinophils, along with mast cells are the key
cells involved in the innate immune response
against parasitic infection. The adaptive immune
response however is largely dependent on lympho-
cytes. CD4 +ve T lymphocytes, in particular, are
crucial  in antigen-driven inflammatory processes
and are therefore likely to have an important role
in orchestrating specific inflammatory responses.
These cells are capable of recognizing foreign an-
tigen that has been processed by antigen present-
ing cells and can produce pro-inflammatory
cytokines in response to such activation which can
dramatically amplify the inflammatory response.

One of the major links between T cells and
eosinophils is IL-5. In chronic parasitic disease and
in chronic allergic disease, IL-5 is predominantly
a T cell derived cytokine whose major site of ac-
tion is the eosinophil (Hamid et al. 1991, Mahanty
et al. 1993, Ying et al. 1995).  Although the devel-
opment of tissue eosinophilia is T cell dependent,
non T cell derived IL-5 may also play an impor-
tant role as IL-5 mRNA can also be produced by
mast cells and eosinophils (Plaut et al. 1989, Brodie
et al. 1992). IL-5, IL-3, and GM-CSF are all ca-
pable of stimulating the development of eosino-
phils from human bone marrow. However, only IL-
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5 was selective for the eosinophil lineage
(Clutterbuck et al. 1989). Transgenic mice which
constituitively express IL-5 have high level, life-
long eosinophilia (Dent et al. 1990) and the ad-
ministration of anti-IL-5 neutralising antibody in
parasite infected mice totally blocks the produc-
tion of eosinophilia (Coffman et al. 1989, Egan et
al. 1995).

IL-5 is particularly important for the terminal
differentiation of committed eosinophil precursors
(Clutterbuck et al. 1989, Weller et al. 1992, Ogawa
1994). It activates mature eosinophils and prolongs
their survival in culture (Yamaguchi et al. 1988)-
possibly via its ability to delay apoptosis
(Yamaguchi et al. 1991), as well as selectively en-
hancing eosinophil degranulation, antibody-depen-
dent  cytotoxicity and adhesion to vascular endot-
helium (Lopez et al. 1988, Fujisawa et al. 1990).
IL-5 enhances the capacity of eosinophils to re-
lease LTC4 (Weller et al. 1992) and also primes
basophils, leading to increased histamine and LTC4
generation (Bischoff et al. 1990, Laviollette et al.
1995) and increases synthesis of IgM, IgA, IgE by
B cells costimulated with IL-4 (Pene et al. 1988,
Purkerson & Isakson 1992). Although IL-5 on its
own is minimally chemoattractant for eosinophils,
its ability to significantly enhance the properties
of stronger eosinophil chemoattractants such as
Rantes and Eotaxin is probably more important
(Sanderson, 1992, Sedgwick et al. 1995, Collins
et al. 1995, Rothenberg et al. 1996).

IL-5, THE TH2 CYTOKINE PROFILE AND ALLERGIC IN-
FLAMMATION

The production of IL-5 by T cells, like that of
other TH2 cytokines, is independently regulated
(Kelso, 1995, Naora et al. 1995, Sewell et al. 1996).
Although individual T cells have the capacity to
produce a wide range of cytokines, distinct T cell
populations and cytokine profiles exist in chronic
allergic inflammatory diseases (Miyajima et al.
1992, Van Straaten et al. 1994, Kay et al. 1995).
There are a number of potential explanations for
this phenomenon. Firstly, as has already been men-
tioned, the IL-4 family of cytokine genes is clus-
tered on chromosome 5, have related evolutionary
pathways and are therefore likely to be regulated
by similar factors. Secondly, these factors are likely
to co-exist in particular microenvironments - par-
ticularly when inflammation is driven by similar
aetiological agents. And thirdly, these family of
cytokines tend to upregulate themselves and
downregulate opposing groups of cytokines in an
attempt to generate a specific type of adaptive im-
mune response (Modlin et al. 1993, Jung et al.
1995). Indeed, cross-regulation of T helper cell
populations occurs and, in the extreme case, this

may lead to the development of relatively homo-
geneous Th1 and Th2 cell T cell population phe-
notypes (Kelso 1995).

Th2  cell populations tend to produce IL-4, 5,
13 and are associated with humoral immunity and
allergy whereas  TH1 cell populations tend to pro-
duce IFN-γ and IL-2 and are associated with cell
mediated immunity (Modlin et al. 1993). IL-4 and
IL-13 are the cytokines that predominantly regu-
late B cell production of IgE and IgE activation of
mast cells, both of which have an  important role
in the allergic immune response. The contribution
of IL-4  and IL-5 to allergen induced eosinophil
infiltration into the airway has been suggested by
experiments showing inhibition of airway eosino-
philia in mice with monoclonal antibodies  directed
against IL-4 and IL-5 (Moser et al. 1992, Kung et
al. 1995). These cytokines may act as chemotactic
factors for eosinophils, and also promote eosino-
phil-endothelial adhesion by inducing expression
of VCAM-1 on endothelial cells.  VCAM -1 in
turn may bind to its receptor VLA-4 on the eosi-
nophils leading to the migration of eosinophils to
sites of airway inflammation (Elices et al. 1990).
However, as has already been mentioned, one of
the key roles of IL-5 however is to regulate eosi-
nophil activation, differentiation and survival.
Thus, although IL-5 also helps in the activation of
B cells (Noelle et al. 1992), its major role is to re-
cruit and activate eosinophils which act in concert
with mast cells and IgE producing B cells in the
immune response against parasites and in patho-
physiology of allergic disease. The relative impor-
tance of these pathways is likely to vary according
to the specific ‘allergic’ disease state. Neverthe-
less, the correlations between detectable levels of
IL-5 mRNA in the tissues and IL-5 protein in the
serum, eosinophilia  development and disease pa-
thology in a wide variety of allergic diseases are
striking (including parasite infections, asthma, id-
iopathic eosinophilia, eosinophilic myalgia and
Hodgkins lymphoma) (Sanderson 1992b). Hence,
activated T cells can potentially initiate and propa-
gate allergic inflammation in the airways and  par-
ticipate directly in the events responsible for asthma
exacerbation  by profoundly influencing both sub-
sequent lymphocyte cell activation  and the pro-
motion of growth and differentiation of specific
effector leucocytes such as  eosinophils.

ASTHMA AND IL-5

HUMAN STUDIES: IL5 mRNA AND PROTEIN

Atopic asthma  - It has now been well docu-
mented that IL-5 is highly expressed in the bron-
chial mucosa of atopic asthmatics  and that the in-
creased IL-5 mRNA present in airway tissues is
predominantly  T cell derived although fewer, but
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detectable, numbers of tryptase+ mast cells and
EG2+ eosinophils also expressed these transcripts
(Hamid et al. 1991, Robinson et al. 1992, Kay et
al. 1995, Ying et al. 1995).  Immunocytochemical
staining of bronchial biopsy sections has confirmed
that IL-5 mRNA transcripts are translated into pro-
tein in asthmatic subjects (Fukuda et al. 1994).

Increased IL-5 mRNA expression has also been
demonstrated in BAL T lymphocytes (Robinson
et al. 1992) and in peripheral blood CD4 T cells
(Corrigan et al. 1995). The reports of increased IL-
5 protein levels in the BAL fluid, serum and pe-
ripheral blood T cell supernatants of asthmatics
(Walker et al. 1992, 1991, Motojima et al. 1993),
support the findings of  increased numbers of IL-5
mRNA positive cells in these biological fluids. In
addition, T cell lines that have been established
from the BAL fluid and peripheral blood of atopic
asthmatics secrete increased levels of IL-5 com-
pared to atopic and non-atopic controls, thus pro-
viding further evidence that T cells in asthma have
a propensity to make both IL-5 mRNA transcripts
and IL-5 translated product which can then acti-
vate eosinophils (Endo et al. 1993, Okudaira et al.
1995, Till et al. 1995).

Numerous studies have shown that not only is
there increased IL-5 mRNA and protein present in
asthma, but also that the increased IL-5 is associ-
ated with increased eosinophil numbers and in-
creased airways dysfunction (Hamid et al. 1991,
Robinson et al. 1993, Sur et al. 1995). It has been
demonstrated that the number of IL-5 mRNA-posi-
tive cells correlates with the number of eosinophils
infiltrating the bronchial mucosa of asthmatic sub-
jects and that IL-5 expression inversely correlates
with pulmonary function (Hamid et al. 1991).  In
addition, the increased expression of IL-5 mRNA
in BAL has been directly correlated to asthma
symptom severity and inversely correlated to ab-
normal airway physiology (Robinson et al. 1993).
Finally, in the studies where increased IL-5 pro-
tein levels were demonstrated in the BAL fluid,
serum and peripheral blood T cell supernatants
(Walker et al. 1992, 1991, Motojima et al. 1993)
of asthmatic subjects, the IL-5 protein levels de-
tected correlated with the numbers of eosinophils
present in these fluids (Walker et al. 1992).

Activated eosinophils have the capacity to pro-
duce effector molecules that could participate in
the pathogenesis of asthma. The demonstration of
eosinophil major basic protein and eosinophil de-
rived neurotoxin indicating degranulation at sites
of injury are an important part of the evidence that
eosinophils are producing tissue damage in the
asthmatic lung (Sur et al. 1995). Hence, the cur-
rent evidence suggests that the local production of
IL-5 in asthmatic airways may play an important

role in the priming of eosinophils for subsequent
activation, and in enhancing their survival at sites
of allergic inflammation (Lopez et al. 1988,
Yamaguchi et al. 1988), all of which is likely to be
important in asthma.

Intrinsic asthma - Unlike extrinsic asthma, in-
trinsic asthma usually starts in adulthood, is pe-
rennial and is not atopy associated. Nevertheless,
an analysis of the inflammatory cell populations
present in both BAL fluid and bronchial biopsies
from intrinsic asthmatics shows an increase in the
number of activated T lymphocytes and eosino-
phils (Bentley et al. 1992). Indeed, there a large
similarities in the inflammatory cells that are
present in asthma of diverse aetiology-extrinsic,
intrinsic, and occupational (Bentley et al. 1994).
Moreover, several studies have now demonstrated
increased levels of IL-5 mRNA and protein in the
tissue and  BAL fluid  of intrinsic asthmatics,
thereby supporting the role of this cytokine in both
intrinsic as well as atopic asthma (Marini et al.
1992, Bentley et al. 1993, Walker et al. 1994,
Humbert et al. 1996). These findings support a
common T cell mediated basis for airway inflam-
mation in both forms of asthma.

The  difference between intrinsic and atopic
asthma is the lack of demonstrable specific IgE to
an antigen in individuals with intrinsic disease.
Although total serum IgE levels have been noted
to be increased in the serum of patients with in-
trinsic asthma (Burrows et al. 1989) this is not a
uniform finding with high positive predictive value
(Butcher et al. 1980, Klink et al. 1990). There is
evidence that IL-5 but not IL-4 is increased in the
BAL fluid from intrinsic asthmatics (Walker et al.
1994), thus supporting the hypothesis that IL-5 and
eosinophilia are key features in both forms of
asthma and that differences in the type of cytokine
synthesis may undermine the differences in im-
mune pathology that exist between intrinsic and
atopic asthma. However,  more recent studies ex-
amining the expression of high-affinity IgE recep-
tor (Humbert et al. 1996a), and IL-5 and IL-4
mRNA and protein expression in bronchial biop-
sies from patients with atopic and non-atopic
asthma found no difference between atopic and
intrinsic asthmatics (Humbert et al. 1996b). Thus,
any differences in immune pathology that may exist
between intrinsic and atopic asthma may be more
subtle than initially expected.

Other allergic pulmonary and non-pulmonary
allergic diseases - There is a strong association be-
tween IL-5 and eosinophilia in a number of aller-
gic human diseases, including parasitic infections
(Coffman et al. 1989, Limaye et al. 1993, Hagan
et al. 1996), atopic dermatitis (Frew & Kay 1988,
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Hamid et al. 1994), eosinopilic myocarditis
(Desreumaux et al. 1993), hypereosinopilic syn-
drome (Schrezenmeier et al. 1993, Satoh et al.
1994) eosinophilic gastroenteritis (Quan et al.
1993, Dubucquoi et al. 1995), allergic rhinitis
(Durham et al. 1992), chronic eosinophilic pneu-
monia (Kita et al. 1996) and other eosinophilic lung
diseases (Walker et al. 1994) (Fig. 1).

lenge in atopic asthmatics (Bentley et al. 1993,
Robinson et al. 1993), although some investiga-
tors have reported that  the eosinophil is also a
source of IL-5 in this setting (Broide et al. 1992).
Studies examining  BAL samples 18-48 hr after
allergen challenge have also shown increased ex-
pression of IL-5 (Krishnaswamy et al. 1993,
Ohnishi et al. 1993). In addition, IL-5 was  a major
cytokine product of T cells from patients with mite
associated bronchial asthma when they were stimu-
lated with Dermatophagoides farinae (Kamei et al.
1993).

* p < 0.05

Fig. 1: IL-5 in asthma and other pulmonary diseases.  The per-
centage of IL-5 mRNA +ve cells in the BAL fluid of patients
with  asthma, sarcoidosis, and tuberculosis. NC: normal con-
trols; NA: non-active disease; A: active disease; NS: non-
symtomatic disease; S: symptomatic disease.

Although there is a strong link between IL-5
and eosinophilia in general, the link between pul-
monary eosinophilia and clinical asthma is less
direct. Non-eosinophilic inflammatory lung con-
ditions such as tuberculosis and sarcoidosis are not
associated with increased IL-5 and eosinophils
(Taha et al. 1996, Minshall et al. 1996). However,
although eosinophilia is a common feature of
asthma  many eosinophilic lung diseases are not
associated with clinical asthma. This argues that
factors other than the presence of eosinophils are
also important in the development of clinical
asthma. These factors may relate to the level of
eosinophil activation, to non-eosinophil dependent
parameters that are nevertheless associated with
allergic inflammation, or to baseline levels of bron-
chial hyperresponsivenes. It is therefore likely that
the asthma phenotype is most likely to occur when
all the relevent factors- including IL5 and eosino-
philia, occur together in an individual predisposed
to bronchial hyperresponsiveness.

Antigen challenge - The number of activated
CD 4 + T cells and  IL-5 mRNA positive cells are
increased in asthmatic airways following antigen
challenge (Robinson et al. 1993, Bentley et al.
1993) (Fig. 2). Furthermore, CD 4 + ve T cells
have been generally implicated as the major  IL-5
mRNA positive cell present following antigen chal-

Fig. 2: IL-5 mRNA following allergen challenge humans. The
number of IL-5 mRNA +ve cells/mm basement membrane in
atopic asthmatic subjects following specific allergen challenge.

The increased IL-5 expression that follows al-
lergen challenge has been demonstrated to in-
versely correlate with pulmonary function (Bentley
et al. 1993) and this adds to the evidence that IL-5
expression and eosinophilia are relevently in-
creased following exposure to antigen in sensitised
individuals. Indeed, in the study by Ohnishi et al.
(1993) a segmental antigen lung challenge model
was used to show that IL-5 was the most impor-
tant constituent increasing eosinophil survival and
that IL-5 correlated with eosinophil recruitment,
degranulation and lung injury following inhalation
of antigen. These results are in agreement with sev-
eral other studies that have indicated that increases
in the levels of eosinophils and their cationic pro-
teins in the BAL fluid following allergen challenge
correlates with the magnitude of the late phase re-
sponse (Pradalier 1993).

Furthermore, it is well recognized that there is
an association between allergic rhinitis and aller-
gic asthma, and hence studies using models of al-
lergen-induced allergic rhinits are therefore
relevent to allergic asthma. The results obtained
from such models by and large support the above
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findings. For instance, it has been shown that T
cells are the principal source of IL-5 transcripts in
the nasal mucosa following allergen induce late-
phase nasal responses (Ying et al.1993). Similar
findings have also been reported in models of al-
lergen induced cutaneous late phase reactions (Kay
et al. 1991).

Steroid treatment - The use of anti-inflamma-
tory corticosteroids are the cornerstone of current
asthma therapy. They have been shown to be ex-
tremely effective  clinically. Studies that have ex-
amined IL-5 expression in BAL and peripheral
blood of asthmatic subjects before and after ste-
roids have shown that the number of IL-5 mRNA
positive cells is significantly decreased following
oral corticosteroid treatment in steroid-sensitive
asthma (Robinson et al. 1993, Corrigan et al. 1995).
In contrast, steroid resistant asthma and chronic
severe steroid dependent asthma are associated
with persistently elevated IL-5 mRNA levels
(Leung et al. 1995) and  serum IL-5 levels
(Alexander et al. 1994), respectively . The de-
creases in the expression of IL-5 that followed cor-
ticosteroid therapy have been associated with  de-
creased  eosinophil numbers - especially in the pe-
ripheral blood (Corrigan et al. 1995), but increased
numbers of IFN-γ positive cells in the bronchial
mucosa and BAL fluid of asthmatic subjects
(Robinson et al. 1993, Leung et al. 1995, Bentley
et al. 1996). These findings support the direct link
between IL-5 and eosinophils and the inverse re-
lationship between Th1 and Th2 type T cells in
asthma (Fig. 3). Hence,  corticosteroid treatment
in asthma may act by modulation of cytokine ex-
pression with consequent inhibition of the local
bronchial inflammatory infiltrate and tissue eosi-
nophilia.

IL5 RECEPTOR  (Membrane bound and soluble isoforms)

The link between T cell derived IL-5 and eosi-
nophil activation in asthmatic airways has now
been supported by the demonstration that there is
an increased number  of αIL-5R mRNA positive
cells in the bronchial biopsies of atopic and non-
atopic asthmatic subjects compared with atopic and
non-atopic controls  (Fig. 4a , b) and that the eosi-
nophil is the predominant site of this increased αIL-
5R mRNA expression (Yasruel et al. 1997). We
have shown that 93% of the αIL-5R mRNA posi-
tive cells within the bronchial mucosa of asthmat-
ics were also EG2 positive thereby suggesting that
IL-5 may play an important local role in stimulat-
ing eosinophils via the specific α-subunit of its re-
ceptor. These results support previous work that
has suggested that the lineage specificity of IL-5
is mainly due to the restricted expression of the α
subunit of IL5R (Takagi et al. 1995) and demon-
strates that the expression of αIL-5R in vivo can
be much more cell-restricted than that seen in vitro
(Lopez et al. 1991).

Fig. 3 : prednisone therapy and IL-5 mRNA expression in ste-
roid-sensitive and steroid-resistant asthmatics. The number of
IL-5 mRNA +ve cells/mm basement membrane in the bron-
chial mucosa before and after prednisolone therapy in steroid-
sensitive and steroid-resistant asthmatics.

mIL-5R

sIL-5R

Fig 4  a/b: membrane and soluble IL-5R mRNA expression in
asthma. The number of membrane and soluble IL-5 receptor
mRNA +ve cells/mm  basement membrane in the bronchial
mucosa in asthma. mIL-5r: membrane-bound IL-5r isoform; sIL-
5r: soluble IL-5r isoform; NC: normal controls; AC: atopic con-
trols: AA: atopic asthmatics; IA: intrinsic asthmatics.
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We have also shown that the subset of activated
eosinophils that expressed mRNA for membrane
bound IL5r inversely correlated with FEV1,
whereas the subset of activated eosinophils that
expressed mRNA for soluble IL5r directly corre-
lated with FEV1. Hence, not only does this data
suggest that the presence of eosinophils express-
ing IL-5R mRNA contribute towards the patho-
genesis of bronchial  asthma, but also that the eosi-
nophil phenotype with respect to αIL-5R isoform
expression is of central importance. Factors that
may modulate the activation phenotype of the air-
way eosinophils in asthma remain to be clearly
determined. The apparent contradiction between
an EG2+ eosinophil (EG2 being a marker of acti-
vated eosinophils) also expressing αIL-5Rs mRNA
and hence representing a downregulated cell can
be explained by assuming that EG2 and the aIL5R
are associated with different levels of eosinophil
activation. Indeed, there is considerable contro-
versy as to the validity of EG2 as a marker of eosi-
nophil activation (Moqbel et al. 1992). Moreover,
there is no direct way with which to grade the vari-
ous potential activation of eosinophils. If EG2 rep-
resented a relatively low grade eosinophil activa-
tion marker then it is possible that when eosino-
phils cross the endothelial barrier they all become
EG2 + as a result of influences from the local tis-
sue environment . On the other hand, αIL-5R acti-
vation status might represent a higher level of cell
activation such that αIL-5Rm positive cells repre-
sented a highly activated subset of EG2+ eosino-
phils  and αIL-5Rs positive cells a subset of EG2+
eosinophils that are minimally activated. Hence,
although previously published correlations be-
tween EG2+ eosinophils and FEV1  were only
modest  (Hamid et al. 1991), such considerations
may explain the strong inverse correlation  between
αIL-5Rm  mRNA positive cells and FEV1 as well
as the strong direct correlation  between  αIL-5Rs
mRNA positive cells and FEV1  that was reported.

The central question as to what controls the
transcriptional regulation of αIL-5R also remains
to be determined. Transforming growth factor B1
has already been shown to downregulate αIL-5R
mRNA expression (Zanders 1994), however  the
effect of single cytokines or combinations of
cytokines on the production of different mRNA
splice variants of αIL-5R is yet to be elucidated.
Nevertheless, the increased number of  αIL-5R
mRNA positive eosinophils in the bronchial tissue
of asthmatic patients and the differential expres-
sion of αIL-5R mRNA isoforms in atopic and non-
atopic asthma support the central roles of IL-5 and
eosinophils in the pathobiology of asthma.

IL5 ASSOCIATED SIGNAL TX AND GENE ACTIVATION

It has been shown that cloned human naive CD4
T cells develop into IL-4 and IL-5 producing ef-
fector cells as a default pathway (Yang et al. 1995).
It could therefore be hypothesised that inert anti-
genic stimulation of the immune system without
concomitant stimulation of cell mediated immune
pathways would favour the development of aller-
gic responses. However, how exactly allergen in-
duced activation of TCR and co-stimulatory mol-
ecules translates to IL-4 and IL-5 gene activation
is not clear. It could also be hypothesised that it
would be in the interests of a well coordinated
amplification cascade of inflammation to link IL-
4 and IL-5 gene activation in cytokine producing
cells with IL-4 and IL-5 receptor gene activation
in target cells. Although we have already quoted
some evidence that suggests that this occurs, the
exact mechanisms are unclear.

The functions of the alpha subunits of IL-5R
and IL-4R have been examined by co-transfecting
human cDNAs for these subunits into human cell
lines, and it is clear that intracellular signalling is
very different in both cases (Chen et al. 1994). How
IL-4 mediated intracellular signals interact with the
IL-5 gene promoter and whether IL-4 and IL-5
mediated signal transduction can also increase the
expression of IL-4 and IL-5 cytokines from source
cells and IL-4 and IL-5  receptors in target cells
are important issues still to be elucidated. Further-
more, how IL-5 mediated signals translates to an
activated eosinophil phenotype is also unclear at
present, although recent work has implicated spe-
cific GATA binding proteins (Zon et al. 1993). Fi-
nally, the response of these cytokine and cytokine
receptor genes to therapeutic agents is another
important area requiring further study.

ANIMAL STUDIES

IL-5 EXPRESSION:  SENSITISED AND ANTIGEN CHAL-
LENGED ANIMALS

There are several animal models of allergen
induced eosinophilia, late airway responses, and
bronchial hyperresponsiveness. These include
guinea pigs (Corry et al. 1996), Brown norway
(BN) rats (Renzi et al. 1991a,b, 1993, Olivenstein
et al. 1993) and mice (Nakajima et al. 1992,
Iwamoto et al. 1992). In all these models there is
evidence to support a link between IL-5 and air-
way eosinophila and bronchial hyperresponsive-
ness. In the BN rat we have also shown that
CD4+ve T cells and Th-2 cytokines, IL-5 in par-
ticular, are involved in allergen induced late air-
way responses (LAR) (Fig. 5) (Al Assad et al. 1995,
Renzi et al. 1996).
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 We have shown that the airways of OVA sen-
sitized BN rats are infiltrated predominantly by
IL-5 and IL-4 mRNA +ve cells after antigen chal-
lenge (Renzi et al. 1996). Eum et al. have demon-
strated that eosinophil recruitment into the respi-
ratory epithelium following antigenic challenge is
associated with IL-5-dependent bronchial
hyperresponsiveness (Eum et al. 1995). Recent
work has shown that IL-5 deficiency abolishes
eosinophilia, airways hyperreactivity and lung
damage in a mouse asthma model and that recon-
stitution of IL-5 production using recombinant
vaccinia virus that expressed IL-5 restored
aeroallergen induced eosinophilia and airways
dysfunction (Foster et al. 1996).  IL-5 transgenic
mice show marked eosinophilia and increased re-
activity to acetylcholine only after antigen chal-
lenge. This suggests that eosinopil activation rather
than just large numbers of eosinophils is crucial to
the development of BHR (Iwamoto et al. 1995).
Interestingly, genetic linkage analysis has linked
bronchial hyperesponsiveness in the mouse to
murine chromosome 6 - the chromosomal region
containing the gene for IL-5 (Ewart et al. 1996).

Using an in vitro lung explant model it has also
been shown that airways of OVA sensitized BN
rats are infiltrated predominantly by MBP + ve,
IL-5 and IL-4 mRNA +ve cells after ex-vivo anti-
gen challenge (Fig. 6) (Minshall et al. 1996). The
demonstration of increased MBP and IL-5 mRNA
expression in sensitized lung explants after aller-
gen challenge, suggests that local factors are likely
to be very important in the initiation and develop-
ment of airway eosinophil infiltration.

 The most direct demonstration of T cell in-
volvement in LARs is the finding that these physi-

ological responses can be transferred by CD4+ but
not CD8+ T cells in rats (Watanabe et al. 1995a,b).
To investigate the role of T cell cytokines in these
responses the expression of mRNA for Th2 (IL-4
and IL-5) and Th1(IL -2 and INF-γ) type cytokines
in BN rats that were administered aerosolized OVA
challenge following the adoptive transfer of either
antigen-primed W3/25(CD4)+ or OX8(CD8)+ T
cells was examined (Fig. 7) (Watanabe et al. 1996).
Our results showed that recipients of OVA-primed
CD4+ T cells had an increase in the fraction of BAL
cells expressing mRNA for IL-4 and IL-5 com-
pared to BSA-primed CD4+ or OVA-primed CD8+

cells. Recipients of CD8+ T cells had an increase
in INF-γ mRNA expression after OVA challenge
compared to recipients of BSA primed CD8+ or
OVA primed CD4+ T cells. Hence, T cell depen-
dent allergen induced late responses are associated
with the expression of mRNA for IL-4 and IL-5,
indicating Th2 cell activation.  Furthermore, the
increased expression of INF-γ in allergen challenge
recipients of antigen-primed CD8+ T cells suggests

Fig 5: IL-5 mRNA expression following allergen challenge in
BN rats. The number of IL-5 mRNA +ve cells/mm basement
membrane in the bronchial mucosa of  Brown Norway  rats and
Sprague-Dawley  rats following ovalbumin allergen challenge.

Fig 6: MBP and IL-5 mRNA expression in sensitized BN rat
lung explants. The number of  MBP and IL-5 mRNA +ve cells/
mm basement membrane in  sensitised Brown Norway rat lung
explant tissue before and after ovalbumin allergen challenge.
LAR: late phase airway response; BC: before challenge; AC:
after challenge.
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that CD8+ T cells may be important in modulating
allergic responses, thus supporting the conclusions
from previous work in this area (Al Assad  et al.
1995).

ining  the roles of various transcription factors in
animal T cell lines (Lee et al. 1994, Karlen et al.
1996). These studies have implicated AP-1, NF-
AT like factors and  GATA binding proteins  al-
though it is still not clear how all these molecules
are related in  controlling IL-5 promoter activity
(Lee et al. 1994, Yamagata et al. 1995, Karlen et
al. 1996).

THERAPEUTIC IMPLICATIONS

Asthma is a complex disorder involving a spe-
cific inflammatory response in the airways that is
largely co-ordinated by activated T cells and in-
volves various other inflammatory effector cells
especially eosinophils but also B cells and mast
cells, as well as functional and structural changes
in the resident airway  tissue cells. The central role
of activated lymphocytes and eosinophils in asthma
would argue for the likely therapeutic success of
strategies to block T cell and eosinophil activation.
It is likely that at least some of the success of ste-
roids in suppressing asthmatic inflammation is due
to their ability to suppress  T lymphocyte and eosi-
nophil activation. However, steroids have a wide
range of effects on many other inflammatory and
non-inflammatory cells. Although this may be the
basis of the therapeutic usefulness of steroids, it is
also the basis of the significant side effects associ-
ated with their long term use. Importantly, more
targeted therapies may avoid the complications
associated with steroids. Such therapies could tar-
get key T cell activation proteins and cytokines by
various means including blocking antibodies (eg
anti-CD4, anti-CD40, anti-IL-5 etc), antisense oli-
gonucleotides to their specific mRNAs, and/or se-
lective inhibition of the promoter sites for these
genes. Another option would be to target key eosi-
nophil activation mechanisms including the αIL5r.
As always, the risk to benefit ratio of such strate-
gies await the results of well conducted clinical
trials.

The groundwork for such strategies is currently
being laid. Anti-IL5 antibodies have been shown
to inhibit pulmonary eosinophilia, tissue damage
and hypereactivity in allergic animal models (Egan
et al. 1995, Hagan et al. 1996). It has also been
demonstrated that FK506 could suppress IL-5 pro-
duction and gene expression in a dose dependent
manner-(Okudaira et al. 1995). In addition, the data
of Yasruel et al. (1996) linking soluble αIL-5r ex-
pression with improved FEV1 levels and studies
examining the therapeutic potential of soluble αIL-
5r suggest that they may offer particular promise
(Devos et al. 1995). Indeed, the possibility of the
antagonistic properties of the αIL-5Rs being used
as a therapeutic option in eosinophil mediated dis-
ease states such as asthma and allergic rhinitis is

* p < 0.05

Fig 7: IL-5 mRNA-positive cells in BAL following adoptive
transfer of T cells. The number of  IL-5 mRNA +ve cells/1000
cells in the BAL fluid of OVA-challenged BN rats that were
recipients  of OVA-primed T cells (CD4+ and CD8+groups).

IL-5 AND ANTI-IL-5 ADMINISTRATION

The importance of IL-5 in animal models of
allergen induced bronchial hyperresponsiveness
has been further demonstrated by a number of stud-
ies which have indicated that IL-5 administration
is able to induce late phase responses and BHR
and that anti-IL-5 antibody can block allergen in-
duced late phase responses and BHR.  IL-5 ad-
ministration has been shown to increases mucosal
exudation, enhance eosinophil recruitment into the
lungs and to increases airways responsiveness in
models of allergen induced BHR in the guinea pig
(Gulbenkian et al. 1992, van Oosterhout et al.
1993a), in mice (van Oosterhout et al. 1993b), and
in the Brown Norway rat (Renzi et al. 1996). More-
over, anti-IL-5 administration inhibits eosinophil
recruitment and airways hyperresponsiveness in
guinea pig models of allergic pulmonary inflam-
mation and allergen induced BHR (Gulbenkian et
al. 1992, van Oosterhout et al. 1993a, Das et al.
1995). Similar findings have also been demon-
strated in the  the mouse (Nagai et al. 1993, Kung
et al. 1995) and in the monkey (Mauser et al. 1995).

 IL-5 SIGNAL TRANSDUCTION MODULATION

Many animal studies have now demonstrated
that eosinophilia is a uniquely specific phenom-
enon regulated by IL-5 which of course suggest
that IL-5 gene expression is under specific con-
trol. This control has been investigated by exam-
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already being investigated (Zanders 1994, Devos
et al. 1995), although the response of αIL-5R ex-
pression to antigen challenge and steroid treatment
are still important areas of further study. Interest-
ingly, the potential biological modulatory role of
αIL-5Rs also has important implications for the
development of IL-5R antagonists as these antago-
nists may not differentiate between binding to and
inhibiting αIL-5Rm, and binding to and inhibiting
αIL-5Rs (Devos et al. 1994, 1995). Furthermore,
in a murine model of allergic responses, it has been
shown that soluble αIL-5r suppressed antigen in-
duced BAL eosinophilia with little effect on air-
way hyperreactivity reminding us again of the com-
plexities involved in all these responses
(Yamaguchi et al. 1994).

CONCLUSIONS

In summary, activated T lymphocytes, the pro-
duction of IL-5 and eosinophil activation are par-
ticularly important in the asthmatic response. Hu-
man studies in asthma and studies in allergic ani-
mal models have clearly emphasised the unique
role of IL-5 in linking adaptive immunity and T
lymphocytes with the eosinophil effector cell.
However, how this link between IL-5 producing T
cells and  IL-5 target eosinophils is initiated, propa-
gated and attenuated is still an area that requires
further research. In addition, what the exact acti-
vation characteristics of the T lymphocytes in
asthma are (Vβ restriction of their TCR in response
to specific antigens) and what the relative effects
of T cells and Th2 cytokines are on all effector
inflammatory cells and on structural cells (epithe-
lium, fibroblasts and smooth muscle cells) of asth-
matic airways are also important issues that need
to be resolved. It is hoped that answers to these
questions in the near future will provide us with an
increased understanding of asthma pathogenesis,
and ultimately lead to novel, highly targeted and
effective therapeutic strategies for asthma manage-
ment.
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