
448 VOLUME 16   NUMBER 5   MAY 2015   NATURE IMMUNOLOGY

IL-6 as a keystone cytokine in health and 
disease
Christopher A Hunter1 & Simon A Jones2

Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays 

hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties 

and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of 

IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 

has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here 

we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and 

consider how the immunobiology of IL-6 may inform clinical decisions.

Biological response modifiers (‘biologics’) that inhibit inflammatory 

cytokines and small molecules that target kinases associated with cyto-

kine signaling are used in the treatment of chronic inflammation, auto-

immunity and cancer1. Unlike drugs that have broad immunosuppressive 

qualities, these newer approaches represent a more targeted strategy 

that has the potential to promote clinical remission2. However, their 

efficacy can be hard to predict and clinical trials have produced unex-

pected outcomes. For example, therapies that block interleukin 1 (IL-1) 

or IL-17 display robust efficacy in the treatment of auto-inflammatory  

conditions and psoriasis, respectively, but show limited efficacy in rheu-

matoid arthritis and, in patients with inflammatory bowel disease, can 

actually make the disease worse2–4. These situations highlight the chal-

lenge of understanding which drug is most appropriate for a particular 

patient or disease activity. This has led to the suggestion that in some 

immune system–mediated diseases there may be a limited number of 

keystone cytokines that support disease progression1 and that targeting 

these factors should offer the best opportunity for remission. The success 

of the monoclonal antibody tocilizumab, which targets the receptor for 

IL-6 (IL-6R), in the treatment of inflammatory arthritis and a subset of 

other immunological conditions has identified IL-6 as a keystone cyto-

kine in these processes5,6. This has fuelled the design of other biologics 

that target IL-6, its receptor or signaling pathways. Here we review the 

complex biology associated with the IL-6 signaling cassette (i.e., the indi-

vidual cytokine and receptor components that transduce IL-6 signals), 

its role in many infectious and inflammatory processes and the various 

modes of action for biologics that target IL-6.

The identification of a truly pleiotropic cytokine

When IL-6 was first identified, it was characterized according to its abil-

ity to promote the population expansion and activation of T cells, the 

differentiation of B cells, and regulation of the acute-phase response7–13. 

Thus, IL-6 is pleiotropic, and it is now appreciated that IL-6 has  

hormone-like attributes that affect vascular disease, lipid metabolism, 

insulin resistance, mitochondrial activities, the neuroendocrine system 

and neuropsychological behavior1,4,5,14–17. Almost all stromal cells and 

cells of the immune system produce IL-6, and while IL-1b and tumor-

necrosis factor are major activators of IL6 expression, other pathways 

such as Toll-like receptors, prostaglandins, adipokines, stress responses 

and other cytokines can promote the synthesis of IL-6. IL-6 is controlled 

at multiple levels by microRNAs (for example, let-7a), RNA-binding pro-

teins (for example, Lin28B and Arid5a), RNases (for example, regnase-1) 

and circadian control factors such as the product of the ‘clock gene’ Per1 

(refs. 18–20). Normal physiological concentrations of IL-6 in human 

serum are relatively low (1–5 pg/ml), but these are rapidly elevated in 

disease settings and in extreme circumstances, such as meningococ-

cal septic shock, can reach quantities in the mg/ml range21. Thus, IL6 

expression is subject to both homeostatic basal regulation and rapid 

induction in the context of infection, autoimmunity or cancer in which 

increases in IL-6 are often a better predictor of disease activity than is 

C-reactive protein22–24.

Consistent with the early description of IL-6 as a lymphocyte- 

stimulating factor, IL-6 deficiency leads to impaired innate and adaptive 

immunity to viral, parasitic and bacterial infection25–32. Indeed, children 

with inhibitory autoantibodies to IL-6 develop recurrent staphylococcal 

cellulitis and subcutaneous abscesses33. Similarly, patients with autoso-

mal mutations in the gene encoding the transcription factor STAT3 (Job’s 

syndrome) show impaired IL-6 activity and are susceptible to recur-

rent infections of the skin, lung and gut and often die prematurely from 

pneumonia caused by Gram-negative bacteria or filamentous fungi34. 

Another way to gauge the importance of a cytokine in pathogen control 

is whether these microorganisms have evolved ways to mimic or disrupt 

this immunological pathway. For example, human cytomegalovirus can 
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involves tyrosine kinases of the Jak family and transcription factors of the 

STAT family62. Dimerization of gp130 activates kinases of the Jak family 

(Jak1, Jak2 and Tyk2) and promotes the recruitment and phosphoryla-

tion of STAT1, STAT3 and, to a lesser extent, STAT5 (ref. 62). Jak-STAT’s 

signaling through gp130 is tightly controlled, and the PIAS inhibitors of 

activated STATs, the SOCS suppressors of cytokine signaling (for exam-

ple, SOCS1 and SOCS3) and members of the CIS (‘cytokine-inducible 

SH2-domain–containing’) family of cytokine receptor inhibitors act to 

limit IL-6 signaling62. Interestingly, in the absence of SOCS3, the effects 

of IL-6 are altered to resemble those of IL-10, which is a potent inhibitor 

of macrophages and dendritic cells72,73. This may produce a situation 

analogous to that of an ongoing inflammatory response in which the 

early production of IL-6 promotes inflammation, while sustained lev-

els of IL-6 can limit inflammation (discussed below). Mice expressing 

mutant gp130 (generated by knock-in mutation of Il6st) that is unable 

to bind SOCS3 display more sustained signaling via STAT1 and STAT3 

and develop exacerbated inflammation, chronic disease and cancer74–78. 

Thus, IL-6 signatures, based in part on the activity of STAT1 and STAT3, 

are viewed as predictors of outcomes or indicators of response to therapy 

in patients with autoimmune disease or cancer.

Classical and trans-activation of IL-6 receptor signaling

Over the past decade it has become clear that IL-6 utilizes two mecha-

nisms to mediate its biological effects (Fig. 1). ‘Classical’ IL-6 receptor 

signaling denotes activities mediated via the membrane-bound IL-6R 

subunit and is relevant only to cells that express both receptor subunits5. 

In contrast, IL-6 ‘trans-signaling’ refers to a process in which a soluble 

form of IL-6R (sIL-6R) binds secreted IL-6 to form a complex that 

increases the circulating half-life of IL-6 and promotes its bioavailabil-

ity79,80. Interestingly, sIL-6R shares 60% identity with the IL-12p40 sub-

unit and may represent an ancestral link to the heterodimeric cytokines 

IL-12, IL-23 and IL-27 (ref. 81). Nevertheless, any cell that expresses 

gp130 may acquire responsiveness to IL-6 and thus IL-6 trans-signaling  

widens the cell types that are affected by IL-6. While more work is antici-

pated in this area, classical IL-6 receptor signaling seems to control cen-

tral homeostatic processes and immunological outcomes such as the 

acute-phase response, glucose metabolism, hematopoiesis and regulation 

of the neuroendocrine system, as well as hyperthermia, fatigue and loss 

of appetite82. In contrast, models of colitis, tissue fibrosis, inflammatory 

arthritis, allergy, infection, neuroinflammation, cardiovascular disease 

and inflammation-induced cancers have shown that IL-6 trans-signaling 

is important for the recruitment and apoptosis of leukocytes, mainte-

nance of the effector function of T cells, and the inflammatory activation 

of stromal tissues5,83,84. sIL-6R is released by monocytes and activated 

T cells64,78,85,86, but studies of human neutrophils have shown that 

C-reactive protein, inflammatory chemokines, bradykinin, N-formyl 

peptides, complement regulators and lipid mediators, including platelet-

activating factor and leukotrienes, activate the shedding of IL-6R87–92. 

Thus, sIL-6R may be classified as an alarmin that, when released by 

neutrophils, promotes IL-6 trans-signaling within the local milieu as 

a potential danger response to disease that affects innate and adaptive 

immunological outcomes5,83. Further consideration now needs to be 

given to the importance of regulating the IL-6 receptor on CD4+ T cells:  

IL-6R expression in CD4+ T cells is largely restricted to naive and 

central memory populations64,86; CD4+ T cells recovered from sites 

of disease typically lack IL-6R but remain responsive to IL-6 trans- 

signaling64,78,86,93,94.

The original identification of gp130 as the b-subunit of the IL-6 recep-

tor was aided by the observation that IL-6 binds gp130 in the pres-

ence of recombinant sIL-6R57. The importance of these findings was 

highlighted by the purification of a biologically active form of sIL-6R 

antagonize IL6 expression35, whereas human herpesvirus 8 expresses a 

viral form of IL-6 that shares ~60% amino acid similarity with its human 

counterpart and can block the recruitment of neutrophils36. This viral 

form of IL-6 has the unusual ability to signal through a single chain of the 

heterodimeric IL-6 receptor37, and in conditions associated with human 

herpesvirus 8, such as B cell lymphoma, primary effusion lymphoma 

and multicentric Castleman’s disease, it promotes cellular proliferation 

and prevents apoptosis. The viral IL-6 also inhibits antiviral immunity 

through inhibition of type I interferons, which allows HHV8 to evade 

immune detection38–40.

While IL-6 has a protective role in many infections, the same activities 

can be key to the maintenance of chronic inflammation that includes 

models of arthritis, experimental autoimmune encephalomyelitis, mul-

ticentric Castleman’s disease and pristane-induced lupus and plasmacy-

tomas41–46. Conversely, mouse strains with transgenic expression of IL-6 

develop various disorders, including multiple myeloma; neurological 

disease when IL-6 is overexpressed in the central nervous system; pul-

monary fibrosis and hypertension when IL-6 is expressed in the lungs; 

and plasmacytosis when IL-6 is expressed under control of the enhancer 

of the gene encoding the human immunoglobulin chain47–50. Other 

studies have identified links between IL-6 activity and tumor develop-

ment, metastasis and tumor-associated inflammation51,52. Furthermore, 

genome-wide association studies and analyses of single-nucleotide poly-

morphisms and microarray data have identified links between IL-6 and 

disease outcome. For example, a G-to-C mutation proximal to the tran-

scriptional start of IL6 (rs1800795) causes elevated IL6 expression, and 

carriers of this mutation have an increased incidence of coronary heart 

disease, idiopathic juvenile arthritis and other inflammatory condi-

tions53–56. In the following sections we will emphasize the importance 

of IL-6 as an orchestrator of innate and adaptive immunity and as thera-

peutic target for treatment.

The IL-6 receptor complex

The fully competent IL-6R is composed of an 80-kilodalton type 1 cyto-

kine a-receptor subunit (IL-6R; also known as CD126), which binds IL-6, 

and a universally expressed 130-kilodalton signal-transducing b-recep-

tor subunit (gp130; also known as CD130; encoded by IL6ST)57–60.  

Structure-function studies predict that a functioning IL-6 receptor 

requires the formation of an IL-6–IL-6R–gp130 complex that is clustered 

into a dimer structure61. Although gp130 was initially characterized as 

the signaling subunit of the IL-6 receptor, signaling via gp130 is also 

essential for development, hematopoiesis, cell survival and growth and 

functions as the b-cytokine receptor for IL-11, IL-27, oncostatin-M, cili-

ary neurotrophic factor, cardiotrophin-1, leukemia inhibitory factor and 

cardiotrophin-like cytokine5,62,63. Thus, gp130 is ubiquitously expressed 

on cells of the immune system and those not of the immune system, and 

deletion of gp130 in mice results in embryonic death63. In contrast, IL-6R 

expression is restricted largely to hepatocytes, leukocytes and megakaryo-

cytes, and both Il6ra–/– mice and Il6–/– mice are viable28,64. Interestingly, 

Il6–/– and Il6ra–/– mice display some phenotypic differences that include 

alterations in wound healing and differences in the severity of colitis, 

as well as differences in insulin sensitivity and glucose tolerance25,65–67. 

Here, low-affinity interactions among IL-6R and the p28 subunit of IL-27 

(IL-30), ciliary neurotrophic factor, and a heterodimeric cytokine com-

plex consisting of p28 and cardiotrophin-like cytokine68–71 might explain 

these differences, but this requires further investigation.

Once the IL-6 receptor complex is engaged there are multiple down-

stream events that allow IL-6 to mediate its diverse effects (Fig. 1). While 

this includes the pathway of the GTPase Ras and its effector Raf, and the 

mitogen-activated protein kinase cascade, which controls cellular prolif-

eration and differentiation, the pathway that is perhaps best understood 
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Pro- and anti-inflammatory properties of IL-6 in innate immunity

Literature from the past 30 years has emphasized links among IL-6 and 

mononuclear phagocytes, the complement system and pattern-recognition  

receptors. However, a fundamental role for IL-6 in innate immunity 

is illustrated by the identification of an ancestral IL-6-like cytokine 

system in Drosophila melanogaster. Explicitly, unpaired-3 (IL-6-like), 

when induced as a response to bacterial infection, forms a signaling 

network with domeless (gp130-like), hopscotch (Drosophila homolog 

of mammalian Jak) and marelle (a Drosophila homolog of a STAT pro-

tein; also called stat92E) to promote innate immunity113–115. Moreover, 

unpaired-3 from plasmatocytes (Drosophila phagocytic macrophages) 

has been linked the control of glucose and tissue homeostasis116, simi-

lar to the effects of IL-6 on macrophages that promote glucose intoler-

ance and obesity-associated insulin resistance66. Nevertheless, as noted 

above, the most compelling evidence for the involvement of IL-6 and 

IL-6 receptor–mediated outcomes in innate immunity is derived from 

models of infection and susceptibility to endotoxin challenge28,117,118.

There is extensive literature showing that IL-6 modulates almost every 

aspect of the innate immune system, including hematopoiesis and the 

accumulation of neutrophils at sites of infection or trauma through the 

control of granulopoiesis119,120. This is attributed to the regulation of 

neutrophil-activating chemokines and neutrophil apoptosis by IL-6, and 

while Il6–/– neutrophils show impaired respiratory burst and degranu-

lation, these defects seem to be secondary to the effects of IL-6 trans-

signaling on endothelial, smooth muscle, epithelial and mesothelial cells 

and fibroblasts83. For example, IL-6 trans-signaling inhibits expression 

of the chemokines CXCL1, CXCL8 and CX3CL1, promotes secre-

tion of the chemokines CXCL5, CXCL6, CCL2 and CCL8 and cellular 

adhesion controlled by the lymph node–homing receptor CD62L, and 

modulates expression of the adhesion molecules ICAM-1 and VCAM-1  

(refs. 87–89,121–123). Regulation of these activities requires an initial 

influx of neutrophils, which then shed IL-6R to promote IL-6 trans-sig-

naling in stromal tissue cells89,122,124; thus, following activation of Toll-

like receptors, Il6–/– mice display a heightened and prolonged profile 

of neutrophil accumulation89,124–126. These types of events are also rel-

evant to other experimental systems; IL-6 limits influenza virus–induced 

inflammation and protects against fatal lung pathology127. This retro-

from human urine and plasma and the realization that normal serum 

concentrations of sIL-6R (25–35 ng/ml) are enhanced during inflam-

mation95–97. Such observations led to the recognition that in humans, 

proteolytic shedding of membrane-bound IL-6R and differential splicing 

of IL6R mRNA control sIL-6R production (in mice, sIL-6R is gener-

ated solely as the product of proteolytic shedding)95. Human IL-6R is 

shed by the adamalysin proteases ADAM17 and ADAM10 (ref. 98), 

while in mice only ADAM10 promotes IL-6R shedding99; these enzymes 

cleave a site in the IL-6R that is proximal to the plasma membrane98. 

These enzymes are potentially activated differentially, and ADAM17 

has been implicated in the release of sIL-6R in response to apoptosis or 

bacterial toxins, while ADAM10 cleaves IL-6R following depletion of 

cholesterol or stimulation of the purinergic receptor P2X7 (refs. 98,100). 

The physiological importance of the generation of sIL-6R in humans 

is exemplified by the observation that the rs2228145 mutation in IL6R 

results in elevated circulating levels of sIL-6R associated with reduced 

levels of C-reactive protein, a greater risk of cardiovascular disease and 

enhanced susceptibility to insulin resistance, obesity, type 2 diabetes and 

diabetic nephropathy101–103. Given the inherent complexity of IL-6R 

signaling, it is perhaps not surprising that are three, or possibly four, 

forms of soluble gp130 (sgp130) that are released by cells as the prod-

ucts of differential splicing of IL6ST mRNA104–109. While no unique 

function has been assigned to any of these sgp130 isoforms, they all 

retain ligand-binding properties. Although sgp130 does not bind IL-6 

or IL-6R alone, sgp130 interacts with the IL-6–sIL-6R complex to block 

IL-6 trans-signaling110 (Fig. 1). Biochemical studies have shown that 

sgp130 has no effect on classical IL-6 receptor signaling and has a limited 

effect on other gp130-activating cytokines. For example, ciliary neuro-

trophic factor and IL-27 responses are unaffected by sgp130, and the 

inhibitory effect of sgp130 on leukemia inhibitory factor and oncostatin-

M requires 100-fold higher concentrations of sgp130 than those used 

to block IL-6 trans-signaling5,106,110. Indeed, the high concentrations  

of sgp130 in human serum (200–400 ng/ml) remain largely unal-

tered during inflammation and may function as a physiological buffer  

of IL-6 trans-signaling78,111,112. Thus, in clinical settings in which a surge 

in the levels of IL-6 and sIL-6R is observed, the level of sgp130 would be 

inadequate to counteract IL-6 trans-signaling.

IL-6

IL-6

IL-6R

gp130

Box 1,
Box 2

Jak1,Jak2,Tyk2

SOCS3
SHP-2Tyr759*

Tyr767*

Tyr814*
Tyr905*
Tyr915*

*

*

*
*
*

STAT3

STAT1

MAPK

Classical IL-6
receptor
signaling Agonist

Antagonist

IL-6 trans-signaling

sIL-6R sgp130

Proteolytic shedding
Differential mRNA

splicing Differential mRNA splicing

Figure 1  Two distinct modes of IL-6 receptor signaling. 

Classical IL-6 receptor signaling occurs in cells that express 

IL-6R (CD126) and gp130 (CD130). IL-6R is a non-signaling 

receptor that binds IL-6. The gp130 subunit is the signal-

transducing receptor for IL-6 and its related family members. 

A soluble form of IL-6R is released from the cell surface by 

proteolysis and splicing of IL6R mRNA, and can bind IL-6 to 

form an agonistic complex that signals through gp130. This 

mechanism of trans-signaling allows IL-6 to act on cells that 

lack IL-6R. A fully functioning IL-6 receptor complex consists 

of a hexameric structure in which IL-6, IL-6R and gp130 

exist in a 2:2:2 stochiometry. Both modes of IL-6 receptor 

signaling lead to gp130 activation of Jak1, Jak2 and Tyk2, 

which bind box 1 and box 2 sites within the gp130 sequence 

and a series of proximal tyrosine residues (bottom left) within 

the intracellular carboxy-terminal sequence that activate 

STAT1 and STAT3 and the mitogen-activated protein kinase 

(MAPK) cascade. The tyrosine residues included here relate to 

defined biological roles (position numbers are for the human 

gp130 sequence). Tyr759 (the mouse equivalent is Tyr757) 

is pivotal for docking of the tyrosine phosphatase SHP-2 and 

the cytokine receptor signaling inhibitor SOCS3. Both factors 

act as negative regulators of gp130-STAT signaling. In the 

context of infection, trauma and injury, sIL-6R is released from 

infiltrating neutrophils, monocytes and T cells, but IL-6 trans-

signaling is antagonized by sgp130.
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role during infection with lymphocytic choriomeningitis virus, little is 

known about the IL-6 control of TFH cell responses in infection and 

whether this paradigm is broadly relevant to other pathogens for which 

antibody-mediated resistance is relevant. Similarly, it is not clear whether 

blockade of IL-6 in a clinical situation affects pre-existing TFH cell and 

B cell populations and whether this contributes to the efficacy of IL-6-

directed interventions in diseases such as rheumatoid arthritis. Head-

to-head comparisons of tocilizumab and rituximab, a B cell–depleting 

monoclonal antibody (to the B cell–specific surface antigen CD20), may 

offer some interesting insights.

As for the differentiation of CD4+ T cells (Fig. 3), early reports 

linked IL-6 to the control of T helper type 2 (TH2) cell responses and 

the inhibition of TH1 cell activities145, but there are examples in which 

IL-6 supports the population expansion of interferon-g–secreting  

CD4+ T cells that promote peritoneal fibrosis146. It appears that IL-6 

does not direct the commitment to the TH1 or TH2 cell lineage; instead 

the inflammatory context is important, and IL-6 controls the prolif-

eration and survival of these cells. Where IL-6 is important in lin-

eage commitment is with the TH17 subset of helper T cells. While 

IL-1b, IL-21 and IL-23 are linked to the generation or maintenance 

of TH17 cell effector functions, IL-6 is considered a key driver of 

IL-17-secreting CD4+ or CD8+ T cells147–151. Specifically, the activa-

tion of STAT3 by IL-6 in naive CD4+ T cells in the presence of the 

morphogen TGF-b promotes the population expansion of TH17 cells 

that express the transcription factors RORgt and AhR and secrete 

IL-17A76,78,118,152–154. The recognition that TH17 cells are pathogenic 

in various diseases, as well as the realization that IL-6 is essential for 

the generation of these cells in mice and humans, has rekindled interest 

in IL-6 as a therapeutic target. Here, interest in TH17 cells centers on 

three key aspects: their link to barrier function155, their role in resis-

tance to fungal infections156,157, and how dysregulated responses of 

TH17 cells contribute to local tissue damage in chronic inflammatory 

diseases155. However, caution should be taken in the extrapolation of 

links between IL-6 and IL-17 with inflammation, since IL-6 promotes 

the production of IL-10 by T cells158,159, which would restrict many 

inflammatory processes.

One topic that requires consideration is the relationship between 

TH17 cells and Foxp3+ regulatory T cells (Treg cells); IL-6 can inhibit 

Treg cell function and prevents TH17 cells from converting into Treg 

cells160,161, while overexpression of IL-6 in vivo inhibits the generation 

of inducible Treg cells but does not seem to affect natural Treg cells162. At 

sites of inflammation, Treg cells seem to be able to be reprogrammed to 

acquire effector characteristics without loss of the transcription factor 

grade signaling mechanism ensures competent host defense, prevents 

excessive tissue damage and drives the transition from the recruitment 

of neutrophils to the recruitment of mononuclear cells83,128. In vitro, 

IL-6 promotes macrophage differentiation and restricts the formation 

of dendritic cells129,130, which may relate to the ability of IL-6 to con-

trol the macrophage colony-stimulating factor receptor (encoded by 

Csf1r)131. IL-6 also inhibits activation of the transcription factor NF-kB 

and expression of the chemokine receptor CCR7 in dendritic cells and 

induces expression of the IL-1 receptor antagonist and the soluble p55 

receptor for tumor-necrosis factor132,133. These findings are consistent 

with the ability of IL-6 to promote an alternatively activated macrophage 

phenotype associated with wound healing66 and its ability to inhibit 

the microbicidal activities of macrophages and the production of pro-

inflammatory cytokines118,134,135. Hence, IL-6 has clear pro-inflamma-

tory effects (for example, in acute innate responses), but these effects 

are context dependent, and IL-6 also coordinates anti-inflammatory 

activities essential for resolution of inflammation.

IL-6 shapes adaptive immunity

Early studies identified IL-6 as a lymphokine that induces the matura-

tion of B cells into antibody-secreting cells and showed that it promotes 

the survival and maintenance of long-lived plasma cells (Fig. 2). That 

link was reinforced by early reports that Il6–/– mice immunized with a T 

cell–dependent antigen have lower immunoglobulin G production than 

wild-type mice and that IL-6 deficiency often correlates with diminished 

antibody responses and susceptibility to infection28. The clinical situ-

ation in which a link between IL-6 and B cells might be most apparent 

is Castleman’s disease136. This complex condition is characterized by 

increased concentrations of IL-6, B cell hyperplasia associated with ane-

mia, increased concentrations of C-reactive protein and fevers; the role 

of IL-6 in the pathogenesis of this disease is illustrated by the clinical 

efficacy of tocilizumab137. Published studies have described additional 

links between IL-6 and B cells (Fig. 2) that include the control of regula-

tory B cells and B cell production of IL-6, which affects autoimmunity 

and defense against Salmonella species138–140. In addition, the ability 

of IL-6 to promote humoral immunity has been linked to its effects 

on follicular helper T cells (TFH cells), a specialized subset of CD4+ T 

cells that express the chemokine receptor CXCR5 and localize to B cell 

follicles, where they promote B cell proliferation and immunoglobulin 

class switching141. In this context, IL-6 promotes commitment to the  

TFH cell lineage through induction of the transcriptional repressor Bcl-6 

and control of IL-21 activity; thus, IL-6 serves as a central link between 

T cell responses and B cell responses142–144. Surprisingly, beyond its 

IL-6

IL-21

STAT3

STAT3

Blimp-1

CXCR5

Bcl-6
IL-6

IL-10

+IL-1

T
FH

 cells

Commitment

Innate activation

Plasmablasts Plasma cells

Switch to IgG1

B cellsB
reg

 cells

Survival
Growth

Maturation
Production

Figure 2  IL-6 control of B cells and humoral 

immunity. IL-6 controls the survival, population 

expansion and maturation of B cells and 

plasmablasts. For example, regulation of the 

transcription factor Blimp-1 by STAT3 is linked 

to antibody secretion and is associated with long-

lived plasma cells that produce large amounts of 

immunoglobulin. IL-6 also controls the expression 

of IL-21 in T cells, and the activation of STAT3 

by IL-6 and IL-21 enhances Bcl-6 expression 

and the generation of TFH cells. The activities of 

Blimp-1 and Bcl-6 counteract each another, and 

this reciprocal relationship affects both lymphocyte 

differentiation and lymphocyte function. Innate 

activation of B cells through defined Toll-like 

receptors also controls the production of IL-6 

by B cells, and IL-6 in combination with IL-1b 

provides the necessary commitment signals for the 

generation of IL-10-secreting regulatory B cells. Breg 

cells, regulatory B cells; IgG1, immunoglobulin G1.
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antibody that binds site III of IL-6 has generated promising data in a 

phase IIb clinical trial of its use in the treatment of rheumatoid arthri-

tis; this antibody shares an efficacy and safety profile similar to that of 

other inhibitors of IL-6 and IL-6R174,175. Notably, the inherently high 

circulating concentrations of sIL-6R suggest that a higher concentra-

tion of blocking antibody to IL-6R may be needed to sustain long-term 

inhibition of IL-6R, and this may afford an intervention involving an 

antibody to IL-6 an advantage based on pharmacodynamics.

Another issue is whether selective blockade of IL-6 trans-signaling  

offers a clinical advantage over a more global inhibition of IL-6. 

Blockade of IL-6 trans-signaling has the potential to inhibit the ‘dan-

ger’ component of IL-6 signaling but might leave certain IL-6-regulated 

homeostatic processes intact5,100. For example, targeting IL-6 or IL-6R 

rapidly controls systemic increases in C-reactive protein, but studies 

of mice have shown that increases in serum amyloid A (equivalent to 

C-reactive protein in humans) are not controlled by inhibition of IL-6 

trans-signaling5,6,176. Other common clinical features of the inhibition 

of IL-6 include neutropenia, liver transaminases, serum lipid levels and 

alterations in cholesterol composition2. The relative effects of classical 

Foxp3. Specifically, IL-6 promotes the genera-

tion of Foxp3-expressing  T cells that coexpress 

either T-bet or RORgt and restricts expression 

of the transcription factor Eos (encoded by 

Ikzf4), which is the co-repressor for Foxp3 

(ref. 163). In contrast, IL-6 blocks expression 

of the transcription factor GATA-3 by Foxp3+ 

Treg cells, which may be relevant in determin-

ing the outcome of graft-versus-host disease or 

mucosal infection31,164,165. In another example, 

during experimental autoimmune encephalo-

myelitis, IL-6 could promote IL-17 expres-

sion in Foxp3+ Treg cells from the periphery 

but not those from the central nervous sys-

tem166. The event that determines these out-

comes probably occurs at the transcriptional 

and epigenetic level, where the interaction of 

transcription factors and co-activators might 

serve to modify the effector characteristics of 

these cells. For example, the absence of Stat3 

impairs the suppressor properties of Treg cells 

in vivo, which indicates a potential interaction 

between STAT3 and Foxp3 (ref. 167). More-

detailed understanding of how IL-6 helps cells 

adapt to their environment is needed, and the 

application of functional genomic approaches 

is now helping to formulate fresh ideas about 

the dynamic nature of effector T cell function 

and the involvement of defined cytokine sig-

natures168.

Hurdles in clinical translation

For IL-6, the participation of two modes of 

receptor signaling in health and disease means 

that inhibitors that target IL-6 or the cognate 

IL-6R or selectively block IL-6 trans-signaling 

are in development (Fig. 4). However, there 

is still a need for understanding the basis of 

contraindications for the use of such agents 

and better appreciation of the roles of IL-6 in 

various disease states. Such information will 

provide clearer understanding of why block-

ing IL-6 in some clinical situations is not effective and whether different 

intervention strategies might have unique benefits for specific clinical 

indications or defined patient subgroups. One major issue is whether 

the therapeutic inhibitors of IL-6 or IL-6R have different effects. The 

efficacy of IL-6 inhibitors was first evaluated in multiple myeloma, in 

which IL-6 and sIL-6R are prognostic of tumor severity95,169. A mono-

clonal antibody to IL-6 has been shown to improve tumor outcome and 

suppress the acute-phase response, but because this antibody traps IL-6 

in the circulation, this regime caused gross increases in systemic IL-6 

concentrations170. As a consequence, IL-6 inhibitors were directed away 

from the cytokine, and a humanized monoclonal antibody specific for 

IL-6R was developed171, but now pharmaceutical companies are recon-

sidering the potential of blocking IL-6. Early trials adopted an antibody 

to IL-6 that recognizes an epitope within site I of IL-6 that is essential 

for the binding of IL-6 to IL-6R (Fig. 4). However, a functioning IL-6 

receptor complex also engages gp130, which interacts with IL-6 (once 

bound to IL-6R) at two distinct regions within its structure: site II and 

site III. Site II pulls gp130 into the receptor complex, and site III anchors 

the IL-6–IL-6R–gp130 structure into a functional dimer61,62,172,173. An 
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Figure 3  Effect of IL-6 on T cell activities. IL-6 governs the proliferation, survival and commitment of  

T cells and modulates their effector cytokine production. The examples here highlight the supporting 

role of IL-6 in maintaining T cell responses (for example, governing the proliferation and survival of TH1 

or TH2 cells) and where IL-6 is critical for the either the development of defined effector populations 

(for example, the TH17, TH22 and TFH subsets of helper T cells) or their inhibition (for example, Treg 

cells). IL-6 also regulates T cell infiltration by controlling the expression of chemokine receptors, and 

IL-6 trans-signaling acting on stromal tissues regulates several inflammatory chemokines responsible 

for the recruitment of T cells. Cognate IL-6R expression is associated mainly with naive or central 

memory T cells that express CCR7 and CD62L. Activation of the T cell antigen receptor promotes 

shedding of the IL-6 receptor and is accompanied by a loss in IL-6-mediated STAT1 activity. The 

presence of IL-2 prevents the presentation of IL-6R on the T cell surface. This suggests that activation 

of T cells leads to an alteration in the responsiveness of T cells to IL-6 and a switch from classical 

IL-6R signaling to IL-6 trans-signaling. IL-6 also modifies the effector characteristics of defined  

T cell populations. For example, signaling interplay between IL-27 and IL-6 (involving the activation of 

STAT1 and STAT3) promotes the secretion of IL-10 by defined effector T cell subsets. Similarly, IL-6 is 

also instrumental in acquisition of the expression of T-bet or RORgt by inducible Treg cell populations. 

Fas, cell surface receptor (CD95); Bcl-xL, antiapoptotic factor; TNF, tumor-necrosis factor; anti-CD3, 

antibody to the invariant signaling protein CD3; anti-CD28, antibody to the coreceptor CD28. DP refers 

to CD4+ T cells expressing either IFN and IL-10, IL-4 and IL-10, or IL-17 and IL-10.
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relevant that infections associated with tocilizumab intervention typi-

cally affect the upper and lower respiratory tracts and the urinary and 

gastrointestinal tracts—tissues in which IL-6 controls barrier function 

or tissue integrity (either directly or indirectly, through cytokines such as 

IL-22 or IL-17) (ref. 1). Such observations might explain why inhibition 

of IL-6 in conditions such as atopic dermatitis improves clinical outcome 

but leads to contraindications such as bacterial super-infection180. It is 

anticipated that future research will consider whether inhibition of IL-6 

provides a therapeutic benefit in conditions in which IL-6R-directed 

interventions promote adverse reactions (for example, gastric perfora-

tions associated with diverticulitis). Clearly this is an interesting topic, 

and studies of the control of tissue homeostasis by IL-6 have identified 

a link between gp130 and a novel signaling mechanism that promotes 

mucosal regeneration and maintenance of barrier function through the 

transcriptional regulators YAP and Notch181.

IL-6 receptor signaling verses IL-6 trans-signaling on these outcomes, 

however, remains unclear. Nevertheless, experimental evidence sup-

ports the proposal of the therapeutic inhibition of IL-6 trans-signaling. 

An engineered sgp130-Fc fusion protein has shown promise in animal 

models and is in development for the clinical treatment of inflammatory 

bowel disease5,100. Pre-clinical studies have also described the genera-

tion of monoclonal antibodies with a ‘preferential’ efficacy for blocking 

IL-6 trans-signaling over classical IL-6 receptor signaling26,176. Unlike 

tocilizumab or sarilumab, these antibodies do not block the binding of 

IL-6 to its receptor; instead, they interfere with the docking of gp130 into 

the receptor complex. The potential therapeutic advantage of blocking 

IL-6 trans-signaling while leaving classical IL-6 receptor signaling intact 

is best illustrated in settings in which classical IL-6 receptor signaling is 

essential for the control of barrier function (for example, maintenance of 

gut mucosal integrity and epithelial regeneration)51,177–179. It is perhaps 
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Figure 4  Therapeutic targeting of IL-6 and its receptor. (a) Various drugs that block the IL-6 pathway are in pre-clinical testing, clinical trial development or 

routine clinical practice. Drugs that target IL-6 and IL-6R during classical IL-6 receptor signaling (blue) or IL-6 trans-signaling (orange) and small-molecule 

agents that inhibit intracellular signaling molecules are listed along the right margin. Monoclonal antibodies that bind IL-6 or its receptor show a high degree 

of specificity for IL-6, whereas inhibitors of intracellular signaling also affect other cytokine-mediated pathways other than IL-6. (b) Inhibitory antibodies 

that bind IL-6, IL-6R or gp130 target defined epitope regions and display distinct modes of action. Inhibitory agents that bind IL-6 either block the binding 

of IL-6 to IL-6R (site 1) or interfere with the fully functioning receptor complex by blocking the interaction with gp130 (site 2 or site 3). The action of these 

antibodies yields differences in efficacy and pharmacokinetics. Inhibitors of site 1 cause more pronounced increases in systemic IL-6 amounts than do 

inhibitors of IL-6 that bind site 2 or site 3. Blue indicates blocking agents that prevent the binding of IL-6 to the membrane-bound IL-6R complex (classical 
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block these interactions are listed along the periphery (right). Letter and number labels refer to structural features described in ref. 173.
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Finally, in what type of disease is IL-6 blockade most likely to be 

effective? Current IL-6-targeted therapies display robust safety pro-

files; however, they show strong efficacy in some clinical indications 

but less in others6. Many of the diseases in which inhibition of IL-6 

is clinically beneficial are often associated with dysregulated adaptive 

immunity. However, even in conditions such as rheumatoid arthritis, 

for which inhibition of IL-6 is an effective therapy, some patients fail 

to display an adequate response to treatment6. Since early interven-

tion with the most appropriate biologic provides the best opportunity 

for remission2, it is necessary to understand how IL-6 contributes to 

the underlining pathology. Such information will enhance patient 

stratification for IL-6-directed intervention, and researchers should 

consider the effect of genetic and epigenetic factors and differences 

in histopathology, which may affect disease severity and rate of pro-

gression and response to treatment182. In model systems in which T 

cell priming is required for disease induction, it is notable that Il6–/– 

mice often display impaired involvement of innate cells78. This may 

reflect the ability of IL-6 to regulate a reciprocal connection between 

innate immunity and adaptive immunity. Notably, effector cytokines 

(for example, IL-17, IL-22 and interferon-g) controlled by the action 

of IL-6 on CD4+ T cells have a direct bearing on the activities of neu-

trophils, macrophages and stromal tissues, which perpetuate inflam-

matory activation, promote retention of cells of the immune system, 

and shape the pathology observed within tissues.

Concluding remarks

IL-6 represents a keystone cytokine in infection, cancer and inflam-

mation, in which it drives disease progression or supports the main-

tenance of immunological reactions. In these cases, the inflammatory 

context in which IL-6 functions is all about ‘location, location, loca-

tion’. For example, IL-6 produced during T cell priming in a lymph 

node may potentially control very different effects than those elicited 

by sustained IL-6 signals in a peripheral site of inflammation where 

the T cells are already activated. While clinical trials designed to test 

the efficacy of biologics in patients with defined pathologies are eagerly 

awaited, it may be equally important to consider why IL-6-directed 

interventions fail to meet their endpoints in some diseases, such as 

psoriasis, ankylosing spondylitis, ulcerative colitis and Crohn’s dis-

ease1. Notably, these diseases often show some form of disrupted 

barrier function as part of the underlining pathology1. It is therefore 

essential to establish how IL-6 contributes to normal homeostasis in 

these tissue compartments. The challenge is to identify where and 

when IL-6 is active in inflammation to understand how the pleiotropic 

effects of IL-6 determine the progression, severity and duration of 

disease. Identifying the molecular basis of the participation of IL-6 in 

various conditions will ultimately help define the role of IL-6 and the 

relevance of classical IL-6 receptor signaling and IL-6 trans-signaling 

in autoimmunity, infectious disease, barrier function and cancer. This 

will provide an opportunity to guide treatment and improve rates of 

clinical remission for some of these conditions.
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