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Abstract. The epithelial-mesenchymal transition (EMT) is 
a process through which epithelial cells trans-differentiate 
and acquire an aggressive mesenchymal phenotype. In tumor 
cells, EMT is a vital step of tumor progression and metas-
tasis. Amid the increasing interest in tumor EMT, only a few 
studies focused on the soluble mediators secreted by tumor 
cells passing through this phenotypic switch. In this review, 
we focus on the essential role of interleukin-8 (IL-8) signaling 
for the acquisition and maintenance of tumor EMT via direct 
and indirect mechanisms. Besides the autocrine loop between 
IL-8 and tumor cells that have gone through EMT, IL-8 could 
potentiate adjacent epithelial tumor cells into a mesenchymal 
phenotype via a paracrine mode. Moreover, understanding the 
role of IL-8 in EMT will provide insight into the pathogenesis 
of tumor progression and may facilitate the development of 
an effective strategy for the prevention and treatment of meta-
static cancer.
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1. Introduction

Tumor microenvironment, a vastly complicated network 
composed of various cell populations, soluble factors, 
signaling molecules and extracellular matrix components, 
orchestrates the behavior of tumor progression (1). Amid the 
growing interest in elucidating individual players in the tumor 
microenvironment, IL-8 appears markedly important and has 
been presented as one of the prominent promoters of tumor 
progression. IL-8 is involved in cancer related inflammation. A 
typical example is that, Epstein-Barr virus (EBV)-associated, 
undifferentiated type of nasopharyngeal carcinoma (NPC) 
which is characterized by several inflammation-like features. 
The inflammation-like microenvironment is crucial for the 
development of NPC progression. Notably, EBV infection as 
a critical factor for cancer progression can induce IL-8 secre-
tion. EBV lytic transactivator Zta, which exerting its effect 
through bingding to Zta-responsive elements, resides in the 
IL-8 promoter (2).

A pivotal step to establish the progression of a tumor is 
the obtainment of aggressive characteristics by carcinoma 
cells. A primary process triggering tumor invasion is EMT 
through which cancer epithelial cells lose their epithelial 
properties and trans-differentiate to a migratory mesenchymal 
phenotype (3). EMT has recently been recognized as a key 
player contributing to tumor progression and the mechanisms 
regulating this process have been linked to metastasis and 
cancer stem cell-like cell formation (4,5). Various signaling 
events have been proposed to facilitate EMT in a variety of 
human tumors. However, initiating EMT in a tumor is mainly 
dependent on multiple soluble mediators in the surrounding 
microenvironment (6).

In this review, we aim at elucidating the complex interac-
tions of IL-8 induction of EMT through direct and indirect 
mechanisms. We introduce current research on the cytokines, 
pro-inflammatory mediators and enzymes secreted by neutro-
phils and TAMs and the mechanism of their induction of EMT. 
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Additionally, we address the potential therapeutic implications 
of IL-8 cancer treatment.

2. EMT of tumor

EMT originally takes place during the process of embryo-
genesis, but it also occurs in adult tissues going through 
wound healing and remodeling (7). Moreover, in some certain 
pathological process it is associated with fibrosis and tumor 
progression. During the EMT process, epithelial cancer cells 
evolve to a mesenchymal phenotype, by losing their epithelial 
characteristics and acquiring a fibroblastoid-like morphology 
especially at the invasive front. Cells undergoing EMT reduce 
cell polarity and adhesion, exhibit decreased expression of 
epithelial surface molecules such as E-cadherin and cyto-
keratins. In parallel, epithelial tumor cells acquire enhanced 
presentation of mesenchymal proteins such as vimentin and 
fibronectin as well as increased cell motility, invasiveness and 
metastasis (8).

Recent studies have focused on EMT in the tumor biology 
context, since acquisition of mesenchymal features is linked 
to an improved invasive capacity, that is, could promote tumor 
infiltrating growth and metastasis (9). Multiple studies have 
shown that the involvement of EMT is related to tumor progres-
sion in different tumor types (10-12). For instance, in adenoid 
cystic carcinoma which is characteristed by local infiltration 
and distant metastasis, EMT is considered to promote greatly 
the high rate of metastasis (13). Consistently, downregulation 
of epithelial marker E-cadherin and increased expression of the 
mesenchymal markers N-cadherin and vimentin have noted to 
positively correlate with the aggressiveness and metastasis of 
breast cancer (14).

Additionally, several reports have shown that cancer cells 
undergoing EMT present properties of cancer stem cells (CSC) 
(5), including chemo- and radio-resistance and the ability to 
self-renewal. Fan demonstrated that hepatocellular carcinoma 
cells undergoing EMT acquire enhanced CSC-like traits when 
co-cultured with TAM. Furthermore, depletion of TGF-β1 
blocked acquisition of the CSC-like properties by inhibition 
of TGF-β1-induced EMT (15). Increasing number of studies 
have identified distinct signaling pathways regulating this step 
(16,17).

3. IL-8

IL-8 (alternatively known as CXCL8), a prototype of the 
cysteine-X-cysteine (CXC) chemokines, was originally discov-
ered as a leukocyte chemoattractant (18) and subsequently 
found to play multiple roles in cancer development (3). Human 
genes for IL-8 are located on chromosome 4 between 4q13 
and 4q21 (19). IL-8 is mainly secreted from leukocytes and 
endothelial cells under special conditions such as exposure to 
IL-1 or TNF-α. Additionally, fibroblasts and malignant tumor 
cells can also secrete IL-8 as a result of various environmental 
stress including hypoxia, and chemotherapy agents (20). Since 
existing in monomer or dimer forms, IL-8 activates and regu-
lates its two cell surface receptors respectively (21).

IL-8 exerts its effect by binding to the IL-8Rs, which are 
two heterotrimeric G protein-coupled receptors, CXCR1 and 
CXCR2. The two receptors are primarily presented in neutro-

phils, monocytes as well as endothelial cells. However, they are 
also found on the surface of tumor cells and tumor-associated 
stromal cells (22). The two receptors show different binding 
specificities as a result of differences in their N-terminal 
domains (23). CXCR1 binds IL-6 and IL-8, while CXCR2 has 
high binding affinity for IL-1, 2, 3, 5, 6, 7 and 8 (24).

IL-8 has demonstrated to induce angiogenesis (25) and 
promote the progression of many human cancers including 
prostate cancer (26), non-small cell lung carcinoma (27), 
melanoma (28), and ovarian cancer (29). Moreover, studies 
have shown that IL-8 has prognostic value in many malignant 
tumors (30,31). Aberrantly elevated serum IL-8 level can even 
precede diagnosis of lung cancer by several years (32). Tumor-
derived IL-8 induces proliferation and migration of tumor cell 
via its autocrine activity. Simultaneously, IL-8 promots the 
angiogenic response in endothelial cells and the recruitment 
of neutrophils to the tumor site via its paracrine activity (33).

It has been reported that IL-8 is regulated by microRNA 
network at post-transcription level (34) and significant 
correlation between microRNAs and IL-8 is identified in a 
variety of studies. miR-302c was found to inhibit IL-8 expres-
sion and restrain tumor invasion and metastasis. In parallel, 
IL-8 signaling also exerts a feedback effect on modulating 
miR-302c and IL-8 expression (35). Qu et al suggested that 
IL-8 was a direct target of miR-203 and miR-23a. Reduced 
expression of the two miRNAs promoted nasopharyngeal 
carcinoma radioresistance through IL-8/AKT signaling and 
IL-8/Stat3 pathway respectively (36,37). Additionally, hsa-
miR-200c-3p directly reduced IL-8 expression in inflamed 
colon of patients with ulcerative colitis (38). Moreover, IL-8 
can be suppressed by diverse miRNAs such as miR-K9, 
miR-K5, miR-17, miR-484, and miR-148a, through indirect 
manner (34,39-41). On the other hand, microRNA network 
has been found to be very important in tumor initiation and 
progression. Several anti-metastatic miRNAs have been iden-
tified in a number of cancers, such as miR-335, miR-126, and 
let-7 family. In addition to anti-metastatic miRNAs, a number 
of miRNAs are pro-metastatic such as miR-21, miR-373 and 
miR-520c (42,43).

4. The role of IL-8 in EMT

Tumor cells passing through EMT have been indentified 
to secrete more chemokine IL-8 as well as to enhance the 
expression of its receptors. Tumor-derived IL-8 exerts its 
effect through an autocrine loop to maintain the mesenchymal 
traits of tumor cells. Furthermore, IL-8 recruits neutrophils 
and TAMs to the tumor site via a paracrine fashion. In this 
review, we highlight the cytokines, pro-inflammatory media-
tors and enzymes secreted by neutrophils and TAMs as well as 
the mechanism of their induction of EMT.

i) Autocrine IL-8 loop maintain tumor EMT. It is demon-
strated that, once through EMT, tumor cells maintain their 
mesenchymal state by ongoing autocrine signaling loops (44). 
IL-8 stimulates tumor EMT by activation of various signaling 
pathways that finally affect the EMT-related transcription 
factors (Fig. 1). The transcription factors Slug, Snail, and Twist 
are known to bind to the E-box regulatory regions to repress 
the expression of E-cadherin (7). Recently, a T-box transcrip-



INTERNATIONAL JOURNAL OF ONCOLOGY  48:  5-12,  2016 7

tion factor brachyury was identified as a novel trigger of tumor 
EMT (45). Therefore, the mesenchymal transition occurs. In 
return, the induction of EMT via Snail upregulation is noted to 
induce IL-8 secretion. Since Snail could bind to E3/E4 boxes 
residing in the IL-8 promoter, it directly regulates the expres-
sion of IL-8 (46).

IL-8 has been shown to activate AKT signaling in prostate 
cancer, nasopharyngeal carcinoma (NPC) and thyroid cancer 
(TC) cell lines (47-49). The serine/threonine kinase AKT, a 
downstream target of PI3K, phosphorylated glycogen synthase 
kinase 3β (GSK3β) which induced the phosphorylation and 
translocation of Snail and Slug (50,51). Thereby, inhibiting 
GSK-3β activity, AKT activates Snail and Slug indirectly, 
leading to EMT. In NPC S18 cells, the elevated level of 
phosphorylated AKT could be suppressed by knocking down 
IL-8 expression using short-hairpin RNA. Moreover, IL-8-
promoted EMT could be inhibited by knocking down AKT 
expression or applying the PI3K inhibitor LY294002. Besides, 
suppression of AKT has been shown to revert EMT and stem-
ness responses of TC cells.

MAPK/ERK signaling is accepted as one of the most 
important regulators in EMT. Via activating small G proteins, 
IL-8 promotes activation of the MAPK signaling which is 
characterized by Raf/MEK/ERK cascade (52). ERK trans-

locates to the nucleus and upregulates the activity of several 
EMT-related transcription factors such as Snail, Slug and 
Twist. Therefore, the expression of E-cadherin is suppressed 
(53,54). In addition, IL-8 has been found to induce EMT and 
promote hepatocellular carcinoma (HCC) cell migration and 
invasion through JAK2/STAT3/Snail signaling pathway (55).

Additionally to the E-box transcription factors, Brachyury, 
the T-box transcription factor, has been discovered to promote 
tumor EMT and cancer cell metastasis in multiple types of 
human cancer (45). In breast cancer cells, IL-8 induces the 
overexpression of Brachyury and a mesenchymal-like pheno-
type. Furthermore, Brachyury displays increased expression 
of IL-8 and CXCR1/2, which amplified the effect of IL-8 on 
tumor EMT (56).

ii) Paracrine factors promote tumor EMT. Besides the 
autocrine loop between IL-8 and tumor cells that have gone 
through EMT, IL-8 could potentiate adjacent epithelial tumor 
cells into a mesenchymal phenotype via a paracrine mode 
(Fig. 2). Tumor cells undergoing EMT exhibit an elevated level 
of IL-8 as well as CXCR1/2, which amplified the effect of 
IL-8 on tumor EMT. Besides the effects on tumor cells, IL-8 is 
identified as an important regulator of neutrophils and TAMs 
recruited into the tumor microenvironment.

Figure 1. Autocrine IL-8 loop maintain tumor EMT. Tumor-derived IL-8 function in a positive autocrine loop to maintain the mesenchymal traits of tumor 
cells mainly through AKT, MAPK/ERK and JAK2/STAT3 signaling pathways. Besides, IL-8 can induce the overexpression of T-box transcription factor 
Brachyury leading to reduced expression of E-cadherin.



LONG et al:  IL-8 INDUCES AND MAINTAINS TUMOR EMT8

Macrophages infiltrated in the tumor sites have been shown 
to induce EMT of HCC cells. TAMs can secrete a vast diver-
sity of cytokines, chemokines and proteases that may influence 
tumor cells in various ways. Mast cells induced EMT and 
stem-like traits of TC cells (49). The enhanced intratumoral 
IL-8 expression could also lead to enhanced recruitment of 
neutrophils and TAMs, which, in turn, have been found to 
secrete various cytokines, chemokines, enzymes promoting 
EMT. Various cytokines (TGF-β1, TNF-α, IL-4, IL-6 and 
IL-10) secreted by activated macrophages in the cholangiocar-
cinoma context were shown to induce EMT via elevating the 
expression of EMT-related genes (57).

Cytokines and chemokines function mainly by binding 
to certain transmembrane receptors of tumor cells, which are 
members of a large family of G protein-coupled receptors. In 
parallel, some enzymes act on the extracellular matrix (ECM), 
breakdown connective tissue, inhibit E-cadherin synthesis and 
promote the mesenchymal phenotype in tumor cells.

Growth factors. As one of the most important members of 
the transforming growth factor family, transforming growth 
factor-β (TGF-β) is a potential inducer of EMT in cancer cells 
(58,59). TGF-β mediates EMT via two specific pathways, a 
Smad-dependent pathway and a Smad-independent pathway 
(60). After binding to its receptor, TGF-β phosphorylates 
Smad2 and Smad3, which collaborate with Smad4, and then 
translocate into the nucleus to regulate the transcription of 
EMT-associated genes, like Snail (61). Bonde et al found that 
TAMs induced intratumoral epithelial cell EMT via TGF-β/
Smad signaling. Data presented in his study identified that 
macrophage-derived TGF-β led to decreased expression of 
the epithelial adhesion, increased expression of mesenchymal 
markers and an aggressive phenotype (62). Additionally, 
cancer-associated fibroblasts could also promote EMT of 
breast cancer cells through paracrine TGF-β1 (63).Collective 
studies have shown TGF-β1 induced EMT mainly through 
Smad, MAPK, PI3K/AKT and ERK pathway.

Figure 2. Paracrine IL-8 promotes tumor EMT, IL-8 could potentiate adjacent epithelial tumor cells into EMT by a paracrine mode. IL-8 activates endothelial 
cells in the tumor vasculature to promote angiogenesis and induces a chemotactic infiltration of neutrophils and TAMs into the tumor site. Neutrophils and 
TAMs secrete additional growth factors, cytokines, chemokines, enzymes further promoting EMT in the tumor microenvironment.
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Several studies now indicate that EGF activation can 
break cell adhesion, enhance cell motility and promote tumor 
EMT (64,65). In EGF-treated cholangiocarcinoma cells, 
EMT-transcription factors as well as mesenchymal markers 
were induced. In addition, the EGF-mediated EMT can be 
suppressed by gefitinib, the inhibitor of EGFR (66).

Cytokines and chemokines. IL-6 has been suggested to induce 
EMT in breast, colorectal, prostate and lung cancer cells 
(67-70) via aberrant activation of JAK/STAT3 signaling. 
Additionally, IL-6 boosted the expression of Snail induced 
by TGF-β/Smad pathway, contributing greatly to EMT 
(61,71).

Similarly to IL-6, IL-1β contributes to EMT via different 
pathways. IL-1β enhanced binding of Zeb1 to the E-box 
to silence E-cadherin expression (72). IL-1β has also been 
reported to promote the expression of E-cadherin by upregu-
laing Snail (73). In addition, cooperated with TGFβ-3, IL-1β 
activated matrix metalloproteinase (MMP)-1, MMP-3, and 
MMP-10 gene expression in A549 lung adenocarcinoma cells 
through MAPK-dependent pathways, and both cytokines 
stimulated EMT and invasion (74).

Tumor necrosis factor α (TNF-α), which is primarily derived 
from by macrophages, is one of the critical pro-inflammatory 
cytokines involved in the tumor microenvironment (75). 
Several studies suggest that TNF-α induces EMT via NF-κB 
or AKT/GSK signaling through regulating the expression of 
Twist and Snail in breast, renal, colon and hypopharyngeal 
cancer (4,76). Collectively, the evidence indicates that TNF-α 
may affect the key processes of tumor EMT.

TAM with M2 phenotype could produce a chemokine 
called chemokine (C-C motif) ligand 18 (CCL18) (77) which 
exerts its activity mainly by binding to the transmembrane 
receptor -PYK2 N-terminal domain interacting receptor 1 
(Nir1). Nir1 is present in human breast cancer cells (78) and 
it could induce EMT by stabilising Snail via the PI3K/AKT/
GSK3β signaling pathway through binding to CCL18 in vitro 
and in vivo (79).

Enzymes. Studies have shown that neutrophil-derived elastase 
could degradate E-cadherin leading to dyshesion of the pancre-
atic ductal adenocarcinoma and HCC cells. Furthermore, the 
EMT transcription factor Twist was upregulated, Zeb1 appeared 
in the nucleus, β-catenin translocated into the nucleus, and kera-
tins were downregulated (80). In addition, the MMPs that exist 
in the ECM are associated with various EMT processes. The 
MMPs have the ability to degrade the functional components of 
the ECM and contribute to tumor cell migration. Therefore, the 
mesenchymal transition occurs and each EMT case involves a 
subset of specific MMPs.

Overexpression of MMP-9 in a prostate cancer model 
confirmed the association of MMP-9 with tumor invasive-
ness (81). It has also been found in a gastric carcinoma model 
that IL-8 upregulates MMP-9 expression and consequently 
increased neoangiogenesis (82). Besides, TNF-α induces the 
expression of invasion mediators MMP-7, MMP-9, and the 
intracellular adhesion molecule-1.

Taken together, various growth factors, cytokines, chemo-
kines as well as enzymes secreted by TAMs and neutrophils 
can facilitate EMT of tumor cells.

5. IL-8 as target for cancer therapy

As IL-8 is associated with EMT and tumor progression, it 
is of interest to speculate that therapy targeting IL-8 could 
improve tumor outcome. Blockade of the IL-8 and its recep-
tors seems a promising therapeutic approach which could 
reverse the metastatic phenotype of tumor cells undergoing 
EMT by disturbing the autocrine positive loop between IL-8 
and tumor cells. Additionally, it could also reduce the para-
crine signals that IL-8 exerted on other non-metastatic tumor 
cells by lessening recruitment of neutrophils and TAMs. 
CXCR2 is upregulated in some types of tumors (83-85) and 
pharmacological inhibition of CXCR1 and CXCR2 represses 
neutrophil recruitment into A547 lung tumor sites resulting 
in slower tumor growth (86). Small-molecule antagonists 
for CXCR2 and CXCR1 have been proposed to inhibit IL-8 
functions.

Studies show that CXCR1 blockade by either a CXCR1 
specific blocking antibody or repertaxin, a small-molecule 
CXCR1 inhibitor, selectively depleted human breast cancer 
stem cells (87). In addition, selectively targeting CXCR2/
CXCR1 with orally active small-molecule inhibitors is an 
effective therapeutic approach for repressing melanoma 
growth and angiogenesis (88). CXCR2/CXCR1 antagonists 
may be a useful therapeutic agent in the treatment of many 
other cancers, such as lung carcinomas.

Small-molecule antagonists for CXCR2 and CXCR1 
may represent a promising target for cancer therapy. A better 
understanding of the function of IL-8 and further knowledge 
on the interaction between IL-8 and tumor microenvironment 
may open the way to innovative therapeutic strategies for 
cancer patients.

6. Conclusion

EMT plays a central role in tumor invasion and metastasis 
and may be induced by local inflammation. In this review, we 
focused on IL-8, because it is a major component of the infil-
trates present in the tumor microenvironment and plays a vital 
role in the tumor progression and metastasis. We highlight 
the cross-link between inflammation and EMT-related tumor 
development. IL-8 induction of EMT, despite being sophisti-
cated and requiring solid experimental investment, opens new 
horizons for an efficient tumor therapy.
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