
 Open access Journal Article DOI:10.1038/S41592-019-0582-9

ilastik: interactive machine learning for (bio)image analysis. — Source link

Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle ...+15 more authors

Institutions: Heidelberg University

Published on: 30 Sep 2019 - Nature Methods (Nat Methods)

Related papers:

 Fiji: an open-source platform for biological-image analysis

 CellProfiler 3.0: Next-generation image processing for biology.

 NIH Image to ImageJ: 25 years of image analysis

 U-Net: Convolutional Networks for Biomedical Image Segmentation

 CellProfiler: image analysis software for identifying and quantifying cell phenotypes

Share this paper:

View more about this paper here: https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-
57nb1zt342

https://typeset.io/
https://www.doi.org/10.1038/S41592-019-0582-9
https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342
https://typeset.io/authors/stuart-berg-2j85i6fkje
https://typeset.io/authors/dominik-kutra-2kuszuhcsy
https://typeset.io/authors/thorben-kroeger-5ejdombeaj
https://typeset.io/authors/christoph-n-straehle-4k2yut15xx
https://typeset.io/institutions/heidelberg-university-ygd8bfk2
https://typeset.io/journals/nature-methods-2zkopt6l
https://typeset.io/papers/fiji-an-open-source-platform-for-biological-image-analysis-1v529iu3cx
https://typeset.io/papers/cellprofiler-3-0-next-generation-image-processing-for-13cr4raa4t
https://typeset.io/papers/nih-image-to-imagej-25-years-of-image-analysis-283niaszfh
https://typeset.io/papers/u-net-convolutional-networks-for-biomedical-image-2xoyjzggxv
https://typeset.io/papers/cellprofiler-image-analysis-software-for-identifying-and-1c30urxdul
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342
https://twitter.com/intent/tweet?text=ilastik:%20interactive%20machine%20learning%20for%20(bio)image%20analysis.&url=https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342
https://typeset.io/papers/ilastik-interactive-machine-learning-for-bio-image-analysis-57nb1zt342

ilastik: interactive machine learning for

(bio)image analysis

Stuart Berg1, Dominik Kutra2,3, Thorben Kroeger2, Christoph N. Straehle2, Bernhard X. Kausler2, Carsten Haubold2, Martin

Schiegg2, Janez Ales2, Thorsten Beier2, Markus Rudy2, Kemal Eren2, Jaime I Cervantes2, Buote Xu2, Fynn Beuttenmueller2,3,

Adrian Wolny2, Chong Zhang2, Ullrich Koethe2, Fred A. Hamprecht2,�, and Anna Kreshuk2,3,�

1HHMI Janelia Research Campus, Ashburn, Virginia, USA
2HCI/IWR, Heidelberg University, Heidelberg, Germany

3European Molecular Biology Laboratory, Heidelberg, Germany

We present ilastik, an easy-to-use interactive tool that brings

machine-learning-based (bio)image analysis to end users with-

out substantial computational expertise. It contains pre-defined

workflows for image segmentation, object classification, count-

ing and tracking. Users adapt the workflows to the problem at

hand by interactively providing sparse training annotations for

a nonlinear classifier. ilastik can process data in up to five di-

mensions (3D, time and number of channels). Its computational

back end runs operations on-demand wherever possible, allow-

ing for interactive prediction on data larger than RAM. Once

the classifiers are trained, ilastik workflows can be applied to

new data from the command line without further user interac-

tion. We describe all ilastik workflows in detail, including three

case studies and a discussion on the expected performance.

machine learning | image analysis | software

Correspondence:

fred.hamprecht@iwr.uni-heidelberg.de

anna.kreshuk@embl.de

Main

Rapid development of imaging technology is bringing more

and more life scientists to experimental pipelines where the

success of the entire undertaking hinges on the analysis of

images. Image segmentation, object tracking and counting

are time consuming, tedious and error-prone processes when

performed manually. Besides, manual annotation is hard to

scale for biological images, since expert annotators are typ-

ically required for correct image interpretation (although re-

cent citizen science efforts show that engaged and motivated

non-experts can make a substantial impact for selected appli-

cations (1, 2)). To answer the challenge, hundreds of methods

for automatic and semi-automatic image analysis have been

proposed in recent years. The complexity of automatic solu-

tions covers a broad range from simple thresholding to proba-

bilistic graphical models. Correct parametrization and appli-

cation of these methods pose a new challenge to life science

researchers without substantial computer science expertise.

The ilastik toolkit, introduced briefly in ref. (3), aims to ad-

dress both the data and the methods/parameters deluge by

formulating several popular image analysis problems in the

paradigm of interactively supervised machine learning. It is

free and open source, and installers for Linux, MacOS and

Windows can be found at ilastik.org (Box 1).

In ilastik, generic properties (‘features’) of pixels or objects

are computed and passed on to a powerful nonlinear algo-

rithm (‘the classifier’), which operates in the feature space.

Based on examples of correct class assignment provided by

the user, it builds a decision surface in feature space and

projects the class assignment back to pixels and objects. In

other words, users can parametrize such workflows just by

providing the training data for algorithm supervision. Freed

from the necessity to understand intricate algorithm details,

users can thus steer the analysis by their domain expertise.

Algorithm parametrization through user supervision (‘learn-

ing from training data’) is the defining feature of supervised

machine learning. Within this paradigm further subdivisions

can be made, most noticeably between methods based on

deep learning and on other classifiers; see refs. (5–7)) for

a description of basic principles and modern applications.

From the user perspective, the most important difference is

that deep learning methods—for image analysis, usually con-

volutional neural networks—operate directly on the input im-

ages, and pixel features are learned implicitly inside the net-

work. This deep learning approach is extremely powerful, as

witnessed by its recent success in all image analysis tasks.

However, as it needs training data not only to find the deci-

sion surface, but also to build a meaningful high-dimensional

feature space, very large amounts of training data have to be

provided. Our aim in the design of ilastik has been to reach

a compromise between the simplicity and speed of training

and prediction accuracy. Consequently, ilastik limits the fea-

ture space to a set of pre-defined features and only uses the

training data to find the decision surface. ilastik can thus be

trained from very sparse interactively provided user annota-

tions, and on commonly used PCs.

ilastik provides a convenient user interface and a highly opti-

mized implementation of pixel features that enable fast feed-

back in training. Users can introduce annotations, labels or

training examples very sparsely by simple clicks or brush

strokes, exactly at the positions where the classifier is wrong

or uncertain. The classifier is then re-trained on a larger train-

ing set, including old and new user labels. The results are

immediately presented to the user for additional correction.

This targeted refinement of the results brings a steep learning

curve at a fraction of the time needed for dense groundtruth

labeling.

ilastik contains workflows for image segmentation, object

classification, counting and tracking. All workflows, along

Berg et al. | April 8, 2020 | 1–9

https://www.ilastik.org

Box 1: Getting started with ilastik

• Easily installable versions of ilastik for Linux, MacOS and Windows can be found at https://www.ilastik.org/download.html,

along with the data used in the documentation and example ilastik projects for different workflows.

• Technical requirements: 64-bit operating system, at least 8 GB of RAM. While this will likely be enough for processing 2D images or time

sequences, for 3D volumes we recommend more RAM. Autocontext for large 3D data - our most memory-intensive workflow - requires at

least 32 GB for smooth interaction. By default, ilastik will occupy all the free RAM and all available CPUs. These settings can be changed

in the ilastik configuration file. As a minor point, we recommend using a real mouse instead of a touch pad for more precise labeling and

scrolling.

• General and workflow-specific documentation is stored at https://www.ilastik.org/documentation.

• If the data is in a basic image format (.png, .jpg, .tiff) or in hdf5, ilastik can load it directly. If Bioformats (4) or another special Fiji

plugin is needed to read the data, we recommend to use the ilastik Fiji plugin to convert it to hdf5 (https://www.ilastik.org/

documentation/fiji_export/plugin).

• All ilastik workflows except Carving allow batch and headless processing. Once a workflow is trained, it can be applied to other datasets on

other machines.

• If you need help, post on the common image analysis forum under the ilastik tag: https://forum.image.sc/tags/ilastik.

• All ilastik code is open source and can be found in our github repository (www.github.com/ilastik) along with current issues, proposed code

changes and planned projects. The code is distributed under the GPL v2 or higher license.

with the corresponding annotation modes, are summarized in

Table 1 and Fig. 1. In the following section, each workflow

is discussed in greater detail, with case studies demonstrating

its use for real-life biological experiments.

ilastik can handle data in up to five dimensions (3D, time and

channels), limiting the interactive action to the necessary im-

age context. The computational back-end estimates on the fly

which region of the raw data needs to be processed at a given

moment. For the pixel classification workflow in particular,

only the user field of view has to be classified during inter-

active training, making the workflow applicable to datasets

significantly larger than RAM. Once a sufficiently good clas-

sifier has been trained, it can be applied to new data without

user supervision (in the so-called batch mode), which is au-

tomatically parallelized to make the best use of the available

computational resources.

ilastik workflows

The ilastik workflows encapsulate well-established machine-

learning-based image processing tasks. The underlying idea

is to allow for a wide range of applicability and ease of use:

no prior knowledge of machine learning is needed to apply

the workflows.

Pixel Classification. Pixel classification—the most popular

workflow in ilastik—produces semantic segmentations of im-

ages, that is, it attaches a user-defined class label to each

pixel of the image. To configure this workflow, the user

needs to define the classes, such as ‘nucleus’, ‘cytoplasm’ or

‘background’, and provide examples for each class by paint-

ing brushstrokes of different colors directly on the input data

(Fig. 1a). For every pixel of the image, ilastik then estimates

the probability that the pixel belongs to each of the seman-

tic classes. The resulting probability maps can be used di-

rectly for quantitative analysis, or serve as input data for other

ilastik workflows.

More formally, it performs classification of pixels using the

output of image filters as features and Random Forest (10) as

a classifier. Filters include descriptors of pixel color and in-

tensity, edge-ness and texture, in 2D and 3D, and at different

scales. Estimators of feature importance help users remove

irrelevant features if computation time becomes an issue.

By default, a Random Forest classifier with 100 trees is used.

We prefer Random Forest over other nonlinear classifiers be-

cause it has very few parameters and has been shown to be ro-

bust to their choice. This property and, most importantly, its

good generalization performance (11) make Random Forest

particularly well suited for training by non-experts. Detailed

description of the inner work of a Random Forest is outside

the scope of this paper. Geurts et al. (6) provide an excel-

lent starting point for readers interested in technical details.

With Random Forest as default, we still provide access to all

the classifiers from the scikit-learn Python library (12) and

an API (application programming interface) for implement-

ing new ones. In our experience, increasing the number of

trees does not bring a performance boost with ilastik features,

while decreasing it worsens the classifier generalization abil-

ity.

Note that pixel classification workflow performs semantic

rather than instance segmentation. In other words, it sep-

arates the image into semantic classes (for example, ‘fore-

ground versus background’), but not into individual objects.

Connected components analysis has to be applied on top

of pixel classification results to obtain individual objects by

finding connected areas of the foreground classes. Case study

1 (Fig. 2) provides an illustration of these steps. ilastik work-

flows for object classificatwas published) can compute con-

nected components from pixel prediction maps. More pow-

erful post-processing has to be used in case the data contains

strongly overlapping objects of the same semantic class. Fiji

(13) includes multiple watershed-based plugins for this task,

which can be applied to ilastik results through the ilastik Fiji

plugin.

Case study 1: Spatial constraints control cell proliferation

in tissues. Streichan et al. (14) investigate the connection be-

tween cell proliferation and spatial constraints of the cells.

2 Berg et al. | ilastik: interactive machine learning for (bio)image analysis

https://www.ilastik.org/download.html
https://www.ilastik.org/documentation
https://www.ilastik.org/documentation/fiji_export/plugin
https://www.ilastik.org/documentation/fiji_export/plugin
https://forum.image.sc/tags/ilastik

a

f

d

e

 c

b

t

Fig. 1. User labels provided to various ilastik workflows and the corresponding ilastik output. Workflows and output are shown at the top and bottom of each panel,

respectively.: a, Pixel classification. Brush stroke labels are used to predict which class a pixel belongs to for all pixels (magenta, mitochondria; blue, membranes; black,

cytoplasm; red, microtubuli). b, Multicut. Click labels on edges between superpixels (green, false edges; red, true edges) are used to find a non-contradicting set of true edges

and the corresponding segmentation. c, Carving. Object (blue) and background (magenta) brush stroke labels are used to segment one object in 3D. d, Object classification.

Click labels are used to predict which class an object belongs to (blue or magenta). e, Counting. Clicks for objects and brush strokes for background (magenta) are used to

predict how many objects can be found in user-defined rectangular regions and the whole image. f) Tracking. Clicks for dividing (cyan) and non-dividing (magenta) objects,

clicks for merged (yellow) and single (blue) objects are used to track dividing objects through time (objects of same lineage are shown in the same color). Data from the

FlyEM team (a-c), Daniel Gerlich Lab (d), the Broad Bioimage Benchmark Collection (8) (e) and the Mitocheck project (9) (f). Detailed video tutorials can be found on our

youtube channel.

Berg et al. | ilastik: interactive machine learning for (bio)image analysis | 3

https://www.youtube.com/playlist?list=PL1RliBnTmcHzQTGogF9fw59rbf1c7hFse

Table 1. Summary of the annotation modes in ilastik workflows

Workflow Name Input Data Annotation Mode Result

Pixel Classification or

Autocontext (Fig. 1a)

up to 5D Brush strokes Semantic segmentation: assignment of pixels to

user-defined semantic classes such as “foreground”

or “cell membrane”

Multicut (Fig. 1b) 2D/3D + channels Mouse clicks on

fragment edges

Instance Segmentation: partitioning of an image

into individual objects (instances)

Carving (Fig. 1c) 2D/3D Brush strokes

inside and outside

the object

Single segmented object

Object Classification (Fig. 1d) up to 5D Mouse clicks on

objects

Objects categorized in user-defined classes

Counting (Fig. 1e) 2D + time + channels Brush strokes and

clicks on single

objects

Object counts in images and ROIs

Tracking (Fig. 1f) up to 5D Mouse clicks on

dividing or merged

objects

Object assignment to tracks through divisions

Tracking with Learning up to 5D Short tracklets Object assignment to tracks through divisions

Fig. 2. Nuclei segmentation. a, One of the raw images. b, A region of interest in the

area where cells at different cell cycle stages are mixed. c, Semantic segmentation

by pixel classification workflow. d, Individual objects as connected components of

the segmentation in c. Figure adapted from ref. (14), PNAS.

The imaging side of the experiment was performed in vivo,

using epithelial model tissue and a confocal spinning disk mi-

croscope. Cells at different stages of the cell cycle were de-

tected by nuclei of different color (green for S–G2–M phase,

red for G0–G1) produced by a fluorescent ubiquitination-

based cell cycle indicator. The pixel classification workflow

of ilastik was used to segment red and green nuclei over the

course of multiple experiments, as shown in Fig. 2. Outside

of ilastik, segmentation of nuclei was expanded into cell seg-

mentation by Voronoi tessellation of the images. Dynamics

of the cell area and other cell morphology features were used

to test various hypotheses on the nature of cell proliferation

control.

Autocontext. This workflow is closely related to pixel clas-

sification. It builds on the cascaded classification idea intro-

duced in ref. (15), and simply performs pixel classification

twice. The input to the second stage is formed by attaching

the results of the first round as additional channels to the raw

data. The features of the second round are thus computed not

only on the raw data, but also on the first-round predictions.

These features provide spatial semantic context that, at the

cost of more computation time and higher RAM consump-

tion, makes the predictions of the second round less noisy,

smoother and more consistent.

Object Classification. Since pixel-level features are com-

puted from a spherical neighborhood of a pixel, they fail to

take into account object-level characteristics, such as shape.

Consequently, the pixel classification workflow cannot dis-

tinguish locally similar objects. In ilastik, this task is del-

egated to the object classification workflow. First, objects

are extracted by smoothing and thresholding the probability

maps produced by pixel classification. Segmentations ob-

tained outside of ilastik can also be introduced at this stage.

Features are then computed for each segmented object, in-

cluding intensity statistics within the object and its neighbor-

hood, as well as convex-hull- and skeleton-based shape de-

scriptors. Advanced users can implement their own feature

plugins from a Python template. In addition to their direct

use for classification, the per-object descriptors can also be

exported for follow-up analysis of morphology. Training of

the object-level classifier is achieved by simple clicking on

the objects of different classes (Fig. 1d).

While this workflow is RAM-limited in training, batch pro-

cessing of very large images can be performed block-wise.

Case study 2: TANGO1 builds a machine for collagen ex-

port by recruiting and spatially organizing COPII, tethers and

membranes. Raote et al. (16) investigate the function of the

4 Berg et al. | ilastik: interactive machine learning for (bio)image analysis

b. ilastik training

c. ilastik prediction on unseen data

a. Raw data example

Object

Background

Aggregate

Ring

Dot

Color-coded

segmented

objects

PC labels OC labels

Raw data OC predictions

Fig. 3. A combination of pixel and object classification workflows. The first steps

of the image-processing pipeline, involving deconvolution and z-projection, are not

shown. a, Examples of rings formed by TANGO1 in the native state. b, Pixel classi-

fication (PC) extracts protein complexes (left and center), object classification (OC)

divides them into ‘ring’, ‘dot’ and ‘aggregate’ classes. c, Pipeline results on unseen

images with different protein formations. Figure adapted from ref. (16), eLife.

TANGO-1 protein involved in collagen export. This study

examines spatial organization and interactions of TANGO-1

family proteins, aiming to elucidate the mechanism of colla-

gen export out of the ER. Various protein aggregations were

imaged by stimulation emission depleted microscopy. Fig-

ure 3a shows some examples of the resulting structures that

had to be analyzed. Note that locally these structures are

very similar: the main difference between them comes from

shape rather than intensities of individual components. This

problem is an exemplary-use case for the object classification

workflow. Pixel classification is applied to first segment all

complexes (Fig. 3b, left). The second step is object classi-

fication with morphological object features, which separates

the segmented protein complexes into rings, incomplete rings

and ring aggregates (Fig. 3b, right). Once the classifiers are

trained, they can be applied to unseen data in batch mode

(Fig. 3c).

Carving Workflow. The carving workflow allows for semi-

automatic segmentation of objects based on their bound-

ary information; algorithmic details can be found in refs.

(17, 18). Briefly, we start by finding approximate object

boundaries by running an edge detector over all pixels of the

image volume. The volume is then segmented into supervox-

els by the watershed algorithm, with a new supervoxel at each

local minimum of the edge map and seeds at all local minima.

Supervoxels are grouped into a region adjacency graph. The

weights of the graph edges connecting adjacent supervoxels

are computed from the boundary prediction in between the

supervoxels. To segment an object, the user provides brush

stroke seeds (Fig. 1c), while ilastik runs watershed with a

background bias on the superpixels.

For images with clear boundaries, the boundary estimate can

be computed directly from the raw image. In less obvious

cases, the pixel classification workflow can be run first to de-

tect boundaries, as shown in case study 3. 3D data from elec-

tron microscopy presents the ideal-use case for this workflow

(19, 20), but other modalities can profit from it as well, as

long as the boundaries of the objects of interest are stained

(21). Along with pixel-wise object maps, meshes of objects

can be exported for follow-up processing by 3D analysis tools

such as Neuromorph (22).

Case study 3: Increased spatiotemporal resolution reveals

highly dynamic dense tubular matrices in the peripheral ER.

Nixon-Abell et al. (23) investigate the morphology of pe-

ripheral endoplasmic reticulum (ER) by five different super-

resolution techniques and focused ion beam–scanning elec-

tron microscope (FIB–SEM) imaging. ilastik was used for

the challenging task of ER segmentation in the FIB–SEM

volume. Heavy-metal staining for electron microscopy gives

contrast to all membranes; an additional complication for

ER segmentation comes from its propensity to contact other

cell organelles. Locally, the ER is not sufficiently different

from other ultrastructures to be segmented by pixel classifi-

cation directly (Fig. 4a). Nixon-Abell et al. chose the semi-

automatic approach of carving the ER out of the volume

based on boundary information. First, pixel classification

workflow was applied to detect the membranes. The mem-

brane prediction served as boundary indicator for the carving

workflow, which was run blockwise to improve interactivity.

Some of the carving annotations are shown in Fig. 4b. Carv-

ing results over multiple blocks were merged and the remain-

ing errors in the complete block were fixed by proof-reading

in the Amira software (24) as it provides an efficient way to

inspect large 3D objects. The final 3D reconstruction for the

area in Fig. 4a,b is shown in Fig. 4c.

Boundary-based segmentation with Multicut. Similar to

the carving workflow, the multicut workflow targets the use

case of segmenting objects separated by boundaries. How-

ever, unlike carving, this workflow segments all objects si-

multaneously without user-provided seeds or information on

the number of objects to segment. Instead of seeds, users

provide labels for edges in the initial oversegmentation of the

data into superpixels, as shown in Fig. 1b. The superpixel

edges are labeled as ‘true’ when the superpixels belong to

different underlying objects and should be kept separate; and

Berg et al. | ilastik: interactive machine learning for (bio)image analysis | 5

a b

c

Fig. 4. Segmentation of the peripheral endoplasmic reticulum from FIB–SEM image

stacks by the carving workflow. a, A section of the FIB–SEM data. b, Some of the

carving annotations (magenta, object; yellow, background) and the carved object

(blue). c, Final segmentation of this area in 3D after correction in Amira(24). Figure

adapted from ref. (23), AAAS.

‘false’ when they belong to the same object and should be

merged. Based on these labels, a Random Forest classifier

is trained to predict how likely an edge is to be present in

the final segmentation. The segmentation problem can then

be formulated as partitioning of the superpixel graph into an

unknown number of segments (the multicut problem (25)).

In general, finding a proven, globally optimal solution is in-

feasible for problems of biologically relevant size. Luckily,

fast approximate solvers exist and, in our experience, provide

good solutions (26).

This workflow was originally developed for neuron segmen-

tation in electron microscopy image stacks. A detailed de-

scription of the algorithms behind it can be found in ref. (27),

along with application examples for three popular electron

microscopy (EM) segmentation challenges. Potential appli-

cations of this workflow are, however, not limited to EM

and extend to boundary-based segmentation in any imaging

modality.

Counting workflow. The counting workflow addresses the

common task of counting overlapping objects. Counting is

performed by density rather than by detection, allowing it

to accurately count objects that overlap too much to be seg-

mented. The underlying algorithm has been described in

ref. (28). Briefly, user annotations of background (brush

strokes) and individual objects (single clicks in object cen-

ters) serve as input to a regression Random Forest that esti-

mates the object density in every pixel of the image (Fig. 1e).

The resulting density estimate can be integrated over the

whole image or rectangular regions of interest to obtain the

total number of objects. The counting workflow can only be

run in 2D.

Tracking workflow. This workflow performs automatic

tracking-by-assignment, that is, it tracks multiple pre-

detected, potentially dividing, objects through time, in 2D

and 3D. The algorithm is based on conservation tracking

(29), where a probabilistic graphical model is constructed for

all detected objects at all time points simultaneously. The

model takes the following factors into account for each ob-

ject: how likely it is to be dividing, how likely it is to be a

false detection or a merge of several objects, and how well

it matches the neighbors in subsequent frames. Following

the general ilastik approach, the users provide this informa-

tion by training one classifier to recognize dividing objects

(Fig. 1f, cyan and magenta labels) and another one to find

false detections and object merges (Fig. 1f, yellow and blue

labels) (30). Weighted classifier predictions are jointly con-

sidered in a global probabilistic graphical model. We provide

sensible defaults for the weights, but they can also be learned

from data if the user annotates a few short tracklets (31) in

the ‘tracking with learning’ workflow. The maximum a pos-

teriori probability state of the model then represents the best

overall assignment of objects to tracks, as found by an in-

teger linear program solver (32). The resulting assignment

and division detections can be exported to multiple formats

for post-processing and correction in external tools, such as

MaMuT (33). For long videos, tracking can be performed in

parallel using image sequences that overlap in time.

When it works and when it does not

The fundamental assumption of supervised machine learn-

ing is that the training data with groundtruth annotations

represents the overall variability of data sufficiently well.

Changes in imaging conditions, intensity shifts or previously

unseen image artefacts can degrade classifier performance in

a very substantial manner, even in cases where a human ex-

pert would have no problem with continuing manual analysis.

It is thus strongly recommended to both optimize the image

acquisition process to make the images appear as homoge-

neous as possible and validate the trained algorithm in differ-

ent parts of the data (for example, in different time steps or

different slices in a stack).

The paramount importance of this validation step motivated

us to develop the lazy computation back-end of ilastik, which

allows users to explore larger-than-RAM datasets interac-

tively. Since the prediction is limited to the user field of view,

they can easily train the algorithm in one area of the data and

then pan or scroll to another area and verify how well the

classifier generalizes. If needed, additional labels can then

be provided to improve performance in the new areas. The

appropriate amount of training data depends on the difficulty

of the classification problem and the heterogeneity of the in-

put data projected to feature space. Since both of these fac-

tors are difficult to estimate formally, we usually employ the

simple heuristic of adding labels until the classifier predic-

tions stop changing. Conversely, if the classifier predictions

6 Berg et al. | ilastik: interactive machine learning for (bio)image analysis

Box 2: Contributing to ilastik

The ilastik team is always happy to receive feedback and contributions from outside. ilastik is written in Python with a few performance-critical

components in C++; the GUI is based on PyQt. Over the years, the codebase of ilastik has been expanded by a wide range of developers, from

temporary student assistants to professional software engineers. At any level of coding expertise, there are ways for you to make ilastik better for

everyone:

• Share your experience with us and with others, by posting on the forum (https://forum.image.sc/tags/ilastik) or writing

directly to the team at team@ilastik.org.

• Submit an issue to our issue tracker if ilastik behaves in an unexpected way or if you find important functionality is missing: https:

//github.com/ilastik/ilastik/issues.

• Contribute to the overall ilastik development at https://github.com/ilastik/ilastik.github.io. If you documented your

steps with ilastik on your own website, blog or protocol paper, send us a link and we will be happy to point to it from the main page.

• Contribute to the overall ilastik development at https://github.com/ilastik. WWe provide conda packages for all our dependen-

cies. The software architecture is described in the developer documentation at https://www.ilastik.org/development.html.

The main issue tracker of ilastik (https://github.com/ilastik/ilastik/issues) contains a special tag for good first issues to

tackle. To get your code included into ilastik, submit a pull request on the corresponding repositories. Do not hesitate to start the pull request

before the code is finalized to receive feedback early and to let us help you with the integration into the rest of the system.

keep changing wildly after a significant number of labels has

been added, ilastik features are probably not a good fit for

the problem at hand and a more specialized solution needs

to be found. Note that, unlike convolutional neural networks,

ilastik does not benefit from large amounts of densely labeled

training data. A much better strategy is to exploit the inter-

active nature of ilastik and provide new labels by correcting

classifier mistakes. Training applets in all workflows pro-

vide a pixel- or object-wise estimate of classifier uncertainty.

While pixels next to a label transition area will likely remain

uncertain, a well-trained classifier should not exhibit high un-

certainty in more homogenous parts of the image. Along with

classifier mistakes, such areas of high uncertainty are a good

target for adding more labels. Finally, it is also important to

place labels precisely where they need to be by choosing the

appropriate brush width.

Formally, the accuracy of a classifier must be measured on

parts of the dataset not seen in training. If additional param-

eters need to be tuned (such as segmentation thresholds and

tracking settings), the tuning needs to be performed on parts

of the data that were not used for classifier training. The over-

all validation should then happen on the data not seen in ei-

ther step. Since ilastik labels are usually very sparse, clas-

sifier performance can be assessed by the visual inspection

of its output on unlabeled pixels. For quantitative evaluation,

previously unseen part(s) of the data need to be annotated

manually and then compared to algorithm results.

To set realistic performance expectations, remember that the

algorithm decisions are based on the information it sees

through the image features. For the pixel classification work-

flow and generic features available in ilastik, the context a

classifier can consider is limited to a spherical neighborhood

around each pixel. The radii of the spheres can range from 1

to 35 pixels, even larger radii can be defined by users. This,

however, can make the computation considerably slower. To

check if the context is sufficient for the task at hand, zoom

into the image until the field of view is limited to 70 pixels.

If the class of the central pixel is still identifiable, ilastik will

likely be able to handle it.

Similarly, the object classification workflow is limited to

features computed from the object and its immediate vicin-

ity. Hand-crafted features must be introduced if higher-level

context or top-down biological priors are needed for correct

classification (see, for example, spatial correspondence fea-

tures often used in medical image analysis (34). The same

consideration is true for the speed of computation: a well-

implemented and parameterized pipeline specific for the ap-

plication at hand will be faster than the generic approach of

ilastik.

As for any automated analysis method, the underlying re-

search question itself should not be over-sensitive to algo-

rithm mistakes. For non-trivial image analysis problems, hu-

man parity has so far been reached for a few selected bench-

marks, with careful training and post-processing by teams of

computer vision experts. It is to be expected that, for a dif-

ficult problem, a classifier trained in ilastik will make more

errors than a human. However, as long as the training data is

representative, it will likely be more consistent. For example,

it might be harder for the classifier to segment ambiguous ar-

eas in the data, but the difficulty will not depend on the clas-

sifier’s caffeination level or last night’s sleep quality. Finally,

in cases where the algorithm error rate is too high for its out-

put to be used directly, it often turns out that proof-reading

automatic results is faster and less prone to attention errors

than running the full analysis manually.

Combining ilastik with other (bio)image anal-

ysis tools

The core functionality of ilastik is restricted to interactive

machine learning. Multiple other parts of image analysis

pipelines have to be configured and executed elsewhere—a

non-trivial step for many ilastik users who do not possess

the programming expertise to connect the individual tools

by scripts. To address this problem, we have developed an

ilastik ImageJ plugin, which allows users to import and ex-

port data in the ilastik HDF5 format and to run pre-trained

ilastik workflows directly from Fiji (13). We have also made

this functionality accessible as KNIME nodes (35) and as a

CellProfiler (8) plugin ‘predict’. ilastik project files are sim-

Berg et al. | ilastik: interactive machine learning for (bio)image analysis | 7

https://forum.image.sc/tags/ilastik
https://github.com/ilastik/ilastik/issues
https://github.com/ilastik/ilastik/issues
https://github.com/ilastik/ilastik.github.io
https://github.com/ilastik
https://www.ilastik.org/development.html
https://github.com/ilastik/ilastik/issues

ply HDF5 files and can be manipulated directly from Python

code.

Other machine-learning-based tools

The wide applicability and excellent generalization proper-

ties of machine learning algorithms have been exploited in

software other than ilastik. The closest to ilastik is perhaps

the Fiji Weka segmentation plugin (36), which allows for in-

teractive, though RAM-limited, segmentation in 2D and 3D.

CellCognition and its Explorer extension (37) use machine

learning for phenotyping in high-throughput imaging setups.

SuRVoS (38) performs interactive segmentation on super-

pixels targeting challenging low-contrast and low-signal-to-

noise images. FastER (39) proposes very fast feature com-

putation for single cell segmentation. Microscopy Image

Browser (34) offers multiple pre-processing and region se-

lection options, along with superpixel-based segmentation.

Cytomine (40) allows for large-scale web-based collabora-

tive image processing.

Conclusions

Machine learning has been the driving force behind the com-

puter vision revolution of recent years. Besides the raw per-

formance, one of the big advantages of this approach is that

the customization of algorithms to a particular dataset hap-

pens by providing training data. Unlike the changes to the

algorithm implementation or parametrization, training can

(and should) be performed by application domain experts.

For this, ilastik provides all the necessary ingredients: fast

generic features, powerful non-linear classifiers, probabilis-

tic graphical models and solvers, all wrapped into workflows

with a convenient user interface for fast interactive training

and post-processing of segmentation, tracking and counting

algorithms.

In its current version (1.3.3), ilastik does not include an op-

tion to train deep convolutional neural networks (CNNs).

The main reason for this limitation is the impossibility—with

the currently available segmentation networks—to train from

scratch using very sparse training annotations, as we do with

the ‘shallow’ classifiers. Reducing requirements to the train-

ing data volume is a very active topic in CNN research. We

believe that such methods will become available soon and the

modular architecture of ilastik will allow us to incorporate

them without delay.

Motivated by the success stories of our users, we remain com-

mitted to further development of ilastik (Box 2). We envision

closer integration with other popular image processing tools,

better support of outside developers and, on the methodolog-

ical side, a user-friendly mix of deep and shallow machine

learning.

ACKNOWLEDGEMENTS

We gratefully acknowledge support by the HHMI Janelia Visiting Scientist Program,

European Union via the Human Brain Project SGA2, the Deutsche Forschungsge-

meinschaft (DFG) under grants HA-4364/11-1 (F.A.H., A.K.), HA 4364 9-1 (F.A.H.),

HA 4364 10-1 (F.A.H.), KR-4496/1-1 (A.K.), SFB1129 (F.A.H.), FOR 2581 (F.A.H.),

and the Heidelberg Graduate School MathComp. We are also extremely grateful to

other contributors to ilastik: N. Buwen, C. Decker, B. Erocal, L. Fiaschi, T. Fogaca

Vieira, P. Hanslovsky, B. Heuer, P. Hilt, G. Holst, F. Isensee, K. Karius, J. Kleesiek,

E. Melnikov, M. Novikov, M. Nullmeier, L. Parcalabescu, O. Petra and S. Wolf, and

to B. Werner for vital assistance to the project. Finally, we would like to thank the

authors of the three case studies for sharing their images with us.

Author Contributions

S.B., D.K., T.K., C.N.S., B.X.K., C.H., M.S., J.A., T.B.,

M.R., K.E., J.I.C., B.X., F.B., A.W., C.Z., U.K, F.A.H. and

A.K. all contributed to the software code and documentation.

A.K. and F.A.H. drafted the manuscript, to which all authors

contributed.

Competing Financial interests

The authors declare no competing financial interests.

Code Availability Statement

All code included in the software is available on the project’s

GitHub page: https://github.com/ilastik.

Bibliography

1. Robert Simpson, Kevin R Page, and David De Roure. Zooniverse: observing the world’s

largest citizen science platform. In Proceedings of the 23rd international conference on

world wide web, pages 1049–1054. ACM, 2014.

2. Alex J. Hughes, Joseph D. Mornin, Sujoy K. Biswas, Lauren E. Beck, David P. Bauer, Arjun

Raj, Simone Bianco, and Zev J. Gartner. Quanti.us: a tool for rapid, flexible, crowd-based

annotation of images. Nature Methods, 15(8):587–590, August 2018. ISSN 1548-7105. doi:

10.1038/s41592-018-0069-0.

3. Christoph Sommer, Christoph Straehle, Ullrich Köthe, and Fred A. Hamprecht. ilastik: In-

teractive learning and segmentation toolkit. In Eighth IEEE International Symposium on

Biomedical Imaging (ISBI 2011).Proceedings, pages 230–233, 2011. doi: 10.1109/ISBI.

2011.5872394. 1.

4. Melissa Linkert, Curtis T. Rueden, Chris Allan, Jean-Marie Burel, Will Moore, Andrew

Patterson, Brian Loranger, Josh Moore, Carlos Neves, Donald MacDonald, Aleksandra

Tarkowska, Caitlin Sticco, Emma Hill, Mike Rossner, Kevin W. Eliceiri, and Jason R. Swed-

low. Metadata matters: access to image data in the real world. The Journal of Cell Biology,

189(5):777–782, May 2010. ISSN 0021-9525, 1540-8140. doi: 10.1083/jcb.201004104.

5. Bradley J. Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L. Kline. Machine

Learning for Medical Imaging. RadioGraphics, 37(2):505–515, February 2017. ISSN 0271-

5333. doi: 10.1148/rg.2017160130.

6. Pierre Geurts, Alexandre Irrthum, and Louis Wehenkel. Supervised learning with decision

tree-based methods in computational and systems biology. Molecular BioSystems, 5(12):

1593–1605, 2009. doi: 10.1039/B907946G.

7. Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero, and Sorin Drăghici. Machine

learning and its applications to biology. PLOS Computational Biology, 3(6):1–11, 06 2007.

doi: 10.1371/journal.pcbi.0030116.

8. Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin Clarke, In Han Kang, Ola

Friman, David A Guertin, Joo Han Chang, Robert A Lindquist, Jason Moffat, et al. Cell-

profiler: image analysis software for identifying and quantifying cell phenotypes. Genome

biology, 7(10):R100, 2006.

9. Beate Neumann, Thomas Walter, Jean-Karim Hériché, Jutta Bulkescher, Holger Erfle,

Christian Conrad, Phill Rogers, Ina Poser, Michael Held, Urban Liebel, Cihan Cetin, Frank

Sieckmann, Gregoire Pau, Rolf Kabbe, Annelie Wünsche, Venkata Satagopam, Michael

H A Schmitz, Catherine Chapuis, Daniel W Gerlich, Reinhard Schneider, Roland Eils, Wolf-

gang Huber, Jan-Michael Peters, Anthony A Hyman, Richard Durbin, Rainer Pepperkok,

and Jan Ellenberg. Phenotypic profiling of the human genome by time-lapse microscopy

reveals cell division genes. Nature, 464(7289):721–727, April 2010. ISSN 1476-4687. doi:

10.1038/nature08869.

10. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN 1573-0565.

doi: 10.1023/A:1010933404324.

11. Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need

hundreds of classifiers to solve real world classification problems? Journal of Machine

Learning Research, 15:3133–3181, 2014.

12. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

Scikit-learn: Machine learning in python. Journal of machine learning research, 12(Oct):

2825–2830, 2011.

13. Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair,

Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid,

Jean-Yves Tinevez, Daniel James White, Volker Hartenstein, Kevin Eliceiri, Pavel Toman-

cak, and Albert Cardona. Fiji: an open-source platform for biological-image analysis. Nat

Meth, 9(7):676–682, July 2012. ISSN 15487091.

14. Sebastian J. Streichan, Christian R. Hoerner, Tatjana Schneidt, Daniela Holzer, and Lars

Hufnagel. Spatial constraints control cell proliferation in tissues. Proceedings of the National

Academy of Sciences, 2014. ISSN 0027-8424. doi: 10.1073/pnas.1323016111.

8 Berg et al. | ilastik: interactive machine learning for (bio)image analysis

https://github.com/ilastik

15. Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32

(10):1744–1757, Oct 2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.186.

16. Ishier Raote, Maria Ortega-Bellido, António JM Santos, Ombretta Foresti, Chong Zhang,

Maria F Garcia-Parajo, Felix Campelo, and Vivek Malhotra. Tango1 builds a machine for

collagen export by recruiting and spatially organizing copii, tethers and membranes. eLife,

7:e32723, mar 2018. ISSN 2050-084X. doi: 10.7554/eLife.32723.

17. Christoph N. Straehle, Ullrich Köthe, Graham W. Knott, and Fred A. Hamprecht. Carv-

ing: Scalable interactive segmentation of neural volume electron microscopy images. In

Gabor Fichtinger, Anne Martel, and Terry Peters, editors, Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2011, pages 653–660, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg. ISBN 978-3-642-23623-5.

18. Christoph Straehle, Ullrich Köthe, Kevin Briggman, Winfried Denk, and Fred A. Hamprecht.

Seeded watershed cut uncertainty estimators for guided interactive segmentation. In CVPR

2012. Proceedings, pages 765 – 772, 2012. doi: 10.1109/CVPR.2012.6247747. 1.

19. Bohumil Maco, Anthony Holtmaat, Marco Cantoni, Anna Kreshuk, Christoph N Straehle,

Fred A Hamprecht, and Graham W Knott. Correlative in vivo 2 photon and focused ion

beam scanning electron microscopy of cortical neurons. PloS one, 8(2):e57405, 2013.

20. Natalya Korogod, Carl CH Petersen, and Graham W Knott. Ultrastructural analysis of adult

mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife, 4:e05793, 2015.

21. Anna Gonzalez-Tendero, Chong Zhang, Vedrana Balicevic, Rubén Cárdenes, Sven Lon-

caric, Constantine Butakoff, Bruno Paun, Anne Bonnin, Patricia Garcia-Cañadilla, Emma

Muñoz-Moreno, et al. Whole heart detailed and quantitative anatomy, myofibre structure

and vasculature from x-ray phase-contrast synchrotron radiation-based micro computed to-

mography. European Heart Journal-Cardiovascular Imaging, 18(7):732–741, 2017.

22. Anne Jorstad, Jérôme Blanc, and Graham Knott. Neuromorph: A software toolset for 3d

analysis of neurite morphology and connectivity. Frontiers in Neuroanatomy, 12:59, 2018.

ISSN 1662-5129. doi: 10.3389/fnana.2018.00059.

23. Jonathon Nixon-Abell, Christopher J. Obara, Aubrey V. Weigel, Dong Li, Wesley R. Legant,

C. Shan Xu, H. Amalia Pasolli, Kirsten Harvey, Harald F. Hess, Eric Betzig, Craig Black-

stone, and Jennifer Lippincott-Schwartz. Increased spatiotemporal resolution reveals highly

dynamic dense tubular matrices in the peripheral er. Science, 354(6311), 2016. ISSN

0036-8075. doi: 10.1126/science.aaf3928.

24. Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. Amira: a highly interactive

system for visual data analysis, 2005.

25. Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, and Fred A. Hamprecht.

Probabilistic image segmentation with closedness constraints. In ICCV, page 2611–2618,

2011. doi: 10.1109/ICCV.2011.6126550.

26. Thorsten Beier, Fred A. Hamprecht, and Jorg H. Kappes. Fusion moves for correlation

clustering. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

page 3507–3516, June 2015.

27. Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo Prange, Stuart Berg, Davi D.

Bock, Albert Cardona, Graham W. Knott, Steven M. Plaza, Louis K. Scheffer, Ullirch Köthe,

Anna Kreshuk, and Fred A. Hamprecht. Multicut brings automated neurite segmentation

closer to human performance. Nature Methods, 14:101–102, 2017. doi: 10.1038/nmeth.

4151.

28. Luca Fiaschi, Ullrich Koethe, Rahul Nair, and Fred A. Hamprecht. Learning to count with

regression forest and structured labels. In Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012), pages 2685–2688, Nov 2012.

29. Martin Schiegg, Philipp Hanslovsky, Bernrad X. Kausler, Lars Hufnagel, and Fred A. Ham-

precht. Conservation tracking. In 2013 IEEE International Conference on Computer Vision,

pages 2928–2935, Dec 2013. doi: 10.1109/ICCV.2013.364.

30. Carsten Haubold, Martin Schiegg, Anna Kreshuk, Stuart Berg, Ullrich Koethe, and Fred A

Hamprecht. Segmenting and tracking multiple dividing targets using ilastik. In Focus on

Bio-Image Informatics, pages 199–229. Springer, 2016.

31. Xinghua Lou. and Fred A. Hamprecht. Structured learning from partial annotations. ICML

2012. Proceedings, 2012. 1.

32. Carsten Haubold, Janez Aleš, Steffen Wolf, and Fred A. Hamprecht. A generalized succes-

sive shortest paths solver for tracking dividing targets. In Bastian Leibe, Jiri Matas, Nicu

Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 566–582, Cham,

2016. Springer International Publishing. ISBN 978-3-319-46478-7.

33. Carsten Wolff, Jean-Yves Tinevez, Tobias Pietzsch, Evangelia Stamataki, Benjamin Harich,

Léo Guignard, Stephan Preibisch, Spencer Shorte, Philipp J Keller, Pavel Tomancak, et al.

Multi-view light-sheet imaging and tracking with the mamut software reveals the cell lineage

of a direct developing arthropod limb. eLife, 7, 2018.

34. Ilya Belevich, Merja Joensuu, Darshan Kumar, Helena Vihinen, and Eija Jokitalo. Mi-

croscopy image browser: A platform for segmentation and analysis of multidimensional

datasets. PLOS Biology, 14(1):1–13, 01 2016. doi: 10.1371/journal.pbio.1002340.

35. Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter,

Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd Wiswedel. KNIME: The

Konstanz Information Miner. In Studies in Classification, Data Analysis, and Knowledge

Organization (GfKL 2007). Springer, 2007. ISBN 978-3-540-78239-1.

36. Ignacio Arganda-Carreras, Verena Kaynig, Curtis Rueden, Kevin W Eliceiri, Johannes

Schindelin, Albert Cardona, and H Sebastian Seung. Trainable weka segmentation: a ma-

chine learning tool for microscopy pixel classification. Bioinformatics, 33(15):2424–2426,

2017.

37. Christoph Sommer, Rudolf Hoefler, Matthias Samwer, and Daniel W Gerlich. A deep learn-

ing and novelty detection framework for rapid phenotyping in high-content screening. Molec-

ular biology of the cell, 28(23):3428–3436, 2017.

38. Imanol Luengo, Michele C Darrow, Matthew C Spink, Ying Sun, Wei Dai, Cynthia Y He,

Wah Chiu, Tony Pridmore, Alun W Ashton, Elizabeth MH Duke, et al. Survos: super-region

volume segmentation workbench. Journal of structural biology, 198(1):43–53, 2017.

39. Oliver Hilsenbeck, Michael Schwarzfischer, Dirk Loeffler, Sotiris Dimopoulos, Simon Has-

treiter, Carsten Marr, Fabian J Theis, and Timm Schroeder. faster: a user-friendly tool for

ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics, 33(13):

2020–2028, 2017.

40. Raphaël Marée, Loïc Rollus, Benjamin Stévens, Renaud Hoyoux, Gilles Louppe, Rémy Van-

daele, Jean-Michel Begon, Philipp Kainz, Pierre Geurts, and Louis Wehenkel. Collaborative

analysis of multi-gigapixel imaging data using cytomine. Bioinformatics, 32(9):1395–1401,

2016.

Berg et al. | ilastik: interactive machine learning for (bio)image analysis | 9

